Near-zero volume-shrinkage in reactive sintering of porous MgTi₂O₅ with pseudobrookite-type structure

Yuta NAKAGOSHI^a, Jun SATO^b, Masahumi MORIMOTO^b, and Yoshikazu SUZUKI^{a,c*}

^a Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

^b Quantachrome Instruments Japan G.K., KSP W311, 3-2-1 Sakado Takatsu, Kawasaki, Kanagawa 213-0012, Japan

^c Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

Abstract

Reactive sintering is an environmentally-friendly processing for porous ceramics. If zero volume-shrinkage in the reactive sintering is realized, the reactive sintering will be more widely applied. Here, we report a new reactive sintering technique to realize near-zero volume-shrinkage (NZVS) in the MgO-TiO₂ system. Porous MgTi₂O₅ pellets have been reactively sintered from LiF-doped hydromagnesite/TiO₂ mixed powders with changing TiO₂ anatase/rutile compositions. By using the anatase and rutile mixtures as TiO₂ source, volume-shrinkage during the sintering was well-controlled. In particular, the NZVS is realized for the sintering temperatures at 1000-1100°C. To clarify the mechanism of the NZVS phenomenon, MgTi₂O₅ particle formation behavior from the identical starting powders without pelletizing was investigated in detail. From the microstructural observation for MgTi₂O₅ powders, TiO₂ rutile prevented the crystal growth of MgTi₂O₅ particles.

Keywords: A. Powders: solid state reaction; A. Shaping; A. Sintering; B. Porosity; Magnesium dititanate (MgTi₂O₅); Pore-size distribution

1. Introduction

Porous ceramics have been applied for various fields with development in ceramic engineering, in particular, for refractory materials. In recent years, environmental and energy issues have attracted more and more interest. Therefore, considerable attentions have been directed toward the applications of porous ceramics for environmental and/or energy devices,

^{*} Corresponding author:

Division of Materials Science, Faculty of Pure and Applied Sciences,

University of Tsukuba, Ibaraki 305-8573, Japan

E-mail: suzuki@ims.tsukuba.ac.jp

e.g. various purification filters and fuel cells. Magnesium dititanate (MgTi₂O₅), with orthorhombic pseudobrookite-type structure, has a negative or very small thermal expansion in one axis, *i.e. a*-axis in the space group *Cmcm* (or *c*-axis in the space group *Bbmm*) [1-3]. This strong thermal expansion anisotropy induces the formation of intergranular and intragranular microcracks. These microcracks relax the thermal stress of particles; hence, the pseudobrookite-type ceramics have low coefficients of bulk thermal expansion [4-5]. MgTi₂O₅ is thermally stable among various pseudobrookite-type ceramics [6-9], and also, it is low-cost and non-toxic. With these notable properties, MgTi₂O₅ has a high potential as a thermal-shock resistant material.

To date, porous ceramics have been prepared by various processes [10-11]; reactive sintering is an environmentally-friendly process because it does not need any pore forming agents [12-16]. Suzuki *et al.* reported the synthesis of porous MgTi₂O₅ by the reactive sintering from hydromagnesite (Mg₅(CO₃)₄(OH)₂·4H₂O) and TiO₂ anatase mixed powder with lithium fluoride (LiF) additive [17-19]. However, the decomposition of hydromagnesite in the reactive sintering resulted in some volume shrinkage of samples. If zero volume-shrinkage (or more favorably near-net shaping) in the reactive sintering is realized, the reactive sintering will be more widely applied.

Here, we report a new reactive sintering technique to realize near-zero volume-shrinkage (NZVS) in the MgO-TiO₂ system. Porous MgTi₂O₅ pellets have been reactively sintered from LiF-doped hydromagnesite/TiO₂ mixed powders with changing TiO₂ anatase/rutile compositions. By using the anatase and rutile mixtures as TiO₂ source, volume-shrinkage during the sintering was well-controlled. The pore-size distributions of porous MgTi₂O₅ pellets were measured by mercury intrusion porosimetry. To clarify the mechanism of the NZVS phenomenon, MgTi₂O₅ particle formation behavior from the identical starting powders without pelletizing was investigated in detail, including *in situ* high-temperature X-ray diffraction for reaction analysis, and microstructural observation of MgTi₂O₅ particles.

2. Experimental procedures

2.1. Preparation and characterization of bulk porous MgTi₂O₅ using TiO₂ anatase/rutile mixture

Commercially available hydromagnesite (Mg₅(CO₃)₄(OH)₂·4H₂O) powder, TiO₂ anatase powder and TiO₂ rutile powder (99.9% purity each, Kojundo Chemical Laboratory Co. Ltd.) were used as the starting materials. In this study, the following TiO₂ anatase/rutile compositions (in mole fraction) were used: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. LiF powder (98.0%, Wako Pure Chemical, Osaka, Japan) was used as a mineralizer. Prior to the weighing, TG-DTA analysis (up to 1000°C) on each starting powder was conducted to determine the weight-loss during the heating. With the compositional calibration using TG-DTA results, hydromagnesite and TiO₂ powders (Mg:Ti = 1:2 in mole fraction) with LiF (0.5 wt.% for total starting powders) were wet-ball milled in ethanol for 24 h. The mixed slurries were vacuum dried, and the dried powders were put into the oven at 80°C overnight. The mixed powders, with a variety of TiO₂ anatase/rutile compositions (a)-(e), were then sieved through a 150-mesh screen. All mixed powders had almost the same average particle-sizes. (See supporting information **Fig. S1** and Table S1 on the particle-size distribution after sieving.)

The five mixed powders (4.0 g each) were uniaxially pressed at 16.6 MPa for 1 min to obtain green compacts with a diameter of 15 mm and a thickness of ~4 mm. The green compacts were sintered at 1000-1200°C in air for 2 h to obtain porous MgTi₂O₅ pellets. The volume of the pellets was measured before and after reactive sintering, in order to examine their volume changes. The microstructure of the porous MgTi₂O₅ pellets sintered at 1100°C was observed by scanning electron microscopy (SEM, JSM-5600, JEOL, Tokyo, Japan). The pore-size distribution was measured by mercury intrusion porosimetry (Poremaster, Quantachrome Instruments).

2.2. Effect of TiO₂ anatase/rutile composition on MgTi₂O₅ particle formation behavior

To clarify the mechanism of the NZVS phenomenon, $MgTi_2O_5$ particle formation behavior from the starting powders, with a variety of TiO₂ anatase/rutile compositions (a)-(e), was investigated. The mixed powders were calcined (without pelletizing) at 1100°C in air for 2 h to obtain the MgTi₂O₅ powders.

The constituent phases of $MgTi_2O_5$ powders were analyzed by X-ray diffraction method (XRD, Cu-K_a, 40 kV and 40 mA, Multiflex, Rigaku, Tokyo, Japan). The microstructure of the $MgTi_2O_5$ powders was observed by SEM. The reaction behavior of the mixed powders (a) and (e) (i.e., 100% anatase and 100% rutile as a TiO₂ source, respectively) were analyzed by high-temperature X-ray diffraction (HT-XRD) in the range between room temperature and 1100°C in air. Each XRD pattern was acquired after 5 min holding at each temperature.

3. Results and discussion

3.1. Volume-shrinkage control in reactive sintering of porous MgTi₂O₅

Figure 1 demonstrates the appearances of porous $MgTi_2O_5$ pellets sintered at 1000–1200°C from the mixed powders with different TiO₂ anatase/rutile compositions. The differences of volume shrinkage were clearly observed through horizontal (sintering temperature) and vertical (anatase/rutile composition) axes. All pellets were composed of substantially single-phase $MgTi_2O_5$, confirmed by XRD analysis (not shown).

Figure 2, quantified from Fig. 1, shows the volume change of porous $MgTi_2O_5$ pellets with sintering temperature. Only the pellets prepared from the mixed powder with composition

(e) expanded after the reactive sintering at 1000,1050 and 1100°C. Such volume expansions can be attributed to the less sinterability and the less unit volume of TiO₂ rutile phase than TiO₂ anatase phase. For all compositions, the green compacts first expanded due to the decomposed CO_2 gas from hydromagnesite at about 500°C, and then shrank with increasing sintering temperature. For the composition (e), after the initial expansion, the volume shrinkage became minimized thanks to the less sinterability of TiO₂ rutile phase. As a result, the volume of pellets after the sintering at 1000,1050 and 1100°C became slightly larger than the green compact. Also, as can be seen from all five curves, the volume shrinkage can be controlled by changing the anatase/rutile compositions.

Figure 3, also quantified from Fig. 1, shows the volume change of porous $MgTi_2O_5$ pellets with TiO_2 anatase/rutile composition in the mixed powders. The volume change was almost proportional to the composition ratio of TiO_2 rutile phase. Hence, from Figs. 2 and 3, the zero volume-shrinkage in reactive sintering must be possible, specifically sintered at around 1000-1150°C for the rutile composition of ~85-100%.

3.2. Pore-structure and microstructure of porous MgTi₂O₅ pellets

Figure 4 and Table 1 show the pore-size distributions and quantified pore-structures of MgTi₂O₅ pellets sintered at 1100°C by using mixed powders with various TiO₂ anatase/rutile compositions, respectively. All of the porous MgTi₂O₅ pellets had very narrow pore-size distribution with a diameter of ~1 μ m. With increasing rutile composition, the total pore volume (V_p) increased, and also the pore-size distribution sifted toward larger size, which was in good agreement with Section 3.1 (i.e., less sinterability of rutile-rich compositions).

Figure 5 demonstrates SEM micrographs of porous MgTi₂O₅ pellets sintered at 1100°C by using mixed powders with various TiO₂ anatase/rutile compositions. All pellets had complexly 3-D network structure, similarly to our previous works [18,19]. The MgTi₂O₅ pellets became more porous with increasing rutile composition. This result accorded with the pore structure studies by mercury intrusion porosimetry (Fig. 4).

3.3. Effect of TiO₂ anatase/rutile composition on MgTi₂O₅ particle formation behavior

In order to clarify the mechanism of the near-zero volume-shrinkage (NZVS) phenomenon, $MgTi_2O_5$ particle formation behavior was investigated using the identical starting powders in Section 3.1 without pelletizing. **Figure 6** shows XRD patterns for $MgTi_2O_5$ powders calcined at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions. Substantially single-phase $MgTi_2O_5$ powders were obtained from all raw powders; a trace amount of $MgTiO_3$, an intermediate phase of the MgO-TiO₂ reaction system, was found due to non-pelletizing.

Figure 7 shows high-temperature XRD patterns for the selected mixed powders: (a) the hydromagnesite and TiO₂ anatase, and (e) the hydromagnesite and TiO₂ rutile mixed powder both with 0.5 wt.% LiF. For these HT-XRD patterns, TiO₂ rutile does not affect the formation temperature of MgTiO₃ and MgTi₂O₅. The intermediate MgTiO₃ phase began to form around 800°C and the MgTi₂O₅ phase began to form around 1000°C by using both mixed powders. Consequently, the NZVS phenomenon observed in Section 3.1 cannot be attributed to the difference of reaction-phase development. This result supports the deduction that the NZVS phenomenon is presumably brought by the less sinterability and the less unit volume of TiO₂ rutile phase than TiO₂ anatase phase, as pointed out before.

Figure 8 demonstrates SEM micrographs of $MgTi_2O_5$ powders calcined (without pelletizing) at 1100°C by using the five mixed powders with various TiO₂ anatase/rutile compositions. Rod-like and coarse particles were obtained only in Fig. 8(a), i.e., by using only TiO₂ anatase as the starting material. This result agrees with our previous report, where rod-like $MgTi_2O_5$ particles were obtained from TiO₂ anatase with different LiF compositions [20]. In contrast, equi-axed and finer particles were obtained for TiO₂ rutile containing mixed powders (Fig. 8 (b-e)). Hence, TiO₂ anatase in the starting powder accelerates the grain growth of $MgTi_2O_5$ (maybe also $MgTiO_3$), but TiO₂ rutile slows down the grain growth of $MgTi_2O_5$ (and maybe also $MgTiO_3$).

4. Conclusions

In this paper, a new reactive sintering technique to realize near-zero volume-shrinkage (NZVS) in the MgO-TiO₂ system was reported. In conclusions,

- (1) The volume shrinkage between before and after reactive sintering of porous MgTi₂O₅ pellets was successfully controlled by changing the composition of TiO₂ rutile phase in the mixed powders. The zero volume-shrinkage in reactive sintering must be possible, specifically sintered at around 1000-1150°C for the rutile composition of ~85-100%.
- (2) With increasing rutile composition, the total pore volume (V_p) increased, and also the pore-size distribution sifted toward larger size, which was in good agreement with the macroscopic appearance change (Section 3.1) and microstructural observations (Section 3.2).
- (3) TiO₂ anatase in the starting powder accelerates the grain growth of MgTi₂O₅ (maybe also MgTiO₃), but TiO₂ rutile slows down the grain growth of MgTi₂O₅ (and maybe also MgTiO₃).

The reactive sintering technique using anatase and rutile mixture, a key idea for NZVS, will be also promising for complicated near-net shaping in the future.

Acknowledgments

We thank Prof. Tamotsu Koyano at Cryogenics Division, Research Facility Center, University of Tsukuba for his help on SEM observation.

References

- G. Bayer, Thermal expansion characteristics and stability of pseudobrookite-type compounds, Me₃O₅. J. Less-Common Metals. 24 (1971) 129-138.
- J.J. Cleveland, R.C. Bradt, Grain size microcracking relations for pseudo-brookite oxides.
 J. Am. Ceram. Soc. 61 (1978) 478-481.
- [3] D. Taylor, Thermal-expansion data .11. complex oxides, A₂BO₅, and the garnets. Br. Ceram. Trans. J. 86 (1987) 1-6.
- [4] E.A. Bush, F.A. Hummel, High-temperature mechanical properties of ceramic materials .1. magnesium dititanate. J. Am. Ceram. Soc. 41 (1958) 189-195.
- [5] J.A. Kuszyk, R.C. Bradt, Influence of grain-size on effects of thermal-expansion anisotropy in MgTi₂O₅. J. Am. Ceram. Soc. 56 (1973) 420-423.
- [6] J. Hauck, crystallography and phase-relations of MeO-M₂O₃-TiO₂ systems (Me=Fe,Mg,Ni-M=Al,Cr,Fe). J. Solid State Chem. 36 (1981) 52-65.
- [7] I. Shindo, Determination of the phase-diagram by the slow cooling float zone Method the system MgO-TiO₂. J. Cryst. Growth. 50 (1980) 839-851.
- [8] B.A. Wechsler, A. Navrotsky, Thermodynamics and structural chemistry of compounds in the system MgO-TiO₂. J. Solid State Chem. 55 (1984) 165-180.
- [9] B.A. Wechsler, R.B. Vondreele, Structure refinements of Mg₂TiO₄, MgTiO₃ and MgTi₂O₅ by time-of-flight Neutron Powder Diffraction. Acta. Cryst. B. 45 (1989) 542-549.
- [10] A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89 (2006) 1771-1789.
- [11] S. Deville, Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10 (2008) 155-169.
- [12] Y. Suzuki, P.E.D. Morgan, T. Ohji, New uniformly porous CaZrO₃/MgO composites with three-dimensional network structure from natural dolomite. J. Am. Ceram. Soc. 83 (2000) 2091-2093.
- [13] Y. Suzuki, N. Kondo, T. Ohji, In situ synthesis and microstructure of porous CaAl₄O₇ monolith and CaAl₄O₇/CaZrO₃ composite. J. Ceram. Soc. Jpn. 109 (2001) 205-209.
- [14] Y. Suzuki, N. Kondo, T. Ohji, P.E.D. Morgan, Uniformly porous composites with 3-D network structure (UPC-3D) for high-temperature filter applications. Int. J. Appl. Ceram. Technol. 1 (2004) 76-85.
- [15] Y. Suzuki, M. Tsukatsune, S. Yoshikawa, P.E.D. Morgan, Uniformly porous Al₂O₃/LaPO₄

and Al₂O₃/CePO₄ composites with narrow pore-size distribution. J. Am. Ceram. Soc. 88 (2005) 3283-3286.

- [16] Y Suzuki, P.E.D. Morgan, Meso- and macroporous ceramics by phase separation and reactive sintering methods. MRS Bull. 34 (2009) 587-591.
- [17] Y. Suzuki, M. Morimoto, Porous MgTi₂O₅/MgTiO₃ composites with narrow pore-size distribution: in situ processing and pore structure analysis. J. Ceram. Soc. Jpn. 118 (2010) 819-822.
- [18] Y. Suzuki, M. Morimoto, Uniformly porous MgTi₂O₅ with narrow pore-size distribution: in situ processing, microstructure and thermal expansion behavior. J. Ceram. Soc. Jpn. 118 (2010) 1212-1216.
- [19] Y. Suzuki, T.S. Suzuki, Y. Shinoda, K. Yoshida, Uniformly porous MgTi₂O₅ with narrow pore-size distribution: XAFS study, improved in situ synthesis, and new in situ surface coating. Adv. Eng. Mater. 14 (2012) 1134-1138.
- [20] Y. Nakagoshi, Y. Suzuki, Pseudobrookite-type MgTi₂O₅ water purification filter with controlled particle morphology. J. Asian. Ceram. Soc. 3 (2015) 334-338.

Table

Table 1 Pore-structure measured by mercury intrusion porosimetry for the porous $MgTi_2O_5$ pellets sintered at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions.

Samples anatase : rutile	V _p [cm ³ /g]	Sp [m ² /g]	D _{Mode} [μm]	D _{Average} [µm]	Р [%]
(a) 100 : 0	0.357	2.08	0.91	0.88	46.0
(b) 75 : 25	0.438	2.09	1.13	1.08	56.2
(c) 50 : 50	0.457	2.00	1.21	1.18	58.9
(d) 25 : 75	0.511	2.04	1.34	1.29	65.8
(e) 0 : 100	0.495	1.97	1.37	1.29	63.6

 V_p : Total pore volume, S_p : Total pore surface area, D_{Mode} : Mode diameter (Peak-top pore diameter), $D_{Average}$: Average pore diameter, P: Porosity

Figure captions

- Fig. 1 Appearances of porous MgTi₂O₅ pellets by reactive sintering method. Pellet diameter before sintering was 15 mm. Slight volume expansions were observed for the composition (e) sintered at 1000, 1050 and 1100°C.
- **Fig. 2** Volume change of porous MgTi₂O₅ pellets with sintering temperatures. Slight volume expansions were observed for the composition (e) sintered at 1000, 1050 and 1100°C.
- **Fig. 3** Volume change of porous MgTi₂O₅ pellets with changing TiO₂ anatase/rutile composition in the mixed powders. The volume changes are almost proportional to the composition ratio of TiO₂ rutile.
- **Fig. 4** Pore-size distribution by mercury intrusion porosimetry for $MgTi_2O_5$ pellets sintered at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. All MgTi₂O₅ pellets have very narrow pore-size distributions with a diameter of ~1 µm.
- Fig. 5 SEM micrographs of porous MgTi₂O₅ pellets sintered at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. The MgTi₂O₅ pellets became more porous with increasing rutile composition.
- Fig. 6 XRD patterns for the $MgTi_2O_5$ powders calcined (without pelletizing) at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. Substantially single-phase $MgTi_2O_5$ powders were obtained. Without pelletizing, very minor $MgTiO_3$ phase (intermediate product) remained.
- **Fig. 7** High-temperature *in situ* XRD patterns for the selected mixed powders: (a) the hydromagnesite and TiO₂ anatase, and (e) the hydromagnesite and TiO₂ rutile mixed powder both with 0.5 wt.% LiF. Formation temperatures of MgTiO₃ and MgTi₂O₅ were almost the same in the both mixed powders.
- **Fig. 8** SEM micrographs of MgTi₂O₅ powders calcined at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. Rod-like and coarse particles were obtained only in (a), i.e., by using hydromagnesite/TiO₂ anatase mixed powder with LiF addition, whereas equi-axed and finer particles were obtained for TiO₂ rutile containing mixed powders (b)-(e).

Figures

Fig. 1 Appearances of porous $MgTi_2O_5$ pellets by reactive sintering method. Pellet diameter before sintering was 15 mm. Slight volume expansions were observed for the composition (e) sintered at 1000, 1050 and 1100°C.

Fig. 2 Volume change of porous $MgTi_2O_5$ pellets with sintering temperatures. Slight volume expansions were observed for the composition (e) sintered at 1000, 1050 and 1100°C.

Fig. 3 Volume change of porous $MgTi_2O_5$ pellets with changing TiO_2 anatase/rutile composition in the mixed powders. The volume changes are almost proportional to the composition ratio of TiO_2 rutile.

Fig. 4 Pore-size distribution by mercury intrusion porosimetry for MgTi₂O₅ pellets sintered at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. All MgTi₂O₅ pellets have very narrow pore-size distributions with a diameter of ~1 μ m.

Fig. 5 SEM micrographs of porous $MgTi_2O_5$ pellets sintered at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. The MgTi₂O₅ pellets became more porous with increasing rutile composition.

Fig. 6 XRD patterns for the MgTi₂O₅ powders calcined (without pelletizing) at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. Substantially single-phase MgTi₂O₅ powders were obtained. Without pelletizing, very minor MgTiO₃ phase (intermediate product) remained.

•: $MgTi_2O_5$ O: $MgTiO_3$ A: TiO_2 anatase R: TiO_2 rutile M: hydromagnesite m: MgO Pt: Pt stage

Fig. 7 High-temperature *in situ* XRD patterns for the selected mixed powders: (a) the hydromagnesite and TiO_2 anatase, and (e) the hydromagnesite and TiO_2 rutile mixed powder both with 0.5 wt.% LiF. Formation temperatures of MgTiO₃ and MgTi₂O₅ were almost the same in the both mixed powders.

Fig. 8 SEM micrographs of MgTi₂O₅ powders calcined at 1100°C by using LiF-doped hydromagnesite/TiO₂ mixed powders with various TiO₂ anatase/rutile compositions: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100. Rod-like and coarse particles were obtained only in (a), i.e., by using hydromagnesite/TiO₂ anatase mixed powder with LiF addition, whereas equi-axed and finer particles were obtained for TiO₂ rutile containing mixed powders (b)-(e).

Supporting information

The particle-size distribution and the average particle-size of the mixed powders after sieving (through a 150-mesh screen) were measured by the dynamic light scattering method (FDLS-3000, Otsuka Electronics, Osaka, Japan) as shown in **Figure S1** and **Table S1**. Particle size distributions were somewhat larger for the anatase/rutile mixed compositions, but all mixed powders had almost the same average particle-sizes (about 480-580 nm).

Fig. S1 Particle-size distributions by dynamic light scattering for the mixed powders after sieving: (a) anatase : rutile = 100 : 0, (b) 75 : 25, (c) 50 : 50, (d) 25 : 75 and (e) 0 : 100.

Table S1 Average particle size (D_{Average}) and mode particle size (D_{Mode}) of the mixed powders measured by dynamic light scattering. All powders have almost same average particle size: 480~580 nm.

Mixed powders anatase : rutile	D _{Average} [nm]	D _{Mode} [nm]
(a) 100 : 0	486.5	498.6
(b) 75 : 25	509.5	399.1
(c) 50 : 50	533.0	563.3
(d) 25 : 75	489.6	501.7
(e) 0 : 100	575.5	527.0