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Abstract: The aim of this study was to design a navigation system composed of a human-controlled
leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle.
With such a system, a human driver can control two vehicles efficiently in agricultural operations.
The tracking system was developed for the leader and the follower vehicle, and control of the follower
was performed using a camera vision system. A stable and accurate monocular vision-based sensing
system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition
was reduced by using the least-squares method. A feedback control algorithm was used to allow the
follower vehicle to track the trajectory of the leader vehicle. A proportional–integral–derivative (PID)
controller was introduced to maintain the required distance between the leader and the follower
vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the
leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case
of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and
zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors
were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively.
The navigation performances indicated that the autonomous follower vehicle was able to follow the
leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed
leader-follower system can be implemented for the harvesting of grains, using a combine as the
leader and an unloader as the autonomous follower vehicle.

Keywords: multiple vehicles; monocular vision; quadratic curve fitting; trajectory tracking

1. Introduction

Multiple autonomous vehicles can improve the efficiency of agricultural operations by performing
labor-intensive tasks such as transporting, plowing, sowing, fertilizing, spraying, and harvesting [1,2].
The simultaneous control of multiple robotic vehicles has received attention from several researchers.
For example, multiple moss-harvesting robotic tractors were commanded and monitored by a human
driver, who also functioned as the leader [3]. To enable navigation under complex road conditions,
an autonomous follower tractor could change formation with the human-driven leader tractor to
avoid obstacles based on commands from the leader [4]. The FOLLOW and GOTO algorithms were
developed to control multiple vehicles in a flexible way, both in formation and independently [5].
When considering the farming task style, a common operational method of multiple autonomous
vehicles should be effective when an autonomous or a human-driven leader vehicle can lead one
or more follower vehicles. Furthermore, following a trajectory identical or parallel to that of the
leader is important in outdoor farm conditions. For example, while driving along a narrow road
with obstacles, followers can adopt an in-line formation with the leader for safety, whereas while

Sensors 2016, 16, 578; doi:10.3390/s16040578 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2016, 16, 578 2 of 19

working on farmland, followers in a parallel formation with the leader could follow trajectories
parallel to that of the leader, allowing the farming task to be performed without overlap or missed
areas. For such a target, integrity model involving leader motion information, such as steering and the
speed of the leader, could allow for precise tracking [6–8]. However, the transmission of the leader
motion information to the follower through a wireless device creates the risk of wireless distribution
or failure. Aiming to solve this problem, the leader’s position and velocity were estimated based on
local sensors [9], and a neural network (NN)-based extended Kalman filter (EKF) was designed to
estimate leader speed and accommodate modeling errors [10]. By cooperating with GPS location, a
time-delayed leader tracking model was established and showed excellent tracking performance [11].

In any event, the follower vehicle needs to continually update its relative position with respect
to the leader to fulfill the tracking task. Regarding safety, absolute sensors such as those employing
GPS are not suitable for the tracking task because they may lose the satellite signal and are subject
to multipath interference. Local sensors, such as cameras and laser range finders (LRF), are
considered to be better approaches and have been successfully applied for tracking under both
indoor and outdoor conditions [12–15]. Compared with LRFs, camera vision can provide more
information than data obtained via LRF scanning with less cost and has thus been wildly utilized for
navigation, mapping and tracking [16–18]. For tracking control of multiple robotic vehicles, a camera
vision-based leader-follower relative position estimating method has been designed, recognizing
a leader vehicle using features of the leader vehicle [19,20]. However, this method was sensitive
to lighting conditions and was distance-limited as well as time-intensive. A common and effective
method for solving those problems was to use an artificial marker to identify the leader and estimate the
leader-follower relative position using pre-known geometry or color information of the markers [21].
The advantages of the marker-based method are that it could support stable recognition, accurate
position estimation, and fast calculation. Moreover, it ensures the tracking accuracy and tracking safety
for a leader-follower trajectory tracking system. In this research, to avoid using GPS and wireless
devices, the designed control law of the follower vehicle for leader trajectory tracking only relied
on the relative leader-follower position, which was obtained from the camera vision. This study
aimed to develop a vision-based feedback controller designed to track a leader-vehicle trajectory while
maintaining an in-line or parallel formation. Thus, the objectives of this research were as follows:

(1) To establish an autonomous vehicle as a follower vehicle able to conduct tracking tasks.
(2) To construct a robust and accurate monocular vision system able to estimate the relative position

between a leader and a follower.
(3) To develop a control algorithm able to realize accurate leader vehicle trajectory-tracking

for multiple agricultural machinery combinations, with a human-driven leader and an
autonomous follower.

2. Materials and Methods

An electronic vehicle (CHIKUSUI EJ-20, CANYCOM, Tokyo, Japan) was modified into an
autonomous vehicle, i.e., the follower vehicle. Both the leader and the follower vehicle had a 60 cm
wheel base length and 49 cm drawbar length. Major subsystems of the autonomous vehicle included
steering control, speed control, power and sensor units. The sensory data and control status were
transmitted to an upper level controller through parallel communication. The basic instrumentation
system for the autonomous vehicle is depicted in Figure 1a. A Pro 9000 Web camera (Logitech,
Lausanne, Switzerland) with 2 million pixels and a 70˝ view angle, was mounted on the autonomous
follower vehicle to provide vision information. A LMS 511 LRF (SICK, Waldkirch, Germany) was
utilized as an assist device to provide reference data and recorded trajectories during tracking. Steering
control of the autonomous vehicle was conducted using an electronic cylinder (LPF040L2.0VK2J,
TSUBAKIMOTO CHAIN, Osaka, Japan). The length of the piston rod was 200 mm and the maximum
speed was 40 mm/s. It could provide stable thrust power up to 400 N. Figure 1b shows components of
the robot vehicle.
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Figure 1. The autonomous follower in the leader-follower system. (a) Sensors arrangements in the 
autonomous unit; (b) Hardware components of the autonomous follower tracking system. 

2.1. Leader-Follower Relative Position and Camera-Marker Sensing System 

Figure 2a describes the relative position between the leader and follower. By identifying the 
relative heading angle , relative distance D, and orientation angle α of the leader relative to the 
follower, the follower vehicle could identify the leader position. The leader-follower relative 
position was obtained from the camera-marker system (Figure 2b), in which the camera was 
mounted on the rear wheel center point  of the follower vehicle, the marker was installed 
perpendicular to the centerline of the leader vehicle and the position of the middle square of the 
marker was at the rear wheel center point . The side length of each square H and the interval 
between square centers L were 0.2 m and 0.4 m, respectively. In the leader-follower system, the 
following steps were followed to develop the relative positioning system: camera servo systems, 
marker detection, marker positioning, and estimation of offset of the roll angle between camera  
and marker. 

Figure 1. The autonomous follower in the leader-follower system. (a) Sensors arrangements in the
autonomous unit; (b) Hardware components of the autonomous follower tracking system.

2.1. Leader-Follower Relative Position and Camera-Marker Sensing System

Figure 2a describes the relative position between the leader and follower. By identifying the
relative heading angle β, relative distance D, and orientation angle α of the leader relative to the
follower, the follower vehicle could identify the leader position. The leader-follower relative position
was obtained from the camera-marker system (Figure 2b), in which the camera was mounted on
the rear wheel center point P1 of the follower vehicle, the marker was installed perpendicular to the
centerline of the leader vehicle and the position of the middle square of the marker was at the rear
wheel center point P0. The side length of each square H and the interval between square centers L were
0.2 m and 0.4 m, respectively. In the leader-follower system, the following steps were followed to
develop the relative positioning system: camera servo systems, marker detection, marker positioning,
and estimation of offset of the roll angle between camera and marker.
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Figure 2. Geometrical disposition between the leader and the follower. (a) Leader-follower relative 
position; (b) Relative position between camera and marker plane; (c). Servo motor implemented with 
the camera-marker system. 

2.1.1. Camera Servo System 

Losing the target was a severe problem during the tracking of the leader vehicle; it potentially 
occurred owing to the limitations of the camera view field, especially on a large-curvature path. To 
overcome this problem, a camera servo system was designed to keep the marker in the center of the 
camera view field. The camera servo system comprised a GWS servo motor and a rotary encoder 
with a camera (Figure 2c). By responding to the angle  from the middle square center to the 
camera optical axis, the servo motor could rotate the camera directly to the marker center. The 

Figure 2. Geometrical disposition between the leader and the follower. (a) Leader-follower relative
position; (b) Relative position between camera and marker plane; (c). Servo motor implemented with
the camera-marker system.

2.1.1. Camera Servo System

Losing the target was a severe problem during the tracking of the leader vehicle; it potentially
occurred owing to the limitations of the camera view field, especially on a large-curvature path.
To overcome this problem, a camera servo system was designed to keep the marker in the center of
the camera view field. The camera servo system comprised a GWS servo motor and a rotary encoder
with a camera (Figure 2c). By responding to the angle αs from the middle square center to the camera
optical axis, the servo motor could rotate the camera directly to the marker center. The rotation angle
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αEn between the optical axis and the centerline of the follower vehicle could be monitored by a rotary
encoder installed above the camera. The existing follow relationship can be expressed as:

α “ αs ` αEn (1)

2.1.2. Marker Detection

The marker was detected based on its pre-known geometry information, including its square
shape features and relative spatial relationship between squares in the marker plane. The image
processing flow comprises the following four steps: transforming an original RGB image into a
grayscale image and then enhancing the contrast ratio, extracting contours, finding rectangles from the
contour images, and determining the marker (Figure 3).
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Figure 3. Image processing for marker detection. (a) Contour image; (b) Detected marker.

Pre-known geometry information could reduce the computational cost and benefit real-time
detection. Additionally, the high contrast ratio between the black squares and the white background
enabled the generation of acutance contours and created stability for the detection of the marker.
However, contour extraction was still influenced by illumination conditions. Low illumination
conditions or strong sunlight under an outdoor environment would reduce the contrast ratio of
the image and corrode the contour of squares, causing failure of marker detection. To expand the
scope to adapt to various illumination conditions, a commonly used normal distribution of the image
histogram method was utilized to enhance image contrast. Affected by posture changes of the vehicles,
squares projected on the image plane would show the shapes of rectangles. Thus, rectangles were
recognized and selected in the contour image. Relying on the relative spatial relationship between the
three squares, false targets with rectangular shapes, such as rooms and windows, could be filtered,
and only squares formed by the marker could be extracted.

2.1.3. Marker Positioning

Given that the vision data were obtained from a single camera and the relative position between
the marker and the camera was estimated based on the known side length of the marker squares,
the position of each square in the marker plane could be described by its center point. The pitch
angle of the vehicle body was neglected, meaning that the sides of squares in the vertical direction
would not be affected by the posture changes of the leader and follower vehicles when projected
onto the image plane. For this reason, the centerline of the squares in the vertical direction could be
used to estimate the relative position between the camera and marker plane. Utilizing the geometric
relationship between similar triangles under a perspective model (Figure 4), the position of the square
center PC in camera-based coordinates could be estimated as follows:
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XC “
x´ cx

fx
ZC (2)

ZC “
H
h

f (3)

α “ arctan
ˆ

XC
ZC

˙

(4)

where the coordinates of the square center under the image coordinate and camera-based coordinate
systems could be written as pc pxc, yc, f q and PC pXC, YC, ZCq, respectively. f and fx represent the focal
length, and cx is the shift of the optical axis obtained from camera calibration; h is the height of squares
in the image plane.
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2.1.4. Offset of Roll Angle between Camera and Marker

On uneven farm ground, rolling of the camera or the marker plane would occur and affect the
leader-follower relative position observation accuracy. The calculation of the leader-follower relative
position should offset the rolling effect of the camera or the marker plane. For example, suppose the
leader vehicle is driven on a horizontal surface, while the follower vehicle forms a roll angle γ around
its optical axis from the horizontal surface (Figure 5). PCN pXCN , YCN , ZCNq are the coordinates of
square centers based on the camera coordinate system and PHN pXHN , YHN , ZHNq are the coordinates of
square centers with respect to the horizontal surface (Figure 5). Clearly, the position of PCN represents
the relative position between the camera and the marker plane, and the position PHN represents the
relative position between the follower and the leader vehicles. Thus, the relationship between PCN and
PHN could be written as:

XCN “ XHNcosγ´YHNsinγ (5)

ZCN “ ZHN (6)

Because the relative position between the leader and the follower vehicle only corresponds to the
X-Z coordinates, the square centers can be assumed to lie on the horizontal surface. Then, Equation (5)
can be rewritten as:

XHN “
XCN
cosγ

(7)
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γ “ tan´1

¨

˚

˝

3
ř3

n“1 xcnycn ´
´

ř3
n“1 xcn

¯´

ř3
n“1 ycn

¯

3
ř3

n“1 x2
cn ´

´

ř3
n“1 xcn

¯2

˛

‹

‚

(8)

where pxcn, ycnq represent coordinates of the square centers pc pxc, yc, f q in the plane.
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2.1.5. Transformation of Coordinates and Relative Positioning of the Marker

The transformation of coordinates between the camera and the follower vehicle could be expressed
as follows (Figure 2c):

XVN “
XCN
cosγ

sinαEn ` ZCNcosαEn (9)

YVN “
XCN
cosγ

cosαEn ` ZCNsinαEn (10)

where PVN pXVN , YVNq are the coordinates of the square centers in the follower-based local coordinates.
The relative distance D and relative angle β between the leader and the follower vehicle could be
calculated as:

D “

b

X2
V2 `Y2

V2 (11)

β “ tan´1

¨

˚

˝

3
ř3

N“1 XVNYVN ´
´

ř3
N“1 XVN

¯´

ř3
N“1 YVN

¯

3
ř3

N“1 X2
VN ´

´

ř3
N“1 XVN

¯2

˛

‹

‚

(12)

Then, the relative position between the leader and the follower vehicle could be written as

xl_F “ XV2 (13)

yl_F “ YV2 (14)

θl_F “ β (15)

where xl_F, yl_F represents the local position of the leader based on the follower and θl_F is the local
heading angle of the leader based on the follower.

2.2. Camera Vision Data Estimation and Smoothing

Limited by the monocular vision method, the observed leader-follower relative position was
noisy under the worst farm conditions. In some cases, large observed errors would occur or there was
even a failure to detect the marker plane. The estimation and smoothing of the observation data were
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necessary to ensure the accurate tracking of the leader vehicle and also to improve the motion stability
of the follower vehicle. Because the motion of the two vehicles was continuous, the variation of relative
distance and angle between the leader and the follower vehicle was also continuous. The commonly
used method of least-squares was introduced to estimate and smooth the relative distance D and
the relative heading angle β between the leader and the follower vehicle by fitting a quadratic curve
separately. During the process of data estimation and smoothing, estimated data could be obtained
by fitting the stored latest n points of observation data to a quadratic curve using the least-squares
method. In this study, the quadratic curve could be written as:

q pnq “ an2 ` bn` c (16)

where n denotes observation times used to store and fit the data, and q pnq is the vector of the stored
observation data sequence, including the relative distance and the relative heading angle. q pnq is
defined as:

q pnq “

˜

D pnq
β pnq

¸

(17)

To ensure the fitting effect, avoid collapse of the least-squares method and maintain the original
transfer tendency of the leader-follower relative position, the data stored for fitting required appropriate
handling. The estimation and smoothing process was realized through two steps: first, once a new
camera observation was available, the sequence of the stored observation data would be updated and
the latest stored data after updating was temporarily determined as follows:

q piq “ q pi` 1q i P p0, 1 . . . . . . n´ 1q (18)

q pnq “

#

qC_obs
q pn´ 1q

qE_1 ă qTh
qE_1 ą qTh

(19)

qE_1 “ |q pn´ 1q ´ qC_obs| (20)

Second, after fitting to the quadratic curve using the least-squares method, the latest stored data
and the current leader-follower relative position could be determined as follows:

q pnq “

#

qC_obs
qFit

qE_2 ă qTh
qE_2 ą qTh

(21)

qE_2 “ |qC_obs ´ qFit| (22)

qEst “ q pnq (23)

where qC_obs is the vector of the current camera observed data, qFit is the vector of the fitted current
relative distance and relative angle using the stored n times of observation data, qEst is the vector
defining the current relative distance and relative angle, q piq is the vector of the stored ith observation,
qE_1 is the vector of the distance between the current observation and last observation, qE_2 is the
vector of the distance between the current observation and fitted observation, and qTh is the vector of
the threshold values, set as (1 m, 40˝).

2.3. Design of Control Law for the Leader Trajectory Tracking of the Follower Vehicle

In this study, only the leader-follower relative position information was used by the follower
vehicle to track the leader trajectory. The absence of information exchange and absolute reference
positions made the leader trajectory thoroughly uncertain for the follower vehicle, and the tracking
position for the follower vehicle was ambiguous. A feedback control method based on the
leader-follower relative position was proposed to track the trajectory of the leader.



Sensors 2016, 16, 578 9 of 19

As described in Figure 6, the required position of the follower vehicle is set at P2, with a distance
d01 from the leader vehicle rear axis and an angle Φ01 with the leader vehicle rear axis. Assuming the
leader vehicle is driven with a straight trajectory, the position of P2 in the leader-based local coordinates
could be written as:

»

—

–

xreq_L
yreq_L
θreq_L

fi

ffi

fl

“

»

—

–

d01cos Φ01

d01sin Φ01

0

fi

ffi

fl

(24)
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To improve the control freedom of the follower vehicle to realize the tracking of the uncertain
leader vehicle trajectory, a control point C, located on the centerline of the follower vehicle, was
introduced. Moreover, the distance from the rear wheel axial center to the control point C was
defined as:

lc “ k0l (25)

where l is the length from the front wheel axial center to the rear wheel axial center; lc is the length
from the rear wheel axial center to the control point C; the parameter k0 is used to determine the
location of control point C. The position of the control point C in leader-based local coordinates could
be written as:

»

—

–

xc_L
yc_L
θc_L

fi

ffi

fl

“ ´

»

—

–

cos β sin β 0
´sin β cos β 0

0 0 1

fi

ffi

fl

»

—

–

xl_F
yl_F
θl_F

fi

ffi

fl

`

»

—

–

lc cos β

´lc sin β

0

fi

ffi

fl

(26)

Combined with Equations (13)–(15) and (24)–(26), the control point C-based position tracking
error between the follower vehicle and its requirement position could be calculated as:

»

—

–

xe_c

ye_c

θe_c

fi

ffi

fl

“

»

—

–

xc_L
yc_L
θc_L

fi

ffi

fl

´

»

—

–

xreq_L
yreq_L
θreq_L

fi

ffi

fl

“ ´

»

—

–

cos β sin β 0
´sin β cos β 0

0 0 1

fi

ffi

fl

»

—

–

XV2

YV2

β

fi

ffi

fl

`

»

—

–

lc cos β

´lc sin β

0

fi

ffi

fl

´

»

—

–

d01cos Φ01

d01sin Φ01

0

fi

ffi

fl

(27)
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A simple steering strategy for responding to longitudinal and heading tracking error is given as:

δ “ k1ye_c ` k2θe_c ` k3 sin θe_c (28)

A PID controller was designed to maintain the required distance between the leader and the
follower vehicle; control of the follower velocity could be given as:

vt “ vt´1 ` kD pet ´ et´1q ` kIet ` kP pet ´ 2et´1 ` et´2q (29)

e “ pD´ d01q (30)

where k1, k2, k3 are control parameters corresponding to the required distance d01 and angle Φ01; kD,
kI , kP are parameters of the PID controller adjusted during field experiments. Notice that once the
required values of distance d01 and angle Φ01 were altered, the control parameters also needed to
be adjusted.

3. Field Experiments

Experiments for verifying the stability and accuracy of the camera-marker sensing system and
leader trajectory tracking accuracy were conducted at the Agricultural and Forestry Research Center,
University of Tsukuba (Ibaraki, Japan). The camera-marker sensing system evaluation experiments
included both a static and a dynamic evaluation experiment. The static evaluation experiment was
intended to verify the stability and accuracy of the designed observation method and optimize the
camera coefficients. The dynamic evaluation experiment was designed to determine the threshold
values for data estimation and smoothing, analyze the observation stability and accuracy, and verify
the effectiveness of the least-squares method-based data estimation and smoothing solution. A SICK
LMS 511 LRF was used to provide reference data, and the relative position from the LRF to the marker
plane was used as reference data to evaluate the camera observation accuracy (Figure 7a).

In the tracking accuracy evaluation experiments, linear and parallel tracking experiments were
conducted on straight, turning, and zigzag paths. Cylindrical markers were mounted above the rear
wheel centers of the leader and follower vehicles (Figure 7b) to facilitate the LMS 511 LRF in recording
their trajectories at a frequency of 25 Hz. The leader vehicle was driven at a velocity of 0.3 m/s. The
required distance d01 between the leader and the follower vehicle was 4 m in linear tracking. In parallel
tracking, the required lateral and longitudinal offsets of the follower vehicle were set at 4 m and 2 m
from the leader vehicle so that the trajectory of the follower vehicle could parallel that of the leader
vehicle at a 2 m interval.
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Figure 7. Field experiments of the leader-follower system. (a) Evaluation of the camera–marker system;
(b) Tracking of a trajectory of the leader vehicle.

4. Results

4.1. Evaluation of Camera-Marker Observation System

In the static evaluation experiment, the maximum distance from the camera to the marker was
approximately 6 m and the relative angle that formed between the marker and the camera axis ranged
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from ´40˝ to 40˝ (Figure 8). Using the LRF data as reference, the accuracy of the leader-follower
relative position obtained from the camera-marker system could be evaluated (Figure 9). Linear
regression analysis showed that the orientation angle and distance between the leader and follower
vehicles obtained from the camera-marker system were stable and had high accuracy (Figure 9a,e).
Meanwhile, the leader-follower relative angle obtained from the camera-marker system was unstable
(Figure 9c). Compared with the accuracy of the orientation angle (Figure 9f), the accuracy of the
distance and relative angle obtained from the camera-marker system degraded as the relative distance
from the camera to the marker increased (Figure 9b,d). This phenomenon was mainly caused by the
limitation of the camera; the pitch angle of the vehicle also potentially caused an observation error of
the uneven ground.

Sensors 2016, 16, 578 11 of 20 

leader-follower relative position obtained from the camera-marker system could be evaluated 
(Figure 9). Linear regression analysis showed that the orientation angle and distance between the 
leader and follower vehicles obtained from the camera-marker system were stable and had high 
accuracy (Figure 9a,e). Meanwhile, the leader-follower relative angle obtained from the 
camera-marker system was unstable (Figure 9c). Compared with the accuracy of the orientation 
angle (Figure 9f), the accuracy of the distance and relative angle obtained from the camera-marker 
system degraded as the relative distance from the camera to the marker increased (Figure 9b,d). This 
phenomenon was mainly caused by the limitation of the camera; the pitch angle of the vehicle also 
potentially caused an observation error of the uneven ground.  

 
(a) (b)

Figure 8. Position of the marker. (a) Location of the marker; (b) Relative angle between the marker 
and the x-axis. 

(a) (b) 

(c) (d) 

Figure 8. Position of the marker. (a) Location of the marker; (b) Relative angle between the marker and
the x-axis.

Sensors 2016, 16, 578 11 of 20 

leader-follower relative position obtained from the camera-marker system could be evaluated 
(Figure 9). Linear regression analysis showed that the orientation angle and distance between the 
leader and follower vehicles obtained from the camera-marker system were stable and had high 
accuracy (Figure 9a,e). Meanwhile, the leader-follower relative angle obtained from the 
camera-marker system was unstable (Figure 9c). Compared with the accuracy of the orientation 
angle (Figure 9f), the accuracy of the distance and relative angle obtained from the camera-marker 
system degraded as the relative distance from the camera to the marker increased (Figure 9b,d). This 
phenomenon was mainly caused by the limitation of the camera; the pitch angle of the vehicle also 
potentially caused an observation error of the uneven ground.  

 
(a) (b)

Figure 8. Position of the marker. (a) Location of the marker; (b) Relative angle between the marker 
and the x-axis. 

(a) (b) 

(c) (d) 

Figure 9. Cont.



Sensors 2016, 16, 578 12 of 19
Sensors 2016, 16, 578 12 of 20 

(e) (f) 

Figure 9. Linear Regression and Accuracy analysis of the camera observation referenced with the 
laser observation. (a) Distance; (b) Relative angle; (c) Orientation angle; (d) Distance error;  
(e) Relative angle error; (f) Orientation angle error. 

The RMS errors of the leader-follower relative distance, relative angle, and orientation angle 
observation were calculated. When the distance between the camera and the marker was 6 m, the 
RMS errors of the leader-follower relative distance, relative angle and orientation angle observation 
were 5.8 cm, 5.07° and 0.228°, respectively. At 4 m, the RMS errors of the leader-follower relative 
distance, relative angle and orientation angle observation were 3.63 cm, 3.01° and 0.239°, 
respectively. Considering that the orientation angle obtained from the camera-marker system was 
stable and had high accuracy, data estimation and smoothing was only conducted for the distance 
and relative angle observed. In the dynamic evaluation experiment, the leader vehicle was driven 
along a zigzag path and the follower vehicle was controlled in remote mode to follow the leader. The 
camera observation data before estimation and smoothing, the estimated and smoothed data 
obtained through least-squares-based curve fitting, and the LRF observation data were recorded 
during driving. 

  
(a)                                         (b) 

 

Figure 10. Relative position between the camera and marker before smooth, smoothed, and LRF 
data. (a) Relative distance; (b) Relative angle. 

The results showed that both the camera data before estimation and smoothing and the 
estimated and smoothed camera data closely matched the LRF data (Figure 10). The RMS errors of 
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distance and relative angle, respectively. These coincided with the results under static conditions, 
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Figure 9. Linear Regression and Accuracy analysis of the camera observation referenced with the laser
observation. (a) Distance; (b) Relative angle; (c) Orientation angle; (d) Distance error; (e) Relative angle
error; (f) Orientation angle error.

The RMS errors of the leader-follower relative distance, relative angle, and orientation angle
observation were calculated. When the distance between the camera and the marker was 6 m, the
RMS errors of the leader-follower relative distance, relative angle and orientation angle observation
were 5.8 cm, 5.07˝ and 0.228˝, respectively. At 4 m, the RMS errors of the leader-follower relative
distance, relative angle and orientation angle observation were 3.63 cm, 3.01˝ and 0.239˝, respectively.
Considering that the orientation angle obtained from the camera-marker system was stable and had
high accuracy, data estimation and smoothing was only conducted for the distance and relative
angle observed. In the dynamic evaluation experiment, the leader vehicle was driven along a zigzag
path and the follower vehicle was controlled in remote mode to follow the leader. The camera
observation data before estimation and smoothing, the estimated and smoothed data obtained through
least-squares-based curve fitting, and the LRF observation data were recorded during driving.
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(a) Relative distance; (b) Relative angle.

The results showed that both the camera data before estimation and smoothing and the estimated
and smoothed camera data closely matched the LRF data (Figure 10). The RMS errors of the camera
observation before estimation and smoothing were 4.7 cm and 3.15˝ for the relative distance and
relative angle, respectively. These coincided with the results under static conditions, meaning that
the motion of the marker and the camera had little effect on the observation accuracy. During the
experiment, the camera-observed data were smoothed by fitting a curve using the least-squares method.
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After data estimation and smoothing, the camera observation data were observably smoothed, as
shown in the dotted rectangle (Figure 10). Furthermore, the accuracy of the leader-follower relative
position observation was improved after data estimation and smoothing, and the RMS errors of
the relative distance and relative angle were reduced to 4.6 cm and 2.87˝, respectively (Figure 11).
Compared with the camera observation data before estimation and smoothing, the dispersion of
the estimated and smoothed data were also reduced, with the standard deviations of the relative
distance and relative angle reduced from 4.9 to 4.2 cm and 3.74 to 2.55˝, respectively (Figure 12). Those
performances showed the potential for stable and accurate observation when applied to real-sized
tractors, being clearly insensitive to the uneven ground and having stable motion characteristics
compared with the small-sized vehicles.
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4.2. Tracking Performance

Tracking accuracy was evaluated using the interval space between the leader and follower vehicle
trajectories; the trajectory segments AB and CD were used to calculate this interval space. The follower
vehicle could adjust its state and arrive at its required position relative to the leader rapidly and
smoothly (Figures 13–15).
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The tracking error between the leader and follower vehicle trajectories is shown in Figures 16–18.
During tracking on a straight path, a very low tracking error between the trajectories of the leader and
follower vehicles was observed; the maximum and RMS tracking errors between these trajectories were
12.5 and 6.5 cm for linear tracking and 14.1 and 7.1 cm for parallel tracking, respectively (Figure 16).
During tracking on a turning path, the maximum and RMS tracking errors between the trajectories
were 18.2 cm and 8.9 cm for linear and 29.0 cm and 14.6 cm for parallel tracking, respectively (Figure 17).
During tracking on a zigzag path, the maximum and RMS tracking errors between the trajectories were
35.0 cm and 16.4 cm for linear and 24.5 cm and 14.0 cm for parallel tracking, respectively (Figure 18).
In comparison with the straight path, the turning and zigzag path tracking showed higher error. From
trajectories of the leader and follower vehicles, it can be observed that a larger variation of the direction
of the leader vehicle would result in a larger tracking error (Figures 14 and 15). This error remained
at a low level when the leader vehicle was driven on a constant-curvature path. Considering road
space and agricultural operations, the tracking accuracy was sufficient to ensure safe tracking and
precision operation.
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path. (a) Linear tracking; (b) Parallel tracking.
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5. Discussion

The driverless follower is the key of this research, which confirmed the high accuracy in following
the human driven leader and the performance of the control system. Experiments were conducted
using a specially built robot as follower to confirm the accuracy of tracking and develop a control
system without any built-in communication between the leader and the follower. The travelling
courses were chosen according to standard agricultural operations, such as straight, turning and
zigzag paths. The tracking performance between the leader and the follower was satisfactory under
regular field conditions. Undulating terrain and adverse climatic conditions were ignored in the field
experiments. The experiments were conducted mostly under daytime conditions. The camera marker
system was assisted with the LRF for cross checking the accuracy of the marker positions both in
static and dynamic conditions. The LRF was utilized as an assist device to provide reference data
and recorded the trajectories during tracking. The contour extraction was influenced by illumination
conditions. Low illumination conditions or strong sunlight under an outdoor environment would
reduce the contrast ratio of the image and affect the contour of squares, causing marker detection
failure. To expand the scope to adapt to various illumination conditions, the image contrast was
enhanced using a histogram method that ensured stable observation under various light conditions
while conducting experiments during the daytime. The vertical vehicle’s movement or pitch angle of
the vehicle body was not considered, as there was not much effect of posture changes of the leader and
follower vehicles when projected onto the image plane while travelling on regular ground. This was
one of the limitations of this research. However, to overcome such limitations, the centerline of the
squares in the vertical direction was used to estimate the relative position between the camera and
marker plane. The experiments were conducted with the prototype robot to confirm the accuracy
and develop suitable control systems. The validation was done with a human driven small vehicle as
leader and the autonomous prototype robot as follower. Definitely in an agricultural environment an
actual size autonomous unit can be used as follower by implementing the proposed camera marker
sensing and control systems. The productivity would definitely be higher, by reducing labor through
enabling the human driven leader and autonomous follower system.

6. Conclusions

In this study, a human-driven leader and automatic follower trajectory-tracking system was
developed. A low cost camera servo system, comprising a web camera, encoder and a servomotor,
was implemented. An effective camera–marker detection method was developed to follow the
leader, which was controlled by an operator. A solution for enhancing image contrast that involved
using the histogram method, offsetting vehicle roll angle, and estimating and smoothing the camera
observation using the least-squares method ensured a stable and accurate monocular vision system
that was able to estimate the relative position between the leader and the follower vehicles with
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high accuracy. A feedback control rule and a PID controller were also developed and exhibited good
performance for linear and parallel leader trajectory tracking. The estimation and smoothing of the
camera observation data reduced camera noise and yielded relative positional information between
the leader and the follower vehicle with high accuracy. As a result, a stable velocity and steering angle
of the follower vehicle and high accuracy of the trajectory tracking was established. Thus, a low-cost,
reliable navigation system for a leader and follower vehicle tracking system was demonstrated. In
further research, the leader should be converted to a remote control unit to make it unnecessary for the
operator to be on-board the leader vehicle. Additionally, to overcome the limitations of the prototype
leader-follower system, such as guidance in the adverse climatic conditions are required to consider
for agricultural operations.
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Nomenclatures

The following nomenclature was used in this manuscript:

D: Relative distance between the leader and the follower, m qFit: Vector of fitted current relative distance and relative angle
using the stored n points of observation data

β: Relative heading angle between the leader and the follower qEst: Vector of the current relative distance and relative angle
α: Orientation angle of the leader relative to the follower q piq: Vector of stored ith observation
H: Side length of squares on marker, m qE_1: Vector of distance between current observation and

last observation
L: Interval between square centers, m qE_2: Vector of distance between current observation and

fitted observation
αs: Angle between square center and camera optical axis qTh: Vector of threshold values
αEn: Angle between optical axis and the follower centerline xreq_L, yreq_L: Required position of the follower in the

leader-based local coordinates, m
h: Height of squares in the image plane, m θreq_L: Required heading angle of the follower in the

leader-based local coordinates
f , fx: Camera focal length l: Length of vehicle wheelbase, m
cx: Shift of camera optical axis lc: Length from the follower rear wheel axial center to the

control point C, m
γ: Roll angle of camera around its optical axis d01: Required relative distance between the leader and the

follower, m
xcn, ycn: Coordinate of square centers under image coordinate
system, pixel

Φ01: Required relative heading angle between the leader
and follower

XCN , YCN , ZCN : Coordinate of square centers under camera
coordinate system, m

xc_L, yc_L: Local position of the control point C in the
leader-based local coordinates, m

XHN , YHN , ZHN : Coordinates of square centers with respect to
the horizontal surface, m

θc_L: Local heading of the control point C in the leader-based
local coordinates

XVN , YVN : Coordinates of the square centers in the
follower-based local coordinates, m

xe_c: Control point C-based lateral tracking error, m

xl_F, yl_F: Local position of the leader based on the follower, m ye_c: Control point C-based longitudinal tracking error, m
θl_F. : Local heading angle of the leader based on the follower θe_c: Control point C-based heading tracking error
q pnq: Sequence of stored observation data δ: Steering angle of the follower vehicle
qC_obs: Vector of current camera observed data v: Velocity of the follower vehicle, m s´1
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