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We calculate the mean and variance of net-baryon number and net-electric charge distributions from
quantum chromodynamics (QCD) using a next-to-leading order Taylor expansion in terms of temperature
and chemical potentials. We compare these expansions with experimental data from STAR and PHENIX,
determine the freeze-out temperature in the limit of vanishing baryon chemical potential, and, for the first
time, constrain the curvature of the freeze-out line through a direct comparison between experimental data
on net-charge fluctuations and a QCD calculation. We obtain a bound on the curvature coefficient,

κf2 < 0.011, that is compatible with lattice QCD results on the curvature of the QCD transition line.
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I. INTRODUCTION

Heavy ion collisions at varying beam energies are
performed at the Relativistic Heavy Ion Collider (RHIC)
with the goal to probe properties of strong-interaction
matter at different temperatures and baryon chemical
potentials. This beam energy scan program aims to explore
physics in the vicinity of the pseudocritical line of the
transition from hadronic matter to the quark-gluon plasma.
The hope is to find evidence for the existence of a critical
point [1] in the phase diagram of strong-interaction matter
that marks the end of a line of first-order phase transitions.
With decreasing beam energy,

ffiffiffiffiffiffiffiffi
sNN

p
, more baryons from

the incident nuclei are stopped leading to an increase in the
baryon number density and thus also to an increase of
the baryon chemical potential in a central rapidity window.
The dense matter created in these collisions is expected to
reach local thermal equilibrium quickly. It subsequently
expands and cools down. Eventually hadrons start to form
again. This hadronization is characterized by a temperature
(T) and baryon chemical potential (μB) that varies withffiffiffiffiffiffiffiffi
sNN

p
. Shortly thereafter inelastic interactions among the

hadrons cease to occur and different particle species
”freeze-out”. This so-called chemical freeze-out is charac-
terized by a set of freeze-out parameters, (Tf, μ

f
B). With

varying
ffiffiffiffiffiffiffiffi
sNN

p
they map out a line in the T-μB plane, called

the freeze-out line, TfðμBÞ. An important question is how
close the freeze-out line is to the pseudocritical line, TcðμBÞ
[2,3], characterizing the crossover transition of QCD. The
proximity of both lines in the phase diagram is a pre-
requisite for being able to explore critical behavior in the

vicinity of a possibly existing critical point, by analyzing

observables that can probe physics on the freeze-out line.
Unlike the crossover line, TcðμBÞ, for which the tran-

sition temperature at μB ¼ 0 [4,5] and the leading-order
correction at small μ2B [2,3] have been determined in lattice
QCD calculations, the parametrization of the freeze-out
line, TfðμBÞ, is not given in terms of fundamental param-
eters of QCD. The line characterizes the expanding
medium formed in heavy ion collisions. Freeze-out param-
eters have been determined in a wide range of

ffiffiffiffiffiffiffiffi
sNN

p
by comparing experimental data on particle yields
with statistical hadronization models (HRG models).
Parametrizations of the freeze-out line TfðμBÞ have been
extracted from such analyses [6,7]. Physically motivated
ansätze, such as identifying TfðμBÞ with a line of constant
energy per particle [6], naturally lead to the expectation that
TfðμBÞ is a function of μ2B that decreases with increasing
μB. In fact, a simple ansatz [6],

TfðμBÞ ¼ Tf;0ð1 − κf2 μ̄
2
B − κf4 μ̄

4
BÞ; ð1Þ

with μ̄B ≡ μB=Tf;0, provides a good parametrization in
the entire energy range probed in heavy ion collisions.
Using this ansatz for the comparison of HRG model
calculations with experimental data obtained for a wide
range of energies

ffiffiffiffiffiffiffiffi
sNN

p
gave κf2 ¼ 0.023ð3Þ [6] for the

curvature coefficient. However, a recently performed
refined hadronization model analysis suggests a weaker
energy dependence of the freeze-out line [8]. Moreover,
the attempt to capture more accurately the behavior of
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freeze-out temperatures at large
ffiffiffiffiffiffiffiffi
sNN

p
, i.e., small μB, lead

to a phenomenological parametrization [7] that does not
even have a power-like dependence on μB, i.e., TfðμBÞ −
Tf;0 ∼ expð−a=μBÞ which favors κf2 ≃ 0.
In this paper we improve over the current situation by

outlining a procedure to determine theOðμ2BÞ coefficient of
the freeze-out line from measurements of the mean and
variance of net-electric charge and net-proton number
distributions and, for the first time, illustrate how this
can be done by comparing experimental data obtained at
large

ffiffiffiffiffiffiffiffi
sNN

p
directly with a QCD calculation. This puts the

determination of the curvatures of the freeze-out line on a
par with that of the QCD transition line.

II. RATIO ON CHARGE FLUCTUATIONS ON THE
FREEZE-OUT LINE

The mean,MX ≡ χX1 ðT; μÞ, and variance, σ2X ≡ χX2 ðT; μÞ,
of net-electric charge (X ¼ Q) and net-baryon number
(X ¼ B) distributions are obtained as functions of T and
μ≡ ðμB; μQ; μSÞ by taking derivatives of the QCD pressure
with respect to μ̂X ≡ μX=T

χXn ðT; μÞ ¼
∂nP=T4

∂μ̂nX ; X ¼ B;Q; S: ð2Þ

The ratios of mean and variance,

RX
12ðT; μÞ≡MX

σ2X
¼ χX1 ðT; μÞ

χX2 ðT; μÞ
; ð3Þ

can be analyzed in heavy ion experiments. Implementing
the constraints MS¼0 and MQ=MB ¼ r, which are appro-
priate for the initial conditions met in such collisions, the
ratios RB

12 and RQ
12 become functions of T and μB only and

ΣQB
r ≡ RQ

12=R
B
12 ¼ rσ2B=σ

2
Q. In leading-order (LO) Taylor

expansion ΣQB
r is independent of μ̂B, while the ratios RB

12

and RQ
12 depend linearly on μ̂B, RX

12 ¼ RX;1
12 μ̂B þOðμ̂3BÞ.

They therefore provide mutually independent information
that can be used to extract TfðμBÞ up to Oðμ2BÞ [9].
In order to determine the freeze-out temperature at

μB ¼ 0 and the curvature of the freeze-out line, we consider
a next-to-leading order Taylor expansion of ΣQB

r in terms of
T and μ̂B around the point (Tf;0, μB ¼ 0) with μ̂S and μ̂Q
being implicit functions of T and μ̂B. Using Eq. (1) as a
parametrization of the freeze-out line, we find in next-to-
leading order (NLO),

ΣQB
r ¼ ΣQB;0

r þ
�
ΣQB;2
r − κf2Tf;0

dΣQB;0
r

dT

����
Tf;0

�
μ̂2B: ð4Þ

The LO expansion coefficient is easily related to the
quadratic fluctuations of net-electric charge and net-baryon

number, ΣQB;0
r ¼ rχB2 ðTÞ=χQ2 ðTÞ at zero μ̂B. The NLO

expansion coefficient ΣQB;2
r depends on fourth-order cumu-

lants, which also can be calculated in a lattice QCD
calculation at vanishing μB. An explicit expression for
ΣQB;2
r will be given elsewhere [10].
In order to facilitate a comparison with the experimental

data it is of advantage to eliminate μ̂B from Eq. (4) in favor
of observables that are accessible to experiments and QCD
calculations. For a consistent treatment of the NLO result,
Eq. (4), it suffices to use the LO relation between μ̂B and the
ratio RB

12, i.e., μ̂B ¼ RB
12=R

B;1
12 . The LO expansion coeffi-

cient RB;1
12 has been evaluated before and continuum

extrapolated results for ml ¼ ms=20 obtained with the
highly improved staggered quark (HISQ) action have been
shown in [11].
After replacing μ̂B in favor of RB

12, the NLO Taylor
expansion of ΣQB

r , introduced in Eq. (4), becomes

ΣQB
r ¼ a12ð1þ c12ðRB

12Þ2Þ þOððRB
12Þ4Þ; ð5Þ

where a12ðTÞ≡ ΣQB;0
r . The coefficient of the quadratic

correction, c12, depends on the parametrization of the
freeze-out line and needs to be determined at Tf;0,

c12ðTf;0; κ
f
2Þ ¼ c012ðTf;0Þ − κf2D12ðTf;0Þ ð6Þ

with

c012ðTÞ ¼
�

1

RB;1
12

�
2 ΣQB;2

r

ΣQB;0
r

;

D12ðTÞ ¼
�

1

RB;1
12

�
2

T
d lnΣQB;0

r

dT
: ð7Þ

In Fig. 1 we show results for ΣQB;0
r , RB;1

12 and c012
obtained in lattice QCD calculations with the (2þ 1)-
flavor HISQ action [12] using a physical value of the
strange quark mass and two sets of light quark masses,
ml ¼ ms=20, ms=27, which in the continuum limit cor-
respond to pion mass values, mπ ≃ 160 and 140 MeV,
respectively. Here we used r≃ 0.4 which is appropriate
for describing colliding gold or lead nuclei. Further details
on the simulation parameters can be found in [13]. We
note that quark mass effects are small for the observables
under consideration.
The continuum extrapolated results for ΣQB;0

r and RB;1
12 in

the left and middle panels of Fig. 1 were obtained by
performing cubic spline fits to all ml ¼ ms=20 data, with
1=N2

τ dependence for the spline coefficients and for the
varying locations of three knots. These fits were performed
over many bootstrap samples drawn from the Gaussian
errors of data points and have been constrained to agree
with HRG at T ¼ 130 MeV within 10%. The final con-
tinuum results were obtained from mean values and errors
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of these bootstrapped fit results weighted by the quality of
the fits given by the Akaike information criteria. The
continuum extrapolations are consistent with our earlier
results [13]. However, statistical errors are reduced
considerably.
The parameter D12 is obtained from the continuum

extrapolated results for RB;1
12 and ΣQB;0

r . It is shown as an
insertion in the middle panel of Fig. 1. The coefficient c012
receives contributions from fourth-order cumulants and
thus is more difficult to extract. At present we have
calculated it for two lattice spacings and therefore only
provide an estimate for its continuum limit. This is shown
in the right panel of Fig. 1. For the continuum estimate of
c012 we followed an identical procedure of the cubic spline
fits outlined above but with only two knots.
A determination of ΣQB

r and RB
12 at large

ffiffiffiffiffiffiffiffi
sNN

p
suffices to

fix the freeze-out temperature Tf;0 and the quadratic
correction c12. Combining this with lattice QCD results
on c012 and D12 allows to extract the curvature, κf2 , of the
freeze-out line. However, in heavy ion collisions ΣQB

r and
RB
12 are not directly accessible. Net-proton rather than net-

baryon numbers, i.e., ratios like RP
12 and ΣQP

r rather than
RB
12 and ΣQB

r , are measured. The STAR Collaboration
obtained RP

12 in the transverse momentum interval
0.4 GeV ≤ pt ≤ pmax

t with pmax
t ¼ 0.8 GeV (STAR0.8)

[14]. The pt range has recently been extended, and
preliminary results up to pmax

t ¼ 2.0 GeV (STAR2.0)
[15] have been presented. The ratio of net-electric charge
fluctuations, RQ

12, has been measured by STAR [16] and
PHENIX [17] in the interval pmin

t ≤ pt ≤ 2.0 GeV with
pmin
t ¼ 0.2 GeV and pmin

t ¼ 0.3 GeV [18], respectively.
Figure 2 shows results for ΣQP

r versus ðRP
12Þ2. In the case of

the PHENIX data for RQ
12, we used the STAR2.0 data set to

construct ΣQP
r .

Before entering into details of the analysis of these
data using lattice QCD calculations for RB

12 and RQ
12, we

need to discuss systematic effects that arise in equilib-
rium thermodynamics [19] because net-proton rather than
net-baryon numbers are measured in experiments and
because only data from a limited region in momentum
space are available. The influence of low and high
momentum cuts on charge fluctuations has been analyzed
in HRG models [22,23]. The most important effects arise
from a nonzero pmin

t which most drastically influences
the pion contributions to net-electric charge fluctuations.
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FIG. 1. Temperature dependence of the LO expansion coefficients of the ratio ΣQB
r (left) and RB

12 (middle) and the NLO coefficient c012
(right) introduced in Eq. (7). The NLO coefficient D12 [Eq. (7)] is shown as an insertion in the middle panel. Shown are data from
calculations with the HISQ action on lattices of size N3

σ × Nτ, with Nσ ¼ 4Nτ. Bands show continuum extrapolations for the LO
observables and continuum estimates for the NLO observable c012 (see text).
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FIG. 2. The ratio of ratios of mean and variance for net-electric
charge and net-proton number fluctuations measured by the
STAR and PHENIX Collaborations. For the STAR electric
charge data [16], we show results obtained by normalizing with
net-proton results from the published STAR0.8 data set [14]
(triangles) as well as the preliminary STAR2.0 data set [15]
(circles). The experimental data are compared to QCD predic-
tions for two values of κf2 (see text). The electric charge results
obtained by PHENIX [17] have been normalized by using the
STAR2.0 data set on net-proton fluctuations (boxes). For ori-
entation the upper x-axis shows

ffiffiffiffiffiffiffiffi
sNN

p
energies of the RHIC beam

energy scan with labels put at the values for ðMP=σPÞ2 corre-
sponding to the STAR2.0 data set. Errors on ðMP=σPÞ2 are not
visible as they are smaller than the size of the symbols.
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Implementing the pt-cuts STAR has used for protons and
other charged particles [16] in a HRG model calculation
suggests that RQ

12 is overestimated by about 5% while the
larger pmin

t ¼ 0.3 GeV used by PHENIX [17] amounts to
an increase of 20% [23]. This explains about 40% of the
difference in RQ

12 seen by STAR and PHENIX. It is
conceivable that the remainder arises from the small
azimuthal coverage in the PHENIX experiment which
further reduces the acceptance of charged particles [24].
In order to get better control over these effects a more
detailed experimental study of systematics of arising from
nonzero pt cuts and cuts in the rapidity coverage will be
needed.
With proton number not being a conserved quantity [21],

the ratio RP
12 clearly has no meaning in the high temperature

plasma phase of QCD. At chemical freeze-out, however,
when inelastic interactions are no longer of relevance, the
net-proton number may be considered to be a well-defined
concept. Still RP

12 and RB
12 will differ in equilibrium

thermodynamics. The difference can be estimated in a
HRG model calculation where RP

12 ¼ tanhðμ̂B þ μ̂QÞ, in-
dependent of the value μ̂S, while RB

12 explicitly depends on
μ̂S [Eq. (3)]. For our NLO analysis of cumulant ratios it
suffices to determine the LO relation between RP

12 and RB
12.

Using Taylor expansions for both, this obviously yields
RB
12=R

P
12 ¼ RB;1

12 , which is shown in the middle panel
of Fig. 1.
The above discussion suggests that in the STAR mea-

surements the systematic errors of RQ
12 and RB

12 are of
similar magnitude and tend to cancel to a large extent in the
ratio ΣQB

r ; i.e., the ratio ΣQP
r indeed seems to be a good

proxy for ΣQB
r while for the PHENIX set-up it over-

estimates ΣQB
r by at least 10%.

We have fitted the three data sets corresponding to the
published STAR data (STAR0.8), the preliminary STAR
data (STAR2.0) and the PHENIX data on net-charge
fluctuations normalized to the STAR data on net-proton
fluctuations (PHENIX/STAR2.0) using the ansatz given in
Eq. (5). These data are shown in Fig. 2. For each of
these three data sets two different fit ranges have been
chosen, RP

12 ≤ 0.6 and 0.8, which correspond to data taken
at

ffiffiffiffiffiffiffiffi
sNN

p ≥ 39 GeV and 27 GeV, respectively. This deter-
mines the intercept a12 and the curvature parameter c12
given in Table I. Differences arising from the two fit ranges
have been added as systematic error in the error analysis of
a12 and c12. From the intercept at RP=B

12 ¼ 0 the freeze-out
temperature Tf;0 is obtained. Once Tf;0 is fixed this way the
NLO expansion coefficients c012 and D12 are also fixed (see
Table I) and we obtain QCD predictions for ΣQB

r with κf2 as
the sole free parameter. In Fig. 2 we show ΣQB

r as a function
of ðRP

12Þ2 for κf2 ¼ 0 (colored bands). Note that any value
κf2 > 0 will result in a weaker dependence of ΣQB

r on RP
12.

As an illustration we also show the result for ΣQB
r at Tf;0

and κf2 ¼ 0.02. as black lines.

III. CURVATURE OF THE FREEZE-OUT LINE

We now can discuss constraints for the curvature
coefficient κf2 resulting from the measured cumulant ratios
ΣQB
r . We consider the STAR data where cumulant ratios of

net-electric charge as well as net-proton number fluctua-
tions have been measured. As discussed earlier we consider
ΣQP
r to be a good approximation for the ratio ΣQB

r . The
difference between RP

12 and RB
12 can be corrected for by

using the HRG model motivated correction, RP
12 ¼

RB
12=R

B;1
12 . This is appropriate for our NLO approximation

and simply amounts to a rescaling of the abscissa in Fig. 2.
While the intercept a12 in quadratic fits is not influenced by
such a rescaling, c12 increases by a factor ðRB;1

12 Þ−2, i.e., by
about 20% in the relevant temperature range. From Eq. (6)
it is obvious that this will decrease the estimate for κf2.
Analyzing the uncorrected STAR data, thus, will put an
upper bound on κf2 .
Results for c12 from quadratic fits to the two STAR data

sets are given in Table I. We notice first that c12 extracted
from the published STAR data [14,16] is about a factor of 2
larger than the lattice QCD result for c012ðTf;0Þ. SinceD12 is

positive, this corresponds to negative values for κf2 as
observed also in a HRG model analysis [25], i.e., the STAR
data on proton fluctuations taken in the range 0.4 GeV ≤
pt ≤ 0.8 GeV [14] are only compatible with a negative
curvature coefficient κf2 . However, the still preliminary
STAR data taken in the larger pt interval [15] have a much
smaller slope which is consistent with c012ðTf;0Þ within
statistical errors. This gives an upper bound on the
curvature of the freeze-out line,

κf2 < 0.011: ð8Þ

TABLE I. Parameters of a quadratic fit to the STAR data on the
ratio ΣQP

r and the combination of PHENIX data on RQ
12 and STAR

data on RP
12. The third to fifth row give the freeze-out temperature

Tf;0, c012 and D12 at fixed Tf;0. The last row gives the curvature

coefficients κf2 obtained from Eq. (6). In the fits none of the
corrections discussed in the text have been taken into account.

STAR0.8 STAR2.0 PHENIX/STAR2.0

a12 0.079(3) 0.087(2) 0.110(9)
c12 0.858(101) 0.329(74) 0.559(352)
Tf;0 [MeV] 145(2) 147(2) 155(4)
c012ðTf;0Þ 0.343(31) 0.326(32) 0.265(52)
D12ðTf;0Þ 7.04(44) 6.62(36) 5.27(78)

κf2 −0.073ð16Þ −0.001ð12Þ −0.056ð67Þ
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Taking into account the HRG motivated correction for
replacing RP

12 by R
B
12 reduces κ

f
2 and makes the estimate for

the upper bound compatible with zero, κf2 ¼ −0.012ð15Þ
for the STAR2.0 data set; i.e., the existing data for ΣQP

r

favor a small or even vanishing curvature of the freeze-out
line at large

ffiffiffiffiffiffiffiffi
sNN

p
as it is the case for the phenomenological

parametrization given in Ref. [7].
Let us finally compare the result obtained for κf2 with the

curvature coefficient κB2 > 0 of the QCD transition line,

TcðμBÞ ¼ Tc;0ð1 − κB2 μ̂
2
B þOðμ̂4BÞÞ; ð9Þ

where Tc;0 denotes the transition temperature at μB ¼ 0

[4,5]. The above bound on κf2 is consistent with determi-
nations of κB2 based on expansions of TcðμBÞ around μB ¼
0 where the curvature coefficient is determined as a Taylor
expansion coefficient evaluated at μB ¼ 0. This gave κB2 ≃
0.007 [2,3], which is about a factor two smaller than recent
results for κB2 [26–28] that are based on lattice QCD
calculations performed with large nonzero imaginary
chemical potentials, corresponding to μB=Tc;0 ≃ ð1 − 3Þ.
These calculations yield values κB2 ≃ ð0.015–0.02Þ.

IV. CONCLUSIONS

We provided a framework that allows to determine the
curvature of the freeze-out line through a direct comparison
between experimental data for mean and variance of net-
electric charge and net-proton number fluctuations with
lattice QCD calculations of cumulant ratios. We found the
curvature of the freeze-out line to be small. It is consistent
with the curvature of the QCD crossover line. At least for
beam energies

ffiffiffiffiffiffiffiffi
sNN

p ≥ 27 GeV, our study suggests that
freeze-out happens close to the crossover transition line.
We have addressed some difficulties that arise when

comparing lattice QCD calculations of conserved charge
fluctuations with experimental data on cumulants of net-
proton and net-charge fluctuations, although at present it is
difficult to provide a complete quantitative approach for
this. We have pointed out some obvious differences
between net-proton and net-baryon number fluctuations
that are present already in equilibrium thermodynamics. We
also addressed the question on the influence of transverse

momentum cuts on the experimental data. Clearly control
over these effects needs to be improved in future work. It
also is known that cumulants of conserved charge fluctua-
tions are sensitive to the width of the rapidity window
covered by the experiments [29,30]. This dependence is
more significant for net-electric charge fluctuations than for
net-proton number fluctuations. Increasing the rapidity
window will decrease σQ and thus will lead to an increase
of Σr. This will lead to larger values for Tf;0. However, at
present these effects are difficult to quantify.
Finally we note that throughout our analysis we assumed

that the net-charge to net-baryon number ratio, r, is
determined by the corresponding ratio present in the
incident beams, r≃ 0.4. This ratio clearly will fluctuate
in a fixed acceptance range covered in an experiment and
one may argue that this ratio also shifts towards the isospin
symmetric limit r ¼ 0.5 for high beam energies. Clearly, at
present beam energies r < 0.5, as the net-charge expect-
ation value would vanish in the isospin symmetric limit. In
a more refined analysis one may, however, take into
account effects arising from changes in the value of r
which may also be beam energy dependent. In general,
increasing r results in a decrease of Tf;0 and an increase of

κf2 . Compared to other uncertainties, however, this effect is
small. For the preliminary STAR data set (STAR2.0), we
find, for instance, that using r ¼ 0.45 decreases the Tf;0 by
3 MeV and shifts the curvature coefficient to a slightly
positive value, κf2 ¼ 0.004.
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