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ABSTRACT

In earlier work, it was proposed that the reliability of climate change projections, particularly of regional

rainfall, could be improved if such projections were calibrated using quantitative measures of reliability

obtained by running the same model in seasonal forecast mode. This proposal is tested for fast atmospheric

processes (such as clouds and convection) by considering output from versions of the same atmospheric

general circulationmodel run at two different resolutions and forcedwith prescribed sea surface temperatures

and sea ice. Here output from the high-resolution version of the model is treated as a proxy for truth. The

reason for using this approach is simply that the twenty-first-century climate change signal is not yet known

and, hence, no climate change projections can be verified using observations. Quantitative assessments of

reliability of the low-resolution model, run in seasonal hindcast mode, are used to calibrate climate change

time-slice projections made with the same low-resolution model. Results show that the calibrated climate

change probabilities are closer to the proxy truth than the uncalibrated probabilities. Given that seasonal

forecasts are performed operationally already at several centers around the world, in a seamless forecast

system they provide a resource that can be used without cost to help calibrate climate change projections and

make them more reliable for users.

1. Introduction

Providing society with reliable regional predictions of

climate change is becomingmore andmore pressing, not

least so that individuals, businesses, and national in-

frastructure can become well adapted to anticipated

changes in climate. It is now widely recognized that such

predictions must be framed in probabilistic language

(e.g., Jenkins et al. 2010), reflecting inherent uncertainties

arising from natural variability in climate, the numerical

equations underlying climate models (including repre-

sentations of physical processes), and future human-

induced emissions of greenhouse gases.

Although making decisions under conditions of un-

certainty can often be complex, there is little doubt that

better decisions can be made with a knowledge of un-

certainty. Indeed, by comparing the risk of some climatic

event with the cost of taking precautionary action, one

can demonstrate quantitatively the value of probabilistic

forecasts for decision-making (Palmer 2002). However,

realizing this value assumes that the forecast probabilities

are reliable (Weisheimer and Palmer 2014).

Probability forecasts of precipitation are particularly

problematic because precipitation is strongly linked

with circulation, and climate models generically show
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substantial biases in circulation fields (IPCC 2013). This

raises a difficult question: Given such biases and the fact

that we cannot verify climate change predictions directly,

how reliable are probabilistic predictions of precipitation

climate change? In particular, are they sufficiently reli-

able to be used to inform decisionmakers about potential

investments (e.g., in new adaptation infrastructure)?

In an attempt to address this problem, Palmer et al.

(2008) suggested that the probabilistic reliability of sea-

sonal forecasts, which can be tested or verified against

observations, was a necessary (but not sufficient) condi-

tion for ensuring the reliability of longer-term climate

change forecasts.More specifically, it was proposed that if

seasonal forecasts using a particular model were not sta-

tistically reliable, then a quantitative measure of this

unreliability should be used to calibrate climate change

projections with the same model. Importantly, such sea-

sonal forecasts would be available at no extra computa-

tional cost, in an operational center running seasonal and

climate change forecasts (seamlessly).

This proposal is partially tested in the following sense.

In making projections of climate change, there are many

aspects of a climate model’s representations of physical

processes that are uncertain. Here we focus specifically

on relatively fast time-scale processes in the atmosphere

that are active on both seasonal and longer time scales.

These would include, for example, convection and

clouds. The representation of such moist processes is

known to be crucial in a model’s response to greenhouse

gas forcing. To focus on such fast time-scale processes,

all integrations in this paper aremade using atmospheric

climate models with prescribed sea surface tempera-

tures (SST) and sea ice. First, climate simulations for the

twentieth-century (20C) climate and climate change

projections for the end of the twenty-first century (21C)

were made using two versions of the same atmosphere-

only model run at high and low resolution, both with the

same specified SST and sea ice. Second, seasonal ret-

rospective forecast (hindcast) integrations of the 20C

climate were made using the low-resolution model with

the same underlying SST and sea ice fields. Following

Matsueda and Palmer (2011), this study treats output

from the high-resolution model as ‘‘truth.’’ Because we

do not yet know the 21C climate, we cannot verify climate

change projections for the 21C against observations.

However, we can verify them against our hypothetical

truth—a plausible estimate of reality. It is important to

note that it is not necessary, for the validity of our hy-

pothesis, that the bias with respect to real-world obser-

vations of the truth AMIP run be notably less than an

equivalent AMIP run of the low-resolution model. The

key point is rather that the truth simulation should be

different from the ‘‘model’’ simulation. Of course, if the

bias of the truth runswas substantiallyworse than the bias

of the model runs, then the relevance of our results to the

real world could be called into question.

As such, the difference in the climate change signal

between the low- and high-resolution model is a measure

of the ‘‘error’’ of the low-resolution model in simulating

the ‘‘true’’ climate change. To be consistent, we also

verify the seasonal integrations of the low-resolution

model against the high-resolution model (truth). This

verification is used to estimate the reliability of seasonal

hindcasts made with the low-resolution model, and these

reliability estimates are further used to calibrate the low-

resolution climate change projections.

The goal of this paper is, by comparison with the high-

resolution simulations, to assess whether calibrated esti-

mates of regional climate change from the low-resolution

model have indeed smaller errors than the rawuncalibrated

estimates if compared with our hypothetical truth.

In section 2 we discuss further the atmospheric models

and the experimental design, and show the difference

between the regional climate change signals at low and

high resolution. In section 3 we describe the seasonal

hindcast procedure and discuss the reliability of these

seasonal forecasts. In section 4 we explain the calibration

procedure and show results of a comparison of calibrated

and uncalibrated climate change probabilities.

2. Experimental design

In this study, 20C (1979–2003) simulations and 21C

(2075–99) time-slice projections were performed with the

Japanese Meteorological Research Institute’s Atmo-

spheric General Circulation Model (MRI-AGCM3.2;

Mizuta et al. 2012) at two different resolutions—a reso-

lution typical of contemporary climatemodels (TL95L64,

180km, referred to as low resolution) and a resolution

typical of contemporary numerical weather prediction

models (TL959L64, 20km, referred to as high-resolution).

Here ‘‘TLx’’ refers to truncation at total wavenumber x

using a triangular spectral truncation based on aGaussian

grid, and ‘‘Ly’’ refers to a vertical truncation with

y vertical levels. Four-member initial-value ensemble

simulations for each century were performed for the

low-resolution model, whereas only one single simu-

lation for each century was conducted for the high-

resolution model due to limited computing resources.

In the 20C simulations, observed HadISST and sea ice

concentrations (SICs) (Rayner et al. 2003) were used as

lower boundary conditions. In the 21C simulations, the

SST and SICs climate change signals were estimated

from phase 3 of the Coupled Model Intercomparison

Project (CMIP3) (Meehl et al. 2007), multimodel en-

semble mean to which the detrended interannual
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variations in HadISST were added (Mizuta et al. 2008).

The IPCC SRES A1B scenario was assumed for future

emissions of greenhouse gasses.

Figure 1 illustrates the ratio of frequencies of dry

June–August (JJA) at the end of the 21C relative to

their reference frequencies in the 20C, for 21 standard

land regions (the Giorgi regions; Giorgi and Francisco

2000). We refer to seasons in which precipitation falls

below (above) the lower (upper) tercile of the corre-

sponding 20C reference distribution as dry (wet). The

tercile thresholds were estimated from the high- and

low-resolution model output for the 20C reference pe-

riod and these were then used to calculate frequencies of

exceeding the thresholds in 20C and 21C. By definition,

the frequency of exceeding the threshold during the

reference period is 1/3.

In some regions e.g., Alaska (ALA),Greenland (GRL),

southern Africa (SAF), and South and North Asia (SAS

andNAS), the climate change signals in the low-resolution

model are similar to those in the high-resolution model.

Other regions [e.g., the Mediterranean basin (MED),

Sahara (SAH), Western and Eastern Africa (WAF and

FIG. 1. Changes in the frequency of dry JJA for the period 2075–99, relative to the period

1979–2003, derived from MRI-AGCM3.2 with two different resolutions: (a) low-resolution

TL95L64 and (b) high-resolution TL959L64 under the IPCC-A1B scenario.

15 MAY 2016 MAT SUEDA ET AL . 3833



EAF)] show large differences in climate change signals. In

particular, overmuch ofEurope, the low-resolutionmodel

shows a strong drying signal in summer, consistent with

that found in CMIP3 and CMIP5 models (IPCC 2007,

2013). However, the high-resolution model (truth) only

shows a weak dry or wet signal. Some higher-resolution

climate models also tend to show a weaker drying signal

(e.g., Delworth et al. 2012; Lau and Ploshay 2013; Demory

et al. 2014). Rowell and Jones (2006) found that a larger

land–sea contrast due to climatic warming, drying of

soil moisture in spring, and large-scale atmospheric

changes are all important drivers of projected sum-

mer drying over Europe, and that individual contri-

butions to summer drying remain unclear, leading to a

larger uncertainty in the magnitude of summer dry

over Europe. One possible reason why the higher-

resolution models show a weaker drying signal might

be improved representations of circulation regimes

[e.g., the North Atlantic Oscillation (NAO) and at-

mospheric blocking] due to increasing of horizontal

resolution (Dawson and Palmer 2015; Dawson et al.

2012; Matsueda et al. 2010, 2009); this is currently

under investigation.

3. Seasonal hindcasts: Measures of reliability

To investigate whether seasonal predictions can be used

to calibrate probabilities of wet and dry seasons in the 21C

climate change projections, seasonal retrospective fore-

casts were performed with the same low-resolutionmodel

as used in the 20C and 21C simulations, using the pre-

scribed observed HadISST and SICs, which were also

used in the 20C simulations. Note that the low-resolution

seasonal forecasts were conducted without any changes in

parameter settings.

The predictions were initialized with the Japanese

25-year Reanalysis Project (JRA-25; Onogi et al. 2007)

around 1 May and 1 November of each year over the

hindcast period 1979–2003. The forecast ensemble

consists of 21 members and was run for 4 months to

cover the JJA and December–February (DJF) seasons

[e.g., the ensemble for JJA of 2003 was initialized at

1200 UTC 28 April to 1200 UTC 3 May (6 hourly)].

These predictions were then verified against the high-

resolution model output for the 20C (truth). Figure 2

shows seasonal mean biases of precipitation against

Global Precipitation Climatology Centre (GPCC)

FIG. 2. Precipitation biases against Global Precipitation Climatology Centre (GPCC) precipitation version 7, for

the 20C simulations by (a),(c) low-resolution TL95L64 and(b),(d) high-resolution TL959L64 for (a),(b) JJA in

1979–2003 and (c),(d) DJF in 1979/80–2003/04. Numbers at the top right of each panel indicate global mean biases.
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precipitation, version 7 (Schneider et al. 2015), for the

20C simulations by the high- and low-resolution models.

The high-resolution model has marginally lower bias for

both JJA and DJF (especially in JJA). Following our

comments in section 1, the high-resolution model output

provides a reasonable estimate of truth, different from

the low-resolution model, and somewhat closer to reality.

Ideally, the seasonal prediction should be initialized

with the high-resolution model output for the 20C.

However, the available high-resolution model output

did not include enough variables to make initial condi-

tions for the low-resolution seasonal prediction. Given

that the boundary conditions provide greater contribu-

tions to seasonal simulations than initial conditions, the

use of JRA-25 as initial condition for the low-resolution

model seems a reasonable pragmatic solution.

Figure 3 shows differences in zonal mean 2-m surface

temperature in both JJA and DJF between the hi-

resolution model output (truth for 20C) and JRA-25.

The differences are between22 and 2K (mostly21 and

1K) in the low- and midlatitudes, whereas the absolute

values of differences in polar regions in winter are

greater than 2K. The large differences in polar regions

are likely attributed to differences in surface conditions

over land (i.e., snow) and can influence seasonal simu-

lation, especially in the higher latitude. Therefore, land

regions poleward of 608 were excluded in the following

analyses for boreal winter.

As mentioned in the introduction, reliability is an

essential characteristic for any climate forecasts to be

useful in real-life decision-making (Weisheimer and

Palmer 2014). A reliable forecasting system is one where

the forecast probabilities for a certain eventEmatch the

corresponding observed frequency of occurrence of E,

given the forecasts (Wilks 2011). Here, E can be any

dichotomous meteorological event of interest. For this

paper we follow common practice in seasonal fore-

casting and use precipitation events E based on terciles

of their climatological distribution of the seasonal-mean

precipitation. By definition, these events have a clima-

tological probability of 1/3 in both the forecasts and ob-

servations (indicated by the gray lines in Fig. 4).

The reliability of a forecasting system can be graphi-

cally displayed in a reliability diagram where the ob-

served frequencies of E are plotted as a function of the

binned forecast probabilities (e.g., see Fig. 4). Here, the

size of the red data points is proportional to the number

of forecasts falling into that probability bin. To get a

best estimate of the linear relationship between forecast

probabilities and observed frequencies, a weighted lin-

ear regression was applied to these data (red line). The

red shaded area around the best-estimate regression line

is an estimate of the inherent sampling uncertainty (here

the 75% confidence limit) derived from a bootstrapping

resampling procedure.

Weuse the slope of the regression line and its uncertainty

range to classify the reliability into five simple categories,

following Weisheimer and Palmer (2014).

FIG. 3. Differences of zonal mean 2-m surface temperature

between the TL959L64 model output and Japanese reanalysis

(JRA-25) for (a) JJA in 1979–2003 and (b) DJF in 1979/80–2003/04.

The gray shading indicates latitudes where the absolute value of

differences in surface temperature is greater than 2 K.

FIG. 4. Reliability diagram of dry JJA forecasts in 1979–2003

over the Mediterranean basin, simulated by the retrospective

TL95L64 seasonal prediction. The TL95L64 seasonal prediction

has been verified against the TL959L64 20C simulation (‘‘truth’’)

for the same period.
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Perfect reliability would be achieved if there was,

within the uncertainty range, a one-to-one correspon-

dence between the forecast probability and the observed

frequency (black diagonal line). We classify such fore-

casts as the highest category 5. Forecast in category 4 can

still be very useful, while forecast in category 3 are con-

sidered marginally useful. If the regression line is flat, the

forecasting system shows no correspondence between the

forecast probabilities of E and the observed frequencies

of occurrence ofE. We classify such unreliable and thus

useless forecasts as category 2. Category 1 is reserved

for those few cases where the slope of the regression

line is negative implying dangerously useless forecasts

as decision-makers can be seriously misled by such

forecast probabilities.

In Fig. 5, results are shown in terms of the reliability

categories of the low-resolution seasonal forecasts using

the high-resolution model as truth for the two events

E5 precipitation above (below) the upper (lower) tercile

in the JJA and DJF seasons for the same global land

Giorgi regions of Fig. 1. Forecast reliability varies be-

tween regions, seasons, and the events considered. While

some events can be classified as perfectly reliable (parts of

North and Central America in DJF), most events fall in

the marginally reliable category 3. Wet conditions over

northern Europe (NEU) in JJA classify as the least re-

liably predicted event.

4. Calibration of climate change predictions

Wenow use the reliability information to calibrate the

climate change projections. To describe the procedure,

we return to Fig. 4. Calibration to improved reliability is

achieved by projecting the data points, and thus the best-

guess regression line, toward the perfect reliability di-

agonal as indicated by the blue arrows. The calibration

leads to calibrated forecast probabilities (while leaving

the observed frequencies unchanged) and a steeper slope

of the regression line. In this study we consider partial

calibration: that is, calibrations that not necessarily proj-

ect onto the perfect reliability diagonal (black line) but

can take any value of the slope between the raw un-

calibrated and the full perfectly calibrated slope. We in-

troduce the calibration factor «5a/a0 which describes

FIG. 5. Reliability categories for (a) dry JJA, (b) wet JJA, (c) dry DJF, and (d) wet DJF, simulated by the

retrospective TL95L64 seasonal predictions. Category 5 indicates perfect reliability, whereas category 1 indicates

dangerously useless reliability.
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the fraction of the full calibration that is used. Here

a0 corresponds to the calibration angle in case of full

calibration («5 1) and a describes the partial calibration

angle. Hence, if a5 0, then no calibration is applied

(«5 0). The light blue dotted line inFig. 4 indicates such a

partially calibrated reliability curve.

Figure 6 illustrates the optimal « that minimizes

root-mean-square distances (RMSD) between the high-

resolution and the «-calibrated low-resolution probabili-

ties of dry and wet JJA and DJF in the 21C for each

Giorgi region. In JJA (Figs. 6a and 6b), the optimal value

of « is greater than 0.5 for most of the Giorgi regions,

especially for lower latitudes. The regions at higher lati-

tudes, especiallyGRL,NAS, and southern SouthAmerica

(SSA), tend to show a smaller value of «. In DJF (Figs. 6c

and 6d), the optimal « for each region tends to be smaller

than that in JJA. The optimal « tends to be relatively large

at low latitudes. The optimal « for eastern North America

(ENA) and the Amazon basin (AMZ) in DJF is 0.0, in-

dicating that calibrations cannot reduce the RMSD of

probabilities. However, note that ENA and AMZ in

winter already have good reliability in categories 5 and 4,

respectively, where any calibration will have a relatively

small impact on probability.

Figure 7 shows the change in RMSD between the

high-resolution (truth) and low-resolution probabilities

of dry and wet JJA and DJF in the 21C by the optimal

« calibrations.

As discussed above, regions at higher latitudes in the

boreal winter have been excluded. The key result is that

the calibrations reduce the RMSD for all the 21 Giorgi

regions, in JJA more than in DJF. The largest reduction

in RMSD is seen for dry JJA overMED. The calibration

reduced the RMSD over MED by 34%. The reductions

over MED are also dominant for the other events (i.e.,

wet JJA, dry DJF, and wet DJF). The optimal values of

« for MED are 0.9 and 1.0 for wet DJF and the other

events, respectively. A larger « (i.e., the calibrated re-

liability category is expected to be 5) tends to lead to a

larger reduction in RMSD for both JJA and DJF. The

reliability category before the calibrations above each

bar (also shown in Fig. 5) does not seem to be connected

with the amount of the reduction in RMSD.

It is important to understand why calibration has a

bigger impact in boreal summer than in boreal winter.

We believe that an important reason may be that there

are strong indications that atmospheric initial conditions

are more important for an accurate prediction of the

FIG. 6. Optimal « that minimizes RMSD between the TL959L64 (truth) and the calibrated TL95L64 probabilities of

(a) dry JJA, (b) wet JJA, (c) dry DJF, and (d) wet DJF for each Giorgi region.
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NAO/Arctic Oscillation, which can influence surface

temperature and precipitation on continental scales, in

boreal winter than in boreal summer (e.g., Stockdale

et al. 2015; Scaife et al. 2014; Ineson and Scaife 2009). As

noted above, in our study it was not possible for tech-

nical reasons to initialize our seasonal integrations with

high-resolution output (truth). This might suggest that

initializing the low-resolution model with the high-

resolution output in the seasonal predictions would po-

tentially lead to further reductions in RMSD, especially

in boreal winter.

Figure 8 shows differences of changes in the frequency

of dry JJA in 21C between the uncalibrated and cali-

brated low-resolution model simulations. As show in

Fig. 7, the calibrated low-resolution frequencies with the

optimal « are closer to truth, especially at low latitudes,

than the uncalibrated values.

Finally, we focus on MED where the biggest differ-

ences of changes in the frequency of dry JJA between

high- and low-resolution models are seen and are re-

duced by the calibrations the most. Figure 9 shows the

changes in the frequency of dry JJA events over MED,

for 21C relative to 20C, derived from uncalibrated low

resolution (Fig. 9a), with «5 1:0, which is the optimal

value for dry JJA events in that region, (Fig. 9b), and the

truth value from high-resolution (Fig. 9c). It can be

seen that the calibration has substantially reduced the

overestimation in the probability of dry events by 34%

(i.e., the «-calibrated low-resolution frequency with the

optimal « has become closer to truth).

5. Conclusions

Through the use of high- and low-resolution seasonal

and climate integrations with prescribed sea surface

temperature and sea ice at two different resolutions, this

paper provides support for developing seamless weather

and climate prediction models (i.e., where the climate

models use essentially the same computer code for rep-

resenting processes on interannual and shorter time scales

as theweather and seasonal forecastmodels). However, it

is important to note that we are not advocating that cli-

mate change scientists should be performing separate

atmosphere-only or coupled seasonal integrations. Rather,

the practical importance of the results in this paper derives

from the fact that in an operational center running sea-

sonal forecasts and climate change projections seamlessly,

important information that can be used to improve the

reliability of the climate change projections is essentially

available at no extra computational cost.

FIG. 7. Change in root-mean-square distances (RMSD) between the TL959L64 (truth) and TL95L64 probabilities

of (a) dry JJA, (b) wet JJA, (c) dry DJF, and (d) wet DJF by the optimal « calibrations. The color changes reflect the

optimal «. The number above each bar indicates the reliability category before the calibrations.
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In particular, it has been shown that information

about the reliability of seasonal forecast ensembles can

help improve the reliability of regional climate change

projections of precipitation. By using a T959 high-

resolution model as a surrogate for ‘‘truth.’’ it has

been demonstrated that future projections of pre-

cipitation from a T95 low-resolution model improve if

they are calibrated for regions where seasonal retro-

spective forecasts with the low-resolution model are

unreliable. In particular, it has been shown that the root

mean squared distance of probabilities for wet and dry

winter and summer seasons at the end of the twenty-

first century is reduced if such a calibration was applied.

The largest reduction in RMSD was found for dry JJA

events over the Mediterranean basin. Interestingly, the

drying Mediterranean area is exactly the event and

region where climate projections of precipitation using

uncalibrated low-resolution and high-resolution atmo-

spheric models differ the most in terms of the strength of

the signal indicating large uncertainties in the projections.

The methodology proposed here does not guarantee

that the climate change predictions will be reliable—the

proposed calibration scheme should be considered

necessary but not sufficient for ensuring reliable climate

change projections (Palmer et al. 2008, 2009). In par-

ticular, in this paper we have only tested our hypothesis

in terms of the fast processes occurring in the atmo-

sphere. For example, the application of this methodol-

ogy to include uncertainties in slower oceanic processes

(e.g., Andrejczuk et al. 2016) would require a study with

coupled ocean–atmosphere models—this is work for the

future. Also, it is important to note that we are not

proposing to calibrate climate change projections based

on the skill of the seasonal forecast results: a seasonal

forecast system can be perfectly reliable and yet show

little or no skill.

The results here show modest but consistent im-

provements in climate change skill with calibration.

We expect to obtain more substantial increases in cli-

mate change skill if the seasonal forecast set was ini-

tialized with data from the high-resolution model. We

aim to test this speculation in the future. In this paper,

we have tested the seamless prediction idea by using an

atmosphere-only model with prescribed SST and sea

ice. Studies with a wider range of models, including

coupled models, would be desirable to test the robustness

of the results.
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