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Marginal zone B cells exacerbate endotoxic
shock via interleukin-6 secretion induced by
Fca/mR-coupled TLR4 signalling
Shin-ichiro Honda1, Kazuki Sato1,*, Naoya Totsuka1,*, Satoshi Fujiyama1, Manabu Fujimoto2, Kensuke Miyake3,

Chigusa Nakahashi-Oda1, Satoko Tahara-Hanaoka1,4, Kazuko Shibuya1 & Akira Shibuya1,4

Marginal zone (MZ) B cells produce a first wave of antibodies for protection from blood-

borne pathogens. However, the role of MZ B cells in inflammatory responses has not been

elucidated. Here we show that MZ B cells produce pro-inflammatory cytokines, such as

interleukin-6 (IL-6), and exacerbate systemic inflammatory responses to lipopolysaccharide

(LPS). After intravenous injection of LPS or E. coli, mice deficient in MZ B cells or IL-6 only in

MZ B cells have attenuated systemic inflammatory responses and prolonged survival

compared with wild-type mice. LPS directly stimulates MZ B cells via Toll-like receptor 4

(TLR4) and MyD88 pathways for IL-6 production. Furthermore, TLR4 requires physical and

functional association with Fca/mR (CD351) for its oligomer formation, NF-kB signalling and

IL-6 production from MZ B cells; this association is responsible for systemic inflammatory

responses and endotoxic shock. These results reveal a pro-inflammatory role of MZ B cells in

endotoxic shock.
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S
epsis is one major cause of systemic inflammatory
response syndrome (SIRS), which sometimes leads to host
death1. Many factors such as bacterial products (pathogen-

associated molecular patterns) and those released from damaged
cells (damage-associated molecular patterns) are known to trigger
SIRS2. During SIRS caused by lipopolysaccharides (LPS) of
Gram-negative bacteria, Toll-like receptor 4 (TLR4), which
initiates the production of inflammatory cytokines and
chemokines, has been thought to be pivotal in pathophysiology
of sepsis3.

Marginal zone (MZ) segregates the circulating blood from the
lymphoid tissues in the spleen and contains several types of
immune cells including MZ B cells. MZ B cells express B-cell
antigen receptors poly-reactive to various pathogens with low
affinity4. After encountering blood-borne pathogens, MZ B cells
collaborate with dendritic cells5 and neutrophils6 to rapidly
produce a first wave innate-like antibodies7,8, which plays an
important role in eradication of pathogens9,10. Indeed, mice
deficient in MZ B cells showed decreased antibody production in
the early phase after pathogen invasion into the blood
circulation11,12. However, the involvement of MZ B cells in
inflammatory responses has not been elucidated.

Fc receptors (FcRs) play critical roles in immune responses,
including inflammation, cytotoxicity and allergic reactions13,14.
Fca/mR (CD351) is an FcR for IgA and IgM15,16. Feamr gene is
located near the clusters for IgG FcRs on chromosome 1
(refs 15,17,18). The cytoplasmic region of Fca/mR is required
for an atypical dimer formation19,20. Fca/mR is preferentially
expressed on follicular dendritic cells in the lymphoid organs21

and suppresses T-independent antigen retention by follicular
dendritic cells, leading to the downregulation of germinal centre
formation and humoral immune responses, including antibody
production, affinity maturation and memory B-cell generation,

against T-independent antigens21. Fca/mR is also expressed on
MZ B cells. However, the functional role of Fca/mR on MZ B cells
has remained unclear.

Here we investigate the role of MZ B cells in systemic
inflammatory responses during endotoxic shock. We report that
MZ B cells produce interleukin-6 (IL-6) in response to LPS via
the TLR4 and NF-kB signalling pathways and exacerbate
endotoxic shock. We also demonstrate that Fca/mR physically
and functionally associates with TLR4 and induces the oligomer
formation of TLR4 for amplification of IL-6 production.

Results
Mice lacking MZ B cells are resistant to endotoxic shock. To
examine the role of MZ B cells in inflammatory responses, we
generated MZ B-cell-deficient bone marrow (BM) chimeric mice
(DMZ B) by transferring Cd19� /� BM cells into lethally
irradiated mice (Fig. 1a). As a control, we also generated BM
chimeric mice (MZ B-WT) by transferring wild-type (WT) and
Cd19� /� BM cells at a ratio of 1:9, respectively, after lethal
irradiation (Fig. 1a). DMZ B mice showed significantly lower
number of MZ B cells, compared with MZ B-WT mice (Fig. 1b;
Supplementary Table 1). However, the development of immune
cells, including immature and mature B-cell subsets other than
MZ B cells, was comparable between DMZ B and MZ B-WT mice
(Supplementary Table 1). Cd19� /� mice lack natural IgM, a
critical component for LPS clearance22, as a result of defective
development of peritoneal B1 B cells23. Despite this, both DMZ B
and MZ B-WT mice had comparable amounts of serum natural
IgM (Fig. 1c). After intravenous (i.v.) injection of LPS (600mg per
mouse), DMZ B mice had attenuated liver dysfunction compared
with MZ B-WT mice (Fig. 1d). Moreover, DMZ B mice survived
significantly longer than did MZ B-WT mice (Fig. 1e). Therefore,

B220+ gated cells
MZ B-WT

CD21/35

C
D

23

10.5
%

0

50

100

150

A
S

T
 (

U
/L

)

M
Z B

-W
T

ΔM
Z B

P = 0.049

MZB-WT
DMZB

WT

CD19-KO

Irradiation

1
:

9

WT

CD19-KO
0
:

10

MZ B-WT

a b

d e

0.6
%

ΔMZ B (n = 16)
MZ B-WT (n = 16)

ΔMZ B

ΔMZ B

S
er

um
 Ig

M
 (

μg
 m

l–1
)

M
Z B

-W
T

ΔM
Z B

CD19
-K

O

P = 0.014
c

P = 0.001

0 24 48 72 96 120
0

20

40

60

80

100

105 105

105

104 104

104

103 103

103103

102 102

102102 105104103102

Time after LPS challenge (h)

S
ur

vi
va

l (
%

)

NS50

40

30

20

10

0

B6

Figure 1 | MZ B cells contribute to inflammatory response against endotoxic shock. (a) Strategy to generate mice lacking MZ B cells (DMZ B) or

control mice (MZ B-WT). Lethally irradiated mice received i.v. injection of mixed bone marrow cells from WT and CD19-deficient mice at a ratio indicated.

(b) Flow cytometry of splenocytes. Percentage of MZ B cells among B cell population were shown. (c) Natural IgM in sera of mice indicated were measured

by enzyme-linked immunosorbant assay. (d,e) DMZ B or MZ B-WT mice were i.v. injected with LPS. Mice were then analysed for serum AST level 12 h after

CLP (d) and monitored for survival rate of mice (e). Data are representative of three independent experiments. For survival analysis, data are pooled of

each experiment and the total numbers of mice are indicated. Statistical analyses were performed with the unpaired Student’s t-test. The log-rank test was

used for mice survival. Error bars indicate s.d. NS, not significant.
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MZ B cells likely contribute to systemic inflammatory responses
to LPS.

MZ B cells produce pro-inflammatory cytokines. To elucidate
how MZ B cells are involved in systemic inflammatory responses,

we examined whether MZ B cells produce pro-inflammatory
cytokines or chemokines in response to i.v. injection of LPS. As
expected, splenic macrophages quickly produced a large amount
of various cytokines and chemokines after LPS injection (Fig. 2a).
Unexpectedly, however, MZ B cells also produced a robust
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Figure 2 | MZ B cells secrete cytokines and chemokines during endotoxic shock. (a,b) MZ B cells (MZ B) and macrophages (Mf) (a), or total

splenocytes (grey) and splenocytes depleted of MZ B cells (black) or macrophages (white) (b) were purified from C57BL/6 mice after LPS injection at

indicated time points after LPS injection and analysed for indicated cytokines and chemokines by quantitative RT–PCR. (c) Sera obtained from DMZ B mice

at indicated time points after LPS injection were measured for IL-6 and CXCL10 by enzyme-linked immunosorbant assay. Data are representative of three

independent experiments. Statistical analyses were performed with the unpaired Student’s t-test. Error bars indicate s.d. NS, not significant.
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Figure 3 | IL-6 from MZ B cells exacerbates systemic inflammatory responses against endotoxic shock. (a–c) Strategy to generate mice lacking IL-6 in

MZ B cells (MZ B-IL6-KO) or control mice (MZ B-WT). Lethally irradiated mice received i.v. injection of mixed bone marrow cells from either WT or

IL-6-deficient mice and CD19-deficient mice at a ratio indicated (a). Splenocytes were analysed for the proportion of MZ B cells among the B220þ cell

population by flow cytometry (b). MZ B cells, follicular (FO) B cells and macrophages (Mf) were purified by flow cytometry 4 h after LPS injection and

analysed for expression of Il6 by quantitative RT–PCR (c). (d–f) MZ B-WT and MZ B-IL6-KO were analysed for serum levels of IL-6 and CXCL10

(d) at indicated time points and AST (e) 12 h after LPS injection and monitored for survival rate (f). Data are representative of at least two independent

experiments. For mice survival, data are pooled of each experiment and the total numbers of mice are indicated. Statistical analyses were performed with

the unpaired Student’s t-test. The log-rank test was used for mice survival. Error bars indicate s.d. NS, not significant.
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amount of IL-6 after LPS challenge. Notably, the relative
expression of IL-6 by MZ B cells was significantly higher than
that by macrophages 4 h after LPS injection (Fig. 2a). MZ B cells
also produced chemokines, such as MCP-1 and CXCL10, but not
tumour necrosis factor-a (TNF-a) or MIP-1a (Fig. 2a). We
performed quantitative reverse transcription–PCR (RT–PCR)
of total splenocytes and those depleted (by negative sorting) of
either MZ B cells or macrophage populations; in this analysis,
IL-6 and CXCL10 were produced primarily by macrophages at
1 h after LPS injection. However, MZ B cells and macrophages
produced comparable amounts of both IL-6 and CXCL10 4 h
after LPS injection (Fig. 2b). Furthermore, serum IL-6 and
CXCL10 levels were significantly lower in DMZ B mice than MZ
B-WT mice 4, 8 and 12 h after injection of LPS (Fig. 2c).
Therefore, MZ B cells likely behave similarly as macrophages in
inflammatory cascade by secreting pro-inflammatory cytokines
and chemokines, such as IL-6 and CXCL10.

IL-6 derived from MZ B cells is critical for endotoxic shock.
Since IL-6 seemed to be a dominant cytokine produced from MZ
B cells, we investigated whether MZ B-cell-derived IL-6 is
involved in systemic inflammatory responses to LPS. According
to the approach described previously24, we generated mixed BM
chimeric mice whose MZ B cells lacked IL-6 expression by
transferring both Il6� /� and Cd19� /� BM cells at a ratio of 1:9,
respectively, into lethally irradiated mice (MZ B-IL-6-KO;
Fig. 3a). In MZ B-IL-6-KO mice, MZ B cells were derived from
only Il6� /� BM cells, whereas other blood cells developed

from both Il6� /� and Cd19� /� BM cells at a ratio of 1:9,
respectively. Flow cytometry analysis demonstrated that the
development of MZ B cells derived from complemented BM cells
were comparable between MZ B-WT and MZ B-IL-6-KO mice
(Fig. 3b). The selective deletion of Il6 transcripts in MZ B cells
(but not in follicular (FO) B cells or macrophages) was confirmed
after LPS injection into MZ B-IL6-KO mice (Fig. 3c). In response
to LPS challenge, MZ B-IL-6-KO mice had significantly lower
amounts of serum IL-6, CXCL10 and aspartate aminotransferase
(AST) than did MZ B-WT mice (Fig. 3d,e). In addition, MZ
B-IL-6-KO mice survived significantly longer compared with MZ
B-WT mice (Fig. 3f). Therefore, IL-6 secreted by MZ B cells is
critical in systemic inflammatory responses during LPS-induced
endotoxic shock.

Neutralization of IL-6 signalling attenuated endotoxic shock.
We examined whether LPS-induced systemic inflammation was
attenuated by neutralization of IL-6 signalling with an anti-IL-6
receptor (IL-6R) antibody25. To neutralize MZ B-cell-derived
IL-6, mice received an i.v. injection of anti-IL-6R antibody (2 mg
per mouse) 4 h after LPS injection (Fig. 4a). Mice treated with an
anti-IL-6R antibody had significantly lower serum levels of IP-10
and higher rectal temperatures than did mice treated with a
control antibody (Fig. 4b,c). Moreover, these mice survived
significantly longer than did the control mice (Fig. 4d). However,
treatment with this antibody 1 h before LPS injection did
not change the serum levels of CXCL10, rectal temperature
and survival of mice (Fig. 4e–g); consistently, IL-6 produced
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immediately after LPS injection suppressed TNF-a production,
leading to exacerbation of systemic inflammatory responses26.
These results are in agreement with the MZ B-cell production of
IL-6 at 4 h, but not immediately, after LPS injection and with the
attenuated inflammatory responses and prolonged survival of MZ
B-IL6-KO mice.

LPS directly stimulates MZ B cells via TLR4-coupled MyD88.
To elucidate the signalling cascade for IL-6 production in MZ B
cells during endotoxic shock, MZ B cells were purified from WT,
Myd88� /� or Ticam� /� mice after LPS injection. Il6 expres-
sion by Ticam� /� and WT MZ B cells was comparable;
however, Myd88� /� MZ B cells had no detectable Il6 transcripts
(Fig. 5a). To examine whether LPS directly stimulates MZ B cells
for IL-6 production, MZ B cells were purified from the spleens of
WT and Myd88� /� mice, stimulated with LPS and analysed for
IL-6 production. In response to this LPS stimulation in vitro, WT
MZ B cells produced IL-6; in contrast, Myd88� /� MZ B cells did
not (Fig. 5b). Moreover, MZ B cells were purified from the
spleens of WT (CD45.1) or Tlr4� /� (CD45.2) mice, labelled

with carboxyl fluorescein succinimidyl ester (CFSE), and then
transferred into WT mice (CD45.2). After stimulation with LPS,
transferred MZ B cells were purified from the mice and analysed
for Il6 expression, demonstrating that Il6 was detected in WT,
but not Tlr4� /� , MZ B cells (Fig. 5c,d). These results formally
provided the evidence that MZ B cells directly recognize LPS via
TLR4 and produce IL-6. To further confirm this notion, MZ B
cells were purified from the spleen of C3H/HeJ mice, which
express mutated TLR4, or control C3H/HeN mice and transferred
into C3H/HeJ mice. Then, mice were challenged with LPS and
analysed for serum IL-6 levels. In contrast to C3H/HeJ mice that
received MZ B cells derived from C3H/HeJ mice, mice that
received MZ B cells derived from C3H/HeN mice showed
significantly increased IL-6 levels in the sera (Fig. 5e,f). Taken
together, these results indicated that LPS directly stimulates
MZ B cells via TLR4-coupled MyD88 for IL-6 production in vitro
and in vivo.

Fca/lR regulates IL-6 production from MZ B cells. To further
analyse this signalling pathway for IL-6 production in MZ B cells,
we focused on Fca/mR (CD351) (refs 15,16), a cell surface
molecule that is highly expressed on MZ B cells15,27

(Supplementary Fig. 1). We observed that MZ B cells from
Fca/mR-deficient mice had significantly impaired IL-6 production
after in vitro and in vivo stimulations with LPS (Fig. 6a;
Supplementary Fig. 2). In contrast, both WT and Fca/mR-
deficient FO B cells produced significantly less amount of IL-6
compared with MZ B cells after stimulation with LPS in vitro
(Fig. 6a). The physical association of Fca/mR with TLR4
was indicated by the co-immunoprecipitation analysis of a
Ba/F3-transfected cell line stably expressing haemagglutinin
(HA)-tagged Fca/mR, Flag-tagged TLR4, GFP-fused TLR4,
Flag-tagged MD2 and CD14 (Fig. 6b). This association of
Fca/mR with TLR4 was not altered after LPS stimulation
(Supplementary Fig. 3A). In contrast, there was no co-
immunoprecipitation with TLR4 from Ba/F3 cells expressing
HA-tagged, mutated Fca/mR (TM-mt), whose transmembrane
region was substituted with that of human allergin S2 (refs 28,29;
Fig. 6b; Supplementary Fig. 3B). However, Fca/mR was
co-immunoprecipitated with TLR4 when the extracellular Ig
domain or cytoplasmic region of Fca/mR was deleted (Fig. 6c;
Supplementary Fig. 3B); Fca/mR likely requires the
transmembrane region for association with TLR4. In BaF3 cells
stably expressing TLR4 components, GFP-fused TLR4 is
co-immunoprecipitated with Flag-tagged TLR4 as a result of
LPS-induced TLR4 oligomerization30,31. We observed that
LPS-induced TLR4 oligomerization was enhanced in cells stably
expressing WT Fca/mR; however, it was not seen in cells
expressing mutated Fca/mR (TM-mt) (Fig. 6d). Therefore,
Fca/mR may enhance LPS-induced TLR4 oligomerization. We
also found the physical association of TLR4 with Fca/mR in
primary MZ B cells by in situ proximity ligation assay (PLA;
Fig. 6e). Next, we investigated whether Fca/mR has an effect on
NF-kB signalling. The TLR4-mediated NF-kB signalling cascade
results in IkBa degradation30,31. LPS-induced IkBa degradation
was enhanced in cells expressing WT Fca/mR but not mutated
Fca/mR (TM-mt) (Fig. 6f). In addition, after LPS stimulation,
Fca/mR-deficient MZ B cells had defective IkBa degradation
compared with WT MZ B cells (Fig. 6g). Therefore, Fca/mR
may enhance NF-kB signalling. However, we observed that
TLR4 oligomerization and NF-kB signalling after LPS stimulation
were comparable between BaF3 cells expressing WT Fca/mR
and mutated Fca/mR lacking cytoplasmic region (DCyt;
Supplementary Fig. 4), suggesting that Fca/mR-mediated
signalling is not required for the enhanced NF-kB signalling.
We also observed that NF-kB signalling was not changed in BaF3
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transfectant expressing Fca/mR after LPS stimulation even under
culture without the ligand for Fca/mR (that is, IgA and IgM) using
serum from Jh-KO mice (Supplementary Fig. 5). In addition,
Fca/mR-mediated enhancement of IL-6 production from MZ B
cells did not require IgM in vivo (Supplementary Fig. 2). These
results indicate that Fca/mR did not require the ligands in the
serum for the enhancement of LPS-induced IL-6 production in
MZ B cells.

Fca/lR on MZ B cells regulates systemic inflammation. We
analysed the importance of Fca/mR expressed on MZ B cells in
systemic inflammatory responses to LPS in vivo; we established

MZ B-cell-specific Fca/mR-deficient mice (MZ B-Fca/mR-KO) by
transferring BM cells from Fca/mR-deficient and Cd19� /� mice
at a ratio of 1:9, respectively, into lethally irradiated mice
(Fig. 7a). In MZ B-Fca/mR-KO mice, Fca/mR was selectively
deleted in MZ B cells (Fig. 7b). After LPS injection, MZ
B-Fca/mR-KO mice had significantly lower levels of serum IL-6,
CXCL10 and AST than did MZ B-WT mice (Fig. 7c,d). Moreover,
after LPS injection, MZ B-Fca/mR-KO mice survived significantly
longer than MZ B-WT mice (Fig. 7e). Taken together, these
findings indicate that Fca/mR plays an important role in
inflammatory responses to LPS by augmenting TLR4-mediated
signalling in MZ B cells.
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Anti-IL-6 antibody attenuates sepsis induced by E. coli. To
analyse the role of MZ B cells and IL-6 in a more pathophysio-
logical relevant sepsis model, we injected i.v. E. coli. DMZ B mice
showed significantly longer survival and milder decrease in the
rectal temperature than did MZ B-WT mice after administration
of E. coli (Fig. 8a,b). In addition, treatment of mice with
anti-IL-6R antibody 2 h after E. coli injection significantly
prolonged the survival and showed milder decrease in the rectal
temperature compared with mice that treated with control
antibody (Fig. 8c–e). We also examined the effect of anti-IL-6R
antibody on the survival of mice after caecum ligation and
puncture (CLP), a widely used sepsis model32. Since mice after
CLP showed delayed IL-6 responses compared with those after

LPS or E. coli injection (Supplementary Fig. 6A), we injected
mice with anti-IL-6R antibody 6–8 h after CLP to neutralize
the late phase of IL-6. Mice treated with anti-IL-6R antibody
showed prolonged survival and milder decrease in the rectal
temperature compared with mice treated with control antibody
(Supplementary Fig. 6B,C). Together, these results indicated the
critical role of MZ B cells and IL-6 for the exacerbation of sepsis
induced by E. coli injection and CLP.

Discussion
MZ B cells have been recognized as antibody producing cells
against blood-borne pathogens7,8. In the present study, we
showed that MZ B cells produced a significant amount of
inflammatory cytokines and chemokines in response to LPS
stimulation. Moreover, by establishing mixed BM chimeric mice
lacking MZ B cells, we demonstrated the critical role of MZ B
cells for systemic inflammatory responses during endotoxic
shock. Of note, IL-6 produced by MZ B cells played a pivotal
role in exacerbation of endotoxic shock, as revealed by the
analyses of IL-6-deficient mice specifically in MZ B cells.

Using sepsis models, we investigated the role of IL-6
in systemic inflammatory responses. Although IL-6 is a
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pro-inflammatory cytokine that exacerbates acute and chronic
phases of inflammation, Xing et al.26 previously demonstrated
that IL-6-deficient mice showed significantly shorter survival than
did WT mice after LPS injection. They reported that IL-6 played
as an anti-inflammatory cytokine that suppressed the production
of pro-inflammatory cytokines such as TNF-a in the very early
phase after LPS injection, leading to the attenuation of systemic
inflammatory responses26. In the present study, we showed that
neutralization of IL-6R signalling by a neutralizing anti-IL-6R
antibody at the time points around (1 h before) LPS challenge did
not show any effect on the survival of mice. Our results together
with previous reports suggest that IL-6, which is mainly derived
from macrophages, at the very early phase of inflammatory
response to endotoxin may not augment systemic inflammation.
However, we showed that a significant amount of IL-6 was
produced by MZ B cells as well as by macrophages at 4 h after
LPS challenge. Neutralization of IL-6R signalling around at this
time point (2–4 h after LPS or E. coli injection) significantly
prolonged survival of mice after LPS or E. coli injection,
indicating that IL-6 produced at delayed time points a few
hours after exposure of endotoxin indeed exacerbates systemic
inflammation. In accordance with this idea, treatment of mice
with anti-IL-6R antibody at the late phase (6–8 h) of CLP
prolonged the survival of mice compared with treatment with
control antibody. These results suggest that timely neutralization
of IL-6R-mediated signalling may be useful for the treatment
of sepsis.

We observed that IL-6 production from MZ B cells in response
to LPS required Fca/mR even in the absence of its ligands (IgA or
IgM) in the serum. Since MZ B cells harbour BCR reactive to
LPS33, we speculated that membrane IgM or IgM quickly
produced in response to LPS from MZ B cells forms a complex
with LPS, which also interacts with Fca/mR as well. Since Fca/mR
associates with TLR4 via its transmembrane region, interaction of
Fca/mR with IgM-coated LPS may enhance LPS-induced
oligomerization of TLR4, leading to the amplification of MZ
B-cell activation. Similar mechanism was previously reported
with a C-type lectin SIGNR1 (CD209b), a capturing receptor for
E. coli34,35. On binding to E. coli, SIGNR1 enhances TLR4
oligomerization via association with TLR4, and increases cytokine
production from macrophages31. Further analysis should be
required to clarify how Fca/mR is involved in the amplification of
TLR4 signalling.

The involvement of B cells in inflammatory responses has been
demonstrated in several disease models. In a peritonitis model
induced by CLP, B cells produce CXCL10 in response to type I
interferon secreted during peritonitis and amplifies the inflam-
matory responses, leading to efficient bacterial eradication36.
During myocardiac infarction induced by coronary artery
ligation, B cells produced CXCL7, which recruits inflammatory
monocyte to the heart and impairs myocardium remodelling and
function37. Recent studies have identified a novel B-cell subset,
named innate response activator B cells, differentiated from B1 B
cells in the peritoneal cavity during CLP-induced peritonitis.
Innate response activator B cells secret granulocyte–macrophage
colony-stimulating factor for protection from bacterial
infections38. Ping et al. reported IL-35-producing B cells with
CD138high plasma cells phonotype, which suppress experimental
autoimmune myelitis and host defence against Salmonella
enterica infection39. In addition, Tedder’s group had identified
regulatory B-cell population producing IL-10, named B10
cells40,41. B10 cells expand during experimental arthritis42 and
Listeria monocytogenes infection43, leading to the suppression of
T cells responses. Thus, various B-cell subsets exist and control
inflammatory responses via secreting pro- or anti-inflammatory
cytokines and chemokines.

Among B-cell population, MZ B cells are primarily recognized
as quickly antibody producing cells, critical for the early immune
defences against blood-borne pathogens7,8. It was reported that
MZ B cells secret an anti-inflammatory cytokine IL-10 after
Listeria monocytogenes infection44. Indeed, precursor cells for
B10 cells (B10pro) are recently identified within MZ B cells
population45. In contrast, our current study has unveiled a
pro-inflammatory role of MZ B cells: the production of IL-6 that
is responsible for LPS-mediated endotoxic shock. Thus, MZ B
cells are not only just antibody producer but also regulator for
immune responses. In humans, IgMþ IgDþ CD27þ B cells were
identified as a counterpart of rodent MZ B cells46,47. They are
present in the blood as well as in the spleen48. However, the
functional characteristics of human MZ B cells have remained
unclear. Future studies are required for elucidation of the
functional role of human MZ B cells in inflammatory responses.

Methods
Mice. C57BL/6J, C3H/HeJ and C3H/HeN mice were purchased from Clea Japan
(Tokyo, Japan). The genetic background of the genetically engineered mice used
was C57BL/6J. Il6� /� (IL-6-KO), Cd19-Cre, Jh� /� (Jh-KO) and C57BL/6-Ly5.1
mice were purchased from Jackson Laboratory (Bar Harbor, ME, USA); mice
with homozygous Cd19 deficiency (Cd19cre/cre) were used as Cd19� /� mice.
Myd88� /� (Myd88-KO), Ticam� /� (Trif-KO) and Tlr4� /� (TLR4-KO)
mice were purchased from Oriental BioService (Kyoto, Japan). Fca/mR� /�

(Fca/mR-KO) mice were generated in our laboratory, as previously described, and
backcrossed onto the C57BL/6 genetic background for 12 generations. Only female
mice between the ages of 8 weeks and 12 weeks were used for the experiments.
All experiments were performed in accordance with the guidelines of the animal
ethics committee of the University of Tsukuba Animal Research Center.

Generation of BM chimeric mice. Lethally irradiated (9 Gy) C57BL/6 mice
received i.v. injections of 5� 106 BM cells total (mixture of indicated populations).
For establishing DMZ B mice, BM cells from Cd19� /� mice were injected into
lethally irradiated C57BL/6 mice. For establishing MZ B-cell-specific gene-targeting
mice, BM cells from Cd19� /� mice were mixed with BM cells from Il6� /� or
Fca/mR� /� mice at a 9:1 ratio, respectively. These cells were then injected into
lethally irradiated C57BL/6 mice. Eight weeks after the transfer, mice were used for
experiments.

Experimental sepsis. WT or BM chimeric mice received i.v. injection of LPS
(600 mg per mouse) from E. coli (O55:B5; Sigma-Aldrich, St Louis, MO, USA) or
E. coli (1.5� 109 CFU per mouse; DH10B). CLP were performed as described
previously32.The caecum was exposed by a 1–2-cm midline incision in the ventral
abdomen, ligated at B12 mm from its distal portion, and punctured twice with a
23-G needle in the ligated segment. The abdomen was closed in two layers,
and 1 ml of sterile saline was administered subcutaneously. Serum levels of
inflammatory cytokines and chemokines 1, 4, 8 or 12 h after CLP were measured
and mortality of mice was monitored. AST values in the serum were measured
using a Fuji DRI-CHEM 3,500-V slide analyser (Fujifilm, Japan).

Antibodies. Anti-mouse CD3e (145-2C11), CD4 (RM4-5), CD5 (53-7.3), CD8a
(53-6.7), CD11b (M1/70), CD11c (HL3), CD21/35 (7G6), CD23 (B3B4), CD45.1
(A20), CD45.2 (104), Ly6C (AL-21), Ly6G (1A8), B220 (RA3-6B2) and NK1.1
(PK136), and IgM (R6-60.2) monoclonal antibodies and isotype-matched control
antibodies were purchased from BD Biosciences (San Jose, CA, USA) and used for
staining following cell populations (MZ B cells (B220þ CD21/35high CD23� ),
follicular B cells (B220þ CD21/35þ CD23þ ), macrophages (CD11bþ Ly6G�

NK1.1� ), CD4 T cells (CD4þ CD3þ ), CD8 T cells (CD8aþ CD3þ ), natural
killer cells (CD11bþ Ly6G� NK1.1þ ), neutrophils (CD11bþ Ly6Gþ ),
dendritic cells (CD11cþ B220� ), plasmacytoid dendritic cells (CD11cþ B220þ ),
immature/mature B cells (B220þ IgMþ ), inflammatory monocytes (CD11bþ

Ly6Chigh), B1a B cells (B220þ CD5þ ) and B2/B1b B cells (B220þ CD5� )).
Monoclonal antibodies against HA (3F10) was purchased from Roche (Penzberg,
Germany). Anti-GFP polyclonal antibody was purchased from Life Technologies
(Carlsbad, CA, USA). Anti-IkBa polyclonal antibody was purchased from Cell
Signaling (Danvers, MA, USA). Anti-mouse b-actin (AC15) and Flag (M2)
monoclonal antibody and anti-Flag polyclonal antibody were purchased from
Sigma-Aldrich. Mouse IgG1-chimeric anti-IL-6R antibody (MR16-1)25 was kindly
provided by Tadamitsu Kishimoto and Chugai Pharmaceuticals (Shizuoka, Japan).
Anti-Fca/mR monoclonal antibody, TX57 and TX61 were generated, as described.
Where indicated, TX25 (mouse IgG1) was used as a control
antibody. The amount of antibodies used for flow cytometry analyses was 50 ml
(20–25 mg ml� 1) per 1� 106 cells.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11498

8 NATURE COMMUNICATIONS | 7:11498 | DOI: 10.1038/ncomms11498 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Generation of stable cell lines. The mouse pro-B-cell line Ba/F3 stably expressing
Flag-tagged TLR4, TLR4 fused with GFP, Flag-tagged MD2 and CD14, as described
previously30, was maintained in RPMI 1640 containing 10% fetal calf serum, 2 mM
L-glutamine, 100 U ml� 1 penicillin, 100 mg ml� 1 streptomycin and recombinant
murine IL-3 (B70 U ml� 1). The source of recombinant murine IL-3 was medium
conditioned by Chinese hamster ovary cells that had been genetically engineered to
produce murine IL-3 up to B70,000 U ml� 1 (ref. 30). WT Fca/mR or three Fca/mR
mutants (lacking the Ig domain (DIg), lacking the cytoplasmic portion (DCyt) or
substituting the transmembrane region with that of human allergin S2 (TM-mt))
were tagged with HA at the N terminus then subcloned into a pMX retrovirus
vector. Constructed pMX vectors were used for establishing Ba/F3 cells stably
expressing Flag-TLR4, TLR4-GFP, Flag-MD-2 and CD14 with WT or mutant
Fca/mR, as previously described30.

Enzyme-linked immunosorbant assay. The concentrations of IL-6 and IgM in
serum or culture supernatant were measured by enzyme-linked immunosorbant
assay. Anti-mouse IL-6 (MP5-20F3) and mouse IgM (II/41) were used as
capture antibodies. Biotinylated anti-mouse IL-6 (MP5-32C11) or horseradish
peroxidase-conjugated anti-mouse IgM polyclonal antibody was used as the
detection antibody. Serum CXCL10 concentration was measured using a mouse
CXCL10 Platinum ELISA kit (eBioscience, San Diego, CA, USA). Inflammatory
cytokine/chemokine production in mice sera were also measured using cytokine
bead array (CBA; BD Biosciences) where indicated.

CBA analysis. The concentrations of multiple inflammatory cytokines and
chemokines were measured using CBA analysis (BD Biosciences) where indicated,
according to the manufacturer’s instructions.

Quantitative RT–PCR. Total RNA was isolated from cell pellets using Isogen
(Nippon Gene, Tokyo, Japan) and then used for reverse trancription using a
High-Capacity cDNA RT kit (Applied Biosystems, Carlsbad, CA, USA). Real-time
PCR analysis of Fcamr, Il6, Tnsfs2, Ccl2, Ccl3, Cxcl10 and Actb (b-actin) was
performed using an ABI 7500 sequence detector (Applied Biosystems) with Power
SYBR Green PCR Master Mix (Applied Biosystems). The primers were as follows:
Fcamr forward: 50-ctccctttcaggtacaaatgca-30 and Fcamr reverse: 50-tctttgatgcctgttg
actgag-30 ; Il6 forward: 50-gaggataccactcccaacagacc-30 and Il6 reverse: 50-aagtgcatc
atcgttgttcataca-30 (for IL-6-KO mice, Il6 forward: 50-agttgccttcttgggactga-30 and Il6
reverse: 50-tccacgatttcccagagaac-30); Tnsfs2 forward: 50-gggccaccacgctgttc-30 and
Tnsfs2 reverse: 50-ggtctgggccatagaactgatg-30 ; Ccl2 forward: 50-ttaaaaacctggatcggaa
ccaa-30 and Ccl2 reverse: 50-gcattagcttcagatttacgggt-30 ; Ccl3 forward: 50-ccaagtcttc
tcagcgccat-30 and Ccl3 reverse: 50-tccggctgtaggagaagcag-30; and Cxcl10 forward:
50-cccacgtgttgagatcattgc-30 and Cxcl10 reverse: 50-gaggctctctgctgtccatc-30. The Actb
level was measured as an internal control to normalize the data (forward primer:
50-actgtcgagtcgcgtcca-30 and reverse primer: 50-gcagcgatatcgtcatccat-30). The
messenger RNA level was determined relative to that in the spleen. All values
were determined in triplicate.

Isolation and in vitro stimulation of MZ and FO B cells. Naive MZ B cells and
FO B cells were sorted on the gates of B220þ CD21/35high CD23� and B220þ

CD21/35þ CD23þ cells, respectively, from the spleens using flow cytometry
(FACSAria, BD Biosciences). MZ B cells from the spleen of mice after LPS injection
were sorted on the gate of B220þ CD23� CD1dhigh cells. Purified MZ B cells were
cultured in 96-well plates with 1 mg ml� 1 LPS for 24 h, and measured for IL-6
production. For analysis of IkBa degradation, purified MZ B cells were stimulated
with 1 mg ml� 1 LPS and analysed by immunoblotting.

Immunoblot analysis. For analysis of the association between TLR4 and Fca/mR,
BaF3 transfectants were lysed in buffer containing 1% digitonin, 0.12% Triton
X-100, 150 mM NaCl, 20 mM triethanolamine and protease inhibitors (1 mM
phenylmethylsulfonyl fluoride and 10 U ml� 1 aprotinin). The lysates were
immunoprecipitated with anti-Flag monoclonal antibody, separated by
SDS–polyacrylamide gel electrophoresis (SDS–PAGE) under reducing conditions,
and then immunoblotted with anti-HA monoclonal antibody or anti-Flag
polyclonal antibody. For analysis of TLR4 oligomerization, cell lysates of BaF3
transfectants were stimulated with 1 mg ml� 1 LPS for 10 or 30 min, and then lysed
in buffer containing 50 mM Tris-HCl (pH 7.6), 150 mM NaCl, 25 mM CaCl2,
0.5% Triton X-100 and protease inhibitors. The lysates were immunoprecipitated
with anti-Flag monoclonal antibody, separated by SDS–PAGE under reducing
conditions and then immunoblotted with anti-GFP (Life Technologies) or
anti-Flag polyclonal antibodies (Sigma-Aldrich). For analysis of IkBa degradation,
purified MZ B cells or BaF3 transfectants were stimulated with 1 mg ml� 1 LPS for
10, 30 or 60 min, and then lysed in buffer containing 1% NP-40, 0.12% Triton X,
150 mM NaCl and protease inhibitors. Total cell lysates were separated by
SDS–PAGE under reducing conditions and immunoblotted with anti-IkBa
polyclonal antibody (Cell Signaling). Images have been cropped for presentation.
Full-size images are presented in Supplementary Fig. 7.

MZ B cells transfer experiment. MZ B cells (1–5� 106) from the spleen of
C57BL/6-Ly5.1 (CD45.1þ ), TLR4-KO (CD45.2þ ) or Fca/mR-KO (CD45.2þ )
mice were purified, labelled with CFSE and transferred i.v. into recipient mice. Next
day, CFSEþ CD45.1þ (WT) and CFSEþ CD45.2þ (TLR4-KO or Fca/mR-KO)
MZ B cells in the spleen were sorted using flow cytometry (FACSAria, BD
Biosciences) 4 h after LPS injection (600 mg per mouse) for analysis of Il6 transcript
expression with quantitative RT–PCR. In some experiment using Jh-KO recipient
mice, 500 ml of PBS or C57BL/6 mice serum was injected (100 ml and 400ml via i.v.
and intraperitoneally, respectively) to those mice 0.5 h before LPS challenge.

Where indicated, 1–5� 106 MZ B cells from C3H/HeJ and C3H/HeN were
transferred into C3H/HeJ mice, and then challenged with LPS next day. IL-6 levels
in sera were measured 4 h after LPS challenge.

Proximity ligation assay. MZ B cells purified from the spleen of WT and
Fca/mR-KO mice by flow cytometry were fixed with aceton and incubated with
mouse anti-mouse Fca/mR monoclonal antibody (TX57) together with rabbit
anti-mouse TLR4 monoclonal antibody (ab13556, Abcam). DsRed PLA signals
were developed using anti-mouse PLUS and anti-rabbit MINUS PLA probes using
Duolink in situ PLA kit (Olink Bioscience), according to the manufacturer’s
instructions. Cells were analysed by fluorescence microscopy (BZ-X710, Keyence)
using BZ-X analyser software. Fluorescent signals of PLA were measured and
calculated per cell.

Statistics. Statistical analyses were performed with the unpaired Student’s t-test.
The log-rank test was used for mice survival. P valueso0.05 were considered
statistically significant.
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