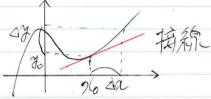
微積分第千回

機分差本的はidea 曲がっているものを まっすぐはもので置き換えよう



$$\Delta Y = f(x_0 + \Delta x) - f(x_0)$$

$$= g(\Delta x)$$

多変数 2変数 接手面 3変数 代数的に扱う

$$f: R \rightarrow R$$

 $f(x) = ax$ 比例関数

$$\begin{cases}
f(g(+y)) = f(x) + f(y) \\
f(xx) = x f(x) & (x \in \mathbb{R})
\end{cases}$$

积的関数 という

$$\begin{cases}
f(x+y) = f(x) + f(y) & \text{if } (x_1) + (y_1) = (x_1+y_1) \\
f(x,x) = x + (x_1) & \text{if } (x_2) + (y_2) = (x_2+y_2)
\end{cases}$$

$$\begin{cases}
\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

Date

$$\begin{array}{l}
\mathbb{E}_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbb{E}_{2} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad \mathbb{E}_{n} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbb{E}_{n} \\
\mathbb{$$

$$f,g:\mathbb{R}^n\to\mathbb{R}^m$$
 新部 とする。

$$(f+g)(x) = f(x) + g(x) と定義する.$$

$$(f+g)(x+y) = f(x+y) + g(x+y)$$

= $f(x) + f(y) + g(x) + g(y)$
= $f(x) + g(x) + f(y) + g(y)$

$$= (f+g)(x) + (f+g)(y)$$

report I
$$\alpha \in \mathbb{R}$$
 $(f+g)(\alpha \mathcal{R}) = \alpha (f+g)(\alpha)$ the report I

$$(xf)(x) = xf(x) と定義する.$$

$$(xf)$$
 も続形 である
 $(xf)(x+y) = x f(x+y)$

$$= \alpha \left\{ f(x) + f(y) \right\}$$

$$= \chi f(\mathfrak{A}) + \chi f(\mathfrak{F})$$

$$= (xf)(x) + (xf)(y)$$

report
$$I$$

$$(\alpha f)(\beta x) = \beta(\alpha f)(x) + 3IB + f$$

Date

$$f, g: \mathbb{R}^n \to \mathbb{R}^m$$
 \$1.75

$$(f+g)(g) = g_4(f+g)(e_1) + \dots + g_n(f+g)(e_n)$$

$$\left[(f+g)(e_1) - \dots (f+g)(e_n) \right]$$

$$\left[f(e_1) + g(e_1) - \dots f(e_n) + g(e_n) \right]$$

$$\left[f(e_1) - \dots f(e_n) \right] + \left[g(e_1) - \dots g(e_n) \right]$$

$$A \qquad B$$

$$f \iff A = \begin{pmatrix} a_1 & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

$$g \iff B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$f+g \longrightarrow A+B = (a_{21}+b_{11} \ a_{12}+b_{12})$$

$$\alpha f \rightleftharpoons \forall A = (\forall a1) \forall a12$$

Date

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
, $g: \mathbb{R}^m \to \mathbb{R}^l$ 類形 とする
合成 ($f \circ f$)(\mathfrak{A}) = $f(f(\mathfrak{A}))$ も 観形 である
($f \circ f$)($\mathfrak{A} + \mathfrak{A}$) = $f(f(\mathfrak{A}) + f(\mathfrak{A}))$
= $f(f(\mathfrak{A}) + f(\mathfrak{A}))$
= $f(f(\mathfrak{A}) + g(f(\mathfrak{A})))$
= $(f \circ f)(\mathfrak{A}) + (f \circ f)(\mathfrak{A})$

report
$$\Pi$$
 $(\partial_0 f)(\alpha \alpha) = \alpha(\partial_0 f)(\alpha)$ $\varepsilon \approx \Lambda d$

$$l=m=n=2$$
 $\pm ab$.
 $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

$$f(\mathfrak{A}) = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{22} \end{pmatrix} \begin{pmatrix}$$

$$(g \circ f)(\mathfrak{A}) = g(f(\mathfrak{A}))$$

$$= g((a_{11} \ a_{12})(\mathfrak{A}_{1}))$$

$$= g(a_{11}\mathfrak{A}_{1} + a_{12}\mathfrak{A}_{2})$$

$$= g(a_{11}\mathfrak{A}_{1} + a_{12}\mathfrak{A}_{2})$$

$$= b_{11}(a_{11}x_1 + a_{12}x_2) + b_{12}(a_{21}x_1 + a_{22}x_2) b_{21}(a_{11}x_1 + a_{12}x_2) + b_{22}(a_{21}x_1 + a_{22}x_2)$$

$$= \left(\frac{(b_{11}a_{11} + b_{12}a_{21}) \mathcal{A}_{1} + (b_{11}a_{12} + b_{12}a_{22}) \mathcal{A}_{2}}{(b_{21}a_{11} + b_{22}a_{21}) \mathcal{A}_{1} + (b_{21}a_{12} + b_{22}a_{22}) \mathcal{A}_{2}} \right)$$

$$= \begin{bmatrix} b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\ b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \qquad A = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix}$$