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Crop cultivation in controlled environment plant factories offers great potential to stabilize
the yield and quality of agricultural products. However, many crops are currently
unsuited to these environments, particularly closed cultivation systems, due to space
limitations, low light intensity, high implementation costs, and high energy requirements.
A major barrier to closed system cultivation is the high running cost, which necessitates
the use of high-margin crops for economic viability. High-value crops include those
with enhanced nutritional value or containing additional functional components for
pharmaceutical production or with the aim of providing health benefits. In addition, it
is important to develop cultivars equipped with growth parameters that are suitable
for closed cultivation. Small plant size is of particular importance due to the limited
cultivation space. Other advantageous traits are short production cycle, the ability to
grow under low light, and high nutriculture availability. Cost-effectiveness is improved
from the use of cultivars that are specifically optimized for closed system cultivation. This
review describes the features of closed cultivation systems and the potential application
of molecular breeding to create crops that are optimized for cost-effectiveness and
productivity in closed cultivation systems.

Keywords: plant factory, molecular breeding, agricultural crop trait, additional value, molecular farming, edible
medicine

INTRODUCTION

Plant factories consist of artificially controlled environments for the cultivation of plants within
buildings. Agricultural commodities can be efficiently and continuously produced in plant factories
regardless of season or external weather conditions. Optimal environmental conditions can be
maintained by control of factors such as light intensity, light duration, CO2 concentration,
and nutrient levels. Plant factories are divided into the following three production types
according to their light sources: (1) solar light, (2) combined solar and artificial light, and (3)
perfection-artificial-light (Goto, 2011). Solar and combined-light factories are suitable for the
cultivation of crops that need intense light. However, it is difficult to use multistage racking
in these systems, and the management of pests and diseases is also challenging. Perfection-
artificial-light systems, also known as closed cultivation systems, facilitate the maintenance of
pest- and disease-free conditions and can therefore be used to produce pesticide-free cultivars.
The use of closed cultivation systems to produce genetically modified crops helps prevent
the spread of transgenic plants and pollen to the external environment. Closed cultivation
systems can also be used to produce cultivars through the use of multistage-cultivation-racks,
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which make efficient use of limited space, thereby contributing
to increased cultivation number and yields per unit area (Kozai,
2013). However, due to the limited light intensity and limited
space, such systems are not suitable for every crop. A further
disadvantage is the high operating costs resulting from high
energy requirements for artificial lighting and air-conditioning
(Kozai, 2013).

Production cost is a major factor for plant factories. To be
profitable, agricultural cultivation in plant factories is mostly
limited to products such as leafy vegetables and flower and
vegetable seedlings. Advantages of leafy vegetables, such as lettuce
and arugula, include the large proportion of the plant that is
edible, year-round demand, high productivity over a short life
cycle, and short plant height. Additionally, the energy costs are
relatively low because leafy vegetables can grow under low light
intensities. High light intensities (photon flux density) can be
achieved using high-pressure sodium lamps and metal halide
lamps (Goto, 2011). If energy costs were not of concern, it would
be possible to dramatically increase the number of crop species
that could be cultivated in plant factories by using high-intensity
lamps alongside air-conditioning.

In this review, molecular breeding of crops to enhance their
suitability for cost-effectiveness in closed cultivation systems is
discussed. Preferable crop traits for closed cultivation systems are
also suggested in terms of the potential value.

INCREASING THE ADDED VALUE OF
AGRICULTURAL PRODUCTS

Two major considerations of closed cultivation systems are the
initial costs and the running costs, with high energy costs of
particular concern (Figure 1). Profitability can be increased by
producing crops with enhanced value.

Agricultural Crops with Health Benefits
Two of the main approaches to increasing the value of a food
crop are (1) the accumulation of large quantities of a desirable
intrinsic nutrient or reduction of undesirable compounds, and
(2) accumulation of valuable compounds that are not normally
produced in the crop (Figure 1).

Agricultural crops with added value, such as those with
improved nutritional qualities, are under continuous develop-
ment. Newell-McGloughlin (2008) reviewed improvements to
various crops, including increased protein quantity and quality
in maize, potato, rice, and soybean; increased vitamin content
(vitamins C, E, or provitamin A) in maize, strawberry, and
tomato; increased carotenoid levels (β-carotene, lycopene, or
lutein) in rice, potato, and tomato; increased flavonoid levels in
maize, rice, tomato, and soybean; increased iron content in rice
and lettuce; and decreased glycoside and solanin levels in potato.

Other examples include improvements to the nutritional
qualities of rice and tomato. Rice contains little natural
β-carotene, a precursor of provitamin A. Golden rice was
modified to accumulate β-carotene by the insertion of exogenous
genes (Ye et al., 2000). In 2008, two transcription factors
from snapdragons were expressed in tomato to enhance

anthocyanin accumulation in tomato fruit to levels typically
found in blackberries and blueberries (Butelli et al., 2008).
These nutritionally and functionally enriched products may be
valuable for human and animal health, particularly in situations
where availability of nutrients is low. However, where nutritional
compounds can be acquired from other foods naturally rich in
those nutrients, the market value of nutritionally enhanced foods
may not be high enough to justify the economic inputs required.
Some economically valuable compounds can be produced that
are not commonly found in a daily diet, such as therapeutic
components of medicinal plants. The high value of such
compounds may allow economically viable production.

Miraculin is a taste-modifying glycoprotein that is extracted
from the miracle fruit (Richadella dulcifica). It has the unique
ability to modify a sour taste into a sweet taste and has potential
as a natural, safe, low-calorie alternative to artificial sweeteners
for diabetics and people on restricted diets. However, despite
its great potential, miracule fruit production is limited because
it is a tropical plant that is difficult to cultivate (Kurihara and
Nirasawa, 1997). Introduction of the miraculin gene into the
tomato genome resulted in the production of tomato fruit that
accumulated miraculin (Sun et al., 2007; Hirai et al., 2011a).
One gram of miracle fruit pulp typically contains approximately
400 µg of miraculin glycoprotein. Genetically, modified tomatoes
accumulated 100–1700 µg of miraculin per gram of fresh
weight tomato fruit. Miraculin accumulation varied according
to the promoter and terminator used for transgene expression,
cultivation conditions, and host cultivar used (Hiwasa-Tanase
et al., 2012). Furthermore, miraculin accumulation in modified
tomato was more stable in a closed cultivation system than in a
netted greenhouse (Hirai et al., 2010). In Japan, a single miracle
fruit is worth more than $2. Miraculin-accumulating tomatoes
and purified miraculin protein can be produced more cost-
effectively than miracle fruit, and the high value of miraculin-
producing tomatoes compared to normal tomatoes is sufficient
to justify the use of plant factories.

Agricultural Crops as Edible Medicines
The production of therapeutic recombinant proteins using
transgenic plants has been actively promoted due to the
numerous potential advantages of this approach (Twyman et al.,
2003; Obembe et al., 2011; Ahmad et al., 2012; Xu et al.,
2012; Abiri et al., 2015). Compared to mammals and bacteria,
plants act as cost-effective bioreactor systems that can be
scaled up easily, lack prions, have no human viral pathogen
or toxic contamination risks, and have high storage capacities
when products accumulate in seeds. Furthermore, purifying and
processing costs are limited and labor costs are minimized if
the resultant plants can be directly consumed as medicines
(Ahmad et al., 2012; Jacob et al., 2013). The commercial
production of recombinant proteins using closed cultivation
systems may allow more efficient and cost-effective production
of feedstocks and bio-pharmaceutical products compared to
other production systems. Several recent reviews highlighted the
potential of plants for use in molecular farming of desirable
compounds such as industrial enzymes and pharmaceutical
vaccines and antibodies (Obembe et al., 2011; Ahmad et al., 2012;
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FIGURE 1 | Features of a closed cultivation system and ideal traits for cultivation in such a system.

Xu et al., 2012; Jacob et al., 2013; Abiri et al., 2015; Fahad et al.,
2015).

Although the majority of vaccines are administered by
injection, vaccines that can be delivered orally and absorbed
through the mucosal immune system have practical advantages.
Vaccines that are delivered via the mucosal immune system affect
both local and systemic immunity, are easy to administer, and
are less stressful for patients compared to painful injections.
An “edible vaccine” is a crop that accumulates immunogenic
antigens in the edible tissue for livestock or human use. There
are numerous published studies regarding vaccine production in
plants such as potato, lettuce, soybean, maize, tomato, banana,
and rice (Obembe et al., 2011; Aswathi et al., 2014; Saxena and
Rawat, 2014; Azegami et al., 2015; Fahad et al., 2015). Recently,
soybeans that accumulated Alzheimer’s disease vaccine peptides
(Maruyama et al., 2014), carrots that produced HIV antigens
(Lindh et al., 2014), and rice that accumulated peptide vaccines
for pollen allergies (Takaiwa and Yang, 2014) were developed for
human use.

In Japan, transgenic strawberries expressing dog interferon-α
were commercialized and sold as an oral drug from March 2014.
This is the first example of the use of a powdered transgenic plant
as a medicine (Tabayashi and Matsumura, 2014). The powdered
plant product was effective in the treatment of periodontal
disease, and no extraction or purification of the active ingredients
was needed. Patent applications were submitted and published
in several countries (PTC number PTC/JP2007/050281). The
transgenic strawberry is developed from cultivation to drug
product in a completely closed cultivation system. Strawberry was
selected as the host plant because it can be eaten without being
cooked, which is an important advantage for the production
of heat-sensitive interferon-α. In addition, strawberry can be
readily reproduced by vegetative propagation, which decreases
the risk of gene silencing (Stam et al., 1997; Sun et al., 2006;
Hirai et al., 2011b), facilitates the development process, and

aids production of consistent seed lots. Although, the strawberry
plant is considerably less productive with respect to speed of
growth and biomass accumulation compared to other plants, the
advantages described above made strawberry an ideal subject for
development of this medicine.

Overall, molecular farming is an excellent system for utilizing
crop characteristics to produce edible medicines with low
purification costs (Figure 1). Moreover, closed cultivation
systems that allow stable and uniform production of a
crop are extremely suitable for the consistent production of
pharmaceutical and industrial compounds using transgenic
plants.

CROP TRAITS TO ENHANCE
CULTIVATION IN PLANT FACTORIES

Features of closed cultivation systems include basal multistage-
rack cultivation, soil-free cultivation, optional continuous
photoperiod growth, limited light intensity, and low-stress
conditions (Figure 1). Therefore, many crops developed for
cultivation in the field are unsuitable for closed cultivation
system. If agricultural crops can be adapted for growth in
closed cultivation systems, such as with lettuce, modification of
growth patterns to allow high productivity will enhance cost-
effectiveness. Furthermore, the specialized cultivars developed
for use in closed cultivation systems can be used as host plants
for genetic introduction of high-value traits.

There are several crucial factors that must be considered when
developing crops for cultivation in enclosed and limited spaces,
such as plant size, life-cycle duration, and yield (Figure 1). Plants
need to be relatively small to suit the closed system, although
the importance of this factor depends on the crop. Field rice
and wheat cultivars acquired semi-dwarf traits during the “Green
Revolution” (Hedden, 2003). Before plants with semi-dwarf traits
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FIGURE 2 | A tomato developed for cultivation in a closed cultivation system. The tomato plant 56B (cv. Moneymaker), which accumulates miraculin, has a
normal plant size and exhibits an indeterminate type; it was crossed with the dwarf, determinate-type tomato Micro-Tom with the aim of enhancing traits that would
be beneficial for growth in a closed cultivation system. Hybrid lines were selected based on plant size, fruit size, determinate inflorescence and miraculin accumu-
lation, and the lines were named cross #1 and cross #2 (Kato et al., 2010). (A) Seedlings at 22 days after germination. (B,C) Average size of red fruit. This figure was
previously presented in Kato et al. (2010) and has been slightly modified.

became available, the stems of tall wheat and rice plants were not
strong enough to support the heavy weight of the grain of high-
yielding varieties. Therefore, large yield losses occurred as a result
of plant lodging. The semi-dwarf trait confers lodging resistance
under heavy manuring, and total biomass is increased. High
yields can be attained by reducing production loss from lodging.
The semi-dwarf genes in rice and wheat were identified from
gibberellin (GA)-related mutations. The gene Reduced height1
(Rht1), which is responsible for the semi-dwarf trait in wheat,
encodes a negative regulator of the GA response (Peng et al.,
1999). The gene semi-dwarf1 (sd1), which is responsible for the
semi-dwarf trait in rice, encodes the GA synthesis enzyme GA
20-oxidase (Sasaki et al., 2002; Sakamoto and Matsuoka, 2004).
By contrast, the barley dwarfing gene uzu is GA-independent.
Semi-dwarf barley does not respond to brassinosteroids (BRs), a
type of plant steroid hormone. The uzu phenotype is caused by a
missense mutation in the BR receptor protein, barley (Hordeum
vulgare) HvBRI, a homolog of Arabidopsis BR-insensitive 1 (BRI1;
Chono et al., 2003). The BRI1 mutant homolog in rice, OsBRI1,
shows not only the semi-dwarf phenotype but also an erect-
leaf phenotype. Similar phenotypes were detected in rice by
manipulating the C-22 hydroxylation step in the BR biosynthesis
pathway (Sakamoto et al., 2006). The aboveground biomass of BR
mutant rice plants was 1.4-fold higher than in WT plants. This
increase was attributed to improved photosynthetic efficiency
from the increased light penetration to lower leaves afforded by
the erect-leaf phenotype (Sakamoto et al., 2006). Manipulation of
BR levels and BR sensitivity via modification of other BR-related
genes increased yields in rice, barley, cotton, and Arabidopsis
(Divi and Krishna, 2009; Vriet et al., 2012).

In recent work, the expression of the chimeric repressor for
Arabidopsis ILI1 binding bHLH (AtIBH1; P35S:AtIBH1SRDX),

which has the plant-specific transcriptional repression domain
SRDX fused to the C-terminus of AtIBH1, induced a dwarf
phenotype in Arabidopsis and tobacco plants, with reduced cell
size (Hiratsu et al., 2003; Ikeda et al., 2012; Nagatoshi et al., 2016).
AtIBH1, which is a transcription factor, regulates cell elongation
in response to brassinosteroid and gibberellin signaling (Ikeda
et al., 2012). The AtIBH1SRDX tobacco plants produced four
times more biomass per unit of cultivation volume, which
means vertical farming that is stacking of multiple shelves for
plant growth, compared with wild-type plants (Nagatoshi et al.,
2016). When the genes for anti-hepatitis B virus antibodies were
expressed in the AtIBH1SRDX tobacco plants, the dwarf plants
produced about four times more antibody per unit of cultivation
volume than in wild-type plants. They showed that AtIBH1SRDX
is a useful tool for the manipulation of plant phenotype for cost-
effective production of high-value products by transgenic plant in
closed cultivation systems.

Shortening the life cycles of cultivated plants would increase
annual production in a closed system. Arabidopsis TERMINAL
FLOWER 1 (TFL1) is a key gene that affects the developmental
phases and architecture of Arabidopsis (Shannon and Meeks-
Wagner, 1991; Alvarez et al., 1992; Ray et al., 1996). The
recessive mutant tfl1 exhibits a terminal flower phenotype and
has a significantly shorter vegetative phase than wild-type plants
due to its early transition to the reproductive phase (Shannon
and Meeks-Wagner, 1991; Bradley et al., 1997). Conversely
overexpression of RCN1 and RCN2, rice TFL1 homologs, revealed
delay of phase change from the branch shoot to the floral
meristem state (Nakagawa et al., 2002). In tomato, the SELF-
PRUNING (SP) gene, which is a homolog of TFL1, regulates
switching from vegetative to reproductive phase (Pnueli et al.,
1998). The recessive sp mutant shows ‘determinate’ trait and the
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trait confers the short plant height and the short life cycle in
comparison with ‘indeterminate’ tomato. Numerous genes that
regulate flowering time were previously identified and considered
for plant breeding applications (Jung and Müller, 2009; Blümel
et al., 2015).

The tomato (Solanum lycopersicum) cultivar Micro-Tom,
which was bred for home gardening purposes, has a miniature
growth phenotype. Although Micro-Tom fruits have poor
flavor, the cultivar exhibits small features (height approximately
10–20 cm) and can be easily transformed, and it is therefore
widely used as a tomato research model (Matsukura et al., 2008;
Saito et al., 2011). The dwarf trait in Micro-Tom is attributed
to at least two major recessive mutations: dwarf (d) in the gene
encoding the BR biosynthetic enzyme, and miniature (mmt)
in a GA signaling-related gene (Martí et al., 2006; Matsukura
et al., 2008). Moreover, the Micro-Tom cultivar has a determinate
phenotype derived from a mutation in the SPgene. Micro-Tom
has a short life cycle (70–90 days from seed germination to fruit
maturation) compared with most cultivated tomato varieties (90–
110 days) (Saito et al., 2011), exhibits high fertility, and sets a
large amount of fruit under normal fluorescent lamps. All of the
traits exhibited by Micro-Tom are useful for breeding new plant
varieties for use in closed cultivation systems. The genetically
modified tomato cultivar “Moneymaker,” which produces and
accumulates miraculin as a result of an inserted exogenous
gene, is indeterminate and has a normal size. Moneymaker was
crossed with Micro-Tom to create a tomato suitable for a closed
cultivation system (Kato et al., 2010). Selected hybrids were
determinate and smaller than the Moneymaker parent. Hybrid
fruits were larger than those of Micro-Tom, and the yield per area
was also higher (Figure 2).

Luxuriant foliar development and fruit setting under weak
light, as well as adaptability to nutriculture systems, contribute
to balanced growth in closed environments; however, the factors
that determine that these traits are not well-understood. Cultivars
or mutants with desirable traits might be identified by screening
genetic resources obtained from past breeding programs or
from mutagenized populations developed using ethyl methane
sulfonate (EMS) or gamma irradiation (TOMATOMA1, Genes
that Make Tomatoes2, Tomato Genetics Resource Center3).

ADDITIONAL NOTES

This review highlights genetic targets that may be of use in
molecular breeding programs to develop agricultural crops for
profitable cultivation in closed cultivation systems. To create
objective traits, a wide variety of genetic information and
molecular breeding techniques are used, including marker-
assisted selection, quantitative trait locus (QTL) analysis, genetic
linkage maps, and transgenic techniques (Jiao et al., 2012;
Lusser and Davies, 2013). Whole genomes have been completely
sequenced for a variety of cultivated crops, including rice

1http://tomatoma.nbrp.jp/
2http://zamir.sgn.cornell.edu/mutants/
3http://tgrc.ucdavis.edu/index.aspx

(2005), maize (2009), wheat (2014), soybean (2010), tomato
(2012), melon (2012), watermelon (2012), potato (2008),
cucumber (2009), and eggplant (2014). These rich sources of
sequence information can be readily applied to breeding. Active
accumulation of transgenic proteins for pharmaceutical and
health purposes can be optimized using several approaches.
These include selection of an appropriate host plant, codon
optimization, choice of promoter and terminator, use of specific
organs and tissues for protein secretion, and expression of
the target gene from the nuclear or chloroplast genomes
(Twyman et al., 2003; Xu et al., 2012; Abiri et al., 2015). These
techniques and tools for molecular breeding make it possible
to create agricultural crops with various useful and diverse
traits.

In this review, breeding targets were discussed that are likely
to be of greatest utility in optimizing plant growth in closed
cultivation systems. Several additional traits could also be of use
(Figure 1). For example, parthenocarpy, which is the production
of fruit without fertilization, could reduce workloads and labor
costs by reducing inputs needed for consistent pollination.
Parthenocarpy is also valuable in the containment of transgenic
plant materials. The jointless trait, where no abscission zones are
formed on leaves, flowers, or fruit, would reduce product loss
through dropping. The free-standing trait, which allows plants to
grow without additional support structures, would be conducive
to reducing time and material costs. The jointless and free-
standing traits may be particularly useful for cultivation systems
that employ moving shelves.

CONCLUSION

Since the beginning of agriculture, numerous plants have been
developed through artificial selection for field cultivation.
Modern closed cultivation systems allow environmental
conditions to be tightly controlled and ensure the production.
The systems offer great potential for production of specialized
crops which have additional value. However, crop breeding
specifically for closed cultivation systems had been limited to
date despite its potential availability. Novel cultivars are required
to sympathize with the challenges of agricultural technology.
Breeding an indoor suitable cultivar can be accomplished
through complex molecular techniques, which property benefits
will familiarize closed cultivation systems.
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