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We show that the Nambu-Goldstone formalism of the broken gauge symmetry in the presence of the
T ¼ 1 pairing condensate offers a quantitative description of the binding-energy differences of open-shell
superfluid nuclei. We conclude that the pairing-rotational moments of inertia are excellent pairing
indicators, which are free from ambiguities attributed to odd-mass systems. We offer a new, unified
interpretation of the binding-energy differences traditionally viewed in the shell model picture as signatures
of the valence nucleon properties. We present the first systematic analysis of the off-diagonal pairing-
rotational moments of inertia and demonstrate the mixing of the neutron and proton pairing-rotational
modes in the ground states of even-even nuclei. Finally, we discuss the importance of mass measurements
of neutron-rich nuclei for constraining the pairing energy density functional.
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Introduction.—Spontaneous symmetry breaking explains
the collective properties of atomic nuclei and provides a
straightforward physical interpretation of experimental
observables associated with collective modes. In atomic
nuclei, the Nambu-Goldstone (NG) mode [1–3] connects
two frames of reference: the intrinsic frame, where the
symmetry is broken and the NG mode appears as a zero-
energy excitation mode, and the laboratory frame, where
the symmetry is strictly conserved. The excitation of the
NG mode can be observed in the laboratory system as a
sequence of quantum states originating from a single
symmetry-broken intrinsic state. Incorporating correlations
related to the symmetry breaking is essential for many-
body theories; see, e.g., the discussion in Ref. [4]. One of
the typical examples of spontaneous symmetry breaking in
atomic nuclei is the nuclear deformation due to the rota-
tional symmetry breaking, as a consequence of the attrac-
tive particle-hole correlations [5–8]. Rotational bands can
be viewed as NG mode excitations.
Nucleonic pairing is another common phenomenon in

atomic nuclei associated with spontaneous symmetry
breaking. Ground states of most nuclei can be well
described as pair condensates, in which the particle number
symmetry is broken. Superconducting nuclear states result
in a NG mode called the pairing rotation, which is seen
experimentally through ground-state sequences of even-
even nuclei [9–13]. The topic of pairing rotations continues
to generate much excitement, especially in the context of
neutron-rich nuclei [14–18].
Nuclear density functional theory (DFT) is currently the

only available microscopic many-body theory that is
applicable to the whole nuclear chart. One of the reasons
for its success is the flexibility of the formalism to naturally

incorporate the spontaneous symmetry-breaking mecha-
nism. The form of the nuclear energy density functional
(EDF) is constrained by symmetry considerations; popular
Skyrme EDFs are built from density-bilinear terms
in both the particle-hole and pairing channels [19,20].
Considerably less is known about the pairing EDF, pri-
marily because of the lack of the experimental observables
that can inform us about the detailed structure of the
pairing EDF.
The order parameter for the superfluid phase is the

expectation value of the pair creation operator that can be
related to the observed pair transfer cross section [9,12,21].
However, the coupling constants in the pairing EDF are
conventionally fitted so that the theoretical pairing gaps in
even-even nuclei reproduce the experimental odd-even
mass differences. Such a strategy has been adopted in
recent optimization work [22–24], although the relation-
ship between the pairing gap and the experimental odd-
even mass difference is indirect. Moreover, there exist
multiple definitions of theoretical pairing gaps and there are
various prescriptions for extracting the odd-even mass
difference from experiment [25–27]. To avoid ambiguities,
it would be best to calculate the odd-even mass difference
directly from the theory. Unfortunately, this involves addi-
tional uncertainties pertaining to the definition of the
ground state of an odd-A nucleus [28]. Moreover, since
ground-state configurations of odd-A nuclei internally
break the time-reversal symmetry, poorly known time-
odd terms of the EDF must be considered. Although some
of the time-odd functionals are constrained through the
local gauge invariance of the EDF [29], the optimization of
the unconstrained time-odd coupling constants has barely
started [30]. Consequently, the precision of the nuclear
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EDF for odd-A systems is not as good as that for even-even
systems. It is thus desirable to constrain the pairing
EDF based on experimental data involving even-even
systems only.
Objectives.—In this Letter we assess the performance of

nuclear DFT for pairing-rotational bands in even-even
nuclei, both semimagic and doubly-open-shell systems.
We study pairing-rotational moments of inertia and assess
their validity as indicators of nucleonic pairing. We check
the sensitivity of pairing rotations in neutron-rich nuclei on
the density dependence of the pairing functional.
Definitions.—The pairing-rotational picture is based on a

single intrinsic “deformed” one-body field in a gauge
space. The ground-state energy of a system with N=2
fermionic pairs can be expanded up to the second order in
the particle number with respect to a reference system with
particle number N0 [10–12,31,32],

EðNÞ ¼ EðN0Þ þ λðN0ÞΔN þ ðΔNÞ2
2J ðN0Þ

; ð1Þ

where ΔN ¼ N − N0, λðN0Þ ¼ dE=dNjN¼N0
is the

chemical potential, and the second-order term is the
pairing-rotational energy with the moment of inertia
J ðN0Þ−1 ¼ d2E=dN2jN¼N0

. In the case of a two-fermion
system, Eq. (1) can be generalized by considering two
coupled pairing-rotational modes. In particular, when both
neutrons and protons exhibit the pair condensate, there
exist two NG eigenmodes being linear combinations of the
neutron and proton pairing rotations [33,34]. (A similar
situation in the dense superfluid matter in neutron stars has
recently been discussed in Ref. [35].) The corresponding
rotational energy can be written as [32]

Epair
rot ¼

X

τ;τ0¼n;p

ΔNτΔNτ0

2J ττ0
; ð2Þ

where Nn ¼ N, Np ¼ Z, ΔNn ¼ N − N0, ΔNp ¼ Z − Z0,
and the tensor

J ττ0 ¼
∂Nτ

∂λτ0
����
ΔNτ0¼0

¼
� ∂2E
∂Nτ∂Nτ0

�−1����
ΔNτ¼ΔNτ0¼0

ð3Þ

is the pairing-rotational moment of inertia. The tensor J ττ0

is very sensitive to pairing correlations. Since it is related to
the second derivative of the total energy with respect to
particle number, the corresponding Thouless-Valatin (TV)
inertia for the NG mode can be readily derived by means of
the self-consistent quasiparticle random-phase approxima-
tion (QRPA) [36,37].
In the region of particle numbers where static pairing

dominates, J ττ0 can be extracted from experimental two-
nucleon separation energies S2n and S2p. For instance,
by taking λnðN; ZÞ ¼ − 1

4
½S2nðN þ 2; ZÞ þ S2nðN; ZÞ�, the

moments of inertia can be written as

J −1
nnðN; ZÞ ¼ 1

4
½S2nðN; ZÞ − S2nðN þ 2; ZÞ�; ð4Þ

J −1
npðN; ZÞ ¼ 1

4
½S2nðN þ 2; ZÞ − S2nðN þ 2; Z þ 2Þ�: ð5Þ

(The analogous expressions for λp and J pp are given in
terms of S2p.)
Method.—To compute the TV moments of inertia for

pairing rotations we employ the linear response formalism
of nuclear DFT in the finite amplitude method (FAM) [38]
variant. The FAM allows one to handle all the two-
quasiparticle states on the QRPA level with a smaller
computational cost than that of the traditional matrix
formulation of the QRPA. The TV moment of inertia is
given by a response function of the particle number
operator at zero frequency. In this study, we follow the
FAM formulation of Ref. [34] for NG modes.
The computations were performed with the FAM code

[39,40] using the DFT solver HFBTHO [41] in a single-
particle basis consisting of 20 harmonic oscillator shells.
We employed the recently developed EDF UNEDF1-HFB
[42] that was optimized at the full Hartree-Fock-
Bogoliubov (HFB) level. For the pairing energy density
we use the density-dependent ansatz [43]

~χτðrÞ ¼
1

2
Vτ
0

�
1 − η

ρ0ðrÞ
ρc

�
j~ρτðrÞj2; ð6Þ

where ~ρτ is the pairing density, ρ0 is the isoscalar density,
ρc ¼ 0.16 fm−3, Vτ

0 is the strength, and η is the parameter
that controls the density dependence of the pairing
interaction.
In UNEDF1-HFB, mixed-type pairing (η ¼ 0.5) is

employed. To analyze the sensitivity of results on the
density dependence of the pairing functional, we also
studied volume-type (η ¼ 0) and surface-type (η ¼ 1)
pairing with the strengths adjusted to reproduce the average
neutron pairing gap in 120Sn and average proton pairing gap
in 92Mo assuming the default pairing energy window of
60 MeV. These nuclei were chosen because the average
pairing gaps computed with UNEDF1-HFB are close to the
experimental values. The resulting pairing strengths are
Vn
0 ¼ −146.07 MeV fm3 and Vp

0 ¼ −161.72 MeV fm3 for
the volume pairing and Vn

0 ¼ −474.32 MeV fm3 and Vp
0 ¼

−551.37 MeV fm3 for the surface pairing.
Results.—We start with the classic case of neutron

pairing rotations in a semimagic chain of Sn isotopes
[12]. The theoretical values of the chemical potential and
the TV inertia have been computed for the reference
nucleus 116Sn (N0 ¼ 66). As seen in Fig. 1, the harmonic
approximation Eq. (1) works very well in this case; indeed,
the TV pairing inertia agrees with experiment even when N
is far from N0. This shows that a single intrinsic pairing
field of 116Sn explains the binding energy behavior in terms
of the dynamics of the NG mode.
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In general, the higher-order corrections in ΔN are not
negligible; in analogy with the angular momentum align-
ment within a rotational band, a change of the intrinsic
structure with neutron number is expected along a pairing-
rotational band. This is seen in Fig. 1 through the deviation
of the HFB values (or experiment) from parabolic behavior.
To account for the changes of the intrinsic pairing field, we
carry out systematic FAMþ HFB calculations for chains
of semimagic nuclei. Figure 2 displays associated chemical
potentials and pairing-rotational moments of inertia.
The pairing-rotational moments of inertia for Sn and Pb

isotopes behave fairly smoothly, and the pairing-rotational
picture holds in the medium-mass Ca isotopes. In general,
we see a remarkably good agreement between TVmoments
of inertia with experiment. The exceptions are weakly
paired systems around the magic numbers for which a
transition to the pairing vibrational picture takes place. In
such cases, e.g., for 130Sn and 42;46;50Ca, the experimental
indicator Eq. (4) involves nuclei for which our HFB

calculations predict vanishing pairing. The finite-difference
approximation of the second-order derivative is question-
able there.
For the doubly-closed-shell nuclei, the theoretical pair-

ing-rotational inertia is zero as the NG mode is absent due
to the vanishing static pairing. Moreover, the expression
[Eq. (4)] for the experimental inertia J ττ is proportional to
the inverse of the so-called two-nucleon shell gap indicator
δ2τ [45,46]. This latter quantity has been attributed to the
size of the magic gap. As it was already noted in Ref. [45],
the validity of δ2τ as a signature of a shell closure is lost in
regions where the structure of nuclear ground states is
rapidly changing. Based on our results for semimagic
nuclei shown in Fig. 2, we can make an even stronger
statement: outside shell closures, the two-nucleon shell gap
indicator δ2τ has nothing or little to do with the distribution
of single-particle energies; it is primarily governed by
pairing correlations and serves as a good indicator of the
gauge symmetry breaking.
We now study the proton pairing by investigating pairing

rotation in the N ¼ 50 isotones. As shown in Fig. 2(d), the
proton pairing moments of inertia are smaller than the
neutron ones in the similar mass region, and the agreement
with experiment is excellent. In the figure, we also plot the
Belyaev moment of inertia [47], which does not include the
effect of residual correlations at the QRPA level. As
discussed in Ref. [34], the enhancement of the difference
between TVand Belyaev proton inertia can be attributed to
the Coulomb-induced QRPA correlations. Here we recall
that the proton pairing strength required to provide good
agreement with experimental odd-even mass differences is
significantly larger than the neutron strength, Vp

0=V
n
0 ≈ 1.1,

and this is consistent with the results of the global survey
[27]. The large effect of Coulomb correlations on J pp,
manifesting itself through the difference between Belyaev
and TV proton pairing-rotational inertia, confirms the
conclusion of Ref. [48] that the Coulomb substantially
suppresses proton pairing.
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The density and momentum dependence of the pairing
functional are not well known because standard observ-
ables probing the pairing channel, such as odd-even mass
staggering or moments of inertia of deformed nuclei, show
weak sensitivity to details. In this context, the pairing-
rotational inertia of single-shell-closed nuclei can serve as a
good indicator of the pairing interaction. The results of
calculations for semimagic nuclei in Fig. 2, based on
pairing fitted to experimental odd-even mass differences,
are fairly similar for volume-, mixed-, and surface-pairing
variants, except for very neutron-rich nuclei where the
surface pairing gives appreciably lower values of J nn. Of
particular interest is the behavior of the pairing-rotational
inertia in the very neutron-rich Ca isotopes beyond 56Ca,
where the pairing functional of volume type yields a 1.5–2
times larger value of J nn than the mixed-pairing inter-
action. Mass measurements of even-even Ca isotopes
beyond N ¼ 36 will be useful to better constrain the
density dependence of the pairing EDF. Calculations
employing the traditional EDFs, such as SLy4 [49] and
SkM* [50], show worse agreement with experiment as
compared to UNEDF1-HFB. The latter has been carefully
optimized to remove the large systematic errors affecting
global binding energy trends [22]. It is clear, therefore, that
to reveal the nature of the pairing functionals through
pairing-rotational inertia one needs to start from the well-
fitted EDFs in the particle-hole sector.
Finally, we discuss doubly-open-shell nuclei. When both

neutrons and protons show a pair condensate, there exist
two NG modes whose eigenmodes are linear combinations
of the neutron and proton pairing rotations [34]. In Fig. 3,
we show the full pairing-rotational moment of inertia tensor
for the Er isotopes and N ¼ 100 isotones. Both examples
are representative of well-deformed, open-shell nuclei with
static neutron and proton pairing. Our calculations give
excellent agreement with experiment for the full pairing-
rotational inertia tensor. In general, the sensitivity to the
density dependence of pairing interaction is fairly weak
except for very neutron-rich (proton-deficient) nuclei.
The off-diagonal moment of inertia J np shows quanti-

tative agreement with the experimental data. We emphasize
that the example shown in Fig. 3 represents the first
systematic calculation of the off-diagonal inertia for two-
dimensional pairing rotation, which was seen as a tilted
energy kernel in the gauge space in Ref. [51]. The agree-
ment with experiment confirms that the two pairing-
rotational NG modes are indeed mixed through the residual
interaction in QRPA. Another interesting aspect of J np is
that the inverse of this quantity is formally equivalent—up
to a trivial shift (Z → Z þ 2, N → N þ 2)—to the mass
indicator−δVpn [52], often referred to as, and interpreted in
terms of, the empirical proton-neutron interaction energy.
Indeed, in the extreme shell model picture, δVpn represents
the net interaction of the last two valence neutrons with the
last two valence protons [53–56]. While the large-scale

superfluid DFT calculations of δVpn generally match the
experimental data on the double binding-energy difference
[Eq. (5)] [57], the direct interpretation of this quantity in
terms of the valence proton-neutron interaction is under
debate [58]. As pointed out in Ref. [57], while the value of
δVpn averaged over many states (shells) probes the bulk
symmetry energy term of the EDF, the local behavior of
δVpn carries important information about shell effects and
many-body correlations. The relation Eq. (5) between J np
and δVpn sheds new light on the interpretation of this
quantity in doubly-open-shell nuclei; in those nuclei, δVpn
represents the simultaneous spontaneous breaking of the
neutron and proton gauge symmetries of the T ¼ 1 pairing.
In this respect, we would question the findings of Ref. [55]
that the pairing energy plays a relatively minor role in
understanding of δVpn.
Conclusions.—We show that the T ¼ 1 pairing-

rotational moments of inertia of semimagic and doubly-
open-shell nuclei can be described qualitatively within
the NG formalism of the broken gauge symmetry. Since the
experimental mass difference relation representing the
pairing inertia tensor is solely based on binding energies
of even-even nuclei, it is an excellent indicator of nuclear
pairing properties. In many respects, J ττ0 is superior to
other quantities commonly used to inform us about the
magnitude of pairing correlations, such as odd-even mass
differences, which involve properties of odd-mass systems
that depend on poorly known time-odd fields impacting
individual orbits blocked by an odd nucleon. Furthermore,
we demonstrate that the pairing-rotational inertia tensor can
be directly expressed in terms of the binding-energy
differences δ2n, δ2p, and δVpn—all traditionally regarded
as signatures of the valence nucleon properties in the shell
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model picture. We now propose a unified interpretation of
these quantities in terms of the gauge symmetry breaking
associated with the collective T ¼ 1 pairing phases. Of
course, for nuclei close to shell or subshell closures, with
weak pairing correlations, the traditional single-particle
interpretation is expected to be more appropriate.
We present the first systematic analysis of the off-

diagonal pairing-rotational moments of inertia J np and
demonstrate the mixing of the neutron and proton pairing-
rotational modes in the ground states of open-shell even-
even nuclei. Our analysis of isotopic and isotonic chains
indicates that the pairing-rotational moments of inertia of
neutron-rich nuclei can be used to constrain the pairing
functional of nuclear DFT. In this context, mass measure-
ments of very neutron-rich isotopes are extremely desir-
able. Theoretically, clarifying the role of the missing
neutron-proton contribution of the T ¼ 1 pairing functional
to J np within the isospin invariant EDF [19,59,60] and
clarifying the role of various microscopic aspects (effective
masses, density dependence, the role of polarization effects,
etc.) [12,13,61] will be an exciting subject for future
investigations.
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