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Abstract

In this dissertation, we study collapsed manifolds with boundary, where we assume a lower

sectional curvature bound, a two-sided bound on second fundamental forms of boundaries

and an upper diameter bound. Our main concern is the case when inradii of manifolds

converge to zero. This is a typical case of collapsing manifolds with boundary. Actually

we show that the inradius collapse occurs when the limit space is a topological closed

manifold, for instance. In the general case, we determine the limit spaces of inradius

collapsed manifolds as Alexandrov spaces with curvature uniformly bounded below. When

the limit space has co-dimension one, we completely determined the topology of inradius

collapsed manifold in terms of singular I-bundles. General inradius collapse to almost

regular spaces are also characterized. In the case of unbounded diameters, we prove that

the number of boundary components of inradius collapsed manifolds is at most two. The

main results in this dissertation are due to a joint work with Professor Takao Yamaguchi

[YZ15].
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Chapter 0

Introduction

In this chapter, we introduce the background of our work. It is well known that the

understanding of relationship between geometry and topology in Riemannian manifolds

is one of the central themes in geometry. Ever since the concept of Gromov-Hausdorff

distance was introduced, there has been increasing interest in studying the relationship

between geometry and topology in Gromov-Hausdorff convergence. If a precompact subset

M of all compact length spaces with respect to Gromov-Hausdorff distance is given, it is

natural to consider the following problem.

Problem 0.0.1. Let Xi be a sequence of elements inM converging to a compact length

space X with respect to the Gromov-Hausdorff distance.

(1) Characterize the structure of X;

(2) Find geometric and topological relations between Xi and X for large enough i.

Given a Riemannian manifold M with boundary, the inradius of M is defined as

inrad(M) := sup
x∈M

d(x, ∂M).

Inradius collapsed manifolds Mi mean a sequence of Riemannian manifolds with boundary

satisfying inrad(Mi) → 0. In this dissertation, we mainly study Problem 0.0.1 for the

inradius collapsed manifolds where we assume a lower sectional curvature bound, a two-

sided bound on second fundamental forms of boundaries and an upper diameter bound.

The main results in this dissertation are due to a joint work with Prof. Takao Yamaguchi

[YZ15].

0.1 Background

Before we introduce our work, we review some results of Riemannian manifolds with or

without boundary related to Problem 0.0.1. Since our work relates to sectional curvature

1



bounded below, the introduction of background emphasizes this condition.

0.1.1 Manifolds without boundary

In this subsection, we review results on Problem 0.0.1 for manifolds without boundary.

Let M′(n, κ, d) (resp. M′(n, r−, d)) denote the collection of isometry classes of com-

pact n-dimensional Riemannian manifolds without boundary, with a two-sided bound κ

(resp. r−) on sectional (resp. Ricci) curvatures and an upper diameter bound d. Let

M(n, κ, d) (resp. M(n, r−, d)) denote the collection of isometry classes of compact n-

dimensional Riemannian manifolds without boundary, with a lower sectional (resp. Ricci)

curvature bound κ (resp. r−) and an upper diameter bound d.

By Gromov’s precompact theorem, the collection M(n, r−, d) is precompact with re-

spect to Gromov-Hausdorff distance. It is natural to consider Problem 0.0.1 in the cases

of M =M′(n, κ, d), M′(n, r−, d), M(n, κ, d), and M(n, r−, d) respectively.

1. The case of bounded sectional (Ricci) curvature

Now we review the studies of Problem 0.0.1 for M =M′(n, κ, d) and M′(n, r−, d).

For the case of non-collapse, by [G’bk, Kat85], if Mi inM′(n, κ, d) Gromov-Hausdorff

converges to a space M with the same dimension, then M is a differentiable manifold and

Mi is diffeomorphic to M for large enough i. This result implies the finiteness of the

diffeomorphism classes in M′(n, κ, d) with a lower positive volume bound. Moreover,

by [G’bk, GW88, Peters87], if Mi ∈ M′(n, κ, d) Gromov-Hausdorff converges to an n-

dimensional manifold, then there exists a subsequence converges to a Riemannian manifold

of C1,α class. These results give answers to Problem 0.0.1 (1) and (2).

For the case of collapse in Problem 0.0.1 (2), let us first recall the Almost flat man-

ifolds Theorem. A closed manifold M is called an almost flat manifold [G:AFM] if for

each positive ε, there exists a metric gε on M such that

|sec(M,gε)| ≤ 1 and diam (M, gε) < ε,

where |sec(M,gε)| is a positive two-sided bound on the sectional curvature. This theorem

is a starting point of many studies of collapse phenomenon.

Theorem 0.1.1 (Almost flat manifolds Theorem [G:AFM],[Ruh82]). Let M be a closed

Riemannian manifold,

(1) M is an infranil manifold if and only if it is an almost flat manifold,

(2) If M is an almost flat manifold, there exists a nilpotent subgroup of π1(M) with

finite index.
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Note that Margulis lemma played an essential role in the proof.

There are two approaches in extending Gromov’s idea in this theorem. One came

from Gromov-Cheeger’s studies [CG86, CG90], which introduced the F -structure on

a manifold and studied its relationship with the existence of metrics on this manifold

such that the injectivity radii with respect to them converge to zero while the sectional

curvatures are uniformly bounded. Another came from Fukaya’s paper [Fu86], which

established a fibration theorem that if Mi in M(n, κ, d) Gromov-Hausdorff converges

to a manifold N with |secN | ≤ 1, then Mi is a fiber bundle over N with an infranil

fiber. Later, the approach of collapsing theory in [CFG92] combined and generalized

Cheeger-Gromov’s and Fukaya’s ones.

2. The case of a lower bound on sectional and (respect. Ricci) curvature

Now we review the studies of Problem 0.0.1 for M =M(n, κ, d) and M(n, r−, d).

For the case of non-collapse in Problem 0.0.1 (2), Perelman’s stability theorem [Pr94],

cf. [Ka07], implies a homeomorphic version of Gromov’s corresponding result above.

Clearly, it implies the topological finiteness of Riemannian manifolds inM(n, κ, d, v), the

set of all elements M ∈ M(n, κ, d) having volume vol(M) ≥ v > 0. Before Perelman’s

result was proved, it was known that M(n, κ, d, v) contains finite many homotopy types

by Grove-Peterson in 1988 [GP88] and it contains at most finitely many homeomorphism

types when n 6= 3, and only finitely many diffeomorphism types if in addition n 6= 4

by Grove-Petersen-Wu [GPW]. For the case of Ricci curvature, Cheeger-Colding [CC97]

showed that given a closed smooth n-manifold Mn, there exists an ε = ε(M) > 0 such

that if Nn is an n-manifold with RicciN > −(n − 1) and dGH(M,N) < ε, then N is

diffeomorphic to M .

It is well known that the Gromov-Hausdorff limit X of a sequence of manifolds in

M(n, κ, d) is an Alexandrov space [GP91]. Let S denote the set of singularities in X. By

Otsu-Shioya’s work [OS94], S has hausdorff dimension at most n − 1 and there exists a

natural C1/2-Riemannian structure on a full-measure subset of X \ S, where the metric

induced by this Riemannian structure coincides with the original metric in X. This fact

gives an answer to Problem 0.0.1 (1).

For the case of collapse in Problem 0.0.1 (2), let us first review some results about

manifolds collapsing to a point. The works in [FY92, Ya91] are their starting points.

In [FY92], Fukaya-Yamaguchi studied an important type of manifolds named almost

non-negatively curved manifolds. A closed Riemannian manifold Mn is called an almost

non-negatively curved manifold if and only if it possesses a metric gε for each given positive

ε such that

KMgε
≥ −1 and diam (M, gε) < ε,

where KMgε
denotes the lower sectional curvature bound of (M, gε). Obviously, the con-

cept of almost non-negatively curved manifold is a generalization of almost flat manifold.
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Fukaya-Yamaguchi proved that there exists a nilpotent subgroup in π1(M) with finite

index C by a version of Margulis lemma with sectional curvature bounded below. Thus

their theorem can be considered as a version of Gromov’s almost flat manifolds theo-

rem. In the year 2010, Petrunin-Kapovich-Tuschmann[KPT10] proved that the index C

in Fukaya-Yamaguchi’s result above is a constant depends only on dimM . The gradi-

ent flow on Alexandrov spaces plays a key role in the proofs of [KPT10]. For the case

of Ricci curvature, Cheeger-Colding [CC96] and Kapovich-Wilking [KW11] proved that

Petrunin-Kapovich-Tuschmann’s result is true even if a lower sectional curvature bound is

replaced by a lower Ricci curvature bound by applying their generalized Margulis lemma

with Ricci curvature bounded below. Their proofs are based on the structure results of

Cheeger and Colding for limit spaces of manifolds with lower Ricci curvature bounds.

Next we review the results about manifolds collapsing to a manifold. In [Ya91] Ya-

maguchi established a general fibration theorem for collapsing manifolds with a lower

sectional curvature bound, which generalizes Fukaya’s fibration theorem [Fu86] and relates

the topological rigitity to the structure of the first betti number of the fiber. This theo-

rem implies that the almost non-negatively curved manifold Mn with first betti number

b1(M) = n is diffeomorphic to a torus Tn. Yamaguchi’s work indicates that the study of

almost nonnegatively curved manifolds is very important since they possess similar topo-

logical properties as the fibers of collapsing manifolds with a lower sectional curvature

bound over their limits space. Another importance of this theorem is it opened a door

to a series of studies on the structure of collapsing Alexandrov space (resp. Riemannian

manifolds) with a lower curvature (resp. sectional curvature) bound. In 1996, a fibration

theorem for Alexandrov spaces was established [Ya96] where the limit space and converg-

ing spaces are assumed to be almost regular. Later, this result was greatly generalized to

a Equivariant Fibration-Capping Theorem 4.2.2 by improving the previous fibration the-

orems and applying Perelman’s fibration theorem and Siebenmann’s theory [Pr94, Sie72]

and the theory of group action. This theorem was applied to study the classifications

of three and four dimensional collapsing manifolds [SY00, Ya02]. Note that for the s-

tudy of the structure of three dimensional volume collapsed manifolds, cf. [SY00, SY05],

played an important role in Perelman’s resolution of Thurston’s Geometrization Con-

jecture [Pe02, Pe03]. The generalized fibration theorem also plays an important role in

classification of collapsing three dimensional closed Alexandrov spaces [MY15].

For the case of convergence of manifolds with a lower or two-sided Ricci curvature

bound, it is very different from M(n, κ, d) and M′(n, κ, d) in the sense that there is no

fibration theorem for two close manifolds in M(n, r−, d) in Gromov-Hausdroff distance.
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0.1.2 Manifolds with boundary

In order to study Problem 0.0.1 for manifolds with boundary, we need a collection M of

compact manifolds with boundary which is precompact with respect to Gromov-Hausdorff

distance. Thus, in this subsection, we review various precompactness theorems with

assumptions on sectional curvature or Ricci curvature. We also review the studies related

to Problem 0.0.1 (1) and (2) for manifolds with boundary.

Various precompactness theorems

1. The case of sectional curvature

Kodani was the first to study the precompactness theorem for Riemannian manifold-

s with boundary with respect to Gromov-Hausdorff distance. Precisely, he derived a

precompactness theorem for n-dimensional Riemannian manifolds with boundary with

a two-sided bound on the sectional curvatures, a non-negative two-sided bound on the

second fundamental forms of the boundaries, an upper bound on the diameters and a

positive lower bound on the volumes [Kod90].

Next, we review Wong’s precompactness theorem. LetM(n, κ, λ, d) denote the isom-

etry classes of compact n-dimensional Riemannian manifolds with smooth boundary with

a lower sectional curvature bound κ, a two-sided bound λ on the second fundamental

forms of the boundaries and an upper diameter bound d. Applying Kosovskii’s gluing

theorem [Kos02], Wong was able to prove the precompactness of M(n, κ, λ, d) [Wo08],

which is a generalization of Kodani’s result. This result is the basic point of our work.

Remark 0.1.2. We don’t know whetherM(n, κ, λ, d) is still precompact if the assumption

of the upper bound of the second fundamental forms of the boundaries is removed.

2. The case of Ricci curvature

In [Wo08], Wong also obtained a precompactness theorem for Riemannian manifolds

with boundary with a lower Ricci curvature bound, which implies that, the collection of the

isometry classes of compact n-dimensional Riemannian manifolds with smooth boundary

with a lower bound on Ricci curvature, a two-sided bound on the second fundamental

forms of the boundaries and an upper diameter bound, is precompact with respect to

Gromov-Hausdorff distance. In [Pera], Perales proved some precompactness theorems for

non-collapsing compact Riemannian manifolds with boundary with non-negative lower

Ricci curvature bound and other assumptions related to the boundary and volume.

Structure theorems with a lower sectional curvature bound
To the author’s knowledge, there exists no structure result for Gromov-Hausdorff

convergent sequence of Riemannian manifolds with boundary with a lower or two-sided

Ricci curvature bound. For Riemannian manifolds with boundary with a two-sided bound
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or lower bound on sectional curvature, there exist but not many results. We mainly

introduce some results which relate to our main results.

The following consequence is an answer to Problem 0.0.1 (1) .

Theorem 0.1.3 ([Wo10]). Let Mi be a sequence of Riemannian manifolds with boundary.

Suppose Mi Gromov-Hausdorff converges to some metric space X. If KMi
≥ K−, τ(1/i) ≤

II∂Mi
≤ λ+, then X is an Alexandrov space with a lower curvature bound K−.

Obviously, the boundary of Mi increasingly becomes locally convex as i increases. It

means that Mi increasingly looks like an Alexandrov space. It is natural to ask what the

structure of the limit space of Mi is, when the lower bound of the second fundamental

form of the boundary is replaced by a negative number. We will study this problem in

the dissertation.

The following result comes from Wong [Wo10] and Yamaguchi [Ya96], which is an

answer to Problem 0.0.1 (2) for collapsing manifolds with boundary which is also an

Alexandrov space.

Theorem 0.1.4 ([Wo10], Theorem 2(i)). Let Mi be a sequence of Riemannian manifolds

with boundary and Mi
GH−→ N , where N is a closed C1 manifold. If KMi

≥ K−, II∂Mi
≥ 0,

then there exists a local trivial fiber bundle

Fi →Mi → N,

where Fi is a manifold with boundary, almost non-negatively curved in the generalized

sense [Ya91].

Remark 0.1.5. Notice that Mi is an Alexandrov space since II∂Mi
≥ 0. Theorem 0.1.4 is

a direct consequence of Yamaguchi’s fibration theorem for Alexandrov space [Ya96].

It is natural to ask whether Mi fibers over its limit space N if Mi is not an Alexandrov

space. We will study this problem in the dissertation.

The following theorem is a structure theorem for inradius collapsed manifolds.

Theorem 0.1.6 ([AB98], Theorem 1.1). There exists a dimension-independent constant

c such that if a complete connected Riemannian manifold M satisfies

inrad(M)2 sup{|KM |, |II∂M |2} < c,

then either M is diffeomorphic to the product of a manifold without boundary and an

interval or M can be doubly covered by such a product.

Remark 0.1.7. The proof in [AB98] depends on the discussion of the cut locus and the

integral curves of gradient fields generated by distance functions to the boundaries, where

cut locus is the collection of all points p in M such that there is a geodesic segment γ

realizing d(p, ∂M), but no extension of γ realizes distance to ∂M .
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For the structure results for non-collapsing manifolds in Problem 0.0.1, [Wo08] implies

that if Mi ∈M(n, κ, λ, d) Gromov-Hausdorff converges to an n-dimensional metric space

N , then Mi is homeomorphic to Mj for i, j large enough. However, it is different from

Perelman’s stability theorem that Mi is not necessarily homeomorphic to the limit space

N . Consider a an annulus with outer boundary fixed and inner boundary continuously

moves to the outer boundary. The limit space is even not a manifold with boundary!

0.2 Main results

In this section we introduce our main results. All of them are due to a joint work with

Prof. Takao Yamaguchi [YZ15]. The first one is about the structure of limit spaces, which

give an answer to Problem 0.0.1 (1).

Recall thatM(n, κ, λ, d) is the collection of all isometry classes of compact n-dimensional

Riemannian manifolds with smooth boundary and with a lower sectional curvature bound

κ, a two-sided bound λ on the second fundamental forms of the boundaries and an upper

diameter bound d.

For a sequence of Riemannian manifolds Mi with boundary, we say Mi inradius col-

lapses to a compact metric space N if and only if Mi
GH−→ N and inrad(Mi)→ 0.

Theorem 0.2.1 ([YZ15]). Let Mi ∈ M(n, κ, λ, d) inradius collapse to a length space

N with respect to the Gromov-Hausdorff distance. Then N is an Alexandrov space with

curvature ≥ c(κ, λ), where c(κ, λ) is a constant depending only on κ and λ.

In fact, N is isometric to the Gromov-Hausdorff limit of ∂Mi modulo an isometric

Z2-action, therefore c(κ, λ) is the same uniform lower curvature bound as K∂M i
. It should

be noted that Mi may not be Alexandrov spaces unless Π∂Mi
≥ 0, and that the constant

c(κ, λ) really depends on κ and λ (see Example 2.3.1 and 2.3.2).

Let M(n, κ, λ) denote the set of all isometry classes of n-dimensional complete Rie-

mannian manifolds M with smooth boundary satisfying

KM ≥ κ, |Π∂M | ≤ λ.

This family is also precompact with respect to the pointed Gromov-Hausdorff convergence

[Wo08]. Theorem 0.2.1 actually holds true for the limit of manifolds in M(n, κ, λ) with

respect to the pointed Gromov-Hausdorff convergence (see Theorem 5.0.7).

Next we discuss the topological structure of inradius collapsed manifolds. First we

consider the case of inradius collapse of codimension one. where we define two types of

models of the singularities around boundary component of the limit space, the product

or the twisted singular I-fiber bundle (see Definition 4.1.1). We can give a complete

characterization of codimension one inradius collapsed manifolds as follows, which is an

answer to Problem 0.0.1 (2).
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Theorem 0.2.2 ([YZ15]). Let Mi ∈M(n, κ, λ, d) inradius collapse to an (n−1)-dimensional

Alexandrov space N . Then there is a singular I-fiber bundle:

I →Mi
π→ N.

More precisely,

(1) If N has no boundary, then Mi is homeomorphic to a product N × I or a twisted

product N
∼
× I;

(2) If N has non-empty boundary, each component ∂αN of ∂N has a neighborhood V

such that π−1(V ) is homeomorphic to either the product or the twisted singular I-

fiber bundle around ∂αN ;

(3) If π−1(V ) is homeomorphic to the product singular I-fiber bundle for some compo-

nent ∂αN , then Mi is homeomorphic to

D(N)× [−1, 1]/(x, t) ∼ (r(x),−t),

where r is the canonical reflection of the double D(N).

Next, we consider the case of inradius collapse to an almost regular space, which is an

answer to Problem 0.0.1 (2). We say that an Alexandrov space N is almost regular if any

point of N has the space of directions whose volume is close to volSdimN−1.

Theorem 0.2.3 ([YZ15]). Let Mi in M(n, κ, λ, d) inradius collapse to an almost regular

Alexandrov space N , then the topology of Mi can be classified into two types

(a) There exists a local trivial fiber bundle

Fi × I →Mi → N,

where Fi is a closed almost non-negatively curved manifold in a generalized sense as

in [Ya91].

(b) There exists a local trivial fiber bundle

Capi →Mi → N,

where Capi (resp. ∂ Capi) is a closed almost non-negatively curved manifold in a

generalized sense as in [Ya91] with boundary (resp. without boundary).

Combined with Proposition 6.0.19, Theorem 0.2.3 yields the following.
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Corollary 0.2.4 ([YZ15]). Let a sequence Mi in M(n, κ, λ, d) Gromov-Hausdorff con-

verge to a closed Riemannian manifold N of class C1, then the topology of Mi can be

classified into two types

(a) There exists a local trivial fiber bundle

Fi × I →Mi → N,

where Fi is a closed almost non-negatively curved manifold in a generalized sense as

in [Ya91].

(b) There exists a local trivial fiber bundle

Capi →Mi → N,

where Capi (resp. ∂ Capi) is a closed almost non-negatively curved manifold in a

generalized sense as in [Ya91] with boundary (resp. without boundary).

Corollary 0.2.4 provides an extension of Theorem 0.1.4, and Theorem 0.2.3 solves a

problem raised in [Wo10], p.297, without assuming the upper sectional curvature bound.

Next we discuss the number of boundary components of inradius collapsed manifolds,

where we do not assume the diameter bound.

Theorem 0.2.5 ([YZ15]). There exists a positive number ε = εn(κ, λ) such that if M in

M(n, κ, λ) satisfies inrad(M) < ε, then

(1) the number k of connected components of ∂M is at most two;

(2) if k = 2, then M is diffeomorphic to W × [0, 1], where W is a component of ∂M .

Theorem 0.2.5 (1) was stated in [Wo10], Theorem 5. The following argument employed

in the proof there is unclear to the authors: if k ≥ 3 and if p ∈ M is the furthest point

from ∂M , then B(p, inrad(M)), touches ∂M at least three points.

Theorem 0.2.5 might be considered as a generalization of the main theorem in [AB98],

where an I-bundle structure was found for an inradius collapsed manifold under bound-

ed sectional curvature. According to Wong’s remark of Theorem 8 in [Wo10], all the

conditions in this theorem are sharp.

0.3 The ideas of fibration theorems

Since the ideas of the fibration theorems 0.2.2 and 0.2.3 are very important in the disser-

tation, we shall introduce them in this section.



10 CHAPTER 0. INTRODUCTION

Let Mi ∈ M(n, κ, λ, d), N a compact metric space and Mi
GH−→ N. Naturally, one

expects to find a fiber bundle structure on Mi over N as the case of collapsing Riemannian

manifolds without boundary, cf. [Ya91]. Unfortunately, since there exists not a fibration

theorem for collapsing Riemannian manifolds with boundary, we have no tools to use

directly. However, we can overcome this difficulty by extending Mi in a nice way.

Note that by gluing some special cylinders to the boundaries of all Mi by applying

Wong’s method, cf. section 1.3, we can extend all Mi to Alexandrov spaces M̃i with totally

geodesic boundary and a uniform lower curvature bound, which are homeomorphic to Mi

respectively. Therefore it is natural to study the convergence of M̃i instead of Mi. By

Gromov’s compactness theorem for Alexandrov spaces, there exists an Alexandrov space

Y such that passing to a subsequence, we have

Mi ≈ M̃i
GH−→ Y.

In order to understand the relation between Mi and N , we have to investigate the relation

between Y and N which is the core of Theorem 0.2.2 and 0.2.3. We can see that Y is also

a gluing space based on N . Notice that if Mi inradius collapses to N ,

dimN + 1 = dimY.

This fact motivates us to ask whether Y is an I-bundle over N . After a detailed study

of the tangent cones at gluing points and their relation via the differential of gluing map,

multiplicity of the gluing maps and singularities of N , we can see directly that Y is in

general a singular I-bundle over N , cf. Theorem 3.3.4 (2), without applying other deep

fibration theories. Here, the argument on the local structure of Y depends on Yamaguchi’s

result about collar neighborhood 1.2.7. Then we have the following relations

Mi ≈ M̃i
GH−→ Y

π−→ N,

where π is a singular fibration.

Notice that in the case of co-dimension one collapse, dimMi = dimY . The singular

I-fiber bundle structure in Theorem 0.2.2 follows from Perelman’s stability theorem.

In the case of general inradius collapse. Since N is almost regular, so is Y with

almost regular boundary. Thus Y is an I-bundle over N . Since the multiplicity of the

gluing map is at most two, there exist two possible I-bundle structures on Y over N .

Note that the double D(M̃i) of M̃i is an Alexandrov space without boundary with the

same lower curvature bound as M̃i by [Pr94] for each i. We can consider the Gromov-

Hausdorff convergence of D(M̃i). Since ∂D(M̃i) = ∅, D(M̃i) as well as its limit space

possess symmetric structures and Y possesses two possible I-bundle structures, we can

apply Yamaguchi’s Equivariant Fibration-Capping Theorem 4.2.2 to derived two possible

fiber bundle structures on Mi over its limit space N , cf. Theorem 0.2.3. The ideas of

doubling M̃i and applying 4.2.2 came from [MY:pre].
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0.4 Organization of the dissertaion

The organization and the outline of the proofs are as follows.

In Chapter 1, we first recall basic notions and facts on the Gromov-Hausdorff conver-

gence and Alexandrov spaces with curvature bounded below. Then we focus on Wong’s

extension procedure of a Riemannian manifold with boundary by gluing a warped cylin-

der along their boundaries. By [Kos02], the result of the gluing is a C1,α-manifold with

C0 Riemannian metric, and becomes an Alexandrov spaces with curvature uniformly

bounded below. This construction is quite effective and used in an essential way in our

dissertation.

In Chapter 2, we describe the limit spaces of glued Riemannian manifolds with bound-

ary in several aspects. The limit spaces also have gluing structure. In this section we focus

on the topological structure of gluing, estimates of multiplicities of gluing, and intrinsic

metric structure of the limit space.

In Chapter 3, we determine the metric structure of limit spaces. First we study the

spaces of directions of the limit space at gluing points, and prove that the gluing map

preserves the length of curves. This implies that the gluing in the limit space is done

metrically in a natural manner, and yields significant structure results (see Theorem

3.3.4) on the limits including Theorem 0.2.1.

Those structure results are applied in Chapter 4 to obtain the fiber structures of inra-

dius collapsed manifolds. Theorems 0.2.2 and 0.2.3 are proved there. To prove Theorem

0.2.2, we need to analyze the singularities of the singular I-fiber bundle in details. To

prove Theorem 0.2.3, we apply the Equivariant Fibration-Capping Theorem [Ya02].

To prove Theorem 0.2.5, we consider the case of unbounded diameters in Chapter 5.

Applying the results in Section 3, we obtain basically three types on local connectedness

of the boundary of an inradius collapsed complete manifold, accdording to the types of the

local limit spaces. After such local obsrvation, Theorem 0.2.5 follows from a monodromy

argument.

In Chapter 6, we consider the convergence where the inradii have a positive lower

bound. Then we prove a proposition which indicates that inradius collapse is typical.
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Chapter 1

Preliminaries

In order to make the presented paper more accessible, we fix some basic definition, nota-

tions and conventions.

• τ(δ) is a function depends on δ such that limδ→0 τ(δ) = 0.

• For topological spaces X and Y , X ≈ Y means X is homeomorphic to Y .

• The distance between two points x, y in a metric space is denoted by d(x, y), |x, y|
or |xy|.

• For a point x and a subset A of a metric space X, B(x, r) = BX(x, r) and B(A, r) =

BX(A, r) denote open r-balls in X around x and A respectively.

• For a metric space (X, d), and r > 0, the rescaling metric space (X, rd) is denoted

by rX.

• The Euclidean cone K(Σ) over a metric space (Σ, ρ) is Σ × [0,∞) equipped with

the metric d defined as

d((x1, t1), (x2, t2)) = (t21, t
2
2 − 2t1t2 cos(min{ρ(x1, x2), π}))1/2,

for any two points (x1, t1), (x2, t2) ∈ Σ× [0,∞).

• For a subspace M of a metric space (M̃, dM̃), M ext denotes (M,dM̃), which is called

the exterior metric of M .

• The metric d of a connected metric space (X, d) induces a length metric dint of X

defined as the infimum of the length of all curves joining two given points. We

denote by X int the new metric space (X, dint).

• The length of a curve γ is denoted by L(γ).

13
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1.1 The Gromov-Hausdroff convergence

A (not necessarily continuous) map f : X → Y between two metric spaces X and Y is

called an ε-approximation if it satisfies

1. |d(x, y)− d(f(x), f(y))| < ε, for all x, y ∈ Y ,

2. f(X) is ε-dense in Y , i.e., B(f(X), ε) = Y .

The Gromov-Hausdorff distance dGH(X, Y ) is defined as the infimum of those ε such that

there are ε-approximations f : X → Y and g : Y → X.

A map f : (X, x) → (Y, y) between two pointed metric spaces is called a pointed

ε-approximation if it satisfies

1. f(x) = y,

2. |d(x, y)− d(f(x), f(y))| < ε, for all x, y ∈ BX(x, 1/ε),

3. f(BX(x, 1/ε)) is ε-dense in BY (y, 1/ε).

The pointed Gromov-Hausdorff distance dpGH((X, x), (Y, y)) is defined as the infimum of

those ε such that there are pointed ε-approximations f : (X, x)→ (Y, y) and g : (Y, y)→
(X, x).

Consider a pair (X,Λ) of a metric space X and a group Λ of isometries of X. For

such pairs (X,Λ), (Y,Γ), a triple (f, ϕ, ψ) of maps f : X → Y , ϕ : Λ→ Γ and ψ : Γ→ Λ

is called an equivariant ε-approximation from (X,Λ) to (Y,Γ) if the following holds

1. f is an ε-approximation,

2. if λ ∈ Λ, x ∈ X, then d(f(λx), (ϕλ)(fx)) < ε,

3. if γ ∈ Γ, y ∈ Y , then d(f(ψ(γ)x), γ(fx)) < ε.

The equivariant Gromov-Hausdorff distance deGH((X,Λ), (Y,Γ)) is defined as the infimum

of those ε such that there are ε-approximations from (X,Λ) to (Y,Γ) and from (Y,Γ) to

(X,Λ).

The following proposion is a locally compactness version of ([Wo06], Proposition

B.2.1). Its proof is similar to Wong’s. We just outline it here.

Proposition 1.1.1. Let (Xi, xi), (Yi, yi), (X, x), (Y, y) be pointed metric spaces, where

bounded subsets are precompact. i ∈ N. Suppose fi : (X, x) → (Xi, xi) and gi :

(Yi, yi) → (Y, y) be pointed εi-approximations for all i ∈ N, and there exists L-Lipschitz

maps ϕi : Xi → Yi, where L is a fixed number. Then there exists an L-Lipschitz map

ϕ : X → Y . If in addition all ϕi are surjective, then ϕ is surjective.
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Proof. Since any bounded subset in X is precompact, there exists a countable dense subset

D ⊂ X. Let

hi := gi ◦ ϕi ◦ fi : X → Y.

By the definition of pointed εi-approximations, for any given xα ∈ D,

lim
k→∞

sup
i≥k
|hi(xα)hi(x)| ≤ L|xαx|.

Since any bounded subset in X is precompact, by the diagonal argument, there exists

a yα ∈ Y such that

lim
i→∞

hi(xα) = yα,

for all α ∈ N without loss of generality. Then we define a map ϕ̃ : D→ Y by ϕ̃(xα) = yα.

Extending ϕ̃ to X, we get ϕ : X → Y .

Remark 1.1.2. Under the notations of this proposition, if Xi is L-bi-Lipschitz homeomor-

phic to Yi, then X is L-bi-Lipschitz homeomorphic to Y .

1.2 Alexandrov spaces

In this section, we review some basic notions and results in Alexandrov geometry. We

refer to [BBI], [BGP], [Pr94] and [Pr94’] for further details.

Let X be a geodesic metric space, where any two points can be joined by a shortest

geodesic. For a fixed real number κ and a geodesic triangle ∆pqr in X with vertices p,

q and r, denote by ∆̃pqr a comparison triangle in the simply connected model surface

M2
κ with constant curvature κ. This means that ∆̃pqr has the same side lengths as the

corresponding ones in ∆pqr. Here we suppose that the perimeter of ∆pqr is less than

2π/
√
κ if κ > 0. The metric space X is called an Alexandrov space with curvature ≥ κ,

sometimes Alexandrov space for short if we do not emphasize the lower curvature bound,

if each point of X has a neighborhood U satisfying the following: For any geodesic triangle

in U with vertices p, q and r and for any point x on the segment qr, we have |px| ≥ |p̃x̃|,
where x̃ is the point on q̃r̃ corresponding to x. From now on we assume that an Alexandrov

space is always finite dimensional.

For an Alexandrov space X with curvature bounded below by κ, let α : [0, s0] → X

and β : [0, t0] → X be two geodesics starting from a point x. The angle between α and

β is defined by ∠(α, β) = lims,t→0 ∠̃α(s)xβ(t), where ∠̃α(s)xβ(t) denotes the angle of

a comparison triangle ∆̃α(s)xβ(t) at the point x̃. Two geodesics α, β from x ∈ X is

called equivalent if ∠(α, β) = 0. We denoted by Σ′x(X) the set of equivalent classes of

geodesics emanating from x. The space of directions at x, denoted by Σx = Σx(X), is
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the completion of Σ′x(X) with the angle metric. Let X be n-dimensional. Then Σx is an

(n− 1)-dimensional compact Alexandrov space with curvature ≥ 1.

A point x ∈ X is called regular if Σx is isometric to Sn−1. Otherwise we call x a singular

point. We denote by Xreg (resp. Xsing) the set of all regular points (resp. singular points)

of X.

The tangent cone at x ∈ X, denoted by Tx(X), is the Euclidean cone K(Σx) over Σx.

It is known that Tx(M) = limr→0

(
1
r
M,x

)
.

For a closed subset A of X and p ∈ A, the space of directions Σp(A) of A at p is

defined as the set of all ξ ∈ Σx(X) which can be written as the limit of directions from p

to points pi in A with |p, pi| → 0. For x, y ∈ X \A, consider a comparison triangle on M2
κ

having the side-lengths (|A, x|, |x, y|, |y, A|) whenever they exist. Then ∠̃Axy denotes the

angle of this comparison triangle at the vertex corresponding to x.

For x, y, z ∈ X, we denote by ∠xyz (resp. ∠̃xyz) the angle between the geodesics yx

and yz at x (resp. the geodesics ỹx̃ and ỹz̃ at x̃).

Let X be an n-dimensional Alexandrov space with curvature bounded below by κ.

For δ > 0, a system of n pairs of points, {ai, bi}ni=1 is called an (n, δ)-strainer at x ∈ X if

it satisfies

∠̃aixbi > π − δ, ∠̃aixaj > π/2− δ,
∠̃bixbj > π/2− δ, ∠̃aixbj > π/2− δ,

for every 1 ≤ i 6= j ≤ n. If x ∈ X has a (n, δ)-strainer, then we say x is (n, δ)-strained. In

this case, we call x δ-regular. We call X almost regular if every point of X is δn-regular

for some δn ≤ 1/100n. It is known that a small neighborhood of any almost regular point

is almost isometric to an open subset in Rn.

Inductively on the dimension, the boundary ∂X is defined as the set of points x ∈ X
such that Σx has non-empty boundary ∂Σx. We denote by D(X) the double of X, which

is also an Alexandrov space with curvature ≥ κ (see [Pr94]). By definition, D(X) =

X q∂X X, where two copies of X are glued along their boundaries.

A boundary point x ∈ ∂X is called δ-regular if x is δ-regular in D(X). We say that

X is almost regular with almost regular boundary if every point of X is δ-regular for

δ < 1/100n.

In Section 4.1, we need the following result on the dimension of the interior singular

point sets.

Theorem 1.2.1 ([BGP], cf. [OS94]).

dimH(Xsing ∩ intX) ≤ n− 2, dimH(∂X)sing ≤ n− 2.

Theorem 1.2.2 ([Pr94], cf.[Ka07]). If a sequence Xi of n-dimensional compact Alexan-

drov spaces with curvature ≥ κ Gromov-Hausdorff converges to an n-dimensional compact

Alexandrov space X, then Xi is homeomorphic to X for large enough i.
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Definition 1.2.3. A n-dimensional metric space X is said to have a topological stratifi-

cation if there exists subsets X(n), X(n−1), X(n−2), · · · , X(0), X−1 of X such that

(1) X = X(n) ⊃ X(n−1) ⊃ . . . X(0) ⊃ X(−1) = ∅

(2) X(k) \X(k−1) is a topological k-manifold without boundary for all k = 0, 1, 2, · · · , n.

A subset E of an Alexandrov space X is called extremal ([PP93]) if every distance

function f = distq, q ∈ M \ E has the property that if f |E has a local minimum at

p ∈ E, then dfp(ξ) ≤ 0 for every ξ ∈ Σp(E). Extremal subsets possess quite important

properties.

Theorem 1.2.4 ([PP93]). Let E be an extremal subset of X.

1. For every p ∈ E, Σp(E) is an extremal subset of Σp(X);

2. E is totally quasigeodesic in the sense that any nearby two points of E can be joined

by a quasigeodesic (see [PP:pre]).

3. E has a topological stratification.

Theorem 1.2.4(1), (2) implies the following

Corollary 1.2.5. For an extremal subset E of X and p ∈ E, dim Σp(E) ≤ dimE − 1.

Suppose that a compact group G acts on X as isometries. Then the quotient space

X/G is an Alexandrov space ([BGP]). Let F denote the set of G-fixed points.

Proposition 1.2.6 ([PP93]). π(F ) is an extremal subset of X/G, where π : X → X/G

is the projection.

Boundaries of Alexandrov spaces are typical examples of extremal subsets.

Proposition 1.2.7 ([Ya02] Prop 5.10). The boundary ∂X of any finite dimensional

Alexandrov space X has a collar neighborhood.

Definition 1.2.8 ([Pr94]). Let f = (f1, ..., fm) : U → Rm be a map on an open subset U

of a finite dimensional Alexandrov space X defined by fi = d(Ai, ·) for compact subsets

Ai ⊂ X. f is said to be (c, ε)-regular at p ∈ U if there is a point w ∈ X such that:

(1) ∠((Ai)
′
p, (Aj)

′
p) > π/2− ε.

(2) ∠(w′p, (Ai)
′
p) > π/2 + c.

Theorem 1.2.9 (Perelman’s fibration theorem). Let X be a finite dimensional Alexandrov

space, U ⊂ X an open subset, and let f be a map as above. Suppose f is proper and is

(c, ε)-regular at each point of U . Then f is a local trivial fiber bundle if ε� c.
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An n-dimensional Alexandrov space is smoothable if and only if it is a Gromov-

Hausdorff limit of n-dimensional closed Riemannian manifolds with a lower sectional

curvature bound.

Theorem 1.2.10 ([Ka02]). Let X be a smoothable Alexandrov space. Then for any p ∈ X,

every iterated space of directions

Σξk(Σk−1(· · · (Σξ1(Σp(X)) · · · )),

is homeomorphic to a sphere, where

ξ1 ∈ Σp(X), ξ2 ∈ Σξ1(X), . . . , ξk ∈ Σξk−1
(· · · (Σξ1(Σp(X)) · · · )).

1.3 Manifolds with boundary and gluing

In this section, we consider a Riemannian manifold M with boundary in M(n, κ, λ, d).

First, we recall some fundamental properties of ∂M , which were derived by Wong[Wo08].

We also recall Wong’s cylindrical extension procedure based on Kosovskii’s Gluing theo-

rem [Kos02].

Let M be a Riemannian manifold with boundary, and ∂Mα denote a boundary com-

ponent of ∂M . (∂Mα)int means ∂Mα with intrinsic length metric.

The following is a immediate consequence of the Gauss equation.

Proposition 1.3.1. For every M ∈ M(n, κ, λ), ∂M has a uniform lower sectional cur-

vature bound: K∂M ≥ K, where K = K(k, λ).

Proof. It is sufficient to proof that there exists a constant K = K(κ, λ) such that, for any

point p ∈ ∂M and any two orthonormal tangent vectors Xp, Yp ∈ Tp∂M , we have

K∂M(Xp, Yp) ≥ K.

Given arbitrary point p ∈ ∂M , consider the shape operater Sν : Tp∂M → Tp∂M

defined by S(x) = −(∇xν)T , where ν ∈ (Tp∂M)⊥ is inward normal. Suppose dimM = n,

{e1, . . . , en−1} is an orthonormal basis of Tp∂M such that S(ei) = λiei, i = 1, . . . , n − 1,

where λ1, . . . , λn−1 are the eigenvalues of S. From now on, we use Einstein sum convention.

Let X = xiei, Y = yjej be two orthonormal tangent vectors in Tp∂M . Clearly, Σn−1
i=1 |xi|2 =

1 and Σn−1
i=1 |yj| = 1. Then, by Gauss’s Formula, we have

K∂M(X, Y ) = KM(X, Y ) + 〈S(X), X〉〈S(Y ), Y 〉 − (〈S(X), Y 〉)2

= KM(X, Y ) + (xiyj)2λiλj − (xiyiλi)
2

≥ k − (xiyj)2λ2 − (xiyj)2λ2

= k − 2λ2
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Proposition 1.3.2 ([Wo08]). Let M ∈M(n, κ, λ, d).

1. There exists a constant D = D(n, κ, λ, d) such that any boundary component ∂Mα

has intrinsic diameter bound

diam ((∂Mα)int) ≤ D;

2. ∂M has at most J components, where J = J(n, κ, λ, d);

It follows from Propositions 1.3.1, 1.3.2 that every boundary component of M ∈
M(n, κ, λ, d) is an Alexandrov space with curvature ≥ c and diameter ≤ D, where c =

c(κ, λ), D = D(n, κ, λ, d)

In general, a Riemannian manifold with boundary is not necessarily an Alexandrov

space. Wong ([Wo08]) carried out a gluing of warped cylinders and M along their bound-

aries in such a way that the resulting manifold becomes an Alexandrov space having

totally geodesic boundary. Wong’s method is based on Kosovskii’s gluing theorem:

Theorem 1.3.3 ([Kos02]). Let M0 and M1 be Riemannian manifolds with boundaries Γ0

and Γ1 respectively with sectional curvature KMi
≥ κ for i = 0, 1. Assume that there exists

an isometry φ : Γ0 → Γ1, and let M denote the space with length metric obtained by gluing

M0 and M1 along their boundaries via φ. Let Li, i = 0, 1, be the second fundamental form

of Γ := Γ0
∼=φ Γ1 ⊂M with respect to the normal inward to Mi. Then M is an Alexandrov

space with curvature ≥ κ if and only if the sum L := L1 + L2 is positive semidefinite.

Idea of the proof Roughly speaking, Kosovskii’s idea of the proof is as follow, for

every δ > 0, construct a Riemmanian metric 〈·.·〉δ on M , the resulting space is denoted

by Mδ, such that the curvature of Mδ is bounded below by κ(δ) and Gromov-Hausdorff

converge to M , where κ(δ)→ κ as δ → 0.

In order to introduce Kosovskii’s idea of gluing two Riemannian manifolds with bound-

ary in detail, we present some preliminaries here. For further details, see [Kos02] .

Recall that L is the sum of the the second fundamental form on the hypersurface

Γ ⊂ M relative to the inward normals corresponding to M0 and M1, respectively. L ≥ 0

by assumption. Let L denote the selfadjoint operator corresponding to the quadratic

form L. Using the parallel translation, one can show that in a small neighborhood of F ,

the selfadoint operator L extends to TM0 so that LN = 0 and ∇NL = 0, where N is a

local vector field Γ0 in M0 orthogonal to the hypersurface equidistant to Γ and ∇ is the

Levi-Civita connection on M0 corresponding to the metric 〈·, ·〉0. Let

In−1 : TM |Γ(d) → TΓ(d)

be the projection operator onto the tangent space of the hypersurface Γ(d), where Γ(d)

denotes the hypersurface in M0 which has a small distance d away from Γ.
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Other than these notations, we need some auxiliary functions to define a new metric

on M0. First, we define a C∞ function fδ : [0,∞)→ R such that

fδ(x) = 1− x

δ4
if x ∈ [0, δ4],

−δ ≤ fδ(x) ≤ 0 and f ′δ(x) ≤ δ if x ∈ [δ4, δ],

fδ(x) = 0 if x ∈ [δ,+∞],∫ δ

0

fδ(x)dx = 0.

Clearly, such a function fδ exists for all small δ > 0. Next we define

Fδ(x) =

∫ x

0

fδ(t)dt,Fδ(x) =

∫ x

0

Fδ(t)dt.

Then we can define a selfadjoint operator which plays a crucial role in the new metric

on M0

Gδ : Ip + 2Fδ(|pΓ|)Lp − 2CFδ(|pΓ|)In−1
p

where I is the identity map and C is a large constant depend on the manifold M . Then

we define a new metric on M0 by

〈·, ·〉δ := 〈·,Gδ·〉0.

Notice that gδ → g0 as δ → 0. Then we can prove that there exists a Riemannian metric

g(δ) with W 2,∞
loc coefficients on M , which coinsides with g1 on M1 and with gδ on M0. Since

the coefficients of g(δ) is not necessarily C2, we can not talk about its sectional curvature.

However, we can approximate the coefficients of g(δ) by the Sobolev averging gh(δ) defined

as follow

Definition 1.3.4. Sobolev averging of the Riemmannian metric gij(δ) on domain Ω is

defined by

ghij(δ)(x) =
1

h

∫
Ω

gij(δ)(u)ω
(x− u

h

)
du,

where ω : Rn → R is the averaging kernel, which is a function satisfies the following

properties,

• the support of ω is contained in the unit ball B0(1),

• the function ω is C∞,

•
∫ n
R ω(x)dx = 1.
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Clearly, gh(δ) → g(δ) as h → 0. Suppose (M, gh(δ)) has a lower sectional curvature

bound κh(δ). By some complicate computations, we can show that limδ→0,h→0 κ
h
(δ) ≥ κ

and limh→0 κ
h
(δ) → κ(δ). Clearly, (M, gh(δ))

GH−→ (M, g(δ)) as h → 0. Thus all (M, g(δ)) are

Alexandrov space with uniform lower curvature bound. Clearly, (M, g(δ))
GH−→M . There-

fore M with length metric is an Alexandrov space with a lower curvature bound κ.

Next we recall the extension construction in [Wo08].

Suppose M is an n-dimensional compact Riemannian manifold with

KM ≥ κ, λ− ≤ II∂M ≤ λ+.

Let λ := min{0, λ−}. Then for arbitrarily t0 > 0 and 0 < ε0 < 1 there exists a monotone

non-increasing function φ : [0, t0]→ R+ satisfying

φ′′(t) +Kφ(t) ≤ 0, φ(0) = 1, φ(t0) = ε0,

−∞ < φ′(0) ≤ λ, φ′(t0) = 0,

for some constant K = K(λ, ε0, t0). Now consider the warped product metric on ∂M ×
[0, t0] defined by

g(x, t) = dt2 + φ2(t)g∂M(x)

where g∂M is the Riemannian metric of ∂M induced from that of M . We denote by

∂M ×φ [0, t0] the warped product. It follows from the construction that

• II∂M×{0} ≥ |min{0, λ−}|;

• II∂M×{t0} ≡ 0;

• the sectional curvature of ∂M ×φ [0, t0] is greater than a constant c(κ, λ±, ε0, t0).

Clearly, ∂M × {0} in ∂M ×φ [0, t0] is canonically isometric to ∂M . Thus we can glue

M and ∂M ×φ [0, t0] together along ∂M and ∂M × {0}. The resulting space

M̃ := M q∂M (∂M ×φ [0, t0])

carries the structure of differentiable manifold of class C1,α with C0-Riemannian metric

([Kos02]). Obviously M is diffeomorphic to M̃ .

Proposition 1.3.5 ([Wo08]). For M ∈M(n, κ, λ, d), we have

1. M̃ is an Alexandrov space with curvature ≥ κ̃ and with diameter ≤ d̃, where κ̃ =

κ̃(κ, λ) and d̃ = d+ 2t0;

2. the exterior metric M ext is L-bi-Lipschitz homeomorphic to M for the uniform con-

stant L = 1/ε0.
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The notion of warped product also works for metric spaces.

Let X and Y be metric spaces, and φ : Y → R+ a positive continuous function. Then

the warped product X ×φ Y is defined as follows (see [Wo06]). For a curve γ = (σ, ν) :

[a, b]→ X × Y , the length of γ is defined as

Lφ(γ) = sup
|∆|→0

k∑
i=1

√
φ2(ν(si))|σ(ti−1), σ(ti)|2 + |ν(ti−1), ν(ti)|2,

where ∆ : a = t0 < t1 < · · · < tk = b is a division of [a, b] and si is any element of [ti−1, ti].

The warped product X×φ Y is defined as the topological space X×Y equipped with the

length metric induced from Lφ.

Proposition 1.3.6 ([Wo06], Proposition B.2.6). Let Xi be a convergent sequence of length

spaces. If Y is a compact length space, we have

limGH(Xi ×φ Y ) = (limGHXi)×φ Y.

whenever the limits exist.



Chapter 2

Descriptions of limit spaces

Under the notations in section 1.3, throughout this chapter, unless otherwise stated, we

assume Mi ∈ M(n, k, λ, d) inradius collapses to a compact length space N . Let M̃i

converge to a compact Alexandrov space Y , and M ext
i converge to a compact subset X of

Y under the convergence M̃i → Y .

In this chapter, we first study the topological structure of Y and show that Y possesses

a singular I-bundle structure C/η0 over N . (Proposition 2.1.3). We then discuss the

intrinsic structure of X and prove that X int is isometric to N (Proposition 2.2.2). All

results in this chapter are due to a joint work with Prof. Takao Yamaguchi [YZ15].

Here we fix some notations used later on.

• Ci denotes ∂Mi ×φ [0, t0];

• Cit denotes the subspace ∂Mi ×φ {t} in Ci;

• For Ci ⊂ M̃i, C
ext
i denotes (Ci, dM̃i

).

2.1 Topological structure of Y

In this section, we will prove that Y is homeomorphic to a singular-I-bundle (Proposition

2.1.3).

Under the notation presented in the begining of this section, in view of Proposition

1.3.2, passing to a subsequence, we may assume that Ci converges to some compact

Alexandrov space C with cuvrvature≥ K = K(κ, λ). Here Ci is not necessarily connected,

and therefore the convergence Ci → C should be understood componentwisely. Note that

C = C0 ×φ [0, t0], C0 = lim
i→∞

(∂Mi)
int,

23
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where (∂Mi)
int denotes ∂Mi endowed with length metric induced by its original metric.

Usually for simplicity we denote

C0 := C0 × {0}, Ct := C0 × {t}.

Since the identity map ιi : Ci → Cext
i is 1-Lipschitz, we can define a 1-Lipschitz map

η : C → Y in the limits. More precisely, define η : C → Y by

η = lim
i→∞

gi ◦ ιi ◦ fi,

where fi : C → Ci, gi : M̃i → Y are component-wise εi-approximations with limi→∞ εi =

0. We will prove that η is a quotient map.

From now on, η|C0×{0} is denoted by η0.

The following two lemmas are obvious.

Lemma 2.1.1. The map η : C \ C0 → Y \X is a componentwise isometry.

Lemma 2.1.2. For (p, t) ∈ C \ C0, we have |η(p, t), X| = t.

Let C/η0 denote the quotient space C/p ∼ q, where p ∼ q if and only if η0(p) = η0(q)

for p, q ∈ C0. By the above results, we obtain a singular-I-bundle structure on Y as

follows.

Proposition 2.1.3. Y and X are homeomorphic to the quotient spaces C/η0 and C0/η0

respectively.

Proof. Since C and C0 are compact, it suffices to prove the following:

(a) η : C → Y is surjective,

(b) η(C0) = X,

(c) η : C \ C0 → Y \X is injective.

Since Cext
i is εi-dense in M̃i with limi→∞ εi → 0, surjective 1-Lipschitz map ιi : Ci → Cext

i

converges to the surjective 1-Lipschitz map η : C → Y . This shows (a).

Since (∂Mi)
ext is εi-dense in Mi with limi→∞ εi → 0, surjective 1-Lipschitz map

(∂Mi)
int → (∂Mi)

ext converges to the surjective 1-Lipschitz map η0 : C0 → X. This

shows (b).

Note that C is simply covered by the minimal geodesics from the points of Ct0 to C0.

Since η is injective on Ct0 and since η carries those minimal geodesics to minimal geodesics

from η(Ct0) to X, non-branching properties of geodesics in Y implies the injectivity of

η : C \ C0 → Y \X. This shows (c).
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Corollary 2.1.4. If Mi inradius collpases to a compact length space N , then it actually

collapses to N . Namely we have dimMi > dimN.

Proof. From Propositions 1.3.5, 2.1.3 and Lemma 2.2.1, we have

dimMi = dim M̃i ≥ dimY

≥ dimX + 1 = dimN + 1.

Remark 2.1.5. Wong proved dimMi > dimN in ([Wo10], Lemma 1) under the condition

that N is an absolute Poincaré duality space. By Proposition 6.0.19, we shall show that

if N is a closed topological manifold or a closed Alexandrov space, then Mi inradius

collapses. Hence Corollary 2.1.4 give another version of Wong’s result.

Recall that Y is homeomorphic to the identification space C/η0. We now study the

multiplicities of the gluing map η0.

Lemma 2.1.6. #η−1
0 (x) ≤ 2 for every x ∈ X.

Proof. Suppose that #η−1
0 (x) ≥ 2. Take p1, p2 ∈ η−1

0 (x), and let yi := η(pi, t), i = 1, 2, for

some t > 0. We show that |yi, y2| = 2t or equivalently, ∠̃y1py2 = π for t < φ(t0)|p1p2|C0/2.

Let γ be a minimal geodesic in Y joining y1 and y2 . If p1 and p2 are contained

in distinct connected components of C0, γ must meet X, and therefore |yi, y2| = 2t.

Suppose that p1 and p2 are contained in the same connected component of C0. Let

γ̃ = (σ, λ) : [0, 1]→ C be a shortest path in C such that γ̃(0) = (p1, t) and γ̃(1) = (p2, t).

Then we have

L(γ) = L(γ̃) =

∫ 1

0

√
φ2(ν(t))|σ̇(t)|2 + |ν̇(t)|2 dt.

=

∫ 1

0

φ(t0)|σ̇(t)| dt ≥ φ(t0)|p1, p2|C0 .

Thus we have

|(p1, t), (p2, t)|C ≥ φ(t0)|p1p2|C0 .

If γ does not meet X, the geodesic γ̃ = η−1 ◦ γ joining (p1, t) and (p2, t) in C has the

length L(γ) ≤ 2t < φ(t0)|p1p2|C0 . This is a contradiction, and therefore γ meets X and

|yi, y2| = 2t

Definition 2.1.7. In view of Lemma 2.1.6 and Proposition 2.2.2, we make an identifica-

tion N = X int and set for i = 1, 2,

Ni = Xi := {x ∈ X|#η−1
0 (x) = i},

Ci
0 := {p ∈ C0 | η0(p) ∈ Xi}.
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Next we construct a good approximation map M̃i → Y , which helps us to grasp a

whole picture on the several convergences.

Let ψi : ∂Mi = Ci0 → C0 be an εi-approximation with limi→∞ εi = 0.

Lemma 2.1.8 ([Wo06]). The map Ψi : Ci → C defined by

Ψi(p, t) = (ψi(p), t)

is an ε′i-approximation with limi→∞ ε
′
i = 0. Actually, for any approximation map Ψ′i :

Ci → C there is a ψi : ∂Mi = Ci0 → C0 such that |Ψi(p, t),Ψ
′
i(p, t)| < ε′i for Ψi = (ψi, id).

Proof. This follows from Proposition 1.3.6.

Recall that η : C \ C0 → Y \X is a componentwise isometric bijection. In particular

for every y = (p, t0) ∈ Ct0 ⊂ Y , there is a unique minimal geodesic γy : [0, t0] → Y

between X and y such that γy(0) ∈ X, γ(t0) = y. Actually γy is defined as γy(t) = η(p, t).

Define g∗i : Cext
i → Y by

g∗i (p, t) = η ◦Ψi ◦ ι−1
i (p, t) = η(ψ(p), t). (2.1)

Proposition 2.1.9. The map g∗i : Cext
i → Y defined above provides an ε′i-approximation.

Let gi : Cext
i → Y be any εi-approximation such that gi = g∗i on Cit0 , namely gi(p, t0) =

g∗i (p, t0).

For the proof of Proposition 2.1.9, it suffices to show the following.

Lemma 2.1.10. |gi(p, t), g∗i (p, t)| < ε′i for all (p, t) ∈ Cext
i .

Proof. We have to show that

lim
i→∞

sup
(p,t)∈Ci

|gi(p, t), g∗i (p, t)| = 0.

Suppose the contrary. Then there are subsequence {j} ⊂ {i} and (pj, tj) ∈ Cj such that

|gj(pj, tj), g∗j (pj, tj)| ≥ c > 0, (2.2)

for some constant c independent of j. Passing to a subsequence, we may assume that

(ψj(pj), tj) converges to (p∞, t∞) ∈ C. Let γj(t) = (pj, t), 0 ≤ t ≤ t0, which is a minimal

geodesic in Cext
j between ∂Mj and Cjt0 . Now g∗j ◦ γj(t) = η(ψj(pj), t) converges to a

minimal geodesic γ∞(t) = η(p∞, t) realizing the distance between X and (p∞, t0) ∈ Ct0 ⊂
Y .

Since gj is εj-approximation, any limit of gj◦γj, say γ̂, must also be a minimal geodesic

between X and (p∞, t0). From the uniqueness of such geodesic, we have γ∞(t) = γ̂∞(t),

which contradicts (2.2).
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2.2 Intrinsic structure of X

In this section, we determine the intrinsic structure of X, and prove Proposition 2.2.2

below, which will be crucial in classification of Y in terms of N .

Let X ⊂ Y be the limit of a subsequence of M ext
i under the convergence M̃i → Y .

Since dMi
≥ dMext

i
and Mi is L-bi-Lipschitz homeomorphic to M ext

i for a uniform constant

L, we have

The identity ιi : Mi → M ext
i is a L-bi-Lipschitz homeomorphism. Therefore, by

Proposition 1.1.1, passing to a subsequnce, we have that

Lemma 2.2.1. ιi : M ext
i → Mi converges to an L-bi-Lipschitz homeomorphism h : X →

N .

Let N ∪h◦η0 C0×φ [0, t0] denote the length space obtained by gluing two length spaces

N and C0 ×φ [0, t0] by the map h ◦ η0 : C0 × 0→ N . Then we have

Proposition 2.2.2. Y is isometric to the length space

N ∪h◦η0 C0 ×φ [0, t0].

In particular, X int is isometric to N .

Proof. Let Z = N ∪h◦η0 C0 ×φ [0, t0] be a length space. Clearly, (Z \N)int is isometric to

C0 ×φ [0, t0] \ C0. Define a map Φ : Y → Z by Φ(y) = y if y ∈ Z \ N and Φ(y) = h(y)

if y ∈ X. Then Φ is a homeomorphism. It suffice to prove that both Φ and Φ−1 are

1-Lipschitz maps.

Claim (1). Φ is a 1-Lipschitz map.

Given two points y1, y2 ∈ Y , we shall prove that |Φ(y1)Φ(y2)|Z ≤ |y1y2|Y . Let γ be a

geodesic in Y joining y1 and y2. Clearly, γ consists of subgeodesics intersect X only on

their two end points and ones completely contained in X. Since Y \X is componentwise

isometric to C \ C0, if a segment σ′ in Y intersects X only on its two end point, then

|σ′|Y = |Φ(σ′)|Z . Suppose a segment σ : [0, 1]→ Y of γ is completely contained in X. Let

σi : [0, 1]→ M̃i be a shortest path in M̃i such that σi
GH−→ σ under M̃i

GH−→ Y and σi(0) and

σi(1) are contained in ∂Mi. Clearly, σi = (
⋃ni
j=1 σij) ∪ (

⋃mi
j′=1 αij′), where σij ⊂ Mi ⊂ M̃i

and αij′ ⊂ Ci ⊂ M̃i are subsegments of σi for all i, j, j′ ∈ N and ni and mi are fixed

numbers (maybe infinity) depending on i. Clearly |σij|M̃i
= |σij|Mi

and |αij′|M̃i
= |αij′|Ci .

By the definition of warped product,

|αij′ |M̃i
= |αij′ |Ci ≥

φ(ti)

φ(0)
|P i

1 ◦ αij′ |∂Mi
≥ φ(ti)

φ(0)
|P i

1 ◦ αij′(0)P i
1 ◦ αij′(1)|∂Mi

,

where P i
1 : Cext

i → ∂Mi is the projection of the points in Cext
i to the first component, and

φ is a strictly decreasing function in Mi ×φ [0, t0] satisfies φ(0) = 1, and

ti = max{|αij′(t)∂Mi|M̃i
|t ∈ αij′ , j′ ≤ mi}.
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ti → 0 since both σi
GH−→ σ and ∂M ext

i
GH−→ X under M̃i

GH−→ Y . Hence

|σ(0)σ(1)|Y = |σ(0)σ(1)|X = L(σ)

= lim
i→∞

Σni
j=1|σij|M̃i

+ lim
i→∞

Σmi
j′=1|αij′ |M̃i

= lim
i→∞

Σni
j=1|σij|M̃i

+ lim
i→∞

Σmi
j′=1|αij′ |Ci

≥ lim
i→∞

Σj|σij|Mi
+ lim

i→∞
Σj′

φ(ti)

φ(0)
|P i

1 ◦ αij′ |∂Mi

≥ lim
i→∞

φ(ti)

φ(0)
|σi(0)σi(1)|Mi

= |h(σ(0))h(σ(1))|N ≥ |Φ(σ(0))Φ(σ(1))|Z ,

Therefore, |Φ(y1)Φ(y2)|Z ≤ |y1y2|Y .
Claim (2). Φ−1 : Z → Y is also 1-Lipschitz.

For any two points z1, z2 ∈ Z, there exists a shortest path γ joining z1 and z2. γ

consists of the subsegments with interior contain in Y \ X ⊂ Z and the subsegments

completely contained in N ⊂ Z. Let γ1 be the shortest path in Z intersects N at most

at its two end points. Since Z \ N is locally isometric to Y \ X, γ1 in Y \ X has the

same length as in Z \N . Moreover, for the shortest path γ2 completely contained in N ,

|γ2|N ≥ |h−1 ◦ γ2|X since dMi
≥ dMext

i
. Hence

|Φ−1(γ2(0))Φ−1(γ2(1))|Y = |h−1 ◦ γ2|X ≤ |γ2(0)γ2(1)|N = |γ2(0)γ2(1)|Z .

Therefore, |Φ−1(z1)Φ−1(z2)|Y ≤ |z1z2|Z .
In the course of the proof above, it is easy to see that X int is isometric to N .

2.3 Examples

We exhibit some examples of collapse of manifolds with boundary. All the examples

except Example 2.3.6 and 2.3.7 are inradius collapses.

Example 2.3.1. Let

Sn−1(r) := {x ∈ Rn |
n∑
i=1

(xi)
2 = r2 }.

For ε > 0, define Mε as the closed domain in Rn bounded by Sn−1(r + ε) and Sn−1(r).

Then KMε ≡ 0 and |Π∂Mε| ≤ 1/r, and Mε inradius collapses to N := Sn−1(r), where the

limit space is an Alexandrov space with curvature ≥ r−2. Note that N2 = N , and that

the limit Y of M̃ε is isometric to the form

Y = (Sn−1(r)q Sn−1(r))×φ [0, t0]/(f(x), 0) ∼ (x, 0),
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where f : Sn−1(r)qSn−1(r)→ Sn−1(r)qSn−1(r) is the canonical involution. Equivalently

Y is isometric to the warped product

Sn−1(r)×φ̃ [−t0, t0],

where φ̃(t) = φ(|t|).
This example shows that the lower Alexandrov curvature bound of the limit in Theo-

rem 0.2.1 really depends on the bound λ ≥ |Π∂M |.

Example 2.3.2 ([Wo10]). Let N ⊂ R2 × 0 ⊂ R3 be a non-convex domain with smooth

boundary, and let M ′
ε denote the closure of ε-neighborhood of N in R3. After a slight

smoothing of M ′
ε, we obtain a flat Riemannian manifold Mε with boundary such that

Π∂Mε ≥ −λ for some λ > 0 independent of ε. Note that Mε inradius collapses to N ,

where N has no lower Alexandrov curvature bound.

This example shows that Theorem 0.2.1 does not hold if one drops the upper bound

λ ≥ Π∂M .

Example 2.3.3. Let π : P → N be a Riemannian double covering between closed

Riemannian manifolds with the deck transformation ϕ : P → P . Define

Φ : P × [−ε, ε]→ P × [−ε, ε]

by

Φ(x, t) = (ϕ(x),−t),

and consider Mε := P × [−ε, ε]/Φ, which is a twisted I-bundle over N . Note that Mε ∈
M(n, κ, 0, d) for some κ and d, and that Mε inradius collapses to N as ε → 0. In this

case, we have N2 = N . Note that the limit Y of M̃ε is isometric to the form

Y = P ×φ [0, t0]/(ϕ(x), 0) ∼ (x, 0),

or equivalently Y is doubly covered by the warped product

P ×φ̃ [−t0, t0].

A typical example of this example is the shrinking of a cylinder and a Mobius strip.

Example 2.3.4. Let N be a convex domain in Rn−1 × 0 ⊂ Rn+1 with smooth boundary.

Let M ′
ε denote the intersection of the boundary of ε-neighborhood of N in Rn+1 with the

upper half space H+ = {(x1, . . . , xn+1) |xn+1 ≥ 0 }. After a slight smoothing of M ′
ε, we

obtain a nonnegatively curved Riemannian manifold Mε with totally geodesic boundary.

Note that Mε inradius collapses to N as ε → 0. Note also that (∂Mε)
int, a smooth

approximation of the boundary of ε-neighborhood of N in Rn, converges to the double
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D(N) of N . It follows that N1 = ∂N and N2 = N \ ∂N , and that the limit Y of M̃ε is

isometric to the form

Y = D(N)×φ [0, t0]/(r(x), 0) ∼ (x, 0),

where r : D(N)→ D(N) denotes the canonical reflection of D(N).

This example implies that the case and both N1 and N2 are not empty may happen.

Next let us consider more general examples. The following ones come from Example

1.2 in [Ya91], where general examples of collapse of closed manifolds were given.

Example 2.3.5. Let π̂ : M → N be a fiber bundle over a closed manifold N with fiber

F having non-empty boundary and with the structure group G such that

1. G is a compact Lie group;

2. F has a G-invariant metric gF of nonnegative curvature which smoothly extends to

the double D(F );

Fix a bi-invariant metric b on G and a metric h on N . Let π : P → N be the principal

G-bundle associated with π̂ : M → N . Define G-invariant metric gε on P by

gε(u, v) = h(dπ(u), dπ(v)) + ε2b(ω(u), ω(v)),

where ω is a G-connection on P . Define a metric g̃ε on P ×D(F ) as

g̃ε = gε + ε2gF .

For the G-action on P ×D(F ) defined by

(p, f) · g = (pg, g−1f),

g̃ε is G-invariant and invariant under the action of reflection of D(F ). Therefore it induces

a metric gD(M),ε on D(M) = P ×D(F )/G. Since gD(M),ε is invariant under the action of

reflection of D(M), it induces a metric gM,ε on M with totally geodesic boundary such

that (M, gM,ε) inradius collapses to (N, h) under a lower sectional curvature bound.

Example 2.3.6. Let M be a compact manifold with boundary, and suppose that a

compact Lie group of positive dimension effectively act on M which extends to the action

on D(M). Suppose that D(M) has G-invariant and reflection-invariant smooth metric

g. As in Example 1.2 of [Ya91], one can construct a metric gD(M),ε on (D(M) which

collapses to (D(M), gD(M),ε)/G under a lower curvature bound. It follows that M with

metric induced by gD(M),ε also collapses to (M, gM,ε)/G under a lower curvature bound.

Note that (M, gM,ε) has totally geodesic boundary.
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A typical example of this example is as follows.

Example 2.3.7 (Manifolds collapse but their inradii do not converge to zero). Let

I ′ = [−1, 1]× {0} × {0}, I = [0, 1]× {0} × {0}

in R3, ∂B(εi) is the boundary of the εi-neighborhood of I ′ in R3. Let

∂+B(εi) = ∂B(εi) ∩ ([0,+∞)× R2).

Clearly, ∂+B(εi) collapses to I and ∂+B(εi) ∈ M(2, 0, λ, 2), where λ = 0. Note that

inrad(Mi) = 1 + πεi/2→ 1.
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Chapter 3

Metric structure of limit spaces

Under the notations in last chapter, the main purpose of this chapter is to show that Y

and N are actually isometric to C/η0 and C0/η0 respectively. To study how this gluing

is made, we first analyze the tangent cones of C, C0, Y and X at gluing points, and

their relations via the the differential dη0 of the gluing map η0. It turns out that the

identification map η0 preserves length of curves. Finally, we see that N is isometric

to a quotient of C int
0 by an isometric Z2 action. (see Proposition 3.3.3), which implies

Theorems 0.2.1 and 3.3.4. All results in this chapter are due to a joint work with Prof.

Takao Yamaguchi [YZ15].

3.1 Spaces of directions and differentials

In this subsection, we study the the spaces of directions of C, C0, Y and X at the points

where the gluing is done, and the relation between them. We also study the differential

of the gluing map η0 at those points.

Let π̃ : C → C0 and π : Y → X be the projections, which are surjective Lipschitz

maps. To be precise,

π(y) := η0 ◦ π̃(η−1(y)).

For simplicity, we use the same notation

Ct := {q ∈ C | d(C0, x) = t}, Ct := {y ∈ Y | d(X, y) = t}

for every t ∈ (0, t0]. We also denote by

π̃t : C → Ct, πt : Y \X → Ct

the canonical projections. Recall that

X1 = {x ∈ X|#η−1
0 (x) = 1}, X2 = {x ∈ X|#η−1

0 (x) = 2},
Ci

0 = {p ∈ C0 | η0(p) ∈ Xi}, i = 1, 2.

33
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Lemma 3.1.1. For every p ∈ C0, let ξ̃+ ∈ Σp(C) be the direction of the mimimal geodesic

γ̃+ from p to Ct0. Then Σp(C) is isometric to the half-spherical suspension {ξ̃+}∗Σp(C0).

Proof. Since C = C0×φ [0, t0], obviously we have Tp(C) = Tp(C0)× [0,∞), which implies

the conclusion.

Lemma 3.1.2. For x ∈ X1, let γ+ be the shortest geodesic from x to Ct0, and let ξ+ ∈
Σx(Y ) be the direction of γ+. Then

1. for every ξ ∈ Σx(Y ), there is a unique v ∈ Σx(X) such that

∠(ξ+, ξ) + ∠(ξ, v) = ∠(ξ+, v) = π/2; (3.1)

2. conversely, every v ∈ Σx(X) satisfies ∠(ξ+, v) = π/2;

3. there exists a unique limit

lim
δ→0

(
1

δ
X, x) = (Tx(X), ox) = (K(Σx(X)), ox).

under the convergence limδ→0(1
δ
Y, x) = (Tx(Y ), ox)

Proof. (1) Let γ+ be the shortest geodesic from x to Ct0 , and let ξ+ ∈ Σx(Y ) be the

direction of γ+ respectively. First consider an arbitrary minimal geodesic γ : [0, `] → Y

starting from x with ∠(γ,Σx(X)) > 0. Set σ(t) := π(γ(t)), and let γt : [0, t0] → Y be

the minimal geodesic from σ(t) to Ct0 through γ(t). The limit γ0 of γt as t→ 0 coincides

with γ+. Let v ∈ Σx(X) be a direction defined by the curve σ. Let γ̃, γ̃+ (resp. σ̃) be

geodesics (resp. a curve) in C such that η(γ̃) = γ, η(γ̃+) = γ+ (resp. η0(σ̃) = σ). Since

γ is minimal, so is γ̃. Note that σ̃(t) = π̃(γ̃(t)). Put p := γ̃(0). Let ξ̃ and ξ̃+ be the

directions at p defined by γ̃ and γ̃+ respectively. Let ṽ be the directions at p defined by

σ̃. Note that ṽ is uniquely determined since σ̃ is a shortest curve. From Lemma 3.1.1, we

have

∠(ξ̃+, ξ̃) + ∠(ξ̃, ṽ) = ∠(ξ̃+, ṽ) = π/2. (3.2)

By the first variation formula, we have ∠(ξ+, v) ≥ π/2. Now we show (3.1). Consider the

rescaling limits,

Tx(Y ) = lim
δ→0

(
1

δ
Y, x

)
, Tp(C) = lim

δ→0

(
1

δ
C, p

)
.

Let σ∞ and σ̃∞ be the limits of the Lipschitz curves σ and σ̃ under these convergence. It

should also be noted that the geodesic γδ (resp. γ̃δ) converges to a geodesic ray γ∞1 (resp.

γ̃∞1) starting from σ∞(1) (resp. σ̃∞(1)) and perpendicular to Tx(X) := limδ→0

(
1
δ
X, x

)
⊂

Tx(Y ) (resp. Tp(C)) under those convergences. We set

ρ(t) = |C0, γ̃(t)| = |X, γ(t)|.
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Notice that γ∞1 meet ξ at distance ρ′(0) from σ∞(1). Thus we have

∠(ξ, v) = Arc sin ρ′(0) = ∠(ξ̃, ṽ). (3.3)

Since

|γ(δ), γ+(ρ(δ))|(Cρ(δ))int|/δ ≤ |γ̃(δ), γ̃+(ρ(δ))|(Cρ(δ))int/δ

= φ(ρ(δ))|p, σ̃(δ)|Cint0
/δ,

as δ → 0, we obtain sin∠(ξ+, ξ) ≤ sin∠(ξ̃+, ξ̃), and hence ∠(ξ+, ξ) ≤ ∠(ξ̃+, ξ̃). From

π/2 ≤ ∠(ξ+, v) ≤ ∠(ξ+, ξ) + ∠(ξ, v)

≤ ∠(ξ̃+, ξ̃) + ∠(ξ̃, ṽ) = π/2.

we conclude that (3.1) holds for ξ ∈ Σx(Y ) \ Σx(X).

Note that (3.1) shows that v is uniquely determined.

(2) For every v ∈ Σx(X) take a sequence xi ∈ X with xi → x, and let µi : [0, ti]→ Y

denote a minimal geodesic from x to xi with vi := µ̇i(0) → v. Let λi : [0, t0] → Y be

a minimal geodesic from xi to Ct0 . We may assume that λi(t0) → γ+(t0). Take a point

yi ∈ λi such that |∠(ξ+, ξi)−π/4| < εi with lim εi = 0, where ξi :=↑yix . Let γi : [0, si]→ Y

be a minimal geodesic from x to yi, and set

σi(t) := π(γi(t)), γ̃i = η−1(γi), σ̃i = π̃(γ̃i).

From (1), σi defines a direction v̂i ∈ Σx(X) such that

∠(ξ+, ξi) + ∠(ξi, v̂i) = ∠(ξ+, v̂i) = π/2.

Note that xi = σi(si). Consider the convergence(
1

ti
Y, x

)
→ (Tx(Y ), ox) ,

(
1

ti
C, p

)
→ (Tp(C), op) , ti = |x, xi|.

Then xi converges to v ∈ Σx(X) ⊂ Tx(Y ) under the above convergence. We may assume

that ξi converges to some ξ ∈ Σx(Y ) ⊂ Tx(Y ) .

Passing to a subsequence, we may assume that

(a) si/ti converges to s∞ > 0;

(b) γi(tis) and σi(tis) converge to geodesic γ∞(s) and a Lipschitz curve σ∞(s) respec-

tively;

(c) γ̃i(tis) and σ̃i(tis) converge to geodesics γ̃∞(s) and σ̃∞(s).
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We show that σ∞ is a minimal geodesic. We may also assume that

ηi = η :

(
1

ti
C, p

)
→
(

1

ti
Y, x

)
converges to a 1-Lipschitz map

η∞ : (Tp(C), op)→ (TxY, ox),

with η∞(σ̃∞(s)) = σ∞(s). Consider the geodesic triangles

∆ox := ∆oxγ∞(s∞)σ∞(s∞) ⊂ Tx(Y ),

∆op := ∆opγ̃∞(s∞)σ̃∞(s∞) ⊂ Tp(C).

Obviously, we obtain

|ox, γ∞(s∞)| = |op, γ̃∞(s∞)|,
|γ∞(s∞), σ∞(s∞)| = |γ̃∞(s∞), σ̃∞(s∞)|

Note that Σγ∞(s∞)(Tx(Y ) and Σγ̃∞(s∞)(Tp(C) have the suspension structures and that from

construction

|γ∞(s), σ∞(s)| = |γ̃∞(s), σ̃∞(s)|.

Together with argument in (1), this implies that

∠oxγ∞(s∞)σ∞(s∞) = ∠opγ̃∞(s∞)σ̃∞(s∞). (3.4)

By the Euclidean cone structure, ∆ox and ∆op span flat triangles isometric to ones in

R2. From the above equalities, we conclude that |ox, σ∞(s∞)| = |op, σ̃∞(s∞)|. Since

L(σ∞) ≤ L(σ̃∞), this implies that σ∞ is a minimal geodesic, and ∠(ξ+, v) = π/2 as

required. This also show that (1) holds true for every ξ ∈ Σx(Y ).

(3) As observed above, for every v ∈ Σx(X) and for every ε > 0, one can find a

Lipschitz curve σ in X starting from x such that σ determines a well-defined direction

σ̇(0) ∈ Σx(X) satisfying ∠(v, σ̇(0)) < ε. Now (c) follows from a standard argument.

Lemma 3.1.3. For x ∈ X2 let γ± be the two shortest geodesics from x to Ct0, and let

ξ± ∈ Σx(Y ) be the directions of γ±) respectively. Then we have

(1) for every ξ ∈ Σx(Y ), there is a unique v ∈ Σx(X) such that

∠({ξ±}, ξ) + ∠(ξ, v) = ∠({ξ±}, v) = π/2; (3.5)

(2) Σx(Y ) is isometric to the spherical suspension {ξ±} ∗ Σx(X);
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(3) there exists a unique limit

lim
δ→0

(
1

δ
X, x) = (Tx(X), ox) = (K(Σx(X)), ox).

under the convergence limδ→0(1
δ
Y, x) = (Tx(Y ), ox).

Remark 3.1.4. The suspension structure in Lemma 3.1.3 (2) also follows from the proof

of Lemma 2.1.6

Proof. (1), 2) In a way similar to (3.1), we have (3.5). Let Σ± denote the union of all

minimal geodesics joining ξ± to the elements of Σx(X). We see that Σx(Y ) is the union

of Σ+ and Σ− glued along Σx(X). Therefore ∠(ξ+, ξ−) = π and Σx(Y ) is isometric to the

spherical suspension {ξ±} ∗ Σx(X).

(3) also follows in a way similar to the proof of Lemma 3.1.2.

For any p ∈ C0, since η0 is 1-Lipschitz, η0 : (1
r
C0, p) → (1

r
X, x) subconverges to a

1-Lipschitz map (dη0)p : Tp(C0)→ Tx(X), which is called a differential of η0 at p.

Proposition 3.1.5. For every p ∈ C0, any differential dη0 : Tp(C0)→ Tx(X) satisfies

|dη0(ṽ)| = |ṽ|.

for every ṽ ∈ Tp(C0). In particular, η0 : C0 → X preserves the length of Lipschitz curves

in C0.

Proof. For every ṽ ∈ Σp(C0), let ξ̃ be the midpoint of a minimal geodesic in Σp(C0) joining

ξ̃+ and ṽ. Let γ̃(t) be the geodesic starting from p in the direction ξ̃. Put σ̃(t) = π̃(γ̃(t)),

σ(t) = η0(σ̃(t)). Then from (3.3) in the proof of Lemma 3.1.3, we obtain

σ̃′(0) =

√
2

2
ṽ, σ′(0) =

√
2

2
v,

which implies that |dη0(ṽ)| = |ṽ|.

By Proposition 3.1.5, dη0 provides a surjective 1-Lipschitz map dη0 : Σp(C0)→ Σx(X).

Remark 3.1.6. By Lemma 3.1.3, x ∈ X2 is a regular point of Y if and only if the tangent

cone Tx(X) is isometric to Rm−1, where m = dimY . From this reason, in that case we

call x a regular point of X, and set Xreg := X ∩ Y reg. Later we show that every x ∈ X1

is a singular point of X unless X = X1.

Proposition 3.1.7. For every p ∈ C2
0 , we have

(1) any differential dηp provides an isometry dηp : Tp(C)→ T+
x (Y ) which preserves the

half suspension structures of both Σp(C) = {ξ+} ∗ Σp(C0) and Σ+
x (Y ) := {ξ+} ∗

Σx(X), where T+
x (Y ) = Tx(X)× R+;
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(2) p ∈ Creg
0 if and only if x ∈ Xreg. In this case, (dη0)p : Tp(C0) → Tx(X) is a linear

isometry.

Proof. (1) We show that dη0 : Tp(C0) → Tx(X) preserves norm. We use the notation in

the proof of Lemma 3.1.3. Recall that η0(σ̃(t)) = σ(t), and ṽ ∈ Σp(C0), v ∈ Σx(X) denote

the directions determined by σ̃, σ respectively. From (3.3), we have

|σ̃′(0)| = cos∠(ξ̃, ṽ) = cos∠(ξ, v) = |σ′(0)|,

which implies that |dη0(ṽ)| = |ṽ|.
For every ṽ1, ṽ2 ∈ Σp(C0), put vi := dη0(ṽi). We show that ∠(ṽ1, ṽ2) = ∠(v1, v2).

Let ξ̃i (resp. ξi) be the midpoint of the geodesic joining ξ̃+ to ṽi (resp. ξ+ to vi). Note

that dη(ξ̃i) = ξi. We may assume that there are geodesics γ̃i(t) with γ̃′i(0) = ξ̃i, and set

γi(t) := η(γ̃i(t)). Since Tx(Y ) = Tx(X)×R, any minimal geodesic joining γ̃1(t) and γ̃2(t)

does not meet X for any small t > 0. It follows from the fact that η : C \ C0 → Y \X is

a componentwise isometry that

|γ̃1(t), γ̃2(t)| = |γ1(t), γ2(t)|,

which implies that ∠(ξ̃1, ξ̃2) = ∠(ξ1, ξ2). From the suspension structures, we conclude

that ∠(ṽ1, ṽ2) = ∠(v1, v2).

(2) is an immediate consequence of (1).

3.2 Gluing maps

Using the results of the last subsection, we study the metric properties of the gluing map.

From Lemma 2.1.6, we can define a map f : C0 → C0 as follows: For an arbitrary

point p ∈ C0, let f(p) := q if {p, q} = η−1
0 (η0(p)), where q may be equal to p if η0(p) ∈ X1.

Recall that Ci
0 := {p ∈ C0 | η0(p) ∈ Xi}, i = 1, 2. Note that f is an involutive map, i.e.,

f 2 = id. Moreover

Lemma 3.2.1. f : C0 → C0 is a homeomorphism.

Proof. Since f is involutive, it suffices to prove that f is continuous. Let a sequence

pi converges to a point p in C0. Passing to a subsequence, we assume that qi := f(pi)

converges to a point q in C0. We have to prove that f(p) = q. We observe that

η0(p) = η0(q). (3.6)

First consider the case p ∈ C1
0 , or equivalently f(p) = q. From (3.6), we certainly

obtain p = q = f(p).
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Next consider the case p ∈ C2
0 . Suppose f(p) 6= q. Since f(p) 6= p, we then have

p = q. Let γ̃i, γ̃+, γ̃− and γ̃′i be mimimal geodesics to Ct0 starting from pi, p, f(p)

and qi respectively. Put γi := η(γ̃i), γ+ := η(γ̃+), γ− := η(γ̃−) and γ′i := η(γ̃′i). Set

xi := η0(pi) = η0(qi), x := η0(p) = η0(q). By Lemma 3.1.3, we have

∠̃γ+(s0)xγ−(s0) > π − τ(s0) (3.7)

By Lemma 5.6 in [BGP],

|∠xxiγ±(s0)− ∠̃xxiγ±(s0)| < τ(s0) + oi (3.8)

|∠xxiγ±(s0)− π/2| < τ(s0) + oi, (3.9)

where limi→∞ oi = 0. Let σ±i : [0, `±i ]→ Y be minimal geodesic joining xi to γ±(s0).

Suppose that pi ∈ C2
0 . Since Σxi(Y ) is isometric to the spherical suspension

{γ̇i(0), γ̇′i(0)} ∗ Σx(X),

in view of (3.9), we may assume that

∠(γ̇′i(0), σ̇−i (0)) < τ(s0) + oi.

This implies that |γ′i(s0), γ−(s0)| < (τ(s0) + oi)s0. Since |γ′i(s0), γ+(s0)| < oi, this yields a

contradiction to (3.7).

Finally suppose that pi ∈ C1
0 . Let γ±t be the minimal geodesic from π(σ±i (t)) to Ct0 . As

t→ 0, γ±t converges to minimal geodesics γ±0 from xi to Ct0 . Since |γ±0 (s0), γ±(s0)| < oi, it

follows that |γ+
0 (s0), γ−0 (s0)| > 2s0− oi. In particular we have γ+

0 6= γ−0 , which contradicts

to pi ∈ C1
0 .

Corollary 3.2.2. η0|C2
0

: C2
0 → X2 is a double covering space and X2 is open in X.

Proof. For x ∈ X2 set η−1
0 (x) = {p1, p2}, and take a neighborhhd D1 of p1 in C0 such

that D1 ∩ f(D1) is empty. We set D2 = f(D1). We show that E := η0(Di) is open in X.

Suppose that E is not open, and take y ∈ E for which there are yi ∈ X \ E converging

to y. Choose any qi ∈ η−1
0 (yi). Since X is compact, passing to a subsequence, we may

assume that qi converges to a point q. It turns out that η−1
0 (y) contains at least three

points q1, q2 and q, where qi ∈ Di, q /∈ D1 ∪D2. Since this is a contradiction, E is open.

Now it is immediate that each restriction η0|Di : Di → E is a homeomorphism.

Corollary 3.2.3. If the inradius of Mi ∈M(n, κ, λ, d) converges to zero, then the number

of components of ∂Mi is at most two for large enough i.

Proof. Suppose C0 has more than two components. Let Cα
0 be one component of C0.

Then f(Cα
0 ) is one component of C0, since f : C0 → C0 is an involutive homeomorphism.
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Since C0 has more than two components, we can pick a component Cβ
0 of C0 such that

neither Cα
0 nor f(Cα

0 ) is equal to Cβ
0 . Thus Cα

0 /f is a proper, open and closed subset of

C0/f . It means that C0/f is not connected. On the other hand, since X is connected and

homeomorphic to C0/f by Proposition 2.1.3, C0/f is connected which is a contradiction.

Since the number of the boundary components of Mi is equal to the number of components

of C eventually, the number of components of ∂Mi is at most two for i sufficiently large.

This completes the proof.

Remark 3.2.4. In Theorem 0.2.5, we remove the diameter bound to get the diameter free

result.

Lemma 3.2.5. η0|C2
0

: (C2
0)int → X int

2 is a local isometry.

Proof. Since η0|C2
0

: C2
0 → X2 is a covering by Corollary 3.2.2, we can find relatively

compact open subsets D and E of C2
0 and X2 respectively such that η0 : D → E is a

homeomorphism. We must show that η0 : D → E is an isometry with respect to the

interior distances of C0 and X respectively. Since η0 is 1-Lipschitz, it suffices to show that

g := η−1
0 : E → D is 1-Lipschitz. We may assume that D is small enough so as to satisfy

that for every x, y ∈ E, there is a minimal geodesic γ : [0, 1] → X2 joining x to y. We

do not know if g ◦ γ is a Lipschitz curve yet. However by Proposition 3.1.5, g ◦ γ has the

speed vg◦γ(t) (see [BBI])

vg◦γ(t) = lim
ε→0

|g ◦ γ(t), g ◦ γ(t+ ε)|
|ε|

,

which is equal to the speed vγ(t) of γ, and therefore

|x, y| = L(γ) =

∫ 1

0

vg◦γ(t)dt = L(g ◦ γ) ≥ |g(x), g(y)|.

This completes the proof.

Lemma 3.2.6. If X1 has non-empty interior in X, then X = X1 and

η0 : (C0)int → X int

is an isometry.

Proof. If the interior U of X1 is non-empty, then V := η−1
0 (U) ⊂ C1

0 is open in C0.

From the non-branching property of geodesics in Alexandrov spaces, we have V = C0 and

X = X1. An argument similar to the proof of Lemma 3.2.5 shows that η0 : (C0)int → X int

is an isometry.

Proposition 3.2.7. f : (C0)int → (C0)int is an isometry.



3.3. STRUCTURE THEOREMS 41

Proof. For x ∈ X2 with η−1
0 (x) = {p1, p2},by lemma 3.2.5, we can take disjoint open

sets pi ∈ Di, i = 1, 2, and E such that ηi0 = η0|Di : Di → E are isometry. Thus

f |D1 = (η2
0)−1 ◦ η1

0 : D1 → D2 is an isometry with respect to the interior distances. Note

that f is identity on C1
0 , and by Lemma 3.2.5, f : (C2

0)int → (C2
0)int is a locally isometry.

For every p1, p2 ∈ C0 we show that |f(p1), f(p2)| = |p1, p2|. This is obvious if p1, p2 ∈ C1
0 .

Let γ : [0, 1] → C0 be a minimal geodesic joining p1 to p2. If p1, p2 ∈ C2
0 , applying

Lemma 3.2.5, we may assume that γ meets C1
0 . Let t0 ∈ (0, 1) be the smallest parameter

with γ(t0) ∈ C1
0 . By Lemma 3.2.5, we have |f(p1), f(γ(t0))| = |p1, γ(t0)|. Therefore the

non-branching property of geodesics in Alexandrov space implies that γ ∩ C1
0 consists of

only the single point γ(t0), and therefore we also have |f(p2), f(γ(t0))| = |p2, γ(t0)|. It

follows that

|f(p1), f(p2)| ≤ |f(p1), f(γ(t0))|+ |f(γ(t0)).f(p2)|
≤ |p1, γ(t0)|+ |γ(t0), p2| = |p1, p2|.

Repeating this, we also have |p1, p2| ≤ |f(p1), f(p2)|, and |f(p1), f(p2)| = |p1, p2|. The case

of p1 ∈ C1
0 and p2 ∈ C2

0 is similar, and hence is omitted. This completes the proof.

3.3 Structure theorems

In this subsection, making use of the results on gluing maps in the last subsection, we

obtain structure results for limit spaces.

We begin with

Lemma 3.3.1. X2 is convex in X.

Proof. Suppose this is not the case. Then we have a minimal geodesic γ : [0, 1] → X

joining points x, y ∈ X2 such that γ is not entirely contained in X2. Let t1 be the first

parameter with γ(t1) ∈ X1. Set z := γ(t1). By Lemma 3.2.5, for any p ∈ η−1
0 (x), there

exists a unique geodesic γ̃ : [0, t1]→ C0 such that γ̃(0) = p and η0 ◦ γ̃(t) = γ(t), for every

t ∈ [0, t1]. Put z̃ := γ̃(t1) ∈ C1
0 , and take ṽ ∈ Σz̃(C0) such that

(dη0)z̃(ṽ) =
d

dt
γ(t0) ∈ Σz(X).

Let

γ̃1 : [0, t1]→ C0 and γ1 : [0, t1]→ X

be the reversed geodesic to γ̃ and γ[0,t1]: γ̃1(t) = γ̃(t0 − t), γ1(t) = γ(t1 − t), and set

γ̃2(t) := f(γ̃1(t)). Since (dη0)z̃ preserves norm and is 1-Lipschitz, we have

∠(ṽ, γ̃′i(0)) ≥ ∠

(
d

dt
γ(t1),

d

dt
γ1(0)

)
= π,

for i = 1, 2. Since γ̃′1(0) 6= γ̃′2(0), this is impossible in the Alexandrov space C0.
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Lemma 3.3.2. For every x, y ∈ X, let γ : [0, 1]→ X be a minimal geodesic joining x to

y, and let p ∈ C0 be such that η0(p) = x. Then there exists a unique minimal geodesic

γ̃ : [0, 1]→ C0 starting from p such that η0 ◦ γ̃ = γ.

In particular, if X1 is not empty, then C0 is connected.

Proof. From Lemmas 3.3.1 and the discussion there using non-branching property of

geodesics in Alexandrov spaces, we have only the following possibilities:

1. γ is included in X1 or X2;

2. only one end point of γ is contained in X1 and the other part of γ is included in X2.

The conclusion follows immediately from Lemmas 3.2.5 and 3.2.6.

Proposition 3.3.3. X int is isometric to C int
0 /f .

Proof. In the case of X = X1 or X = X2, the conclusion follows from Lemma 3.2.6 or

Proposition 3.2.5 respectively. Next assume that both X1 and X2 are non-empty. We set

Z := C int
0 /f , which is an Alexandrov space, and decompose Z as

Z = Z1 ∪ Z2, Zi := Ci
0/f, i = 1, 2.

For every [p] ∈ Z1, Σ[p](Z) is isometric to Σp(C0)/f∗, where f∗ : Σp(C0) → Σp(C0) is an

isometry induced by f . Since X1 is a proper subset of X, f∗ defines a non-trivial isometric

Z2-action on Σp(C0). Thus [p] is a single point of Z: [p] ∈ Zsing, and therefore Z1 ⊂ Zsing.

Thus Zreg ⊂ Z2. Now by Proposition 3.1.7, there exists an isometry F0 : Z2 → X int
2 . Since

Zreg is convex in Z (see [Pet98]), F0 defines a 1-Lipschitz map F1 : (Zreg)ext → X which

extends to a 1-Lipschitz map F : Z → X, where (Zreg)ext denotes the exterior metric of

Zreg.

Conversely since X2 is convex in X by Lemma 3.3.1, F−1
0 defines a 1-Lipschitz map

G1 : (X2)ext → Z2 which extends to a 1-Lipschitz map G : X → Z satisfying G ◦ F = 1Z .

Therefore X must be isometric to Z.

Proof of Theorem 0.2.1. By Proposition 3.2.7, f : C int
0 → C int

0 is an involutive isometry.

By Propositions 2.2.2 and 3.3.3, N is isometric to C int
0 /f . Since C int

0 is an Alexandrov

space with curvature ≥ c(κ, λ), so is N .

Theorem 3.3.4. Let Mi ∈ M(n, κ, λ, d) inradius collapse to a compact length space

N . Let M̃i Gromov-Hausdroff converge to Y , and M ext
i converge to X ⊂ Y under the

convergence M̃i → Y . Then

(1) X int is isometric to N ;
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(2) Y is isometric to C int
0 ×φ [0, t0]/(f(x), 0) ∼ (x, 0), or equivalently, isometric to the

following quotient by an isometric involution f̃ = (f,−id).

C int
0 ×φ̃ [−t0, t0]/f̃ ,

where φ̃(t) = φ(|t|).

In particular, Y is a singular I-bundle over N , where singular fibers occur exactly

on X1 unless X = X1.

Compare Examples 2.3.1, 2.3.3 and 2.3.4.

Proof of Theorem 3.3.4. (1) is just Proposition 2.2.2. (2) follows immediately from Propo-

sitions 2.2.2 and 3.3.3.

Proposition 3.3.5. If x ∈ X1, then Σx(X) is isometric to the quotient space Σp(C0)/f∗,

and Σx(Y ) is isometric to the quotient space Σp(C)/f∗, where f∗ : Σp(C0) → Σp(C0) is

an isometry induced by f .

Proof. Take an f -invariant neighborhood Up of p in C0, where η0(p) = x. It is easy to

check that Vx := η0(Up) is a neighborhood of x isometric to Up/f . The conclusion of (2)

follows immediately.

Corollary 3.3.6. Let dimN = m. Suppose that both X1 and X2 is non-empty. Then

every element x ∈ X1 satisfies that

vol Σx(X) ≤ 1

2
volSm−1.

Proof. For x ∈ X1, take p ∈ C0 with η0(p) = x. Note that C0 is connected by Lemma 3.3.2.

If f∗ : Σp(C0) → Σp(C0) is the identity, then the non-branching property of geodesics in

Alexandrov spaces implies that f is the identity on C0. Therefore f∗ must be non-trivial

on Σp(C0). The conclusion follows since

vol Σx(X) = (1/2)vol Σp(C0) ≤ (1/2)volSm−1.

By Corollary 3.3.6, if every x ∈ X satisfies that

volΣx(X) > (1/2)volSm−1,

then X = X1 or X = X2.

Next let us consider such a case. If X = X1, then by Lemma 3.2.6, η0 is an isometry.

If X = X2, then by Lemma 3.2.5, η0 is a locally isometric double covering. Therefore it

is straightforward to see the following.



44 CHAPTER 3. METRIC STRUCTURE OF LIMIT SPACES

Corollary 3.3.7. If X = X1 or X2, then Y can be classified by N as follows.

(1) if X = X1, then Y is isometric to N ×φ [0, t0].

(2) if X = X2, then either Y is isometric to the gluing

N ×φ̃ [−t0, t0],

with length metric, or else, Y is a nontrivial I-bundle over N , and is doubly covered

by

C int
0 ×φ̃ [−t0, t0],

where φ̃(t) = φ(|t|).

Compare Examples 2.3.1 and 2.3.3.

From now, we write for simplicity as C0 := C int
0 .



Chapter 4

Inradius collapsed manifolds

In this chapter, we investigate the structure of inradius collapsed manifolds Mi by applying

the structure results for limit spaces in Chapter 3. First we study the case of inradius

collapses of codimension one to determine the manifold structure. To carry out this, some

additional considerations on the limit spaces are needed to determine the singularities of

singular I-fibered spaces. In the second part of this chapter, we study inradius collapses

to almost regular spaces. All results in this chapter are due to a joint work with Prof.

Takao Yamaguchi [YZ15].

4.1 Inradius collapses of codimension one

We consider Mi ∈ M(n, κ, λ, d) inradius collapses to an (n− 1)-dimensional Alexandrov

space N . Then by Theorem 1.2.2, Mi is homeomorphic to Y for large enough i, and by

Theorem 3.3.4, we have

Y = C0 ×φ̃ [−t0, t0]/f̃ , N = C0/f,

where

f̃ = (f,−id)

is an isometric involution. and the singular locus of the singular I-bundle structure on Y

defined by the above form coincides with C1
0 unless X 6= X1. Later in Lemma 4.1.5, we

show that η0(C1
0) = ∂N .

Assuming that N has non-empty boundary, we begin with construction of singularity

models of singular I-fibered spaces around each boundary component of the limit space

N .

By Proposition 1.2.7, each component ∂αN of ∂N has a collar neighborhood Vα. Let

ϕ : Vα → ∂αN × [0, 1)

45
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be a homeomorphism. Let π : Y → N be the projection. Then I-fiber structure on

π−1ϕ−1({p} × [0, 1) is isomorphic to the form

Rt0 := [0, 1)× [−t0, t0]/(0, y) ∼ (0,−y),

with the projection π : Rt0 → [0, 1) indecued by (x, y) → x. Therefore π−1(Vα) is an

Rt0-bundle over ∂αN .

Now we define two singularity models for the singular I-bundle π−1(Vα): one is the

case when π−1(Vα) is a trivial Rt0-bundle over ∂αN , and the other one is the case of

non-trivial Rt0-bundle.

Definition 4.1.1. (1). First, set

U1(∂αN) := ∂αN ×Rt0 ,

and define π : U1(∂αN) → ∂αN × [0, 1) by π(p, x, y) = (p, x) for (p, x, y) ∈ ∂αN × Rt0 .

This gives U1(∂αN) the structure of a singular I-bundle over ∂αN × [0, 1) whose singular

locus is ∂αN × 0. We call this the product singular I-bundle model around ∂αN .

(2). For the second model, suppose that ∂αN admits a double covering

ρ : Pα → ∂αN

with the deck transformation ϕ. Let

U2(∂αN) := (Pα ×Rt0)/Φ,

where Φ is the isometric involusion on Pα×Rt0 defined by Φ = (ϕ, r), where r : Rt0 → Rt0

is defined as (x, y)→ (x,−y). Define

π : U2(∂αN)→ ∂αN × [0, 1)

by

π([p, x, y)]) = (ρ(p), x)

for (p, x, y) ∈ Pα × Rε. This gives U2(∂αN) the structure of a singular I-bundle over

∂αN × [0, 1) whose singular locus is ∂αN × 0. The second model is a twisted one, and is

doubly covered by the first model U1(Pα) = Pα × Rε. We call this the twisted singular

I-bundle model around ∂αN .

Example 4.1.2. Let us consider the codimension one inradius collapses in Example 2.3.4.

Recall that the limit space Y of M̃ε is isometric to the form

Y = D(E)×φ̃ [−t0, t0]/(x, t) ∼ (r(x),−t),

where r : D(E)→ D(E) denotes the canonical reflection of D(E). If π : Y → E denotes

the projection, then π−1(V ) is isomorphic to the product singular I-bundle model around

∂E, where V is any collar neighborhood of ∂E.
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Example 4.1.3. Let Qε denote the space obtained from the disjoint union of two copies

of the completion R̄ε of Rε glued along each segment 1× [−ε, ε] of the boundaries:

Qε = R̄ε q1×[−ε,ε] R̄ε.

Let r : Qε → Qε be the reflection induced from (x, y)→ (x,−y). Let

Mε = (S1(1)×Qε)/(z, p) ∼ (−z, r(p)).

As ε→ 0, Mε inradius collapses to S1(1/2)× [0, 2]. Let

πε : Mε → S1(1/2)× [0, 2]

be the projection induced by [z, (x, y)] → (z, x). Then both π−1
ε (S1(1/2) × [0, 1) and

π−1
ε (S1(1/2)× (1, 2]) are solid Klein bottles and their I-fiber structures are isomorphic to

the twisted singular I-bundle models around respective boundary of S1(1/2)× [0, 2].

Theorem 4.1.4. Let Mi ∈ M(n, κ, λ, d) inradius collapse to an (n − 1)-dimensional

Alexandrov space N . Then there is a singular I-bundle:

I →Mi
π→ N.

More precisely,

1. If N has no boundary, then Mi is homeomorphic to a product N × I or a twisted

product N
∼
× I;

2. If N has non-empty boundary, each component ∂αN of ∂N has a neighborhood V

such that π−1(V ) is homeomorphic to either U1(∂αN) or U2(∂αN) as I-fibered spaces;

3. If π−1(V ) is homeomorphic to U1(∂αN) for some component ∂αN , then Mi is home-

omorphic to

D(N)× [−1, 1]/(x, t) ∼ (r(x),−t),

where r is the canonical reflection of the double D(N).

Recall that

Y = C0 ×φ̃ [−t0, t0]/f̃ ,

where f̃ = (f,−id), C0 and Y are the noncollapsing limit of (∂Mi)
int and M̃i respectively.

Therefore both C0 is a smoothable space in the sense of [Ka02].

Let F ⊂ C0 denote the fixed point set of the isometry f : C0 → C0. By Proposition

1.2.6 and Theorem 1.2.4 , η0(F ) is an extremal subset of N and it has a topological

stratification.
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Lemma 4.1.5. η0(F ) coincides with ∂N if f is not the identity.

We postpone the proof of Lemma 4.1.5 for a moment.

Proof of Theorem 4.1.4. (1) By Lemma 4.1.5, if N has no boundary, F is empty, and

therefore either N = N1 or N = N2. If N = N1, then C0 = N and Y is homeomorphic to

N × I. If N = N2, then N = C0/f has no boundary, and Y is homeomorphic to either

N × I or C0 × [−1, 1]/(x, t) ∼ (f(x),−t) which is a twisted I bundle over N .

(2) Suppose N has non-empty boundary. Note that

N1 = η0(F ).

By Proposition 1.2.7, each component ∂αN of ∂N has a collar neighborhood Vα. Let

ϕ : Vα → ∂αN × [0, 1) be a homeomorphism. Let π : Y → N be the projection. By the I-

fiber structure of Y , π−1(ϕ−1(x× [0, 1)) is canonically homeomorphic to Rt0 . In particular

π−1(Vα) is an Rt0-bundle over ∂αN . If this bundle is trivial, π−1(Vα) is isomorphic to the

product singular I-bundle structure U1(∂αN) = ∂αN ×Rt0 .

Suppose that this bundle is nontrivial, and let Pα be the boundary of π−1(ϕ−1(∂αN ×
{1/2})), which is a double covering of ∂Nα. Let Φ = (ϕ, r), and ρ : Pα → ∂αN the

projection.

Lemma 4.1.6. π−1(Vα) is isomorphic to the twisted singular I-bundle structure U2(∂αN) =

(Pα ×Rt0)/Φ.

Proof. Note that

U2(∂αN) := (Pα ×Rt0)/(p, x, y) ∼ (ϕ(p), x,−y),

π−1(Vα) = π−1ϕ−1(∂αN × [0, 1).

And for each (p, x) ∈ Pα × [0, 1), {p, ϕ(p)} can be identified with with the boundary of

the I-fiber Iρ(p),x := π−1ϕ−1(ρ(p)× {x}). We define a map

Ψ : U2(∂αN)→ π−1(Vα)

as follows: let Ψ(p, x, y), −t0 ≤ y ≤ t0, be the arc on the fiber Iρ(p),x from p to ϕ(p).

Clearly, Ψ : U2(∂αN)→ π−1(Vα) gives an isomorphism between I fibered spaces.

(3) Put intN := N \ ∂N for simplicity.

Assertion 4.1.7. There is an isometric imbedding g : N → C0 such that η0 ◦ g = 1N .

Proof. Set Fα := η−1
0 (∂αN). From the assumption, we may assume that Fα is two-sided in

the sense that the complement of Fα in some connected neighborhood of it is disconnected.

Thus there is a connected neighborhood Vα of ∂αN in intN for which there is an isometric

imbedding gα : Vα → C0 \ F such that η0 ◦ gα = 1Vα .
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Let W be the maximal connected open subset of intN for which there is an isometric

imbedding g0 : W → C0 \ F such that η0 ◦ g0 = 1W and g0(W ) ⊃ gα(Vα). We only have

to show that W = intN . Otherwise, there is a point x ∈ ∂W ∩ intN . Take a connected

neighborhood Wx of x in intN such that η−1
0 (Wx) is a disjoint union of open sets U1 and

U2 such that η0 : Ui → Wx is an isometry for i = 1, 2. Obviously one of Ui, say U1, meets

g0(W ) and the other does not. We extend g0 to g1 : W ∪ Wx → C0 \ F by requiring

g1|Wx = η−1
0 : Wx → U1. Since g1 is an isometric imbedding, this is a contradiction to the

maximality of W .

Thus we have an isometric imbedding g0 : intN → C0 \ F . Since intN is convex and

η0 is 1-Lipschitz, g0 preserves the distance. It follows that g0 extends to an isometric

imbedding g : N → C0 which preserves distance.

Assertion 4.1.7 shows that every component of F is two-sided. It follows that C0 =

D(N), and that f is the reflection of the double D(N). This completes the proof of

Theorem 4.1.4

Proof of Lemma 4.1.5. Obviously ∂N ⊂ η0(F ). Suppose that η0(F )∩(intN) is not empty.

Sublemma 4.1.8. dim(η0(F ) ∩ intN) ≤ m− 2, where m := dimN .

Proof. If

dim(η0(F ) ∩ intN) = m− 1,

then the top-dimensional strata S of η0(F )∩ intN is a topological (m− 1)-manifold, and

therefore it meets the m-dimensional strata of N because N sing ∩ intN has codimension

≥ 2 (Theorem 1.2.1). Take p ∈ η−1
0 (S). It is now easy to see that f is the reflection

with respect to η−1
0 (S) in a small neighborhood of p. It follows that S is a subset of ∂N ,

contradiction to the hypothesis.

Take a point x = η0(p) ∈ η0(F ) ∩ intN , and consider the directional derivative f∗ :

Σp(C0)→ Σp(C0) of f at p which is also an isometric involution with fixed point set

F∗ := Σp(F )

By Corollary 1.2.5 and Sublemma 4.1.8, dimF∗ ≤ m − 3 while dim Σp(C0) = m − 1.

Repeating this we have a finite sequence of directional derivatives of f , f∗ . . ., each of

which is an isometric involution:

f∗k : Σ∗k(C0)→ Σ∗k(C0),

where Σ∗k(C0) denotes a k iterated space of directions,

Σ∗k(C0) = Σξk−1
(· · · (Σξ1(Σp(C0)) · · · ),
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and ξi is taken from the fixed point set of the iterated directional derivatives:

ξ1 ∈ Σp(F ), ξ2 ∈ Σξ1(F∗), . . . , ξk ∈ Σξi−1
(F∗(k−1)),

and F∗i denotes the fixed point set of f∗i : Σ∗i(C0) → Σ∗i(C0) which coincides with

F∗i = Σξi−1
(F∗(i−1)).

Note that the iterated space of directions Σ∗k(C0) has dimension m − k, and the

iterated fixed point set F∗k ⊂ Σ∗k(C0) has dimension ≤ m − k − 2. It follows that for

some k ≤ m− 2, F∗k becomes a finite set. It follows that for any ξk+1 ∈ F∗k,

f∗(k+1) : Σξk+1
(Σ∗k(C0))→ Σξk+1

(Σ∗k(C0))

has no fixed points. Put

D := C0 ×φ̃ [−t0, t0],

and let f̃ be an isometric involution on D defined by f̃ = (f,−id). From Theorem 3.3.4,

Y = D/f̃.

Let x = η0(p), p = (p, 0), ξi ∈ Σξi−1
(F∗(i−1)), 1 ≤ i ≤ k + 1, be as above. Note that

Σx(Y ) = Σp(D)/f̃∗, Σx(X) = Σp(C0)/f∗.

Let ζ1 ∈ Σx(η0(F )) ⊂ Σx(X) ⊂ Σx(Y ) be the element corresponding to ξ1 ∈ Σp(F ) ⊂
Σp(C0) ⊂ Σp(D). Note that

Σp(D) = {ξ±} ∗ Σp(C0)

and f̃∗ = (f∗,−id) interchanges ξ+ and ξ− and preserves Σp(C0). Next consider

Σζ1(Σx(Y )) = Σξ1(Σp(D))/f̃∗∗,

where f̃∗∗ denotes the directional derivative of f∗ at ζ1. Note that Σξ1(Σp(D)) is still

isometric to {ξ±}∗Σξ1(Σp(C0)) and f̃∗∗ = (f∗∗,−id) interchanges ξ+ and ξ− and preserves

Σξ1(Σp(C0)). Similarly and finally we consider

Σζk+1
(Σ∗k(Y )) = Σξk+1

(Σ∗k(D))/f̃∗k+1, (4.1)

where ζk+1 ∈ Σ∗k(Y ) is the element corresponding to ξk+1 ∈ Σ∗k(D), and f̃∗k+1 =

(f∗k+1,−id) freely acts on Σξk+1
(Σ∗k(D)). Recall that

` := dim Σξk+1
(Σ∗k(D)) = m− k ≥ 2.

Note that the iterated spaces of directions Σ(Y \Ct0) must be all homeomorphic to spheres

(Theorem 1.2.10). However (4.1) shows that Σζk+1
(Σ∗k(Y )) is homeomorphic to a quotient

S`/Z2 for ` ≥ 2 by a free Z2-action, which is a contradiction. This completes the proof of

Lemma 4.1.5.

Remark 4.1.9. Though Y \ Ct0 is not smoothable, since Kapovich’s proof [Ka02] is local

in nature, it also applies to the interior of Y .
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4.2 Inradius collapses to almost regular spaces

Next we consider the case where Mi inradius collapses to an almost regular Alexandrov

spaceN . The idea of using an equivariant fibration-capping theorem in [Ya02] was inspired

by a recent work [MY:pre].

First we recall this theorem. Let X be a k-dimensional complete Alexandrov space

with curvature ≥ κ possibly non-empty boundary. We denote by D(X) the gluing space

of X and it copy along their isometric boundaries, which is also an Alexandrov space with

curvature ≥ κ. (see [Pr94]).

A (k, δ)-strainer {(ai, bi)} of D(X) at p ∈ X is called admissible if ai ∈ X, bj ∈ X for

every 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1 (clearly, bk ∈ X∗ if p ∈ ∂X for instance). Let RD
δ (X)

denote the set of points of X at which there are admissible (k, δ)-strainers. It has the

structure of a Lipschitz k-manifold with boundary. Note that every point of RD
δ (X)∩∂X

has a small neighborhood in X almost isometric to an open subset of the half space Rk
+

for small δ.

If Y is a closed domain of RD
δ (X), then the δD-strain radius of Y is defined as the

infimum of positive numbers ` such that there exists an admissible (k, δ)-strainer of length

≥ ` at every point in Y , denoted by δD-str.rad(Y ).

For a small ν > 0, we put

Yν := {x ∈ Y | d(∂X, x) ≥ ν}.

We use the following special notations:

∂0Yν := Yν ∩ {d∂X = ν}, int0Yν := Yν − ∂0Yν .

Let Mn be another n-dimensional complete Alexandrov space with curvature ≥ κ having

no boundary. Let Rδ(M) denote the set of all (n, δ)-strained points of M .

A surjective map f : M → X is called an ε-almost Lipschitz submersion if

1. it is an ε-approximation;

2. for every p, q ∈M ∣∣∣∣d(f(p), f(q))

d(p, q)
− sin θp,q

∣∣∣∣ < ε,

where θp,q denotes the infimum of ∠qpx when x runs over f−1(f(p)).

Now let a Lie group G act on Mn and X as isometries. Let

de.GH((M,G), (X,G))

denote the equivariant Gromov-Hausdorff distance as defined in Section 1.1. We need to

assume the following on the existence of slice for G-orbits:
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Assumption 4.2.1. For each p ∈ X, there is a slice Lp at p. Namely Up := GLp provides

a G-invariant tubular neighborhood of Gp which is G-isomorphic to G×Gp Lp.

Obviously Assumption 4.2.1 is automatically satisfied if G is discrete. By [HS:pre],

Assumption 4.2.1 also holds true if G is compact.

Theorem 4.2.2 (Equivariant Fibration-Capping Theorem( [Ya02], Thm 18.9)). Let X

and G be as above such that X/G is compact. Given k and µ > 0 there exist positive

numbers δ = δk, εX,G(µ) and ν = νX,G(µ) satisfying the following : Suppose X = RD
δ (X)

and δD-str.rad(X) > µ. Suppose M = Rδn(M) and deGH((M,G), (X,G)) < ε for some

ε ≤ εX,G(µ). Then there exists a G-invariant decomposition

M = Mint ∪Mcap

of M into two closed domains glued along their boundaries, and a G-equivariant Lipschitz

map f : M → Xν such that

1. Mint is the closure of f−1(int0Xν), and Mcap = f−1(∂0Xν);

2. the restrictions f |Mint
: Mint → Xν and f |Mcap : Mcap → ∂0Xν are

(a) locally trivial fiber bundles;

(b) τ(δ, ν, ε/ν)-Lipschitz submersions.

Here, τ(ε1, . . . , εk) denotes a function depending on a priori constants and εi satisfying

lim
εi→0

τ(ε1, . . . , εk) = 0.

Remark 4.2.3. If X has no boundary, then Xν is replaced by X, Mcap = ∅ and M = N

in the statement above.

We go back to the situation of Theorem 0.2.3. Assume that Mi inradius collapses to

an almost regular Alexandrov space N . Let us consider the double and the partial double

of M̃i and Y respectively

D(M̃i) := M̃i q∂M̃i
M̃i, W := Y qCt0 Y.

From Perelman’s result [Pr94], both D(M̃i) and W are Alexandrov space. Note that

both D(Mi) and W admit canonical isometric Z2 actions by the reflections.

Lemma 4.2.4. (D(M̃i),Z2) converges to (W,Z2) with respect to the equivariant Gromov-

Hausdorff convergence.
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Proof. Let ψi : M̃i → Y and ϕi : Y → M̃i be εi-approximations, where εi ↘ 0, and

ψ∗i : M̃∗
i → Y ∗ and ϕ∗i : Y ∗ → M̃∗

i the copy of ψi and ϕi respectively. We define two maps

ψ̄i : D(M̃i)→ W and ψ̄i : W → D(M̃i) as follows,

ψ̄i(x) =

{
ψi(x) if x ∈ M̃i

ψ∗i (x) if x ∈ M̃∗
i ,
ϕ̄i(x) =

{
ϕi(x) if x ∈ Y
ϕ∗i (x) if x ∈ Y ∗.

We claim that ψ̄i is a ε′′i -approximation, where ε′′i → 0. Clearly,

Bεi(ψ̄i(D(M̃i))) = W.

Next, we shall prove that ||xiyi|D(M̃i)
− |ψ̄i(xi)ψ̄i(yi)|W | < ε′′i for any two points xi, yi in

D(M̃i), where ε′′i → 0. Let γi : [0, 1] → D(M̃i) be a shortest path joining xi and yi. It

suffices to consider the following two cases.

Case 1. xi, yi ∈ M̃i.

Without loss of generality, we assume γi ⊂ M̃i( or M̃∗
i ). Clearly, |xiyi|D(M̃i)

= |xiyi|M̃i

and both ψ̄i(xi) and ψ̄i(yi) in Y in this case. Thus ψ̄i(xi) = ψi(xi) and ψ̄i(yi) = ψ(yi) and

them can be joined by a shortest path completely contained in Y . Hence |ψ̄i(xi)ψ̄i(yi)|W =

|ψi(xi)ψi(yi)|Y . Therefore,

||xiyi|D(M̃i)
− |ψ̄i(xi)ψ̄i(yi)|W | = ||xiyi|M̃i

− |ψi(xi)ψi(yi)|Y | < εi.

Case 2. xi ∈ M̃i and yi ∈ M̃∗
i .

Clearly, there exists a point ci ∈ (0, 1) such that zi := γi(ci) ∈ ∂M̃i. By triangle

inequality, we have

|ψ̄i(xi)ψ̄i(yi)|W − |xiyi|D(M̃i)

≤ |ψi(xi)ψi(zi)|Y + |ψ∗i (zi)ψ∗i (yi)|Y ∗ − (|xizi|M̃i
+ |ziyi|M̃∗i )

≤ |ψi(xi)ψi(zi)|Y − |xizi|M̃i
) + (|ψ∗i (zi)ψ∗i (yi)|Y ∗ − |ziyi|M̃∗i )

< 2εi.

Let γ′i be a shortest path in Z joining ψ̄i(xi) ∈ Y and ψ̄i(yi) ∈ Y ∗, ξi ∈ γ′i ∩ Ct0 ⊂ ∂Y .

Suppose z′i ∈ M̃i such that

|ξiψi(z′i)|Y < εi. (4.2)

Hence

|ψi(z′i)Ct0|Y < εi (4.3)

Such z′i also satisfies

|z′i∂M̃i|M̃i
→ 0. (4.4)
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Otherwise, there exists a subsequence of Mi such that |z′i∂M̃i|M̃i
≥ 2ε0 for some fix positive

number ε0. Thus |z′i∂M ext
i | ≤ t0− ε0. Let z′ := limi→∞ ψi(z

′
i). Recall that t0 is the height

of Ci. Hence

|z′X|Y ≤ t0 − ε0,

since limi→∞ ∂M
ext
i = X by Proposition 2.1.9. Thus by Lemma 2.1.2, we have

|z′Ct0| ≥ ε0,

which contradicts to (4.3). Hence the inequality (4.4) holds.

Let η : D(M̃i)→ D(M̃i) be the reflection, z′′i := η(z′i) ∈ M̃∗
i . Clearly,

|ξiψ∗i (z′′i )|Y = |ξiψi(z′i)|Y < εi and ε′i := |z′iz′′i |D(M̃i)
= 2|z′i∂M̃i|M̃i

→ 0,

by the symmetry, (4.2) and (4.4). Then

|ψ̄i(xi)ψ̄i(yi)|W − |xiyi|D(M̃i)

≥ |ψi(xi)ξ|Y + |ξψi(yi)|Y ∗ − |xiz′i|M̃i
− |z′iyi|M̃∗i

≥ (|ψi(xi)ψi(z′i)|Y − |xiz′i|M̃i
)− |ξψi(z′i)|Y − |z′iz′′i |D(M̃i)

+ (|ψ∗i (z′′i )ψ∗i (yi)|Y ∗ − |z′′i yi|M̃∗i )− |ξψ∗i (z′′i )|Y ∗

> −4εi − ε′i

Hence, ψ̄i is an ε′′i -approximation, where ε′′i = 4εi + ε′i → 0 as i → ∞. Clearly, ψ̄i is Z2-

equivariant. It can be proved in a similar way that ϕ̄i is an equivariant ε′′′i -approximation,

where ε′′′i → 0 as i→∞.

Proof of Theorem 0.2.3. By Lemma 4.2.4, for any ε > 0, if i large,

deGH((D(M̃i),Z2), (W,Z2)) < ε.

By Theorem 3.3.4, Y is almost regular with almost regular boundary. Hence, W = RD
δ (W )

and δD-str.rad(W )) > µ for some µ > 0. Thus by Theorem 4.2.2 and its remark, there

exists a Z2-equivariant capping fibration

f̃i : D(M̃i)→ Wν ,

where

Wν = {x ∈ W | d(x, ∂W ) ≥ ν }.

Notice that the image Wν is homeomorphic to W because of the form of Y . Obviously,

f̃i induces a map fi : M̃i → Y . By the remark after Corollary 3.3.6, η0 : C0 → X is either

an isometry or a locally isometric double covering.
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Case (a). If η0 : C0 → X is a double covering, then Ct0 = ∂Y . Hence W has no

boundary. Thus in this case, fi : M̃i → Y is a fiber bundle with fiber Fi which are closed

almost nonngetively curved manifolds. Since Y is an I-bundle over N by Theorem 3.3.4,

M̃i and hence Mi is an Fi × I-bundle over N .

Case (b). If η0 : C0 → X is an isometry, then Y is isometric to N ×φ [0, t0], and

therefore ∂Y consists of η(C0) = X and η(Ct0). Thus ∂W consists two copies of η0(C0).

Therefore by Theorem 4.2.2, there exists a Z2-invariant decomposition

D(M̃i) = (D(M̃i))int ∪ (D(M̃i))cap, (4.5)

of D(M̃i) into two closed domains glued along their boundaries such that

1. (D(M̃i))int is the closure of f̃−1
i (int0Wν), and (D(M̃i))cap = f̃−1

i (∂0Wν);

2. f̃i|(D(M̃i))int
: (D(M̃i))int → Wν , f̃i|(D(M̃i))cap

: (D(M̃i))cap → ∂0Wν are locally trivial

fiber bundles,

where

∂0Wν := {x ∈ W | d(x, ∂W ) = ν }, int0Wν := Wν \ ∂0Wν .

Since (4.5) is Z2-invariant, it induces a decomposition

M̃i = (M̃i)int ∪ (M̃i)cap.

Since f̃i is Z2-equivariant, these fibrations induce fibrations

Fi −→(M̃i)int −→ Yν ,

Capi −→(M̃i)cap −→ ∂0Yν .

From construction, ∂Capi is homeomorphic to Fi. Note that every cylindrical geodesic in

the warped cylinder Ci ⊂ M̃i is almost perpendicular to the fibers ([Ya91], [Ya96]). This

implies that (M̃i)int is homeomorphic to ∂(M̃i)int × [0, 1], and therefore M̃i and hence Mi

is homeomorphic to (M̃i)cap. Noting ∂0Yν is homeomorphic to N , we obtain a fiber bundle

Capi −→Mi −→ N.

This completes the proof.
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Chapter 5

The case of unbounded diameters

In this chapter we provide the proof of Theorem 0.2.5. All results in this chapter are due

to a joint work with Prof. Takao Yamaguchi [YZ15].

Let M(n, κ, λ) denote the set of all isometry classes of n-dimensional complete Rie-

mannian manifolds M satisfying

KM ≥ κ, |Π∂M | ≤ κ.

Let

M̃M(n, κ, λ)pt

denote the set of all (M̃,M, p) with M ∈M(n, κ, λ) and p ∈ ∂M .

We denote by

∂0MM(n, κ, λ)pt

the set of all pointed Gromov-Hausdorff limit spaces (Y,X, x) of sequences (M̃i,Mi, pi)

in M̃M(n, κ, λ)pt with inrad(Mi)→ 0. From now, (M̃i,Mi, pi) and (M̃,M, p) are always

assumed to be elements in M̃M(n, κ, λ)pt.

We first remark

Lemma 5.0.5. Let (M̃i,Mi, pi) converges to (Y,X, x) in ∂0MM(n, κ, λ)pt with inrad(Mi)

converges to zero. Then all the structure results for the limit spaces in Section 3.1 and

Lemma 3.2.1 still holds for (Y,X).

Proof. This is because all the argument there are local.

However in the proof of Corollary 3.2.2, the compactness of C0 is essentially used. To

improve this proof for the noncompact C0, we need to establish the following result, which

is a weaker form of Lemma 3.3.2.

Proposition 5.0.6. For every x, y ∈ X and p ∈ C0 with η0(p) = x, there exists a point

q ∈ C0 such that η0(q) = y and |p, q| = |x, y|Xint.
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Proof. Let c : [0, `] → X be a unit speed minimal geodesic joining x to y, and let

v := ċ(0) ∈ Σx(X). By Lemmas 3.1.2 and 3.1.3, ∠(ξ+, v) = π/2. Let ξ ∈ Σx(Y ) be

an element satisfying (3.1) or (3.5) together with ∠(ξ+, ξ) = π/4. We may assume that

there is a geodesic γ from x in the direction ξ. Consider γ̃ := η−1(γ) and σ̃ := π̃(γ̃). Let

σ := π(γ) = η0(σ̃), and σ define a direction v̂. As was shown in the proof of Lemma 3.1.2,

v̂ also satisfies the same equation (3.1) as v. This shows that v̂ = v and σ is infinitesimally

minimizing because it has a definite direction at x. Therefore for every ε > 0, setting

x1 := σ(t1) for small enough t1 > 0, we have

|y, x1| ≤ |x, y| − (1− ε)L(σ1),

where σ1 = σ|[0,t1]. We repeat this argument for a minimal geodesic c1 : [0, `1] → X

joining x1 to y, and finally we have an infinite sequence of points {xi}∞i=1 and Lipschitz

curves {σi}∞i−1 and {σ̃i}∞i−1 joining xi−1 to xi and x̃i−1 to x̃i respectively such that

1. η0(σ̃i) = σi;

2. |y, xk| ≤ |x, y| − (1− ε)
∑k

i=1 L(σi) for each 1 ≤ k <∞;

3. limxk = y.

Let the curves σε and σ̃ε be defined by the union of those σi and σ̃i respectively. It follows

that σε is an almost minimizing curve joining x to y. Passing to a subsequence we may

assume that σε and σ̃ε converge to curves σ∞ and σ̃∞ respectively satisfying η0(σ̃∞) = σ∞.

Note that both σ∞ and σ̃∞ are minimizing since η0 is 1-Lipschitz and preserving length

by Proposition 3.1.5. Thus we have a required point q as the endpoint of σ̃∞ different

from p.

By Proposition 5.0.6, we can improve the proof of Corollary 3.2.2 without assuming

the compactness. Thus Corollary 3.2.2 holds for the present case, too. We also see that

all the results in Section 3 still holds true except Corollary 3.2.3. In particular we have

Theorem 5.0.7. Let a sequence of pointed complete Riemannian manifolds (Mi, pi) in

M(n, κ, λ) inradius collapse to a pointed length space (N, q) with respect to the pointed

Gromov-Hausdorff convergence. Then N is an Alexandrov space with curvature ≥ c(κ, λ),

where c(κ, λ) is a constant depending only on κ and λ.

To have Corollary 3.2.3 in the case when Y is noncompact is the main purpose of the

rest of this section.

We introduce a more refined version of the pointed Gromov-Hausdorff convergence.

Let ι∂M : (∂M)int →: (∂M)ext be the canonical map, where (∂M)ext is equipped with the

exterior metric in M . Let ωM : M → ∂M be a nearest point map (compare Proposition

2.1.9).



59

Definition 5.0.8. For (M̃,M, p) ∈ M̃M(n, κ, λ)pt and (Y,X, x) ∈ ∂0MM(n, κ, λ)pt

with

Y = X
⋃
η0

C0 ×φ [0, t0], (5.1)

we define the pointed Gromov-Hausdorff distance

dpGH((M̃,M, p), (Y,X, x))

as the infimum of those δ > 0 such that

1. there exists a componentwise δ-approximation

ψ : BM̃(p, 1/δ) ∩ (∂M)int → BY (x, 1/δ) ∩ Cint
0 ;

2. the map ϕ : BM int
(p, 1/δ)→ BXint

(x, 1/δ) defined by

ϕ = η0 ◦ ψ ◦ ι−1
∂M ◦ ωM

is a δ-approximation;

3. the map Φ : BM̃(p, 1/δ)→ BY (x, 1/δ) defined by

Φ(q) =

{
ϕ(q), q ∈ BM̃(p, 1/δ) ∩M
(η0 ◦ ψ ◦ ι−1

∂M(q1), t), q = (q1, t) ∈ BM̃(p, 1/δ) ∩ ∂M × [0, t0].

is a δ-approximation.

This definition is justified by the following lemma.

Lemma 5.0.9. Let

(M̃i,Mi, pi) ∈ M̃M(n, κ, λ)pt

converge to (Y,X, x) in ∂0MM(n, κ, λ)pt with respect to the pointed Gromov-Hausdorff

topology. Then there exists a componentwise δi-approximation

ψi : BM̃i(pi, 1/δi) ∩ (∂Mi)
int → BY (x, 1/δi) ∩ C0

with limi→∞ δi = 0 such that the maps

ϕi : BM int
i (pi, 1/δi)→ BXint

(x, 1/δi),

Φi : BM̃i(pi, 1/δi)→ BY (x, 1/δi)

defined as in Definition 5.0.8 via ψi are δ′i-approximations with limi→∞ δ
′
i = 0.
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Proof. Let

λi : BM̃i(pi, 1/εi)→ BY (x, 1/εi)

be an εi-approximation with limi→∞ εi = 0. When it is restricted to the boundary, it

provides a componentwise εi-approximation

λ′i : BM̃i(pi, 1/εi) ∩ ∂Mi → BY (x, 1/εi) ∩ Ct0 .

Since ∂M̃i and Ct0 are totally geodesic and φ(t0)-homeomorc to (∂Mi)
int and C0 respec-

tively, λ′i gives a component-wise εi/φ(t0)-approximation

ψi : BM̃i(pi, 1/εi) ∩ (∂Mi)
int → BY (x, 1/εi) ∩ C0.

Now the conclusion follows in a way similar to Proposition 2.1.9.

Lemma 5.0.10. For each δ > 0 there exists a positive number ε = ε(δ) such that if (M, p)

in M(n, κ, λ) satisfies inrad(M) < ε, then

dpGH((M̃,M, p), (Y,X, x)) < δ,

for some (Y,X, x) contained in ∂0MM(n, κ, λ).

Proof. Lemma 5.0.10 follows from Lemma 5.0.9 and the precompactness of M̃M(n, κ, λ)pt

combined with a contradiction argument.

If (Y,X, x) ∈ ∂0MM(n, κ, λ) satisfies the conclusion of Lemma 5.0.10, we call it a

δ-limit of (M̃,M, p), which is also denoted by Y(M, p) for simplicity:

Y(M, p) = (Y,X, x).

Definition 5.0.11. Let (Y,X, x) ∈ ∂0MM(n, κ, λ) and y ∈ X. We call y a single point

(resp. double point) if #η−1
0 (y) = 1 (resp. #η−1

0 (y) = 2). We say that (Y,X, x) is single

(resp. double) if every element of X is single (resp double). If (Y,X, x) neither single nor

double, it is called mixed. We also say that (Y,X, x) is single (resp. double) in scale R if

every element of X ∩ BY (x,R) is single (resp. double). If (Y,X, x) is neither single nor

double in scale R, it is called mixed in scale R.

From now on, to prove Theorem 0.2.5, we analyze the local structure of ∂M about

the connectedness when inrad(M) < ε. By Lemma 5.0.10, for any p ∈ M , there exists a

δ-limit Y(M, p) = (Y,X, x) together with

1. a δ-approximation ψ : (∂M)int ∩ BM(p,R) → C0(p,R), where C0(p,R) is a closed

domain in C int
0 ;

2. a δ-approximation ϕ := η0 ◦ ψ ◦ ι−1
∂M ◦ ωM : BM(p,R)→ BXint

(x,R).
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We shall use those δ-approximations in the proofs of Lemmas 5.0.12, 5.0.13 and 5.0.14

below.

Lemma 5.0.12. For any R > 0 there exists δ0 < 1/R satisfying the following: For every

0 < δ ≤ δ0, let ε = ε(δ) > 0 be as in Lemma 5.0.10. Then for M in M(n, κ, λ) with

inrad(M) < ε, if some δ-limit Y(M, p) is single in scale R for some p ∈ M , then every

p1, p2 ∈ ∂M ∩BM̃(p,R) can be joined by a curve in ∂M of length ≤ |p1, p2|M + 2δ.

Proof. Let (Y,X, x) := Y(M, p), and ψ, ϕ be δ-approximations as above. Put xi :=

ϕ(pi) ∈ X, i = 1, 2. Take x̃i ∈ C0 such that η0(x̃i) = xi. Lemma 3.2.6 shows |x̃1, x̃2| =

|x1, x2|. Since ψ is a δ-approximation, we have

|p1, p2|∂M < |x̃1, x̃2|+ δ = |x1, x2|+ δ < |p1, p2|M + 2δ.

Lemma 5.0.13. For any R > 0 there exists δ0 < 1/R satisfying the following: For every

0 < δ ≤ δ0, let ε = ε(δ) > 0 be as in Lemma 5.0.10. Then for M in M(n, κ, λ) with

inrad(M) < ε, if a δ-limit Y(M, p) is double in scale R for some p ∈M , then there exists

a point p′ ∈M satisfying

1. |p, p′|M < δ;

2. every q ∈ ∂M ∩ BM̃(p,R) can be joined to p or p′ by a curve in ∂M of length

≤ |p, q|M + 3δ.

Proof. Let (Y,X, x) := Y(M, p), and ψ, ϕ be δ-approximations as above. Set x := ϕ(p),

y := ϕ(q). Since (Y,X, x) is double in scale R, we can put {x̃1, x̃2} := η−1
0 (x) and

{ỹ1, ỹ2} := η−1
0 (y). Let γ : [0, 1]→ X be a minimal geodesic joining x to y. From Lemma

3.3.2, there are lifts γ̃i : [0, 1]→ C0 of γ starting from x̃i, where we may assume γ̃(1) = ỹi
and x̃1 = ψ(p). Since ψ is a δ-approximation, if ψ(q) = ỹ1, then

|p, q|(∂M)int < |x̃1, ỹ1|+ δ = |x, y|+ δ < |p, q|∂Mext + 2δ

Similarly, if ψ(q) = ỹ2, then putting p′ := ψ−1(x̃2), we have |p′, q|(∂M)int < |p, q|M + 3δ.

This completes the proof.

Lemma 5.0.14. For any R > 0 there exists δ0 < 1/R satisfying the following: For every

0 < δ ≤ δ0, let ε = ε(δ) > 0 be as in Lemma 5.0.10. Then for M in M(n, κ, λ) with

inrad(M) < ε, if a δ-limit Y(M, p) is mixed in scale R for some p ∈M , then there exists

a point p0 ∈ ∂M ∩ BM̃(p,R) such that every point q in ∂M ∩ BM̃(p,R) can be joined to

p0 by a minimal geodesic in ∂M of length |p0, q|M + 2δ.
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Proof. Let (Y,X, x) := Y(M, p), and ψ, ϕ be δ-approximations as above. Let x0 ∈ X be

a single point with |x, x0| ≤ R, and take x̃0 ∈ C0 and p0 ∈ ∂M such that η0(x̃0) = x0 and

|ψ(p0), x̃0| < δ Let γ : [0, 1]→ X be a minimal geodesic from x0 to ϕ(q). Since x̃0 ∈ C1
0 ,

there is a unique minimal geodesic γ̃ : [0, 1] → C0 from x̃0 to ψ(q) with η0 ◦ γ̃ = γ (see

Lemma 3.3.2). Since ψ is a δ-approximation, we have

|p0, q| < |x̃0, ψ(q)|+ δ = |x0, ϕ(q)|Xint + δ

≤ |ϕ(q), ϕ(p0)|Xint + |ϕ(p0), x0|Xint + δ

≤ |p0, q|M + 2δ.

Lemma 5.0.15. For any R > 0 and δ < 1/R, there exists ε > 0 satisfying the following:

If M in M(n, κ, λ) with inrad(M) < ε has disconnected boundary ∂M , then every δ-limit

Y(M, p) is double in scale R for every p ∈M .

Proof. Suppose that some limit Y(M, p) = (Y,X, x) is single or mixed in scale R. First

note that by Lemmas 5.0.12 and 5.0.14, every points q1, q2 in ∂M ∩ BM̃(p,R) can be

joined by a curve in ∂M . Take a point pα ∈ ∂M contained in a component different from

that containing p. Let c : [0, `] → M be a unit speed minimal geodesic in M from p to

pα ∈ ∂. For each i with 1 ≤ i ≤ [`/R], take pi ∈ ∂M with |pi, c(iR)|M < ε. By applying

Lemmas 5.0.12, 5.0.14 and 5.0.13 to pi together with a standard monodoromy argument,

we see that pα can be joined to p in ∂M , which is a contradiction.

We are now ready to prove Theprem 0.2.5.

Proof of Thoerem 0.2.5. (1) Suppose that ∂M is disconnected. By Lemma 5.0.15, every

δ-limit Y(M, p) is double in scale R for every p ∈ M . Take pα and pβ from distinct

components of ∂M . For every p ∈ ∂M , let c : [0, `]→M be a unit speed curve in M from

pα to pβ through p. For each i with 1 ≤ i ≤ [`/R], take pi ∈ ∂M with |pi, c(iR)|M < ε.

By applying Lemma 5.0.13 to each pi together with a standard monodoromy argument,

we see that p can be joined to pα or pβ by a curve in ∂M . Therefore we conclude that

the number of boundary components of M is at most two.

(2) Suppose that ∂M has two components. By Lemma 5.0.13, any δ-limit Y(M, p) =

(Y,X, x) is double in scale R for every p ∈ ∂M . Therefore for any x ∈ X, there are

distinct y1 6= y2 ∈ Ct0 with |yi, x| = t0. Take qi ∈ ∂M̃ , i = 1, 2, which are δ-close to

yi in the Gromov-Hausdorff distance. From Lemma 5.0.13, q1 and q2 must belong to

distinct components of ∂M̃ , which implies |q1, q2| ≥ 2t0, and hence |y1, y2| = 2t0. Let

W be a component of ∂M̃ , and consider the distance function dW from W . The above

observation shows that for every 0 < ε0 < π, dW is ε0-regular on a neighborhood of M in
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M̃ if δ = δ(ε0, t0) > 0 is taken small enough. This means that for any p ∈M , there exists

a point q ∈ ∂M̃ such that

∠̃Wpq > π − ε0.

This makes it possible to define locally defined gradient-like vector fields for dW on neigh-

borhoods of the points of M . Then by gluing those local gradient-like vector fields, we

get a globally defined gradient-like vector field V on M̃ whose support is contained in

a neighborhood of M . It is now straightforward to obtain a diffeomorphism between M̃

and W × [0, 1] by means of integral curves of V .
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Chapter 6

Typical inradius collapses

In this chapter, we adopt the same notations as Chapter 2. For a convergent sequence

Mi ∈ M(n, κ, λ, d) with respect to Gromov-Hausdorff distance, we will show that if the

its limit space is topological or metrical nice, then Mi inradius collapses. This result is a

joint work with Prof. Takao Yamaguchi [YZ15].

Note that, Wong, cf. Proposition 2 and Lemma 3 in [Wo10], also studied the conditions

for manifolds inradius collapse. However, his conditions are very strong. The reason

for him to study inradius collapse is proving his fibration theorem for codimention one

collapse, cf. Theorem 3 in [Wo10], by Theorem 0.1.6.

We always assume m = dimY = limGH M̃i as before. For convenience, we assume

there exists a c0 > 0 such that inrad(Mi) > c0 for all i. Then we immediately have

dimX = m.

Let X0 be the limit space of ∂M ext
i . Since we don’t assume Mi inradius collapses, X0

is not equal to X in general. Let η0 : C0 → X0 be the limit map of the inclusion map

ιi : ∂M int
i → ∂M ext

i . It is also easy to see

Lemma 6.0.16. X0 coincides with the topological boundary ∂X of X in Y .

As before we have a description of Y :

Lemma 6.0.17. There is a canonical surjective 1-Lipschitz map η0 : C0 → X0 such that

Y is isometric to the length space

X
⋃
η0

C0 ×φ [0, t0],

where (x, 0) ∈ C0 × 0 is identified with η0(x) ∈ X0 for each x ∈ C0.

Lemmas 3.1.1, 3.1.2, 3.1.3, Propositions 3.1.5 and 3.1.7 still hold if one replaces X by

X0 in this generality. Especially we have the following results. The proofs are similar,

and hence omitted.
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Lemma 6.0.18. For every x ∈ X0, we have

1. #η−1
0 (x) ≤ 2;

2. for x ∈ X0, suppose #η−1
0 (x) = 2, and let γ± be the two shortest geodesics from

x to Ct0, and let ξ± ∈ Σx(Y ) be the directions of γ± respectively. Then Σx(Y ) is

isometric to the spherical suspension {ξ±} ∗ Σx(X0).

As an application of Lemma 6.0.18, we have the following result, which gives a sufficient

condition for inradius collapse.

Proposition 6.0.19. Let Mi in M(n, κ, λ, d) converge to a compact length space N with

respect to the Gromov-Hausdorff distance, and suppose that N is a closed topological

manifold or a closed Alexandrov space. Then inrad(Mi) converges to zero.

Proof. We assume that N is a closed Alexandrov space with curvature bounded below.

The case when N is a closed topological manifold is similar. Suppose that Proposition

6.0.19 does not hold. Let ri := inrad(Mi), and take a point pi ∈ Mi and qi ∈ ∂Mi such

that |p,qi| = ri. Passing to a subsequence, we may assume that (B(pi, ri), qi) converges to

a metric ball (B(x0, r), y0) in X under the convergence M̃i → Y , where r > 0.

Take a minimal geodesics γ and γ+ from y0 to x0 and Ct0 respectively. Note that

∠(γ, γ+) = π (6.1)

We claim that #η−1
0 (y) = 1 for every point of X0 near y0. Otherwise we have a sequence

yi ∈ X0 converging to y0 with #η−1
0 (yi) = 2. Take two minimal geodesics γ±i from yi to

Ct0 . For every δ > 0 take s0 > 0 such that

∠̃γ(s0)y0γ+(s0) > π − δ.

Since γ±i converges to γ+, we obtain

∠γ(s0)yiγ
±
i (s0) ≥ ∠̃γ(s0)yiγ

±
i (s0) > π − 2δ,

for large enough i. This implies that ∠(γ+
i , γ

−
i ) < 2δ contradicting to Lemma 6.0.18.

Let p0 ∈ C0 with η0(p0) = y0, and set a := γ+(t0). From the previous consideration, it

is possible to take neighborhoods U0 of p0 in C0, V0 of y0 in X0 respectively in such a way

that η0 : U0 → V0 is a homeomorphism. From (6.1), we may assume that the distance

function da from a is regular on U0. Choose a neighborhood U1 ⊂ U0 homeomorphic to

Rm−1. Perelman’s fibration theorem 1.2.9 now implies that a small neighborhood of any

point y ∈ η0(U1) in Y is homeomorphic to Rm. On the other hand, since X is bi-Lipschitz

homeomorphic to a closed Alexandrov space and since dim η0(U1) = m−1, one can take a

point y ∈ η0(U1) having a neighborhood in X homeomorphic to Rm. Since y is a boundary

point of X in Y , this contradicts to the domain invariance theorem in Rm. This completes

the proof.
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