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Abstract For a truncated exponential family of distributions with a natural
parameter θ and a truncation parameter γ as a nuisance parameter, it is
known that the maximum likelihood estimators (MLEs) θ̂γ

ML and θ̂ML of θ for
known γ and unknown γ, respectively and the maximum conditional likelihood
estimator (MCLE) θ̂MCL of θ are asymptotically equivalent. In this paper, the
stochastic expansions of θ̂γ

ML,θ̂ML and θ̂MCL are derived, and their second
order asymptotic variances are obtained. The second order asymptotic loss of
a bias-adjusted MLE θ̂∗ML relative to θ̂γ

ML is also given, and θ̂∗ML and θ̂MCL are
shown to be second order asymptotically equivalent. Further, some examples
are given.

Keywords Truncated exponential family, natural parameter, truncation
parameter, maximum likelihood estimator, maximum conditional likelihood
estimator, stochastic expansion, asymptotic variance, second order asymptotic
loss.

1 Introduction

The first order asymptotic theory in regular parametric models with nuisance
parameters was discussed by Barndorff-Nielsen and Cox (1994). In higher order
asymptotics, under suitable regularity conditions, the concept of asymptotic
deficiency discussed by Hodges and Lehmann (1970) is useful in comparing
asymptotically efficient estimators in the presence of nuisance parameters. In-
deed, the asymptotic deficiencies of some asymptotically efficient estimators
relative to the maximum likelihood estimator (MLE) based on the pooled sam-
ple were obtained in the presence of nuisance parameters (see, e.g. Akahira
and Takeuchi (1982) and Akahira (1986)). On the other hand, in statistical
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estimation in multiparameter cases, the conditional likelihood method is well
known as a way of eliminating nuisance parameters (see, e.g. Basu (1977)). The
consistency, asymptotic normality and asymptotic efficiency of the maximum
conditional likelihood estimator (MCLE) were discussed by Andersen (1970),
Huque and Katti (1976), Bar-Lev and Reiser (1983), Bar-Lev (1984), Liang
(1984) and others. Further, in higher order asymptotics, asymptotic properties
of the MCLE of an interest parameter in the presence of nuisance parameters
were also discussed by Cox and Reid (1987) and Ferguson (1992) in the regular
case. However, in the non-regular case when the regularity conditions do not
necessarily hold, the asymptotic comparison of asymptotically efficient esti-
mators has not been discussed enough in the presence of nuisance parameters
in higher order asymptotics yet.

For a truncated exponential family of distributions which is regarded as a
typical non-regular case, we consider a problem of estimating a natural param-
eter θ in the presence of a truncation parameter γ as a nuisance parameter.
Let θ̂γ

ML and θ̂ML be the MLEs of θ based on a sample of size n when γ is
known and γ is unknown, respectively. Let θ̂MCL be the MCLE of θ. Then
it was shown by Bar-Lev (1984) that the MLEs θ̂γ

ML,θ̂ML and the MCLE
θ̂MCL have the same asymptotic normal distribution, hence they are shown
to be asymptotically equivalent in the sense of having the same asymptotic
variance. A similar result can be derived from the stochastic expansions of the
MLEs θ̂γ

ML and θ̂ML in Akahira and Ohyauchi (2012). But, θ̂γ
ML for known γ

may be asymptotically better than θ̂ML for unknown γ in the higher order,
because θ̂γ

ML has the full information on γ. Otherwise, the existence of a trun-
cation parameter γ as a nuisance parameter is meaningless. So, it is a quite
interesting problem to compare asymptotically them up to the higher order.

In this paper we compare them up to the second order, i.e. the order n−1,
in the asymptotic variance. We show that a bias-adjusted MLE θ̂∗ML and θ̂MCL

are second order asymptotically equivalent, but they are asymptotically worse
than θ̂γ

ML in the second order. We thus calculate the second order asymptotic
losses on the asymptotic variance among them.

2 Formulation and assumptions

In a similar way to Bar-Lev (1984), we have the formulation as follows. Sup-
pose that X1, X2, . . . , Xn, . . . is a sequence of independent and identically
distributed (i.i.d.) random variables according to Pθ,γ , having a density

f(x; θ, γ) =

{
a(x)eθu(x)

b(θ,γ) for c < γ ≤ x < d,

0 otherwise
(1)

with respect to the Lebesgue measure, where −∞ ≤ c < d ≤ ∞, a(·) is
nonnegative and continuous almost surely, and u(·) is absolutely continuous
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with du(x)/dx ̸≡ 0 over the interval (γ, d). Let

Θ(γ) :=

{
θ
∣∣∣ 0 < b(θ, γ) :=

∫ d

γ

a(x)eθu(x)dx < ∞

}
for γ ∈ (c, d). Then it is shown that for any γ1, γ2 ∈ (c, d) with γ1 < γ2,
Θ(γ1) ⊂ Θ(γ2). Assume that for any γ ∈ (c, d), Θ ≡ Θ(γ) is a nonempty open
interval. A family P := {Pθ,γ | θ ∈ Θ, γ ∈ (c, d)} of distributions Pθ,γ (see (1))
with a natural parameter θ and a truncation parameter γ is called a truncated
exponential family of distributions.

In Bar-Lev (1984), the asymptotic behavior of the MLE θ̂ML and MCLE
θ̂MCL of a parameter θ in the presence of γ as a nuisance parameter was
compared and also done with that of the MLE θ̂γ

ML of θ when γ is known. As
the result, it was shown there that, for a sample of size n(≥ 2), the θ̂ML and
θ̂MCL of θ exist with probability 1 and are given as the unique roots of the
appropriate maximum likelihood equations. These two estimators were also
shown to be strongly consistent for θ with the limiting distribution coinciding
with that of the MLE θ̂γ

ML of θ when γ is known.
In the subsequent sections we obtain the stochastic expansions of θ̂γ

ML,
θ̂ML and θ̂MCL up to the second order, i.e. the order op(n−1). We get their
second order asymptotic variances, and derive the second order asymptotic
losses on the asymptotic variance among them. The proofs of theorems are
located in appendixes.

3 The MLE θ̂γ
ML of θ when γ is known

Denote a random vector (X1, . . . , Xn) by X, and let X(1) ≤ · · · ≤ X(n) be
the corresponding order statistics of a random vector X. Here we consider
the case when γ is known. Then the density (1) is considered to belong to a
regular exponential family of distributions with a natural parameter θ, hence
log b(θ, γ) is strictly convex and infinitely differentiable in θ ∈ Θ and

λj(θ, γ) :=
∂j

∂θj
log b(θ, γ) (2)

is the j-th cumulant corresponding to (1) for j = 1, 2, . . . . For given x =
(x1, . . . , xn) satisfying γ < x(1) := min1≤i≤n xi and x(n) := max1≤i≤n xi < d,
the likelihood function of θ is given by

Lγ(θ; x) :=
1

bn(θ, γ)

{
n∏

i=1

a(xi)

}
exp

{
θ

n∑
i=1

u(xi)

}
.

Then the likelihood equation is

1
n

n∑
i=1

u(xi) − λ1(θ, γ) = 0. (3)
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Since there exists a unique solution on θ of (3), we denote it by θ̂γ
ML which

is the MLE of θ (see, e.g. Barndorff-Nielsen (1978) and Bar-Lev (1984)). Let
λi = λi(θ, γ) (i = 2, 3, 4) and put

Z1 :=
1√
λ2n

n∑
i=1

{u(Xi) − λ1} , Uγ :=
√

λ2n
(
θ̂γ

ML − θ
)

.

Then we have the following.
Theorem 1 For the truncated exponential family P of distributions with a
density (1) with a natural parameter θ and a truncation parameter γ, let θ̂γ

ML

be the MLE of θ when γ is known. Then the stochastic expansion of Uγ is
given by

Uγ = Z1 −
λ3

2λ
3/2
2

√
n

Z2
1 +

1
2n

(
λ2

3

λ3
2

− λ4

3λ2
2

)
Z3

1 + Op

(
1

n
√

n

)
,

and the second order asymptotic mean and variance are given by

Eθ (Uγ) = − λ3

2λ
3/2
2

√
n

+ O

(
1

n
√

n

)
,

Vθ (Uγ) = 1 +
1
n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ O

(
1

n
√

n

)
,

respectively.
Since Uγ = Z1 + op(1), it is seen that Uγ is asymptotically normal mean

with mean 0 and variance 1, which coincides with the result of Bar-Lev (1984).

4 The MLE θ̂ML of θ when γ is unknown

For given x = (x1, . . . , xn) satisfying γ < x(1) and x(n) < d, the likelihood
function of θ and γ is given by

L(θ, γ;x) =
1

bn(θ, γ)

{
n∏

i=1

a(xi)

}
exp

{
θ

n∑
i=1

u(xi)

}
. (4)

Let θ̂ML and γ̂ML be the MLEs of θ and γ, respectively. From (4) it is seen
that γ̂ML = X(1) and L(θ̂ML, X(1); X) = supθ∈Θ L(θ,X(1);X), hence θ̂ML

satisfies the likelihood equation

0 =
1
n

n∑
i=1

u(Xi) − λ1(θ̂ML, X(1)), (5)

where X = (X1, · · · , Xn). Let λ2 = λ2(θ, γ) and put Û :=
√

λ2n(θ̂ML − θ)
and T := n(X(1) − γ). Then we have the following.
Theorem 2 For the truncated exponential family P of distributions with a
density (1) with a natural parameter θ and a truncation parameter γ, let θ̂ML
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be the MLE of θ when γ is unknown, and θ̂∗ML be a bias-adjusted MLE such
that θ̂ML has the same asymptotic bias as that of θ̂γ

ML, i.e.

θ̂∗ML = θ̂ML +
1

k(θ̂ML, X(1))λ2(θ̂ML, X(1))n

{
∂λ1

∂γ

(
θ̂ML, X(1)

)}
, (6)

where k(θ, γ) := a(γ)eθu(γ)/b(θ, γ). Then the stochastic expansion of Û∗ :=√
λ2n(θ̂∗ML − θ) is given by

Û∗ = Û +
1

k
√

λ2n

(
∂λ1

∂γ

)
− 1

kλ2n

{
δ +

1
k

(
∂k

∂θ

∂λ1

∂γ

)}
Z1 + Op

(
1

n
√

n

)
,

where k = k(θ, γ),

δ =
λ3

λ2

(
∂λ1

∂γ

)
− ∂λ2

∂γ
,

Û = Z1 −
λ3

2λ
3/2
2

√
n

Z2
1 − 1√

λ2n

(
∂λ1

∂γ

)
T +

δ

λ2n
Z1T +

1
2n

(
λ2

3

λ3
2

− λ4

3λ2
2

)
Z3

1

+ Op

(
1

n
√

n

)
,

and the second order asymptotic mean and variance are given by

Eθ,γ(Û∗) = − λ3

2λ
3/2
2

√
n

+ O

(
1

n
√

n

)
,

Vθ,γ(Û∗) = 1 +
1
n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+

1
λ2n

{λ1 − u(γ)}2 + O

(
1

n
√

n

)
,

respectively.
Since Û = Û∗ = Z1 + op(1), it is seen that Û and Û∗ are asymptotically

normal with mean 0 and variance 1, which coincides with the result of Bar-
Lev (1984). But, it is noted from Theorems 1 and 2 that there is a difference
between Vθ(Uγ) and Vθ,γ(Û∗) in the second order, i.e. the order n−1, which is
discussed in Section 6.

5 The MCLE θ̂MCL of θ when γ is unknown

First, it is seen from (1) that there exists a random permutation, say Y2, · · · , Yn

of the (n − 1)! permutations of (X(2), . . . , X(n)) such that conditionally on
X(1) = x(1), the Y2, . . . , Yn are i.i.d. random variables with a density

g(y; θ, x(1)) =
a(y)eθu(y)

b(θ, x(1))
for x(1) < y < d
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(see Quesenberry (1975) and Bar-Lev (1984)). For given X(1) = x(1), the
conditional likelihood function of θ for y = (y2, . . . , yn) satisfying x(1) < yi <
d (i = 2, . . . , n) is

L(θ;y|x(1)) =
1

bn−1(θ, x(1))

{
n∏

i=2

a(yi)

}
exp

{
θ

n∑
i=2

u(yi)

}
.

Then the likelihood equation is

1
n − 1

n∑
i=2

u(yi) − λ1(θ, x(1)) = 0. (7)

Since there exists a unique solution on θ of (7), we denote it by θ̂MCL, i.e. the
value of θ for which L(θ; y x(1)) attains supremum. Let λ̃i := λi(θ, x(1)) (i =
1, 2, 3, 4) and put

Z̃1 :=
1√

λ̃2(n − 1)

n∑
i=2

{
u(Yi) − λ̃1

}
, Ũ0 :=

√
λ2n

(
θ̂MCL − θ

)
.

Then we have the following.
Theorem 3 For the truncated exponential family P of distributions with a
density (1) with a natural parameter θ and a truncation parameter γ, let θ̂MCL

be the MCLE of θ when γ is unknown. Then the stochastic expansion of Ũ0 is
given by

Ũ0 = Z̃1−
λ̃3

2λ̃
3/2
2

√
n

Z̃2
1 +

1
2n

{
1 − 1

λ2

(
∂λ2

∂γ

)
T

}
Z̃1

+
1
2n

(
λ̃2

3

λ̃3
2

− λ̃4

3λ̃2
2

)
Z̃3

1 + Op

(
1

n
√

n

)
,

and the second order asymptotic mean and variance are given by

Eθ,γ

(
Ũ0

)
= − λ3

2λ
3/2
2

√
n

+ O

(
1

n
√

n

)
,

Vθ,γ

(
Ũ0

)
= 1 +

1
n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+

1
λ2n

{λ1 − u(γ)}2 + O

(
1

n
√

n

)
.

Remark 1 From Theorems 2 and 3 it is seen that the second order asymptotic
mean and variance of Ũ0 are the same as those of Û∗ =

√
λ2n(θ̂∗ML − θ). It

is noted that θ̂MCL has an advantage over θ̂ML in the sense of no need of the
bias-adjustment.
Remark 2 As is seen from Theorems 1-3, the first term of order 1/n in
Vθ(Uγ), Vθ,γ(Û∗) and Vθ,γ(Ũ0) results from the regular part of the density (1),
which coincides with the fact that the distribution with (1) is considered to
belong to a regular exponential family of distributions when γ is known. The
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second term of order 1/n in Vθ,γ(Û∗) and Vθ,γ(Ũ0) follows from the non-regular
(i.e. truncation) part of (1) when γ is unknown, which means a ratio of the
variance λ2 = Vθ,γ(u(X)) = Eθ,γ [{u(X) − λ1}2] to the distance {λ1 − u(γ)}2

from the mean λ1 of u(X) to u(x) at x = γ.

6 The second order asymptotic comparison among θ̂γ
ML, θ̂∗

ML and
θ̂MCL

From the results in the previous sections, we can asymptotically compare the
estimators θ̂γ

ML, θ̂∗ML and θ̂MCL using their second order asymptotic variances
as follows.
Theorem 4 For the truncated exponential family P of distributions with the
density (1) with a natural parameter θ and a truncation parameter γ, let θ̂γ

ML,
θ̂∗ML and θ̂MCL be the MLE of θ when γ is known, the bias-adjusted MLE of θ
when γ is unknown and the MCLE of θ when γ is unknown, respectively. Then
the bias-adjusted MLE θ̂∗ML and the MCLE θ̂MCL are second order asymptot-
ically equivalent in the sense that

dn(θ̂∗ML, θ̂MCL) := n
{

Vθ,γ(Û∗) − Vθ,γ(Ũ0)
}

= o(1) (8)

as n → ∞, and they are second order asymptotically worse than θ̂γ
ML with the

second order asymptotic losses of θ̂∗MLand θ̂MCL relative to θ̂γ
ML

dn(θ̂∗ML, θ̂γ
ML) := n

{
Vθ,γ(Û∗) − Vθ(Uγ)

}
=

{λ1 − u(γ)}2

λ2
+ o(1), (9)

dn(θ̂MCL, θ̂γ
ML) := n

{
Vθ,γ(Ũ0) − Vθ(Uγ)

}
=

{λ1 − u(γ)}2

λ2
+ o(1) (10)

as n → ∞, respectively.
The proof is straightforward from Theorems 1-3.

7 Examples

Some examples on the second order asymptotic loss of the estimators are given
for a truncated exponential distribution, a truncated normal distribution and
the Pareto distribution.
Example 1 (Truncated exponential distribution) Let c = −∞, d = ∞,
a(x) ≡ 1 and u(x) ≡ −x for −∞ < γ ≤ x < ∞ in the density (1). Since
b(θ, γ) = e−θγ/θ, it follows from (2) that Θ = (0,∞),

λ1 =
∂

∂θ
log b(θ, γ) = −γ − 1

θ
,

λ2 =
∂2

∂θ2
log b(θ, γ) =

1
θ2

, k(θ, γ) = θ.
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From (3) and (5)-(7) we have

θ̂γ
ML = 1/(X̄ − γ), θ̂ML = 1/(X̄ − X(1)),

θ̂∗ML = θ̂ML − 1
n

θ̂ML, θ̂MCL = 1

/(
1

n − 1

n∑
i=2

X(i) − X(1)

)
.

Note that θ̂∗ML = θ̂MCL. In this case, the first part in Theorem 4 is trivial, since
dn(θ̂∗ML, θ̂MCL) = 0. From Theorem 4 we obtain the second order asymptotic
loss

dn(θ̂∗ML, θ̂γ
ML) = dn(θ̂MCL, θ̂γ

ML) = 1 + o(1)

as n → ∞.
Example 2 (Truncated normal distribution) Let c = −∞, d = ∞, a(x) =
e−x2/2 and u(x) = x for −∞ < γ ≤ x < ∞ in the density (1). Since

b(θ, γ) =
√

2πeθ2/2Φ(θ − γ),

it follows from (2) and Theorem 2 that Θ = (−∞,∞),

λ1(θ, γ) = θ + ρ(θ − γ),
∂λ1

∂γ
(θ, γ) = (θ − γ)ρ(θ − γ) + ρ2(θ − γ),

λ2(θ, γ) = 1 − (θ − γ)ρ(θ − γ) − ρ2(θ − γ),
k(θ, γ) = ρ(θ − γ),

where ρ(t) := ϕ(t)/Φ(t) with

Φ(x) =
∫ x

−∞
ϕ(t)dt, ϕ(t) =

1√
2π

e−t2/2 for −∞ < t < ∞.

Then it follows from (3), (5) and (7) that the solutions of θ of the following
equations

θ + ρ(θ − γ) = X̄, θ + ρ(θ − X(1)) = X̄,

θ + ρ(θ − X(1)) =
1

n − 1

n∑
i=2

X(i)

become θ̂γ
ML, θ̂ML and θ̂MCL, respectively, where X̄ = (1/n)

∑n
i=1 Xi. From

(6) the bias-adjusted MLE is given by

θ̂∗ML = θ̂ML +
θ̂ML − X(1) + ρ(θ̂ML − X(1))

1 − (θ̂ML − X(1))ρ(θ̂ML − X(1)) − ρ2(θ̂ML − X(1))
.

From Theorem 4 we obtain the second order asymptotic losses

dn(θ̂∗ML, θ̂MCL) = o(1),
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dn(θ̂∗ML, θ̂γ
ML) = dn(θ̂MCL, θ̂γ

ML) =
{θ − γ + ρ(θ − γ)}2

1 − (θ − γ)ρ(θ − γ) − ρ2(θ − γ)
+ o(1)

as n → ∞.
Example 3 (Pareto distribution) Let c = 0, d = ∞, a(x) = 1/x and
u(x) = − log x for 0 < γ ≤ x < ∞ in the density (1). Then b(θ, γ) = 1/(θγθ)
for θ ∈ Θ = (0,∞). Letting t = log x and γ0 = log γ, we see that (1) becomes

f(t; θ, γ0) =

{
θeθγ0e−θt for t > γ0,

0 for t ≤ γ0.

Hence the Pareto case is reduced to the truncated exponential one in Example
1.

8 Concluding remarks

In a truncated exponential family of distributions with a two-dimensional pa-
rameter (θ, γ), we considered the estimation problem of a natural parameter
θ in the presence of a truncation parameter γ as a nuisance parameter. In the
paper of Bar-Lev (1984), it was shown that the MLE θ̂γ

ML of θ for known γ, the
MLE θ̂ML and the MCLE θ̂MCL of θ for unknown γ are asymptotically equiv-
alent in the sense that they have the same asymptotic normal distribution. In
this paper we derived the stochastic expansions of θ̂γ

ML, θ̂ML and θ̂MCL. We
also obtained the second order asymptotic loss of the bias-adjusted MLE θ̂∗ML

relative to θ̂γ
ML from their second order asymptotic variances and showed that

θ̂∗ML and θ̂MCL are second order asymptotically equivalent in the sense that
their asymptotic variances are same up to the order o(1/n) as in (8). It seems
to be natural that θ̂γ

ML is second order asymptotically better than θ̂∗ML after
adjusting the bias of θ̂ML such that θ̂ML has the same as that of θ̂γ

ML. The
values of the second order asymptotic losses of θ̂∗ML and θ̂MCL given by (9)
and (10) are quite simple, which results from the truncated exponential family
P of distributions.

The results of Theorems 1-4 can be extended to the case of a two-sided
truncated exponential family of distributions with a natural parameter θ and
two truncation parameters γ and ν as nuisance parameters, including an upper-
truncated Pareto distribution which is important in applications (see Akahira
et al. (2014)). Further, they may be similarly extended to the case of a more
general truncated family of distributions from the truncated exponential family
P. In relation to Theorem 2, if two different bias-adjustments are introduced,
i.e. θ̂ML + (1/n)ci(θ̂ML) (i = 1, 2), then the problem whether or not the
admissibility result holds may be interesting.
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Appendix A
The proof of Theorem 1 Let λi = λi(θ, γ) (i = 1, 2, 3, 4). Since

Z1 =
1√
λ2n

n∑
i=1

{u(Xi) − λ1} , Uγ :=
√

λ2n(θ̂γ
ML − θ),

by the Taylor expansion we obtain from (3)

0 =

√
λ2

n
Z1 −

√
λ2

n
Uγ − λ3

2λ2n
U2

γ − λ4

6λ
3/2
2 n

√
n

U3
γ + Op

(
1
n2

)
,

which implies that the stochastic expansion of Uγ is given by

Uγ = Z1 −
λ3

2λ
3/2
2

√
n

Z2
1 +

1
2n

(
λ2

3

λ3
2

− λ4

3λ2
2

)
Z3

1 + Op

(
1

n
√

n

)
. (11)

Since

Eθ(Z1) = 0, Vθ(Z1) = Eθ(Z2
1 ) = 1,

Eθ(Z3
1 ) =

λ3

λ
3/2
2

√
n

, Eθ(Z4
1 ) = 3 +

λ4

λ2
2n

, (12)

it follows that

Eθ(Uγ) = − λ3

2λ
3/2
2

√
n

+ O

(
1

n
√

n

)
, (13)

Eθ(U2
γ ) = 1 +

1
n

(
11λ2

3

4λ3
2

− λ4

λ2
2

)
+ O

(
1

n
√

n

)
, (14)

hence, by (13) and (14)

Vθ(Uγ) = 1 +
1
n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ O

(
1

n
√

n

)
. (15)

From (11), (13) and (15) we have the conclusion of Theorem 1.
Before proving Theorem 2, we prepare three lemmas (the proofs are given

in Appendix B).
Lemma 1 The second order asymptotic density of T is given by

fT (t) = k(θ, γ)e−k(θ,γ)t +
k(θ, γ)

a(γ)b(θ, γ)n

{
cθ(γ)b(θ, γ) + a2(γ)eθu(γ)

}
·
{

t − k(θ, γ)
2

t2
}

e−k(θ,γ)t + O

(
1
n2

)
(16)
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for t > 0, where k(θ, γ) := a(γ)eθu(γ)/b(θ, γ), and

Eθ,γ(T ) =
1

k(θ, γ)
+

A(θ, γ)
n

+ O

(
1
n2

)
, Eθ,γ(T 2) =

2
k2(θ, γ)

+ O

(
1
n

)
,

(17)

where

A(θ, γ) := − 1
k2(θ, γ)

{
cθ(γ)
a(γ)

+ k(θ, γ)
}

with cθ(γ) = a′(γ) + θa(γ)u′(γ).
Lemma 2 It holds that

Eθ,γ(Z1T ) =
1

k
√

λ2n

{
u(γ) − λ1 +

2
k

(
∂λ1

∂γ

)}
+ O

(
1

n
√

n

)
, (18)

where k = k(θ, γ) and λi = λi(θ, γ) (i = 1, 2).
Lemma 3 It holds that

Eθ,γ(Z2
1T ) =

1
k

+ O

(
1
n

)
, (19)

where k = k(θ, γ).
The proof of Theorem 2 Since, for (θ, γ) ∈ Θ × (c,X(1))

λ1(θ̂ML, X(1))

= λ1(θ, γ) +
{

∂

∂θ
λ1(θ, γ)

}
(θ̂ML − θ) +

{
∂

∂γ
λ1(θ, γ)

}
(X(1) − γ)

+
1
2

{
∂2

∂θ2
λ1(θ, γ)

}
(θ̂ML − θ)2 +

{
∂2

∂θ∂γ
λ1(θ, γ)

}
(θ̂ML − θ)(X(1) − γ)

+
1
2

{
∂2

∂γ2
λ1(θ, γ)

}
(X(1) − γ)2 +

1
6

{
∂3

∂θ3
λ1(θ, γ)

}
(θ̂ML − θ)3

+
1
2

{
∂2

∂θ2
λ1(θ, γ)

}{
∂

∂γ
λ1(θ, γ)

}
(θ̂ML − θ)2(X(1) − γ) + · · · , (20)

noting Û =
√

λ2n(θ̂ML − θ) and T = n(X(1) − γ), we have from (5) and (20)

0 =

√
λ2

n
Z1 −

√
λ2

n
Û − 1

n

(
∂λ1

∂γ

)
T − λ3

2λ2n
Û2 − 1√

λ2nn

(
∂λ2

∂γ

)
ÛT

− λ4

6λ
3/2
2 n

√
n

Û3 + Op

(
1
n2

)
,

where λj = λj(θ, γ) (j = 1, 2, 3, 4) are defined by (2), hence the stochastic
expansion of Û is given by

Û = Z1 −
1√
λ2n

(
∂λ1

∂γ

)
T − λ3

2λ
3/2
2

√
n

Û2 − 1
λ2n

(
∂λ2

∂γ

)
ÛT



12 M. Akahira

− λ4

6λ2
2n

Û3 + Op

(
1

n
√

n

)
= Z1 −

1√
λ2n

(
∂λ1

∂γ

)
T − λ3

2λ
3/2
2

√
n

Z2
1 +

δ

λ2n
Z1T

+
1
2n

(
λ2

3

λ3
2

− λ4

3λ2
2

)
Z3

1 + Op

(
1

n
√

n

)
. (21)

It follows from (12) and (21) that

Eθ,γ(Û) = − 1√
λ2n

(
∂λ1

∂γ

)
Eθ,γ(T ) − λ3

2λ
3/2
2

√
n

+
δ

λ2n
Eθ,γ(Z1T ) + O

(
1

n
√

n

)
.

(22)

Substituting (17) and (18) for (22) we obtain

Eθ,γ(Û) = − 1√
λ2n

{
1
k

(
∂λ1

∂γ

)
+

λ3

2λ2

}
+ O

(
1

n
√

n

)
, (23)

where k = k(θ, γ) is defined in Lemma 1. We have from (21)

Eθ,γ(Û2) = Eθ,γ(Z2
1 ) − 1√

λ2n

{
2
(

∂λ1

∂γ

)
Eθ,γ(Z1T ) +

λ3

λ2
Eθ,γ(Z3

1 )
}

+
1

λ2n

(
∂λ1

∂γ

)2

Eθ,γ

(
T 2
)

+
1

λ2n

{
λ3

λ2

(
∂λ1

∂γ

)
+ 2δ

}
Eθ,γ(Z2

1T )

+
1
n

(
5λ2

3

4λ3
2

− λ4

3λ2
2

)
Eθ,γ(Z4

1 ) + O

(
1

n
√

n

)
. (24)

Substituting (12) and (17) - (19) for (24) we have

Eθ,γ(Û2) = 1 − 2
kλ2n

(
∂λ1

∂γ

){
u(γ) − λ1 +

1
k

(
∂λ1

∂γ

)}
+

11λ2
3

4λ3
2n

+
3λ3

kλ2
2n

(
∂λ1

∂γ

)
− 2

kλ2n

(
∂λ2

∂γ

)
− λ4

λ2
2n

+ O

(
1

n
√

n

)
. (25)

Since
√

λ2
∂λ1
∂γ (θ̂ML, X(1))

k(θ̂ML, X(1))λ2(θ̂ML, X(1))
√

n

=
∂λ1
∂γ (θ, γ)

k
√

λ2n
+

1
kλ2n

{
∂λ2

∂γ
(θ, γ) −

(
λ3

λ2
+

1
k

∂k

∂θ

)(
∂λ1

∂γ

)}
Û + Op

(
1

n
√

n

)
,

it follows from (6) that the stochastic expansion of Û∗ is given by

Û∗ :=
√

λ2n(θ̂∗ML − θ) =
√

λ2n(θ̂ML − θ) +

√
λ2

∂λ1
∂γ (θ̂ML, X(1))

k(θ̂ML, X(1))λ̂2
√

n
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= Û +
1

k
√

λ2n

(
∂λ1

∂γ

)
− 1

kλ2n

{
δ +

1
k

(
∂k

∂θ

)(
∂λ1

∂γ

)}
Z1 + Op

(
1

n
√

n

)
,

(26)

where Û is given by (21), λi = λi(θ, γ) (i = 1, 2, 3) and k = k(θ, γ). From (12)
and (23) we have

Eθ,γ(Û∗) = − 1√
λ2n

{
1
k

(
∂λ1

∂γ

)
+

λ3

2λ2

}
+

1
k
√

λ2n

(
∂λ1

∂γ

)
+ O

(
1

n
√

n

)
= − λ3

2λ
3/2
2

√
n

+ O

(
1

n
√

n

)
. (27)

It follows from (23), (25) and (26) that

Eθ,γ(Û∗2
) = 1 − 2

kλ2n

(
∂λ1

∂γ

){
u(γ) − λ1 +

3
2k

(
∂λ1

∂γ

)}
+

11λ2
3

4λ3
2n

− λ4

λ2
2n

− 2
k2λ2n

(
∂λ1

∂γ

)(
∂k

∂θ

)
+ O

(
1

n
√

n

)
,

hence, by (27)

Vθ,γ(Û∗) = Eθ,γ(Û∗2
) −

{
Eθ,γ(Û∗)

}2

= 1 +
1
n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
− 2

kλ2n

(
∂λ1

∂γ

){
u(γ) − λ1 +

1
k

(
∂k

∂θ

)}
− 3

k2λ2n

(
∂λ1

∂γ

)2

+ O

(
1

n
√

n

)
. (28)

Since, by (2)

λ1(θ, γ) =
∂

∂θ
log b(θ, γ) =

1
b(θ, γ)

∫ d

γ

a(x)u(x)eθu(x)dx,

it follows that

∂λ1(θ, γ)
∂γ

=
a(γ)eθu(γ)

b(θ, γ)
{λ1(θ, γ) − u(γ)} = k(θ, γ){λ1(θ, γ) − u(γ)}. (29)

Since

∂k

∂θ
(θ, γ) = k(θ, γ){u(γ) − λ1(θ, γ)}, (30)

it is seen from (28) - (30) that

Vθ,γ(Û∗) = 1 +
1
n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+

1
λ2n

{λ1 − u(γ)}2 + O

(
1

n
√

n

)
. (31)
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From (26), (27) and (31) we have the conclusion of Theorem 2.
The proof of Theorem 3 Since, from (7)

0 =
1

n − 1

n∑
i=2

{u(Yi) − λ1(θ, x(1))} −
1√
n

λ2(θ, x(1))
√

n(θ̂MCL − θ)

− 1
2n

λ3(θ, x(1))n(θ̂MCL − θ)2

− 1
6n

√
n

λ4(θ, x(1))n
√

n(θ̂MCL − θ)3 + Op

(
1
n2

)
,

letting

Z̃1 =
1√

λ̃2(n − 1)

n∑
i=2

{u(Yi) − λ1(θ, x(1))},

Ũ =
√

λ̃2n(θ̂MCL − θ),

where λ̃i := λi(θ, x(1)) (i = 1, 2, 3, 4), we have

0 =

√
λ̃2

n − 1
Z̃1 −

√
λ̃2

n
Ũ − λ̃3

2λ̃2n
Ũ2 − λ̃4

6λ̃2
3/2

n
√

n
Ũ3 + Op

(
1
n2

)
,

hence the stochastic expansion of Ũ is given by

Ũ =
√

n

n − 1
Z̃1 −

λ̃3

2λ̃2
3/2√

n
Ũ2 − λ̃4

6λ̃2
2
n

Ũ3 + Op

(
1

n
√

n

)

= Z̃1 −
λ̃3

2λ̃2
3/2√

n
Z̃1

2
+

1
2n

Z̃1 +
1
2n

(
λ̃3

2

λ̃2
3 − λ̃4

3λ̃2
2

)
Z̃1

3
+ Op

(
1

n
√

n

)
.

(32)

Since

λ̃2 = λ2(θ, X(1)) = λ2(θ, γ) +
1
n

(
∂λ2

∂γ

)
T + Op

(
1
n2

)
,

we obtain

Ũ =
√

λ̃2n(θ̂MCL − θ)

=
√

λ2n(θ̂MCL − θ)
{

1 +
1

2nλ2

(
∂λ2

∂γ

)
T + Op

(
1
n2

)}
, (33)

where T = n(X(1) − γ) and λ2 = λ2(θ, γ). Then it follows from (32) and (33)
that

Ũ0 =
√

λ2n(θ̂MCL − θ)
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= Z̃1 −
λ̃3

2λ̃2
3/2√

n
Z̃1

2
+

1
2n

{
1 − 1

λ2

(
∂λ2

∂γ

)
T

}
Z̃1

+
1
2n

(
λ̃3

2

λ̃2
3 − λ̃4

3λ̃2
2

)
Z̃1

3
+ Op

(
1

n
√

n

)
. (34)

For given X(1) = x(1), i.e. T = t := n(x(1) − γ), the conditional expectation of

Z̃1 and Z̃1
2

are

Eθ,γ(Z̃1|t) =
1√

λ̃2(n − 1)

n∑
i=2

{
Eθ,γ [u(Yi)|t] − λ1(θ, x(1))

}
= 0,

Eθ,γ(Z̃1
2|t) =

1
λ̃2(n − 1)

[
n∑

i=2

Eθ,γ [{u(Yi) − λ1(θ, x(1))}2|t]

+
∑∑

i ̸=j

2≤i,j≤n

Eθ,γ

[
{u(Yi) − λ1(θ, x(1))}{u(Yj) − λ1(θ, x(1))} | t

]]

= 1, (35)

hence the conditional variance of Z̃1 is equal to 1, i.e. Vθ,γ(Z̃1|t) = 1. In a
similar way to the above, we have

Eθ,γ(Z̃1
3|t) =

λ̃3

λ̃2
3/2√

n − 1
, Eθ,γ(Z̃1

4|t) = 3 +
λ̃4

λ̃2
2
(n − 1)

. (36)

Since, by (34) - (36)

Eθ,γ(Ũ0|T ) = Eθ,γ(Z̃1|T ) − λ̃3

2λ̃2
3/2√

n
Eθ,γ(Z̃1

2|T )

+
1
2n

Eθ,γ(Z̃1|T ) +
1
2n

(
λ̃2

3

λ̃3
2

− λ̃4

3λ̃2
2

)
Eθ,γ(Z̃1

3|T )

− 1
2nλ2

(
∂λ2

∂γ

)
TEθ,γ(Z̃1|T ) + Op

(
1

n
√

n

)
= − λ̃3

2λ̃2
3/2√

n
+ Op

(
1

n
√

n

)
, (37)

Eθ,γ(Ũ2
0 |T ) = Eθ,γ(Z̃1

2|T ) − λ̃3

λ̃2
3/2√

n
Eθ,γ(Z̃1

3|T )

+
1
n

Eθ,γ(Z̃1
2|T ) +

1
n

(
5λ̃3

2

4λ̃2
3 − λ̃4

3λ̃2
2

)
Eθ,γ(Z̃1

4|T )
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− 1
λ2n

(
∂λ2

∂γ

)
TEθ,γ(Z̃1

2|T ) + Op

(
1

n
√

n

)
= 1 +

1
n

+
1
n

(
11λ̃3

2

4λ̃2
3 − λ̃4

λ̃2
2

)
− 1

λ2n

(
∂λ2

∂γ

)
T

+ Op

(
1

n
√

n

)
, (38)

where λ̃i = λi(θ,X(1)) (i = 2, 3, 4). Since, for i = 2, 3, 4

λ̃i = λi(θ, X(1)) = λi(θ, γ) +
1
n

(
∂λi

∂γ

)
n(X(1) − γ) + Op

(
1
n2

)
= λi(θ, γ) + Op

(
1
n

)
= λi + Op

(
1
n

)
, (39)

it follows from (37) that

Eθ,γ(Ũ0) = Eθ,γ [Eθ,γ(Ũ0|T )] = − 1
2
√

n
Eθ,γ

(
λ̃3

λ̃2
3/2

)
+ O

(
1

n
√

n

)
= − λ3

2λ
3/2
2

√
n

+ O

(
1

n
√

n

)
. (40)

It is noted from (13), (27) and (40) that

Eθ,γ(Uγ) = Eθ,γ(Û∗) = Eθ,γ(Ũ0) = − λ3

2λ
3/2
2

√
n

+ O

(
1

n
√

n

)
.

In a similar way to the above, we obtain from (17), (38) and (39)

Eθ,γ(Ũ2
0 ) = 1 +

1
n

+
11λ2

3

4λ3
2n

− λ4

λ2
2n

− 1
kλ2n

(
∂λ2

∂γ

)
+ O

(
1

n
√

n

)
. (41)

Since, by (29) and (30)

1
k

(
∂λ2

∂γ

)
=

1
k

(
∂2λ1

∂θ∂γ

)
=

1
k

∂

∂θ

(
∂λ1

∂γ

)
=

1
k

∂

∂θ
{k(λ1 − u(γ))}

=
1
k

{
∂k

∂θ
(λ1 − u(γ)) + k

(
∂λ1

∂θ

)}
= −(λ1 − u(γ))2 + λ2,

it follows from (41) that

Eθ,γ(Ũ2
0 ) = 1 +

11λ2
3

4λ3
2n

− λ4

λ2
2n

+
1

λ2n
{λ1 − u(γ)}2 + O

(
1

n
√

n

)
,

hence, by (40)

Vθ,γ(Ũ0) = 1 +
1
n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+

1
λ2n

{λ1 − u(γ)}2 + O

(
1

n
√

n

)
. (42)
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From (34), (40) and (42) we have the conclusion of Theorem 3.

Appendix B
The proof of Lemma 1 Since the second order asymptotic cumulative dis-
tribution function of T is given by

FT (t) = Pθ,γ {T ≤ t} = Pθ,γ

{
n(X(1) − γ) ≤ t

}
= 1 −

{
1 −

∫ γ+ t
n

γ

1
b(θ, γ)

a(x)eθu(x)dx

}n

= 1 −
[
exp

{
−a(γ)eθu(γ)

b(θ, γ)
t

}]
·
[
1 − eθu(γ)t2

2b2(θ, γ)n

{
cθ(γ)b(θ, γ) + a2(γ)eθu(γ)

}
+ O

(
1
n2

)]
for t > 0, where cθ(γ) := a′(γ)+θa(γ)u′(γ), we obtain (16). From (16) we also
get (17) by a straightforward calculation.
The proof of Lemma 2 As is seen from the beginning of Section 5, the
Y2, . . . , Yn are i.i.d. random variables with a density

g(y; θ, x(1)) =
a(y)eθu(y)

b(θ, x(1))
for x(1) < y < d. (43)

Then the conditional expectation of Z1 given T is obtained by

Eθ,γ(Z1|T ) =
1√
λ2n

n∑
i=1

{Eθ,γ [u(Xi)|T ] − λ1}

=
1√
λ2n

{
u(X(1)) +

n∑
i=2

Eθ,γ [u(Yi)|T ] − nλ1

}
, (44)

where λi = λi(θ, γ) (i = 1, 2). Since, for each i = 2, . . . , n, by (43)

Eθ,γ [u(Yi)|T ] =
∫ d

X(1)

u(y)
a(y)eθu(y)

b(θ, X(1))
dy

=
∂

∂θ
log b(θ, X(1)) = λ1(θ,X(1)) =: λ̂1 (say),

it follows from (44) that

Eθ,γ(Z1|T ) =
1√
λ2n

{
u(X(1)) + (n − 1)λ̂1

}
− λ1

√
n√

λ2

,

hence, from (17) and (44)

Eθ,γ(Z1T ) = Eθ,γ [T Eθ,γ(Z1|T )]

=
1√
λ2n

{
Eθ,γ [u(X(1))T ] + (n − 1)Eθ,γ(λ̂1T )

}
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−
√

n

λ2
λ1

{
1
k

+
A(θ, γ)

n
+ O

(
1
n2

)}
, (45)

where k = k(θ, γ). Since, by the Taylor expansion

u(X(1)) = u(γ) +
u′(γ)

n
T +

u′′(γ)
2n2

T 2 + Op

(
1
n3

)
,

λ̂1 = λ(θ, X(1)) = λ1(θ, γ) +
1
n

{
∂

∂γ
λ1(θ, γ)

}
T

+
1

2n2

{
∂2

∂γ2
λ1(θ, γ)

}
T 2 + Op

(
1
n3

)
,

it follows from (17) that

Eθ,γ [u(X(1))T ] =
u(γ)

k
+

1
n

{
Au(γ) +

2u′(γ)
k2

}
+ O

(
1
n2

)
, (46)

Eθ,γ(λ̂1T ) =
λ1

k
+

1
n

{
λ1A +

2
k2

(
∂λ1

∂γ

)}
+ O

(
1
n2

)
, (47)

where k = k(θ, γ), A = A(θ, γ) and λ1 = λ1(θ, γ). From (45) - (47), we obtain
(18).
The proof of Lemma 3 First we have

Eθ,γ(Z2
1 |T ) = Eθ,γ

 1
λ2n

{
n∑

i=1

(u(Xi) − λ1)

}2 ∣∣∣T


=
1

λ2n

{
u(X(1)) − λ1

}2

+
2

λ2n

{
u(X(1)) − λ1

} n∑
i=2

Eθ,γ [u(Yi) − λ1|T ]

+
1

λ2n

n∑
i=2

Eθ,γ

[
{u(Yi) − λ1}2 |T

]
+

1
λ2n

∑∑
i ̸=j

2≤i,j≤n

Eθ,γ [{u(Yi) − λ1} {u(Yj) − λ1} |T ] . (48)

For 2 ≤ i ≤ n, we have

Eθ,γ [u(Yi) − λ1|T ] = Eθ,γ [u(Yi)|T ] − λ1 = λ1(θ, X(1)) − λ1(θ, γ)

=
(

∂λ1

∂γ

)
T

n
+ Op

(
1
n2

)
= Op

(
1
n

)
, (49)

and for i ̸= j and 2 ≤ i, j ≤ n

Eθ,γ [{u(Yi) − λ1} {u(Yj) − λ1} |T ]
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= Eθ,γ [u(Yi) − λ1 |T ] Eθ,γ [u(Yj) − λ1|T ]

=
(

∂λ1

∂γ

)2
T 2

n2
+ Op

(
1
n3

)
= Op

(
1
n2

)
. (50)

Since, for i = 2, . . . , n

Eθ,γ [u2(Yi)|T ] =
∫ d

X(1)

u2(y)
a(y)eθu(y)

b(θ,X(1))
dy

=
1

b(θ,X(1))
∂2

∂θ2
b(θ, X(1))

= λ2
1(θ, X(1)) + λ2(θ, X(1))

= λ̂1
2

+ λ̂2,

where λ̂i = λi(θ,X(1)) (i = 1, 2), we have for i = 2, . . . , n

Eθ,γ [{u(Yi) − λ1}2 |T ]

= Eθ,γ [u2(Yi)|T ] − 2λ1Eθ,γ [u(Yi)|T ] + λ2
1

= λ̂1
2

+ λ̂2 − 2λ1λ̂1 + λ2
1

= λ2 +
1
n

(
∂λ2

∂γ

)
T + Op

(
1
n2

)
= λ2 + Op

(
1
n

)
. (51)

From (48) - (51) we obtain

Eθ,γ(Z2
1 |T ) =

1
λ2n

{
u(X(1)) − λ1

}2

+
2
λ2

{
u(X(1)) − λ1

}(
1 − 1

n

){
Op

(
1
n

)}
+

1
λ2

(
1 − 1

n

){
λ2 + Op

(
1
n

)}
+

n

λ2

(
1 − 1

n

)(
1 − 2

n

){
Op

(
1
n2

)}
= 1 + Op

(
1
n

)
,

hence, by (17)

Eθ,γ(Z2
1T ) = Eθ,γ [TEθ,γ(Z2

1 |T )] = Eθ,γ(T ) + O

(
1
n

)
=

1
k

+ O

(
1
n

)
.

Thus we get (19).
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