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1 Introduction

Since light-cone gauge string field theory is a completely gauge fixed theory, there is no
problem in formulating it in noncritical dimensions. It should be possible to find the
worldsheet theory in the conformal gauge describing such a string theory, in which the
spacetime Lorentz invariance shall be broken. In [1, 2], we have constructed the longitudinal
part of the worldsheet theory which we call the X* CFT. The X* CFT turns out to be
a conformal field theory with the right central charge so that the whole worldsheet theory
is BRST invariant. The light-cone gauge superstring field theory in noncritical dimensions
can be used [3-6] to regularize the so-called contact term divergences [7—11], in the case of
tree level amplitudes. The supersymmetric X* CFT plays crucial roles in studying such a
regularization.
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Figure 1. A string diagram with 3 incoming, 2 outgoing strings and 3 loops.

In this paper, we would like to study the X* CFT on higher genus Riemann surfaces.
In a previous paper [12], we have dealt with the bosonic X + CFT on higher genus Riemann
surfaces, but we have not investigated its properties in detail. In this paper, we will define
and calculate the correlation functions of bosonic and supersymmetric X* CFT on higher
genus Riemann surfaces and explore various properties of the theory. The results in this
paper will be used in a forthcoming publication, in which we discuss the dimensional
regularization of the multiloop amplitudes of light-cone gauge superstring field theory.

The organization of this paper is as follows. In section 2, the bosonic X* CFT is
studied. We calculate the correlation functions based on the results in [12]. In section 3,
we deal with the supersymmetric X* CFT. In [2], we have given a way to calculate the
correlation functions of the supersymmetric X* CFT on a surface of genus 0, but it is a
bit unwieldy. In this paper, we develop an alternative method to calculate them, apply
it to higher genus case and explore various properties of the supersymmetric X+ CFT.
Section 4 is devoted to discussions. In the appendices, we give details of definitions and
calculations which are not included in the text.

2 Bosonic X* CFT

It is straightforward to calculate the amplitudes of light-cone gauge bosonic string field the-
ory perturbatively by using the old-fashioned perturbation theory and Wick rotation. Each
term in the expansion corresponds to a light-cone gauge Feynman diagram for strings. A
typical diagram is depicted in figure 1. A Wick rotated g-loop N-string diagram is confor-
mally equivalent to an N punctured genus g Riemann surface ¥. The amplitudes are given
by an integral of correlation functions of vertex operators on . over the moduli parameters.

As has been shown in [1, 12], the amplitudes in d # 26 dimensions can be cast into
the conformal gauge expression using the worldsheet theory with the field contents

Xt X, X' b ¢ b e, (2.1)

in which the reparametrization ghosts b, ¢, b, ¢ and the longitudinal variables X* are added
to the original light-cone variables X (i = 1,...,d — 2). The worldsheet action for the
longitudinal variables is given by

d—26

- [[g.z,X%] . (22)

§ 1322 X¥] =~y [ dendsi (0XTOXT +0X70XT) +



Here the metric on the worldsheet is taken to be ds? = 2§.sdzdz and T is the Liouville action
T [g.z, X1 = —% / dz A dzi (a¢5¢ + gzg%) : (2.3)

where the Liouville field ¢ is given by
¢=In(—40XTX") —1In(2g:z) , (2.4)

and R is the scalar curvature derived from the metric §. The theory with the action (2.2)
turns out to be a conformal field theory which we call the X* CFT.

In order for the action to be well-defined, ds*> = —40Xt0Xtdzdz should be a well-
defined metric on the worldsheet at least at generic points. Hence we should always consider
the theory in the presence of the vertex operator insertions

N +
[{e™ ™ (2.2), (2.5)
r=1

with pf #0 (r=1,---,N) and N > 3. The amplitudes with such insertions correspond
to light-cone diagrams with external lines at z = Z, which have string length o, = 2p;f.
With the insertion of these vertex operators, X possesses a classical background

1

X5 (22 =L (0(2) +7() (2.6)
where p (2) is given by
p(z) = ZN:ar [lnE(z Z,) —2mi /Zwllm ” w] : (2.7)
r=1 o p, Im{ Po

Here E(z,w) is the prime form, w is the canonical basis of the holomorphic abelian dif-
ferentials and €2 is the period matrix of the surface.! The base point P, is arbitrary. For
notational convenience, we introduce

z w

1
g(z,w)=InFE z,w)—27r7j/ w—Im [ w, (2.8
) = In B gt [ )

so that (2.7) can be expressed as

N
p(2) = avg(=.2,) . (2.9)
r=1

Notice that g (z,w) is a function of z and not z, but that of both of w and w.

p(z) coincides with the coordinate on the light-cone diagram defined as follows. A
light-cone diagram consists of cylinders which correspond to propagators of closed strings.
On each cylinder, one can introduce a complex coordinate p whose real part coincides with
the Wick rotated light-cone time X and imaginary part parametrizes the closed string

!For the mathematical background relevant for string perturbation theory, we refer the reader to [13].



at each time. The p’s on the cylinders are smoothly connected except at the interaction
points and we get a complex coordinate p on X. p is not a good coordinate around the
punctures and the interaction points on the light-cone diagram. The interaction points
z=zr I =1,---,29 — 2+ N) are characterized by the equation

Op(zr) =0. (2.10)

Since

ds® = —40X 10X Y dzdz = |0p|* dzdz (2.11)
provides a well-defined metric on the worldsheet except for the points z = Z,., z;, we can
make I well-defined.
2.1 Correlation functions on higher genus Riemann surfaces

As has been demonstrated in [1], all the properties of the worldsheet theory of the longi-
tudinal variables can be deduced from the correlation function of the form

N X+

<H e~ X (Z,.Z,) H s X ws ws)> (2.12)
r=1 gzi

= (ZX[gzg]) / [dX“‘dX e~ 5183 He_w’ X (Zr, Zy) He ips X ws,ws).

The correlation functions are normalized by being divided by the factor

Xia N2 872 det’ (—§°%0,0:)\ "
(2%(9:2)) —< Tz ndos ) : (2.13)

which coincides with the partition function of the worldsheet theory when d = 26. As

is explained in appendix A, taking the integration contours of X* appropriately, we can
evaluate it and obtain

N Mo X+
<H e P X2, Z) [T e (ws, ws)>
9z

r=1 s=1

z

%5 <Zp§> 5 (Zﬁ) [Te 7 “ (wy,wy) e~ 3 Tl —5040] - (2.14)

S

Therefore we need to calculate I' [gzg, —% (p+ ﬁ)] to get the correlation function.

Since the metric (2.11) is singular at z = Z,, z; as mentioned above, one gets a divergent
result if one naively substitutes —% (p+ p) into X in (2.3). One way to deal with the
divergences may be to regularize them as was done in [14]. An alternative way is to
integrate the variation formula

dz 1, Liouvi
— 5 e 7TL10uvllle .. 21
> Tof seigp ) e (2.15)



Figure 2. The contours C7.

Here 7 labels the internal lines of the light-cone diagram > and C'z denotes the contour
going around it as depicted in figure 2. 77 is defined as

Tr =T7 +iazbz1, (2.16)

where T7 denotes the length of the Z-th internal line and a7, 87 denote the string-length and
the twist angle for the propagator. 677’s and §77’s should satisfy some linear constraints
so that the variation corresponds to that of the shape of a light-cone diagram. Teuville()
denotes the energy-momentum tensor corresponding to the Liouville action (2.3) given as

TLiouville(Z) _ (8(}5(2))2 —2(0—-0Ing.:)09(2), (2.17)

where ¢ is now given as

¢ =1n|dp]> —In(24.z) . (2.18)

It is possible to calculate the right hand side of (2.15) and integrate it with respect to the
variation to get I'. By doing so, we can fix the form of I'" as a function of the parameter
Tz’s. Imposing the factorization conditions in the limit where some of the 77’s become
infinity, it is possible to fix I' completely. By this method, we can calculate I' without
encountering divergent constants.

Such a computation was performed in [12] and we can evaluate I' by using the results.
The energy-momentum tensor (2.17) with ¢ in (2.18) can be rewritten as

. ) 2
TLIOIIVIHE — (a In |8p|2> — 282 In |8p|2 — (a lngzg)Q + 282 Ing.z

= —2{p, 2} — ((a In g.5)% — 20%In gzg> : (2.19)
where
Pp 3 (0% 2

=— — = | = 2.20
=523 (52) (2.20)

is the Schwarzian derivative. In [12], we have calculated Z"C which satisfies

dz 1

Inz"=>3"4 f — 24(T*(2)) — 2 c. 2.21
WA= | S I ) 20 ) vee, @2



where <TX (z)> denotes the expectation value of the energy-momentum tensor of a free
boson X. On the other hand, the partition function ZX[g,;] satisfies

510 2% [§.1] = Zafrffc dz 1 ((TX(Z» + i (91n4.)* — 207 mgzz)) ..
T s

2mi Op
(2.22)
Comparing (2.21), (2.22) and (2.15), we get
e o 710 (2X)7H (2.23)

up to a possibly divergent multiplicative factor.
Taking .- to be the Arakelov metric g2, Z¥[g.z] was calculated in [15-20] and its
explicit form is
ZX[gh]* = ef0e®®) (2.24)

where §(3) is the Faltings’ invariant [21] defined by
i=1

7 (29285
e 1) = (det Im Q)7 |0[¢)(0|Q2)]? ot G ( (?;'12)
et w;lz;

xexp |— Y GM&ig) + Y GMEw) | (2.25)
1<J %

and ¢4 is a numerical constant which depends on g. Here 2; (i = 1,...,9) and @ are
arbitrary points on X, and

g;i/;w_/]:w—A. (2.26)

A denotes the vector of Riemann constants for Fy. The definitions of the Arakelov metric
gZAE and the Arakelov Green’s function G* (z;w) are given in appendix B. Also taking ¢,z

to be the Arakelov metric, we obtain [12]
1 _ _ vrr -3
LC 25(%) —~W 2Re N, 2
7= (3272)4h e |T| e e |I| %0 (20)] (2.27)

where

—W = —QZGA (Z[;ZJ) - 2ZGA (Zr§Zs) +2ZGA (ZI;ZT)

I<J r<s Ir

= m (205 5 ) +3Y (2052 - (2.28)
I I
N§T denotes one of the Neumann coefficients and is given by

N§§ = lim [p(zlw) —r(2) +1In(z — ZT)]

z—Zy [e7%

Zr

T 2 .
_ Plae) S Y wEz,2)+ m/

a o a
r s#T T r JPy

1 & Zs
Ww—— Y « Im/ w, (2.29)
Im Q) ; 5 P



and z;( denotes the coordinate of the interaction point at which the r-th external line
interacts. Therefore we get
e T o ZLC—26(%)
1 -w —2Re N§§ 2 -3
=———¢ e 00 0“p(z , 2.30
(3204 1:[ 1;[\ p(21)] (2.30)

and fix the right hand side of (2.14) to be
N X*
<H e X (Zy, Zy) He ips X ws,ws)>
r=1 gzé
= (ZP; ) ' (Zpi ) Te % (we )

S
d—26

24
o L G | (TR 0

Once we know the correlation function of the form (2.31), it is possible to calculate

other correlation functions by differentiating it with respect to p,f, p;. For example,

N M X+
<8X+ (w) H e—ip;!—X7 (Zr; Zr) H e—ips_XJr (w37ws)>
9z

r=1 s=1

z

N M+1 X+
= i@woﬁpa <H e_”’TX (Zy, Zy) H e s X ws,ws)> , (2.32)
r=1

G2z pg =0,wo=w
where we take py,. ; = —py. From (2.31), we get
X+

N
<8X+ (w) H e~ X H e s X (g, ws)>
r=1 g

zZ

M x*
= —fap <H e X (7, Zy) H e~ X7 w5)> . (2.33)
s=1 gzz
It is easy to see that for any functional F[X*] that can be expressed in terms of the
derivatives of X+ and the Fourier modes e~#X" satisfying
FIXT 4+ =F[XT] (c = const.) , (2.34)

the following equation holds,

N M X=*
<F [X+] H e—ip;"X* (Zra Zr) H e—ip;X+ (ws> U_)s)>
9z

r=1 s=1

z

—F [— p—l—p} <He ipr X He ps X ws,ws)>Xi. (2.35)
g2z

This implies that the expectation value of X (z, 2) is equal to —% (p (2) + p(2)).



The correlation functions involving X~ can be evaluated in the same way. For example,

N M X+
<aX— O [Le™X (20, Z) [ e X (ws, w5)>
r=1 s=1 G2z

z

X+

N+1
= ZOZO <H e~ X (Zr, Zy) He ips X ws,w3)> , (2.36)

G2z par =0,Z0==2

with pEH = —p{f and we get from (2.31)

N M X+
<aX () [I e X (7, Z,) [Le ™ (ws. ws)>
r=1 s=1 G235

z

M d — 26 i
[Z =ip5) 029 (2,ws) + 102,02 (‘24F [§z27 —5 (' + p’)D ]
s=1 paLZO,Zo:z
N X+
X <H e_ip"X (Z, Zy) He s X ws,ws)> : (2.37)
r=1 G2z
Here we have introduced
N+1
! Z) = Z arg (Za Zr)
r=0
=p(2) + a0 (9(2,Z0) — 9 (2, Zn41)) - (2.38)

(2.37) can be rewritten as

M X*
< H e—zer ZT,Z )H —ist+(wS’a]S>>
gzi

s=1
M 1
= 1D (=ipy) 0X™ ()X T (ws) + (90X~ (2)),
s=1
N M X+
X <HeiﬁX‘(zﬁZr>Heiﬁs X+(ws,w5)> , (2.39)
r=1 s=1 §az

(09X~ (), = 0,0, <—d - [g L+ ﬁ')D (2.40)

can be formally written as

(0X™ (2))

p

(9% I e (2.2),
(ox- (z)>p: e (2.41)




We can go ahead and calculate the correlation function involving two X ~’s as

M

X=E
<aX (Zo) X~ He*“’TX (Zr Ze) [ e ist+(w57ws)>
g-:

s=1

N4l Mo
= Z'azoapa- <8X_ (Z) H e Pr X~ (Zr7 ZT) He—lps X+(

r=0 s=1

gZZ pg:
M
= || D2 (=ins ) 0X~ (Zo) X+ (ws) + (0X ™~ (%)),
s=1
M 1
X Z (—ips) 0X~ (2) X+ (ws) + (0X ™ (z)>p
s=1
+{(0X™ (Zy) 0X~ (z)>;
N M X+
X <H X2 Z) [[ e X (ws,ws)> , (2.42)
r=1 s=1 Jzz
where
(OX ™ (20) X" ()} = 029y (09X (D)) L, (2.43)
which can be formally written as
(0X~ (Z9) 0X~ (z)>; (2.44)
e _ o X*
(09X~ (20) 09X~ () [y e X (2, 2,))
— 9zz
- +
<H1{V:1€ i X (ZWZT)>?(
gzz
+ +
(X~ (Z) Ty e X (2, 2)) (0x~ ()T, X (2, 2))
9zz 9zz
_ —— . —— .
(L e X (2. 2,)) (T e X (2, 2,))
9zz 9zz

In this way, it is possible in principle to evaluate all the correlation functions of X+, X~
with the source terms e_if"in(Zr7 Z,), e~ X" (w,, w,) starting from (2.31). Therefore
with the definition of the path integral (A.7) given in appendix A and the anomaly factor I’
given in (2.30), we can in principle evaluate all the correlation functions of the worldsheet

theory of X+,

The worldsheet theory of X* thus defined turns out to be a conformal field theory
with the central charge 28 — d. It is possible to show that the energy-momentum tensor



defined as

TXi(z) = 0X (2)0X T (2) : —d1226 {X*, 2}
= lim (aX(z’)aX+(z) N _1 Z)2> - dIQ% {X*,z}, (2.45)

has the following properties:
o TX j[(z) is regular at z = 27y, if there is no operator insertion there.
e The OPE between TX™ (z) and e~#" X ~#r X¥ (7 7Y is given by

bl o _ —ptpT 1 0
TXi —ipF X~ —ipy X+ T 7 ~ Dr Pr
(Z)e ( T 7’) (Z _ ZT)Q Z—Zr 8ZT

et X =i Xtz 7.

e The OPE between two TX s is given by

28—d 1

+,, 1
() T* (&) ~ : 4"‘(2_2,)

zZ—z

X

227X () + oTx" () .

!/

These facts can be derived by calculating the expectation value of the energy-momentum
tensor and their OPE’s as carried out in appendix C.

Therefore the worldsheet theory with the field contents (2.1) becomes a CFT with
vanishing central charge. This implies that together with the energy-momentum tensor

T™C of the transverse variables, we can construct a nilpotent BRST operator

Q= f{ % [C(TXi +TC) 4 bede| (2.46)

and obtain a well-defined formulation in the conformal gauge.

3 Supersymmetric X* CFT

In the case of superstrings [2], it is also possible to consider the theory in noncritical
dimensions and construct the conformal gauge formulation corresponding to it. The action
of the supersymmetric X* CFT is taken to be

1 _ _ d—1
Siper [3:6:04] = =5 [ @2 (DATDX™ + DADX) 4 Mager [5:2,X7] . (31)
T
Here the supercoordinate z is given by
z = (z,0), (3.2)

where 6 is the Grassmann odd partner of z. The superfield X+ (z,z) is defined as

X* (2,2) = XF (2, 2) +i00™ (2) + i00F (2) + 00F (2, 7) (3.3)

~10 -



d?z is given by d?z = d (Re z) d (Im ) dfdf, and

8 o - 9 .9
g t05: D=stis. (3.4)

The interaction term I'gper is introduced as

Tanper [G22, X ] = —% / 4z (D@D@ n eégzgfw) ,
@ (2,2) = In ((DOF)* (2) (DOF)* (2)) ~ Iz,

o (@)= 2 () (3.5)

which is the super Liouville action defined for variable ® with the background metric
ds?® = 2§,zdzdz. In the same way as we have derived (2.14) in the bosonic case, one
can deduce

Xt

<H e P X (Z,,Z,) H e PN (wy, Ws)>
s=1

Gez
N N N M
A — — — Gr5 —3 - —~ —ips Xt _
EZ;flper[gzé] 2/[dX+dX ]gzze Ssuper[gzz]He ipr X (erzr)He ips X (W57Ws)
r=1 s=1

~ (2m)% (Zps ) ’ (Zpr* ) [T 5 (wowy) e Tl il (36)

Here

™

A 1 _
Z el 2] = / [dX],._. exp [—2 / d2zDXDX} , (3.7)

and

Z, = (Zra @r) s Ws = (ws’ns) . (38)

p(z) which appears on the last line in (3.6) is the supersymmetric version of p(z) in (2.7).
Its explicit form will be given shortly. Introducing the fermionic partner & of p given by

€= Dpl , (3.9)
(Op)2

we can define the supercoordinate p on the light-cone diagram

As in the bosonic case, in order to calculate the correlation functions of the CFT, we
need to obtain I'gyper [nga —% (p+ ﬁ)]

- 11 -



3.1 Evaluation of e~Tswer on the sphere

When the worldsheet is a Riemann surface of genus 0, we can employ the coordinate z on
the complex plane to describe the surface. Taking the background metric to be ds? = dzdz,
Isuper [%, —%(p+ p)] was derived in [2] by integrating the variation formula

5<—1“Super B 2 p+p]> 26 zﬁzmi‘;g’)))juc.c., (3.11)

which is the supersymmetric version of (2.15). Here S (z, p) is the super Schwarzian deriva-
tive given by

D¢ D*D%*
D¢ T (Dg)?
In [22, 23], an approach similar to [14] was employed to get Tsuper [3, —3% (0 + p)]. Since

S (z,p) (3.12)

it is quite tedious to get I'super [%, —% (p+ ﬁ)] by these methods, we Wlll look for an-
other approach.
In the sphere case, p (z) takes the form

N
=> aIn(z-%), z-Z,=z—2Z —00,. (3.13)

This can be written as
p(z) =po(2) +0f(2), (3.14)

where

z):Zarln(z—Zr

FR) == Za:@é; . (3.15)

When all the Grassmann parameters ©, vanish, the worldsheet theory can be described
by an ordinary Riemann surface with coordinate p, and obviously
. i _ 1.0. i _

I‘super 9zz, _5 (pb + pb) = EF 9zz, _5 (pb + Pb) ) (3'16)
where I' [§.z, —% (pp + pp)] is the anomaly factor in the bosonic case given in (2.30). Since
r [Qz@ —% (pp + ﬁb)] is known, the I'syper [gzz, —% (p+ ﬁ)] can be obtained if we can derive
how Tgyper [gzg, —% (p+ ﬁ)] changes under the deformation

(2:,0;2,,0) = (Zy,0r; Zy,0,) (r=1,---,N) (3.17)

of the moduli parameters.

In the bosonic case, the moduli of the punctured Riemann surfaces can be parametrized
either by the coordinates Z,, Z, (r = 1,--- N) of the punctures modulo the SL(2, C) trans-
formations or by

T = () —m () @=1--.N-3) (3.18)

- 12 —



and their complex conjugates T(b), where zg)) (Z=1,---N —2) are the coordinates of the
interaction points which are labeled so that 7'I(b) coincide with 77 in (2.16). 7'I(b),721(b) are
the natural parameters describing the moduli space from the light-cone gauge point of view
and I' is derived by considering how it changes under the variations of them. Therefore
in order to calculate I'syper, We need a supersymmetric version of (3.18). In [22-24], it is
shown that the moduli space of the punctured super Riemann surfaces can be parametrized
by (7'1,’7_'1,51,51) instead of (ZT,G)T;ZT,(:)T). Tz (Z=1,---,N —3) are given as

Tz = p(2z11) — p(21) , (3.19)

where zz (Z =1,--- N — 2) are the supercoordinates of the interaction points defined in
appendix D, and 77 are their complex conjugates. The definitions of the odd supermoduli
&1,&r are also given in appendix D.

Equivalence of the parametrizations. Let us demonstrate how the parametrization
(ZT, ©,; Z,, (:)T) and (7'1, Tr, &1, 5_1) are related to each other. In order to do so, we consider
a tree-level light-cone gauge amplitude for type II superstring theory in 10 dimensions with
external lines corresponding to the states

aiim o _737“ ¢Jlsl e 1;7151 T |0>r (T = 17 e 7N) : (320)

The light-cone diagram corresponds to a sphere with N punctures which should be consid-
ered as a super Riemann surface. p(z) given in (3.13) is the map from the sphere to the
light-cone diagram. The amplitude is expressed as an integral of the correlation function

(Vi (21,61;21,01) -V (Zn,ON; ZN,ON) ) cUn (3.21)

on the sphere times the anomaly factor

o~ Tsuper[3, =5 (p+7)] : (3.22)

over the moduli parameters. The moduli space of the punctured super Riemann surface
is parametrized by the coordinates (Zr,@r;Zr,@r) (r = 1,...,N) modded out by the
superprojective transformations. Here V, denotes the vertex operator for the state (3.20)
and is given by

Vi (2, Zy) oc AL, o A BB e Y (7, 7,) e3P (3.23)

—ny —s1 —51

where

Al :7{ ﬂzDXZ( )emar (P@=r(z,))
Z,

- 271
B _% dz Dp _iDX (z) e~ (P@p(z,))
2. 27 (09p)’}
Zy(r) Qs
Ngb = (af) - —n(Z, —Zy), (3.24)
T sr r

A, B are defined in a similar way, and X%(z,Z) are the superfields for the transverse
variables.

~13 -



It is straightforward to show that V. (Zr, O,; Z,, (:)T) is expressed as a superconformal
transform of V. (Zr, 0; Z,, 0):

~ _ L 50 (70
U,0,V, (Z2,0; Zy,0) =V, (Z, ©y; Zy, ©,) exp (— Re p(azf“)> : (3.25)
with
U, =exp % ﬁv (TLC (z) — 25 (z,py))
" ( 7‘70) 27[-1 7 ’
dz 0p(2;») (710
X exp ?{ ——— (T (2) — 25 (2, p . 3.26
[(m) - ) (1 (2) 25 (2. ) (3.26)
Here T"C(z) = T5C(2) + TS () is the super energy-momentum tensor in the transverse
directions,
f(z)
v(z,0)=-20 ,
(:6) dpy (2)

6 (z1) = p(ar) — py (4)

. b) 7 b Of (o

() = (- 2L ()

1
py (2) = (pb,ﬁ(apb)2> ,
Po, 3 (m\°
S (2, pp) =0 (26% 1 (apb> ; (3.27)
(b)

and z;’ is the coordinate of an interaction point which satisfies dpy <z§b)> = 0. Indeed,
defining

Az(b) _ 7{ ;iZDXZ (Z) e_&LT<Pb(Z)—pb (zjlz)r))) ’
Z,

- i

Bj(’”:]{ 92 Doy pi gy e ar (0 (50) (3.28)
2. 271 (9p,)}

it is straightforward to show
vAV =AU B QU =8, (3.29)

and

P 1 _ 9 rr(b) g 1 — 1(5 Z r
Upe ™% (2,,0: 2,,0) 2PN = 6% (2, 2,) exp (27972N55‘2 p(zw))’ 330
(678

where
(b)

_ Pb (Z (r))
Nog® = L NNz, - z,). (3.31)
s#r Ar

It is easy to get (3.25) from these.
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Substituting (3.25) into (3.21), the correlation function (3.21) can be expressed as

<H [UrU}V} (ZT,O;ZT,O)]> exp ZR ZI(T ] (3.32)
CUoo

T
Deforming the contours of the the integrals in the exponent of U, in (3.26), we get

<H (U,0,V, (Z,,0; ZT,o)]>CUOO = <H (UTr) 1;[ (UzU7) HV (ZT,O;ZT,O)> ,

r I CUoco
(3.33)

where

_ dz 0p(zr)
Ur = exp !_ j{(#),o) 27 Opy (2) (THC (z) — 25 (=, Pb))]

X exp [_ %(zﬁ”), ) dfz'” (TLC (z) — 25 (z, Pb))] )

0) 27

Uz = exp [57} fc’z ;% apbl(z) (TLC (z) — 25 (z, pb))] . (3.34)

Using the OPE’s

2 1 1

T TE ()~ 5+ 5

6 2
TEC (2) TEC (w) ~ + TS (w) + ﬁaTEC (w)

T () TEC (w) ~ 25T (w) + ——— 0T (w) , (3.35)

it is straightforward to get

3 2 1 OBPfOPFOff | [ v
32 ! (32%)38 SR (92pp)" (ZI ) ‘

Therefore the correlation function (3.21) is expressed as

(Vi (21,61, 21,01) - VN (ZN,ON; ZN,ON) ) cun

<HeXp (51 pb -3 TLC ( (b )> + c.c. ) H (UZUI) HVT (ZT,O; ZT,0)>
S Re 6p (Zrn)

(673

5 9y 3(0°m)
[ (12 (02p6)> 4 (0%p)" >8ff
20U O gy A PRRI0I] (o0
3(0%m)* (%) 12 (@) |V

CUoco

X exp

(3.37)
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From (3.37), we can see that the variation (3.17) of the moduli parameters can be realized
by the insertions of operators

exp (fl (82%)7% TEC (Zy))) + c.c.) , (3.38)
and
UzUz . (3.39)

(3.38) is exactly the superconformal transformation which induces the odd moduli
€1,€ [22-24]. The insertions of TIECT};C at the interaction points in light-cone gauge
perturbation theory arise by integrating superspace correlation function over the odd mod-
uli parameters &7,&7. (3.39) corresponds to the shift of 77 and 7z because of the varia-
tion (3.17). Hence the parameters 7z, 7z, &1, {7 parametrize the punctured super Riemann
surface and the variations of these parameters are implemented by the insertions of the
operators (3.38) and (3.39).

Derivation of I'syper. It is now possible to evaluate I'syper. In terms of the parametriza-
tion (Tz, 73,51,5]), the variation (3.17) corresponds to

(7}(b)a7}(b)70a0) — (E,ﬁaghgf) . (340)

From the discussion above, we can see that such a variation can be implemented by inserting
operators (3.38) and (3.39). Therefore, starting from the partition function (3.16), we get

exp (—Fsuper B, —% (p+ ﬁ)})
~exp (—;r B -2 (pb+pb)D

X <H exp (fl ((‘ﬂpb)—% TEC <z§b)> + c.c.) H (UIUI)> . (3.41)
I CuUco

T

The second factor on the right hand side can easily be evaluated from (3.37) with V, =1
and we get the expression

exp <—Fsuper B —% (p+ p)D
= exp (;F Ba *% (o + ﬁb)D exp [ Z:Re (Sp(:::m)]

" 3 \2
S
_; 83ff2 N 83pb382ff+1W] B (Zf,”)) 2. (3.42)
(0%pp)*  (02pp) 12 (62p)
Since ) Off / o
dp () = g (o) (3.43)
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we can further rewrite (3.42) as

exp (T 3. —;' o+0))
= exp (—;P { (py + P } Z AT, — Z AF1> , (3.44)

where
—Aly = 2;25/;]; < M) tec,
o 20 o328
G fo‘llza?;;f?ﬁ}ﬂ)ﬂc (3.5

In this case, (3.42) can be further simplified using the superspace variables. Indeed,

substituting

1 1 1
—°r
exp< 2 |:2 2 pb+Pb:|>

one can show

Po (Z?’)) ‘_% [Te "™, (3.46)

T

exp <—Fsuper [1 L (p+ p)]

2" 2
e
T

1
2

)
2exp[ ZRe( r( 5/) ZI(r) )]H‘82pb( )
& ’”’)) 0ff

(92ps)*

_
[\]
—
Q
[\
i
=
~—
w
»JMoo

2

3
I 2
3(02p)° i (82Pb)3a 7 5 (9%pp)*

2 ~
Za'r r eXp[ ZRG( TT‘(b M(jm)]
DpD 3p0?DpD
<11 <a2p_5<9 pDp  ,0°p0”Dp p) &)
I

3% (@)
5 Cff  OJof - O g ] 0
X exp <2 z]:Re [(82%)2 + @) (82/);,)36 I <ZI ) . (3.47)

1

133fazfaff] B (=)

(ST
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The exponent in the last factor can be given in a more explicit form as

BFf R2fof
X |y @~ s ()

B dz 0°ff

- Z%(b) 271 (9py)? 7 (2)

_ &= 1 dz ff

- 27{ 27” (Dps)? =)= 1{0 2mi (0py)? )

2 r 3 S 4 Tr S SZS
_ Yy Py A2 0000, 00: 2 (3.48)
. Qr sr Ly — Zs (Zt OétZt)

Notice that the integrand in the second line is not a one-form. Therefore in deforming the

contour in the third line, we should take account of the contribution from z = oo, around
which we need to introduce w = 1 as a good coordinate. Substituting (3.48) into (3.47),
we eventually obtain

exp (—Fsuper B —% (p+ p)])

_ Z a7, — Zr 0, ZS O Z
P

2eXp[ ZR i ]

1

593DpDp 0%p0*DpDp\ . |72
?p—= 3 3.49
< T3 o (@) ) ) 349

Here we have used
o) . 0p(Zry) . Oy 0Oy
N§s = Nog ™ + ! T Z 7. — Z, (3.50)
Ar s;ér

The result (3.49) coincides with the one from the calculations in [2, 22, 23].

3.2 e Tsuwer for higher genus Riemann surfaces

Let us now consider e~'swer on a higher genus Riemann surface ¥. All that we need to
evaluate (3.6) is the partition function with Grassmann odd parameters ©,. # 0.2 p(z) is

now given by

p(z) = pp(2) + 0 (2)
N
= Zarg(z’zr) , (351)
r=1

where

f(2)==> ;0,852 2),

9(z,2') =g (2,7") — 00'S5 (2,2) . (3.52)

2In the higher genus case, ©,’s, i.e. the Grassmann odd components of the punctures are not enough to

parametrize the Grassmann odd directions of the supermoduli space. Therefore what we evaluate here is
the partition function on a submanifold in the supermoduli space.
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g(z,2') is defined in (2.8) and Ss (z,2’) is the Green’s function of the worldsheet fermions
of the spin structure §. Here we deal with the case in which all the external lines are in the
NS-NS sector and § is an even spin structure. Ss(z,w) is therefore equal to the so-called

Szego kernel
1 9] (z—w,Q)

S =BG w006 0.9 (359
In the same way as in the sphere case, we can derive
(V1 (21,01;21,61) -+ VN (ZN,ON; ZN,ON) )5,
<HeXP (61 Pb -3 TLC ( (b )) +c.c. ) H (UIUI) H V. (ZT,O; Zr,0)>
T T »
X exp Z Re (Sp(;m))
5 9l 3(0%p)°
X 1+ = -~ off
1;‘[ <12 (0%pp)° 4 (92pp)*
2
2 03 o3 1 93f0%f0
-3 fo2+ L0 f + 127f2f4ff (z}b)) (3.54)
(@2m)*  (9%m)° (02ps)

We also have

exp <_Fsuper [§z57 —% (p+ ﬁ)])
= exp <—;r [gzz, —% (oo + ﬂ_’b)])
<Hexp (61 (0200) 75 () + ) ][ (Uz0) > - B5)
T

b
and eventually get the same form as (3.44)

. { _
€xp (_Fsuper [97;2; _5 (P + ,0):|>
. .
= exp (—2r [gzz, —=(pp+ P ] Z AT, =) Ar1> , (3.56)

where

—ATl, = i;ﬁ < I(r)) +c.c.,

_MI:{_<5 o3 (0 )) ff+283ff

12(22p,)° 4 (0%ps)" 3(%p)"
Py, 1 OOSOf] i
i gy }( )+ (3.57)

We do not know a good identity like (3.48) to rewrite this expression further using super-
space variables.

The normalization of the correlation function (3.6) is defined by the third line of (3.6)
with e~Tswer given in (3.56).
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3.3 Correlation functions of supersymmetric X* CFT

We can proceed in the same say as in the bosonic case and calculate the correlation functions
of supersymmetric X* CFT, starting from (3.6). We get equations such as
Xt

N
<F [X+] H e—ip:r H € e WS7 Ws)>
r=1 g

zzZ

Xt

:F[— p+p}<He X (7, 7, He P X ws,ws)> : (3.58)

ng

M X
< Hef'LPTX ZT,Z )H ist+(W87WS)>
9z

s=1

z

—ip}) DX~ (2)X* (w) + (DX~ (2)),

2.

(

<DX (Zo) DX~ He X (7, 7, He s X ws,ws)>

M
s

1
N M x*
< (] e X (Z, 7, [Le ™ (w., v_vs)> , (3.59)
r=1 gz

s=1

z

Xt

sz

M
— Z Zps (Zo)X+ (Ws) + <DX— (Z0)>p

M
S (-ips) DX~ ()X (w.) + (DX~ (2),

+ (DX (Zy) DX~ (2))°

N X+
X <He—ipr?‘ (Zy, Z He s X ws,ws)> , (3.60)
r=1 gzi
where

DX~ (2)XT (ws) = Dy [g (ws, 2) — 0085 (ws, 2)]

_ ) d—10 R 1 _
<DX (z)>p = ZDZ06p0+ (_Srsuper {gzév D) (p+ P)])

Y

par:07Z0:z
(DX (Zo) DX~ (1)) = iDz,0, (<DX_ (z)>p,)

pg=0"
# (2) = p (2) + a0 (g (=, Z0) — 00055 (2, Z)

— g(2, Zns1) + 0ON11S5 (2, ZNH)) . (3.61)
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In this way, it is possible to evaluate all the correlation functions of X+, X~ with the
source terms e~Pr X~ (Zy,Z,), e='P= X" (wy, w,) starting from (3.6). The worldsheet theory
of X* thus defined turns out to be a superconformal field theory with the central charge
¢ =12 — d. The energy-momentum tensor is defined as

d—10

T (z) = % :0XTDX™ (z) : % : DXTOX™ (z) : — S (z,x7")
1 N -
=3 ‘}}an (0X" (W) DX (2) — OwDyIn(w — z))
+ L liLn (DX* (W)X~ (2) — DOy In(w — z))
_d-104 (z, X7), (3.62)

where o*et oDOToO"
20D
xYt) = —
S (Z, ) - DO+ (D@JF)Q ) (363)

and ©1(z) is given in (3.5). It is possible to show that this has the following properties:
o TX* (z) is regular at z = Zj, if there is no operator insertion there.
e The OPE between T (z) and e*ipj/"/_*7;7’;“‘#(Zr7 Z,) is given by

TY" () e PP ¥~ ¥, 7,)

60— 0 el
g () e 2
- r
1 1 e _
+ z—7 §De—2piX o X+(Zra Z,)
T
0 — O, _

+— fe~r X —wr X7 7y,
T

e The OPE between two 7% ’s is given by
7" (z) 7Y+ (')
1

12-d 00 3, -, 1 s,
= DT
4(z—z’)3+(z—z')22 (Z)+Z—z’2 (=) +

which corresponds to the super Virasoro algebra with the central charge ¢ = 12 — d.

0—0

/

T (2,

~

Z— 7

These facts can be derived by calculating the expectation value of the energy-momentum
tensor and their OPE’s. Some of the details of these calculations are given in appendix E.
It follows that combined with the transverse variables X* (z,2) (i = 1,...,d — 2), the total
central charge of the system becomes ¢ = 10. This implies that with the ghost superfields
B (z) and C' (z) defined as

B(z) = B(z) + 0b(z) , C(z) =c(z) +0v(2), (3.64)
it is possible to construct a nilpotent BRST charge
_ [ dz |_ Xt | oLC 1 2
Op = f{ = [ C (1Y +70) + (CaC 1(DC) )B] . (3.65)
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4 Discussions

In this paper, we have studied the longitudinal part of the worldsheet theory corresponding
to the light-cone gauge string field theory in noncritical dimensions, on higher genus Rie-
mann surfaces. We have defined and calculated the correlation functions of both bosonic
and supersymmetric cases and shown that they have the right properties to be used to
describe the theory in noncritical dimensions.

In order to analyze the supersymmetric case, we have proposed a way to calculate I'syper
which is much simpler than those proposed in [22, 23] or [2]. The correlation functions in
the higher genus case are quite complicated because we have not been able to find a way to
express it in terms of the superfield p(z) so far. It seems easy to generalize our method to
the N = 2 case and calculate the anomaly factor on higher genus Riemann surfaces. Such
a calculation will be useful for studying the amplitudes involving Ramond sector fields [25]
or amplitudes in Green-Schwarz formalism [26-30].

With the X* CFT studied in this paper, it is possible to describe the conformal gauge
formulation of the light-cone gauge theory in noncritical dimensions. We can construct
the nilpotent BRST charge and rewrite the light-cone gauge amplitudes in terms of the
conformal gauge worldsheet theory. The amplitudes in noncritical dimensions can be used
to regularize various divergences in a gauge invariant way. In [3—6], we have dealt with the
contact term divergences of the tree amplitudes. The results in this paper shall be used in
analyzing the higher-loop superstring amplitudes in separate publications.
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A Definition of the path integral of X= variables

In this appendix, we explain how to define the path integral on the right hand side of (2.12)
following [12]. Since the action of X* variables is not bounded below, we need to take the
integration contours of X* carefully to define the path integral. Let us first recapitulate
how we do so in the critical case. The action for X is given as

1 . 5 — -5
Sia= 1 / dz N dzi (0XTOX~ +0X~0X™) | (A1)

The path integrals to be defined are of the form

N M
/ [dx*dx~], e S [[ e X (2., Z) [T e X (20, 24). (A.2)
r=1 s=1
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which is supposed to be equal to

(2m)%5 (ij ) (Zps> [T e % (2, 2) 2% 92212 (A.3)

s=1

where X 31:(27 Z) are solutions to the equations of motion with the source terms
68X+zz —zZpr —2mi (522—Z),

20X =—i Zps —27i)0% (2 — zs) . (A.4)

In order to derive (A.3), we decompose the variable X* as
XE(2,2) = XE(2,2) + 2t +6XF(2,2), (A.5)

where 2 + 6§ X*(z, 2) are the fluctuations around the solutions with

/ dz Adz\/§g0X* = 0. (A.6)

Integrals over X* are expressed as those over & and 6 X*. In (A.2), we take the integration
contours of % and §XT — 6X~ to be along the real axis and that of X + §X~ to be
along the imaginary axis. Then (A.2) becomes well-defined and is evaluated to be (A.3).

Based on this definition of the path integral (A.2), it is possible to evaluate (2.12) as
follows. The right hand side of (2.12) can be expanded as

M
(Z%04.5]) / [dXTdX~], e gzzlne—”’rx (Ze, Ze) [[ e X (ws, @5)
s=1
M
— (2% [ laxrax ], e 1HX (220 [Le " ()
s=1

X Z " (_MF [gzz,Xﬂ)n : (A7)

and expressed in terms of the correlation functions of the theory in the critical dimensions.
Using the prescription for the contours of the integration, it is straightforward to prove

0= / [dX+dX_]g22 e_Sj[:%

n

N M m
X H et X (Z,.Z,) H e~ X zs Zs) H 96X T( (zp) H (A.8)
r=1 s=1 q=1

p=1

if n or m > 1. Using this and (A.3), it is possible to show that the right hand side of (A.7)
is equal to

? (Zps ) ’ (Zpi > [[e? % sz e Tl 3002l (a)

s
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B Arakelov metric and Arakelov Green’s function

In this appendix, we give the definitions of the Arakelov metric and the Arakelov Green’s
function, following [17, 31].
Let us define p.z as

1 1
= — 0(Z). B.1
T ng(z)Ime(z) (B.1)
We note that
/ dz NdZip,z =1, (B.2)
by
which follows from
/ wy Ny, = —21ImQ,,, . (B.3)
X
The Arakelov metric on X,
ds? = 2¢2dzdz, (B.4)
is defined so that its scalar curvature R* = —2¢*%2091n g?z satisfies
iR = —87(g = Dpres. (B.5)

This condition determines g2 only up to an overall constant, which we will choose later.
The Arakelov Green’s function G (z, z; w,w) with respect to the Arakelov metric is
defined to satisfy

—0,0:G*(2, 7w, @) = 2102 (2 — w) — 2mpu.z

/ dz AdZip,:G2 (2, z;w,w) = 0. (B.6)
P

One can obtain a more explicit form of GA(z,z; w,w) by solving (B.6) for G*(z, z;w, ).

Let F(z,z;w,w) be the (—%, —%) X (—%, —%) form on ¥ x ¥ defined as

F(z,zZ;w,w) = exp [—27r1m /:whnlglm /wz w} |E(z,w)|* . (B.7)
It is easy to show
0,0:In F(z, Z;w,w) = —2mid>(z — w) — 2mgpi.z . (B.8)
Putting egs. (B.8) and (B.5) together, we find that GA(z, Z;w, w) is given by
G*(z, z;w, @) = —In F(z, Z;w, @) — %ln (29?2) - %ln (29{3@) , (B.9)

up to an additive constant independent of 2,z and w,w. This possible additive constant
can be absorbed into the ambiguity in the overall constant of g2 mentioned above. It is
required that (B.9) holds exactly as it is [17, 18, 31]. This implies that

20 = &En)z exp [~G*(z, Z;w, w) — In|z — w|?] , (B.10)

and the overall constant of g2 is, in principle, determined by the second relation in (B.6).
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C Calculations of correlation functions of bosonic X* CFT

In this appendix, we calculate the correlation functions involving the energy-momentum
tensor of the bosonic X* CFT and show various properties of the theory.

C.1 Evaluation of <8X‘(z)>p
We evaluate the relevant quantities starting from the expectation value (90X~ (2)), which
is given as

_ ) d— 26 1 _
(0X™(2)), = 2i02,00q (— 50 r[gg;z’ _2(p/+p,)]>

(C.1)

ap=0,Zp==

In the following, various quantities defined by using p’ given in (2.38) instead of p in (2.7)
will be denoted by attaching a prime. We also define

N 0 . Zn+
02,0 (20, Zn+1) = 6—Z01nE(Z0, ZN+1) — 2miw (Zp) ma Im g w,
0
_ 1 “o
0zZn19(ZN11, Z0) = s In E(Zy, Zn+1) — 2miw (ZN+1) ma Im g w, (C.2)
N+1

which make the following calculations look simpler.
In order to get (0X ™ (z)), we need the following expansions in terms of ap:

ag 0 2
2 — 21 = ~Pp(z1) 021 (9 (21, Z0) — g (21, Zn+1)) + O(ag)
ag

/
— Ty = —

— a2 9*p(Zo) 1 ~ .
O <(8p(ZO))3 ’ (5P(Zo))2azog(Z0’ZN+1>> +0 (ap)

O?p(Zn11)
o _ 7 _ % o2 <+
J(N+1) N+1 ap(ZN+1) 0 (8P(ZN+1))3
1
+8N+1§(ZN+1,Zo)> +0 (o) , (C.3)
(0p (Zn+1))? (e
_ _ leY
ngg = Ngo + 070 (g (Z[(mZO) ) (Z[ma ZN+1)— 9 (Zn ZO) +9(Z,, ZN+1))
+0(ap),
_ 9%p(Zp) o) .
N’00—1n<— @0 >—1 all + 02,3 (Zo, Z +0(ad),
i 59 Z0) 2 Op(Z0)) + 0p(Zg) 708 P i)+ O(e)

N/N+IN+L < ap ) 1
00 0p(ZN+1)

ag Pp(Zni1) o ) ,
2 B 0 9 Z ’Z + O(a ) CA4
2 OpZn)?  On(Zwyy) 28 B Zo) + Olg) (C.4)

2

0
0%' (21) = &*p(21) + a0y (9 (21, 20) = 9 (21, Zn+1))
1

022 (o) 2 (g o1, Z0) = g (1, Zovsn)) + Oad)
Oa2p1821g I,40) — 9\21, 4N+1 0/)>
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2
) =~ OB 35 20) + 200 (70) 02,7 (o, Zvs1) + O (o)

p(Zn+1))° i
W +30%p(Zn41) +20p (Zn11) 025,13 (ZN11, Zo) + O (ag)

O p(21) + O(an),

- 0p(20))°

aZp/ (Z/[(O)
00 (Zrven) =
83p/ (Z/I)

83P/ (ZII(O))

0
6 6 -

+ Ojoaﬂ(zo)a%(zo) + % (00(20))? 020 (Zo. Zn+41) + O (af)
2 6

00 (2jwin) = — 0p(Zn41))* = OTOGP(ZN—&-l)azP(ZN—H)

0
6 -

= Op(Z41)) Oz (21 Z0) + O (o) (c5)

Here 2 (I =1,...,29—2+N), 2}, Zyn+1) are the interaction points for p', which behave

as 27 = 21, 20y = Zo, Zynen — ZN+1 in the limit ag — 0 respectively.
We also need the formula for the variation of —W”’, which is the —W in (2.28) defined
for p/. Comparing the behavior of the Schwarzian derivative for z ~ 2y
3 1 &p(ar)
z2—21)2  z—21%p(21)’

—2{p,z} ~ ( (C.6)

derived from dp (z) ~ 8%p (z1) (z — z1) + 2%p (21) (2 — z7)? with

3 1 0
~2psh~ ot

T2 05 W), (C.7)

which is given in [12] (eq. (B.15)), we obtain the formula
O=W) _ &plz1)
0z1 ?p(z1)
From this, we get the expansion of — W' as

o(=W') _9(=W)
82’1 - 82[ + O(QO) 3

o(-W') 2 -
é,) — 78/)(20) — 2aZOg (ZO7 ZN+1) + O(aﬂ) )
21(0) (&%)
o(—w' 2 ~
8(/) = _78P(ZN+1) - 28ZN+1g (Zn+1, ZO) + O(a()) :
ZI(N+1) a0

Using all these, it is straightforward to derive

, d— 26 / i}
(0X ™ (2)), = 2i02,00, (— 5T [ggz, _% (0 +p,)D

ap=0, Zp==z
N+1

d—2 -
= QiBZOaaO [—246 <—2 Z RGN/SB_;Zln|82pl(23)’2_W/>]
r=0 I

2g—2+N
] )

N
Y Bi(z.2)+ Y. Bi(z2)
r=1

I=1

ap=0, Zp=z

d—26_.
= 2i0, (C.9)
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where

B, (z,2) = o (9(Zr,2) — g (250,2)) +cc.,
0p 0 3 0?2
B 7)) = ———— —_— - .C.. Nl
(2, %) 2@ (21) 8219(7:1,2) 20%) (o1) az%g(zlr,z) +c.c (C.10)

Notice that (0X ™ (z)), is meromorphic with respect to z.

C.2 Energy-momentum tensor

Now let us check if the energy-momentum tensor 7% * of the X* CFT defined in (2.45)
satisfies the desired properties.
We first consider the correlation function of the form

X+

N
<TXi (2) He_ipTX (Zy, Zy) He s X ws,ws)> , (C.11)
r=1 G2z
which can be evaluated as
N X*
<TXi (2) He_ipTX (Zy, Zy) He s X ws,ws)>
7":1 sz
M -
- ——ap Z —ipy ) 0X ™ (2) X (ws) + <T (z)>
p

s=1

N M X+
X <H6—W X2 Ze) [ [ e X+(ws,ws)> , (C.12)
gz

r=1 s=1 .
where
26
(T¥(2)) =~ 20p(z) (0X~(2)), - {p,2}
P
L ] e —w) (.13
3 azl3 zZ ,Z . TTW\ 2 Ime zZ). .

Since (C.11) can be considered as the generating function of correlation functions with
one TX* (z) insertion, we can deduce various properties of TX* from it. The first thing
we check is whether 7% (z) is singular at z = z7. Even if there are no operator insertions
at z = z7, (C.9) implies that 0X~ (z) is singular there. It will be disastrous for BRST
quantization of the worldsheet theory, if 7% - (z) is singular at such points. For z ~ zj,
one finds®

d— 26 1 3 1 1 &%

<8X_(Z)>P Y] 2 (z— 213 02p(z1) (2 —21)22(82p( ) Z 077“2_721(”

Op (2) ~ (2 — 21)0*p(21) + %(z —21)?p(2r) + O ((z — 21)%) (C.14)

#0n the right hand side of the first equation in (C.14), the sum Y, is over the r’s such that z; = z;().
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and

) — B3p(z
— Lop() (0X (), ~ d 2426 . 3,21)3 + 121 222&3 +0(1)]| . (C.15)

With (C.6), (C.12) and (C.13), this implies that X+ (z) is not singular at z = z;.
The singular behaviors at z = Z,. are obtained as

_ d—26_.
<8X (Z)>p"’ 21 21
+ 1
X z—Zr+zli>r%r <8BT(Z)—Z_ZT)+§8BS(ZT)+EI:3BI<Z ’
« ) o
dp () ~ o +zli>Her <8,0 (2) — P Z'r> ; (C.16)
and

1 1 «
71. a _ T
+zZT{arzi>r%T<p(Z) z—ZT>

(Lm (o027 s Zomeapome )H
r S#ET
d — 26 (z—lz )2+z_12 o ( 2ZRe —2zlnlap(z1)l2>
7’ 1

~

24
Dz 8 (—W) 9z O (-W)
z—Z Z( I o +azlr o >] : (C.17)

In order to get (C.17), we have used

le)rgr <OB,~ (2) — ) + Z 0Bs (2r) + Z 0B (Z,

S#T

Z,
™ [ ] 1 0 1 9
T Zr) = — - vy Ly — Zg, Zy) — o, Zr
b Yma” ) T a9 1o DY (9(Zs, 2r) = 9 (2190, Z1))

0
+Zasaz Zsaz) (zl()’Z))—FEI:aZTBI(ZT)’

i (-

. 1 ar
) Zas BZ 9(Zp, Zs) — 2mioyw (Zy) ——= Im w, (C.18)

prnd Im P
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and

0zr o
= - 8,2 a 7Z7’ ’
97, 7% (o) 2 2.9 (21, Zy)
0zr (678 -
= - 82 a 7ZT‘ )
o7, 92p(z) 2,9 (21, Zy)
BN&’)" 0 as 0
8ZT - TZTQ (ZI(TMZT) - ; OTTTZTQ (Zry Zs)
, 1 Zr o1
+ 2miw (Zr)m:[m P W+7T/PO (JJmW (ZT) y
ONSS  a, 0O
aZOO :;82 (g('z[(s)?Z'f‘)_g(ZS7Zr)) (8#7”) Y
aNSS* a, o o o
8200 = ~. 37 (g (Zr,Zr) — G (Zs, Zr)) . (C.19)
Now with ) L oW
_9 ~— _ 2
R Aty e 2l (C.20)
it is easy to derive
e 1 d _d — 26
<T (Z)>p 2~ Z, dZ, ( L) (C.21)
(C.21) implies
o _ 1 ol _
X5 (2)e P X7 (Z,,Z,) ~ d —wix~(7.7). (C.22)

z— Zy dZ,
In the same way, the following OPE can be derived:

_l’_ —
+ i XY — i+ - —pp 1 d b= i+ -
T (2)e ipt X~ —ipy X (Zy, Zy) ~ [(Z_TZT)2+Z_ZrdZT]e ipr X~ —ipr X (Z,.7,).
T

(C.23)

Finally we examine if the energy-momentum tensor 7% * (z) satisfies the Virasoro alge-

bra. In order to do so, we first derive the OPE of 90X~ (z) X~ (/). From the correlation
function

d— 26 N 2h—2+N
(0X™ (2)0X ™ (Z0)); = o0 (20)?0.02,000 | Y _BL(2)+ Y. Bi(2) (C.24)
r=1 I=1 ap=0
d—26 _ o 2 1 20%p 1
¥ Tor 00 [_(3,0(20))2(2—20)2_(30)3 @) 7]
we get the OPE
_ _ d— 26 1 1
OXT(2)OX =)~ =gy 002 [(Z ) 6X+(z)6X+(z’)]
_d—26 _ 1 6 _ 1 39 1
T2 [ (=) (OXT()? (2= 2037 (9XF())?
1 1 1
Nl (€2
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With

OXT (2)0X ™ (¢) ~ ;2,
(2 —2)
OX* (2)0X ™" (2') ~ regular, (C.26)
one can deduce the OPE
+ + 28-d 1 1 +
TX" () TX (') ~ G _221) T+ . Z,)22Ti (=) + = 2,6TX (), (C.27)

which coincides with the Virasoro algebra with central charge 28 — d as desired.

D Interaction points and the odd moduli

In this appendix, we present the basic facts about the interaction points and the odd moduli
in the light-cone supersheet formalism [22-24, 32].
For the supersheet coordinate

p(z) =py(2) +0f(2), (D.1)

we define z; such that dp (z;) = dDp(z7) = 0. Since

Op = Opy + 00f ,
dDp = Of + 00°py (D.2)
we find z; = (21,51) to be
- ~ of
2 = Z}b) s 0[ = _8T% <Z§b)) y (D3)

where z§b) is one of the interaction points for py (z), i.e. pp (zf-b)) = 0. The p coordinate

corresponding to Zy is given as
7)) — Y _ 91F (.
p(z1) = py (ZI ) e (zl ) . (D.4)

The interaction point z; = (z1,67) which is superconformal covariant is the one such
that for some Grassmann odd &7

p(2)=p(2)—p(ar) — (p(2) — p(ar) "1 &1, (D.5)

can be expanded as
. 1,5,
p(2) = SPp(ar) (=2 + (D.6)

around z ~ z;. Here £ = (ap)_% Dp. Expanding p (z) as

p(z) = p(ar) + 0o+ %c%z + 2208+ Fa+ - (D.7)
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where

F=z—17p, 6=0-6;, (D.8)
we find
~ 1
ZI_ZI—_CTlaﬂa
~ a
0 — 0 = — D.
I I C4a’ ( 9)
and

1 2
— 275 (8%p) 7 (f + fafaf) (") (D.10)
Py

f 7’s are proportional to the odd supermoduli parameters in the light-cone gauge param-
etrization. For our purpose, it is convenient to define

_ : JOfO* f
=20 (1+ L8 (o). (D.11)
From (D.9), we get
p(a1) = p(ar) + (01 = 61) Do (ar). (D.12)

but since o = Dp(zr), we find
p(zr) = p(21). (D.13)

E Calculations of correlation functions of supersymmetric X* CFT

In this appendix, we present some details of the calculation of the correlation functions of
supersymmetric X+ CFT.
(DX (z)), in (3.61) can be expressed as

<ZB Z,Z —I—ZBI z, z)
N(z,i)+ZNT(Z,Z)+ZN1(Z,Z)] , (E.1)
r I

(DX (2)), = d U9ip

where

Z B, (Zo, Zo) + Z B (Zo, Zo) — Z B, (Zn11,ZN+41) — Z Bi (Zn+41,ZN+1)
1 r I

= 8040 (_F/)‘aozﬂ )
N (Zo,Z0o) = Oa (—0T0 — 6T0)) |,
N, (Zo, Zo) — N, (ZN+17 ZN+1) = a040 (_5F;")|o¢0:0 ’
1—\/

Ni(Zo,Zo) — N (Zn+41,Zn41) = Oy (—6T])|

=0’

(E.2)

ap=0 "
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It is straightforward to calculate these terms. B, (z, %) and By (z, z) essentially coincide
with the bosonic ones

_ 1
B’r‘ (Z,Z) = ; (g (Z’HZ) - g(zj("“)az)) + c.c.,

r

_ 83pb 0 3 9?2
B[ (Z,Z) = W (Z[) 872;19 (Z[, ) mazQQ(Z[, )+ C.C..

w

z 1
g(z,w) =In E(z,w) — 2mi /0 ) Im [ w. (E.3)

In order to evaluate N (z,z), we need z;((?) —Zyup to O (a%), which is given by the second

equation in (C.3). Using this, it is straightforward to get
20°f f Ppp0f f
(o) + 0
(Op») (9pv)*
920 20°f  40%p,0f  5(9%m)’
+9<_fff f pdf 5 (@m)f AT

N (z,z) = —

20m)° | Om?E  @m) | 20m)  (@0m)
+ c.c.. (E4)

This expression does not involve Zyy1 or On41. In the same way, one can show that
Oa ( Oy — 5FII<N+1))) oo does not involve Zy or Oy and we do not have to include

the contributions from this term in (E.1). N, (z,z) and Ny (z,2z) can be evaluated by simply
calculating the right hand sides of in (E.2). The results are in the form on the left hand
sides of these equations and we obtain

N, (z,z)

- Off  Tmdff ® off 0
20 H_(a%b)? N (82pp)° } ( I<’>) 9 “’) 9( mwz) - (agpb)zai%g( m&)

#0{ g (o00) 85 (+4002) = g1 (40 00 5 (+0.2) |

+c.c.,
N1 (z,z)
_ {a4f02faff 20 f+0*f0f) w0 fPfOSf
12 (82py)° 3(0%p;)° 3(0%pp)°
L P GO I +0f0)) 15 (pp)° 021 f

(2pp)° 4(92pp)°

1704002 f  (3(83m)°  110p8%p,  50°p (b) ®)
+ + - + o :
12 (0%p)" (@2p)°  4(2p)°  12(0%pp)" I <Z’) ‘”g(zf )

. {a3fa2faff R

3(020)°  3(0%p)°
303002 ff  3(Pm)0ff  50*pdff | / (b)
+ (Ozpb)4 — (32/)1))5 + (52pb) <21 )3217)9 (ZI 7z>

OPff  3Pp0ff ®)\ 3 ) C5Off ) e ®)
+ {_(82,01))3 -+ 2(82%)4 } (21 )8ng)g <Z[ 7Z> 12 (82pb) (ZI )8Z§b)9 (ZI ,2)
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3
SR i i e (AR
+{g{aapf{ L ot } A9)0 085 (9, 2)
s ()2 ()
) )

+c.c.. (E.5)
A few comments are in order:
e (DX™ (z)), given in (E.1) is meromorphic with respect to z.
e X7 involves auxiliary field F* as its component. With the action (3.1), the equation
of motion implies F* = 0. F* can be nonzero at z = Z, where X'~ is inserted. (E.1)
implies that the expectation value of F'~ vanishes even with the sources.
E.1 An expression in terms of the superfield p (z)

It is possible to rewrite (DA™ (z)), given in (E.1) in terms of the superfield p(z), the
covariant derivative and the fermionic coordinate 6 as

d—10

1 -

<DX_ (Z)>p = 3 2iD Re Z (ag(Zr,Z) —|—IC1(ZI(T), > —|—’C2 + ZKg ZI;Z ] ,
(E.6)

where

K1 (ZJ(MZ)

1 5 B 82DopD 5 5 Dp _
= |00, - 09 By 2) G (Byn) + 0D (g 7)) o (5|
0?pdDpDp 82Dpr>
Ko(z) = (8 —
2(z) ( @) o )@
B (02p)? 23p 0?>DpdDp
+9< Y@t T opp T et ) PP
Ks(z1;2)

N 0%p0?°Dp 4 83D _
= (g (sz)) (2 (ggp)gp - 3(62p)p2) ( I)
N 14 03Dpd3pDp 4 0*DpD
+8(9(Z[7Z>){3 (52 )p p_g (82;))3p

15 (0%p)* 17 9% \ . 1 &p \ .
+ (-5 (o * 6 @) PP g )
N 10°Dpd*DpDp 3 (0%p)?Dp  50*pDp)\ .
+0D(g(2r,2) <_6 @0t T2 (%) _6(32;))3)( 2
&pd>DpDp  89°DpDp 3 1 (@)
@p)" 3 (% 20%) "

1 (g (21,2)) (6
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23pDp 0?’DpDp
20 D( (ZI’ )) (82 ) ( ) 20 ( (ZI7 )) (82p)3 (ZI)
+30°D (0 a1.2) ot )
1 93p)? 1 9*p 163Dp82Dp
*6’1[ w0 (5 ~ 3007 2 (o) )
(7 8 p83Dp82Dpr 0*Dpd*DpDp
o (9%p)"

83 04 pd3 1 0°
+ *(2)5_2 /2) 4p+* 2p3 Dp
2 (9%p) (@%p)* ~ 2(9%p)

23pd*Dp 1 23Dp (31)
@3 2(0%p2)

_ 303p03DpDp  10*DpDp

ot {5 5

3(0%p)2 1 9% 1 93p .
* (2 (@) 2(6%)4) P DD = 5 Gy } (&)
+ 02 { (304 5 ) D 3 TEE 002 3 ED0 o)

2@t @) P2 @t 22
3
+ 9D (g (21,2)) <28((£p§)p + 26.1) (zr)
3 2
+ 0% g 1.2)) (s (a1) = 50°D (g ar.2)) “o il )
1 - Dp
-390 1.2) oty )| (6.7)

where the derivatives act on the first arguments of g (z;(,2) and g (zr,z). This expression
shall be useful in doing calculations.

E.2 Energy-momentum tensor

Now we can discuss the properties of the energy-momentum tensor superfield 7% * (z) given
in (3.62). For example, the correlation functions with one 7% = (z) insertion can be given by

N M x*
<TXi @) [[e™* (2. Z) [[ e ¥ (ws, v_vs)>

r=1 s=1 G235
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where

<Txi % < % (z) (DX~ (2)), — *DP z) (0X~ ( >p> - dllos(zvp)
N % Jim (9% (W) DX~ (2) ~ 0Dy In (w )
+ % lim | DXT (W)OX™ (2) = Dy, In(w —2) | . (E.9)

It is straightforward to calculate correlation functions of T% - (z) and show the prop-
erties of the supersymmetric X* CFT mentioned at the end of subsection 3.3, using the
expression (E.1) or (E.6). Since these calculations are not so illuminating, we do not
reproduce them here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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