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Bimatoprost, latanoprost, and tafluprost
induce differential expression of matrix
metalloproteinases and tissue inhibitor of
metalloproteinases
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Abstract

Background: Differences in the increase in matrix metalloproteinase (MMP) and decrease in tissue inhibitor of
metalloproteinase (TIMP) activity may contribute to the different characteristics observed clinically on decreased
intraocular pressure in patients with glaucoma or ocular hypertension. The purpose of this study was to investigate
differences in the expression profiles of MMPs and TIMPs induced by the prostaglandin analogs bimatoprost,
latanoprost, and tafluprost in human non-pigmented ciliary epithelial cells (HNPCECs).

Methods: HNPCECs were cultured for 24 h with 0, 10, 100, or 1000 μM of the free acid forms of bimatoprost,
latanoprost, and tafluprost. We measured the expression levels of MMPs and TIMPs using real-time polymerase
chain reaction, and compared the results. Enzyme activities of MMP-2 and −9 in conditioned media were
measured by gelatin zymography.

Results: All prostaglandin analogs we examined dose-dependently increased expression levels of MMP-1, −2, −3, −9,
and −17, whereas expression levels of TIMP-1 and −2 decreased with increasing concentrations of each analog. Each
prostaglandin analog induced different levels of increases in MMPs and decreases in TIMPs.

Conclusions: Unique expression profiles of MMPs and TIMPs induced by bimatoprost, latanoprost, and tafluprost, as
shown in HNPCECs, may contribute to clinically different effects on intraocular pressure decreases in patients with
glaucoma or ocular hypertension.

Keywords: Human non-pigmented ciliary epithelial cells, Matrix metalloproteinases, Prostaglandin analog, Tissue
inhibitor of metalloproteinases

Background
Bimatoprost (amide prodrug of 17-phenyl-PGF2α), lata-
noprost (ester prodrug of PGF2α), and tafluprost
(difluoroprostaglandin derivative of PGF2α) are prosta-
glandin analogs (PGAs) available for clinical use to lower
patients’ intraocular pressure (IOP). Recently, PGAs
were approved as a first-line treatment for glaucoma
based on their efficacy in lowering IOP, lack of relevant
systemic side effects, and requirement for once-daily
dosing [1].

The mechanism by which PGAs reduce IOP has been
well-studied and is believed to occur by enhancement of
uveoscleral outflow due to the regulation of matrix me-
talloproteinases (MMPs) and resulting remodeling of the
extracellular matrix [2–4]. Clinically, we often experi-
ence different effects from the different PGAs. Different
receptor subtypes for PGAs were proposed, and different
PGAs may lower IOP by different mechanisms of action
through these different receptor subtypes [5, 6]. How-
ever, the precise mechanism through which these PGAs
exhibit different effects in individual patients is still un-
clear. Previous studies reported differential expression of
MMPs in the ciliary body or ciliary muscle after bimato-
prost, latanoprost, or tafluprost treatment [2–4, 7]. The
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activity of these endopeptidases is inhibited by endogen-
ous tissue inhibitor of metalloproteinases (TIMPs); thus,
the balanced expression of MMPs and TIMPs is import-
ant for maintaining homeostasis of the extracellular
matrix and for reducing IOP by these PGAs.
Human non-pigmented ciliary epithelial cells (HNPC

ECs), which comprise the blood-aqueous barrier (BAB),
are involved in controlling IOP. HNPCECs secrete aque-
ous humor. A decrease in aqueous humor secretion oc-
curs in association with uveitis, especially uveitis involving
the ciliary body epithelium (iridocyclitis) [8]. We previ-
ously showed that TNF-α (tumor necrosis factor-α) pro-
motes the induction of MMPs in HNPCECs, which
degrade claudin-1 and occludin, major constituents of
tight-junctions between HNPCECs [9]. We found signifi-
cantly increased permeability of a monolayer of HNPCECs
after MMP treatment. We hypothesized that the balance
of MMPs and TIMPs that degrade the components of
tight junctions in the BAB in HNPCECs modifies the pro-
duction of aqueous humor, which consequently decreases
aqueous secretion and IOP.
In the present study, we measured and compared the

expression levels of MMPs and TIMPs in HNPCECs
cultured with various concentrations of bimatoprost, lata-
noprost, or tafluprost. Differences in the increase in MMP
and decrease in TIMP activity may contribute to the dif-
ferent characteristics observed clinically on decreased IOP
in patients with glaucoma or ocular hypertension.

Methods
Cell culture
HNPCECs were prepared as described previously [9].

Cell treatment
Free-acid forms of bimatoprost, latanoprost, or taflu-
prost (Cayman Chemical Ann Arbor, MI, USA) were
prepared in dimethyl sulfoxide (DMSO) and diluted to
experimental concentrations (10, 100, and 1000 μM)
with serum-free medium and added to the HNPCECs.
The cells were then incubated for 24 h.

RNA isolation and cDNA synthesis
Total cellular RNA was isolated from the HNPCECs,
and total RNA was used as a template for cDNA synthe-
sis with random primers as described previously [9].

qPCR
cDNA was synthesized from total RNA (50 ng) for
each treatment group. The cDNA served as the tem-
plate for the real-time quantitative polymerase chain
reaction (qPCR) assays. The primer sequences for hu-
man MMP-1, −2, −3, and −9 were described previ-
ously [9]. The primer sequences were human MMP-17
forward (5′-CACCAAGTGGAACAAGAGGAACCT-

3′) and reverse (5′-TGGTAGTACGGCCGCATGATG-
GAGTGTGCA-3′). The primer sequences for human
TIMP-1, and −2 were described previously [9]. The
qPCR gene expression results were normalized as de-
scribed previously [9]. The qPCR reaction was carried
out as described previously [9].

Gelatin zymography
Gelatin zymography was performed and gelatinolytic
band densities were quantified as described previ-
ously [9].

Statistical analysis
Experiments were repeated four times. The results are
presented as the mean ± standard deviation (SD). Stat-
istical analyses were performed using an analysis of
variance model with Bonferroni’s post hoc test for
multiple comparisons. The value measured without
PAGs was defined as a control. We used the SAS 9.4
software (SAS Institute, Cary, NC, USA) for all statis-
tical analyses. Differences with P-values < 0.05 were
considered significant.

Results
We examined the expression levels of MMPs and TIMPs
in cellular extracts from HNPCECs treated with 10, 100,
or 1000 μM of bimatoprost, latanoprost, or tafluprost.
The qPCR results demonstrated that MMP-1, MMP-2,
MMP-3, MMP-9, and MMP-17 mRNA expression levels
were dose dependently increased with increasing bima-
toprost, latanoprost, or tafluprost concentrations (Fig. 1,
Table 1). When the concentrations of the PGAs were
1000 μM, the MMP-1, MMP-2, MMP-3, MMP-9, and
MMP-17 expression levels significantly increased com-
pared to the control levels. When the PGA concentra-
tion was 100 and 1000 μM, TIMP-1 and TIMP-2 mRNA
expression levels in HNPCECs significantly decreased
compared to the control levels.
We performed gelatin zymography to measure the en-

zymatic activity of MMP-2 and MMP-9 in HNPCECs
treated with 10, 100, or 1000 μM bimatoprost, latano-
prost, or tafluprost (Fig. 2). MMP-2 and MMP-9 con-
trols were used to identify the location of each band
(Fig. 2, arrowheads). We detected active MMP-2 forms,
but not pro-MMP-9 or pro-MMP-2 forms. We per-
formed a quantitative analysis of the band densities to
evaluate active MMP-2 activity in HNPCECs treated
with 10, 100, or 1000 μM of bimatoprost, latanoprost, or
tafluprost. When the band density of active MMP-2 in
HNPCECs treated with 1000 μM bimatoprost was de-
fined as 100, the relative band densities of active MMP-2
in HNPCECs treated with 100 and 1000 μM latanoprost
and tafluprost were calculated as 18 and 63 and 31 and
47, respectively. No band was detected in HNPCECs
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treated with 10 and 100 μM bimatoprost or 10 μM lata-
noprost and tafluprost. The relative mRNA expression
levels of MMP-2 in HNPCECs treated with 1000 μM
bimatoprost and with 100 or 1000 μM latanoprost or
tafluprost were calculated as 100:14:45:16:33, respect-
ively (Fig. 1), and this relationship appeared similar to
the relative band densities of activeMMP-2 in HNPCECs
analyzed by gelatin zymography.

Discussion
Previous studies showed that PGAs induce expres-
sion of MMP-1, −2, −3, −9, and −17 and TIMP-1
and −2 in the human ciliary body [7, 10–15]. Here,
we investigated the expression levels of MMPs and
TIMPs in HNPCECs cultured with various concentra-
tions of bimatoprost, latanoprost, or tafluprost, dem-
onstrating different profiles with respect to increases
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Fig. 1 Quantitative PCR shows gene expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in human
non-pigmented ciliary epithelial cells (HNPCECs). MMP-1, MMP-2, MMP-3, MMP-9, and MMP-17 mRNA levels were up-regulated in the presence of
increasing concentrations of each prostaglandin analog. TIMP-1 and TIMP-2 mRNA levels were down-regulated in the presence of increasing
concentrations of each prostaglandin analog. Expression without prostaglandin analog was used as a control. B: bimatoprost, L: latanoprost,
T: tafluprost. Data represent the mean ± SD (n = 4). *P < 0.05, **P < 0.01, ***P < 0.001 vs. control; one-way analysis of variance with
Bonferroni’s correction
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in MMP and decrease in TIMP expression by each
PGA.
Each PGA elicited a unique MMP and TIMP expression

profile in HNPCECs. At a concentration of 1000 μM,
bimatoprost induced greater expression of MMP-2 and
MMP-3 than latanoprost and tafluprost. Bimatoprost has
a greater effect on lowering IOP than latanoprost [16, 17].
The ability of PGAs to lower IOP may involve MMP-2
and −3. At a concentration of 1000 μM, tafluprost and
latanoprost increased the expression MMP-1 and MMP-9,
respectively, more than bimatoprost. Some reports
showed no significant difference between bimatoprost and
latanoprost [18, 19]. Furthermore, Alm showed no clinic-
ally significant difference in efficacy between latanoprost
and tafluprost [18]. The MMP and TIMP expression pro-
files of each PGA may be different in individual patients.
Thus, the decrease IOP by PGAs may be determined by
several diverse factors.
The ratio of infiltration of each PGA from the oph-

thalmic solution into the aqueous humor and the con-
centration of each PGA may be essential for the
efficacy of each agent. We investigated PGAs at 10,
100, and 1000 μM, concentrations intentionally ranged
within those of commercial ophthalmic solutions. In
clinical use, 0.03 % bimatoprost, 0.005 % latanoprost,
and 0.0015 % tafluprost ophthalmic solutions are avail-
able, corresponding to 720 μM, 110 μM, and 33 μM,

Table 1 Comparison with control group

Response Drug Dose Mean SD P

MMP-1 B 10 1.9 0.4 0.044

B 100 5.0 0.6 <0.001

B 1000 8.4 0.6 <0.001

L 10 2.0 0.5 0.018

L 100 2.7 0.4 <0.001

L 1000 7.8 0.7 <0.001

T 10 3.0 0.3 0.273

T 100 4.6 2.9 0.023

T 1000 11.2 2.3 <0.001

MMP-2 B 10 7.5 0.6 0.501

B 100 23.1 4.5 0.002

B 1000 92.5 14.2 <0.001

L 10 5.5 0.6 0.100

L 100 12.7 3.4 <0.001

L 1000 41.2 5.2 <0.001

T 10 3.6 0.6 0.706

T 100 14.4 3.0 <0.001

T 1000 30.5 6.4 <0.001

MMP-3 B 10 8.9 0.9 1.000

B 100 14.9 3.8 0.604

B 1000 234.0 34.7 <0.001

L 10 4.2 0.8 1.000

L 100 6.1 0.7 0.432

L 1000 69.8 10.9 <0.001

T 10 11.4 2.2 0.030

T 100 31.6 5.8 <0.001

T 1000 63.3 9.2 <0.001

MMP-9 B 10 2.3 0.3 1.000

B 100 11.5 1.6 0.001

B 1000 45.8 5.7 <0.001

L 10 10.6 1.9 0.019

L 100 17.0 2.5 <0.001

L 1000 86.2 8.9 <0.001

T 10 6.5 0.6 <0.001

T 100 9.8 0.9 <0.001

T 1000 12.6 2.1 <0.001

MMP-17 B 10 3.9 2.2 1.000

B 100 63.2 13.4 0.006

B 1000 176.5 47.9 <0.001

L 10 2.3 1.1 1.000

L 100 4.9 1.7 1.000

L 1000 173.1 74.7 <0.001

T 10 4.8 1.7 0.105

T 100 8.8 1.7 0.002

Table 1 Comparison with control group (Continued)

T 1000 18.5 4.8 <0.001

TIMP-1 B 10 67.6 8.3 <0.001

B 100 49.8 6.7 <0.001

B 1000 39.2 5.2 <0.001

L 10 71.0 10.2 <0.001

L 100 61.3 11.9 <0.001

L 1000 31.3 6.5 <0.001

T 10 85.9 11.5 0.038

T 100 48.1 6.3 <0.001

T 1000 30.0 8.7 <0.001

TIMP-2 B 10 89.2 10.8 0.082

B 100 50.2 7.5 <0.001

B 1000 49.6 5.3 <0.001

L 10 66.7 11.6 <0.001

L 100 49.7 7.1 <0.001

L 1000 29.0 6.6 <0.001

T 10 72.2 9.1 <0.001

T 100 62.4 6.2 <0.001

T 1000 30.1 4.6 <0.001

P one-way ANOVA with Bonferroni’s post hoc test for multiple comparisons
B bimatoprost, L latanoprost, T tafluprost
Dose: μM
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respectively. The concentration of each PGA in the
aqueous humor is lower than that in the ophthalmic so-
lution. In an in vitro study, peak aqueous concentra-
tions after topical administration were 0.009 μg/ml,
0.028 μg/ml, and 0.00875 μg/ml, respectively [20–22],
with each concentration corresponding to 22 nM, 65
nM, and 19 nM for bimatoprost, latanoprost, and taflu-
prost, respectively. The relative infiltration ratios of
bimatoprost, latanoprost, and tafluprost from ophthal-
mic solutions into the aqueous humor are calculated as
1.00:19.3:18:8, respectively. This suggests a more favor-
able infiltration ratio of the ester prodrugs latanoprost
and tafluprost than the free acid form of bimatoprost.
To measure the MMP and TIMP expression levels in

HNPCECs in the present study, we did not use the ester
prodrugs of latanoprost and tafluprost, but rather used
the free acid forms to avoid differences in efficacy owing
to hydrolysis by esterases. We obtained scattered MMP
and TIMP expression levels when the ester forms of
latanoprost and tafluprost were used in the experiments.
The varying efficacy of PGAs due to hydrolysis by ester-
ases in the cornea, depending on levels expressed in
each patient, may consequently determine the effective-
ness of latanoprost and tafluprost.
Our results showed a consistency in the expression

levels of MMP-2 mRNA and MMP-2 enzyme activity as
measured by qPCR and gelatin zymography, respectively.
On the other hand, we did not detect other MMP bands
by gelatin zymography, possibly because the levels were
beyond the sensitivity of the assay. As a consequence,
we estimated the enzymatic level of the other MMPs by
the mRNA levels of each MMP.
Claudin-1 and occludin in HNPCECs and non-

pigmented ciliary epithelial cells, which comprise the

BAB in the uvea, are candidate substrates of MMPs.
We previously showed that MMP-1, MMP-3, and
MMP-9 degraded claudin-1 and occludin in HNP
CECs and in non-pigmented ciliary epithelial cells of a
swine ciliary body and showed increased expression of
MMP-1, MMP-3, and MMP-9 in the presence of TNF-
α in HNPCECs [9]. Interestingly MMP-17 can activate
TNF-α [23]. These data suggest that inflammation in
the ciliary body, like in iridocyclitis, may be involved
in the reduction of IOP.
Fibrillin-1, versican, and hyaluronan (FiVerHy) in the

ciliary nonpigmented epithelium are other candidate
substrates of MMPs expressed in HNPCECs [24]. Versi-
can was digested by MMP-3 [25], and fibrillin-1 was
digested by MMP-2 and MMP-9 [26]. The increased
expression levels of MMP-2, MMP-3, and MMP-9 in
HNPCECs induced by PGAs may lead the degradation
of the physiological complex of FiVerHy in the ciliary
nonpigmented epithelium. The precise function of
FiVerHy is still unknown, but the dense localization of
hyaluronan in this high molecular complex on the sur-
face of the ciliary nonpigmented epithelium may exhibit
a protective effect of the ciliary nonpigmented epithe-
lium from the MMPs in the vitreous humor [27–30],
and the destruction of FiVerHy by MMPs may induce
mild iridocyclitis.

Conclusion
In conclusion, unique expression profiles of MMPs and
TIMPs induced by bimatoprost, latanoprost, and taflu-
prost, as shown in HNPCECs, may contribute to clinic-
ally different effects on intraocular pressure decreases
in patients with glaucoma or ocular hypertension. This
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Fig. 2 Gelatin zymogram showing the band densities of MMP-2 and MMP-9. Only bands of activeMMP-2 were detected after treatment with the
prostaglandin analogs. No bands were detected without treatment (control lane). Samples containing 20 μg of protein were analyzed. B: bimatoprost,
L: latanoprost, T: tafluprost. C: control, M: molecular weight marker. Molecular weights of proMMP-9, proMMP-2, and activeMMP-2 are 92 kDa, 72 kDa,
and 62 kDa, respectively
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information may be important in the selection of the
best PGA for individual patients.
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