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We introduce a novel method to obtain level densities in large-scale shell-model calculations. Our 
method is a stochastic estimation of eigenvalue count based on a shifted Krylov-subspace method, which 
enables us to obtain level densities of huge Hamiltonian matrices. This framework leads to a successful 
description of both low-lying spectroscopy and the experimentally observed equilibration of Jπ = 2+ and 
2− states in 58Ni in a unified manner.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Nuclear level density, which constitutes a very large uncertainty 
in estimating cross sections of compound nuclear reactions, plays 
an essential role in describing those reactions usually with the 
Hauser–Feshbach theory [1]. Systematic data for compound nu-
clear reactions, including (n, γ ) reaction data, are highly needed in 
many applications including nuclear astrophysics and nuclear en-
gineering. The (n, γ ) cross sections for short-lived nuclei, however, 
cannot be directly measured, and therefore an accurate estimate of 
nuclear level density is crucial for those needs [2]. While nuclear 
level density is known to well follow phenomenological formulas, 
such as the backshifted Fermi-gas model and the constant temper-
ature model, their model parameters depend on nuclear structure 
and are usually derived from experimental data [3]. Moreover, the 
phenomenological models assume rather simple spin-parity de-
pendence of level density, whose validity needs to be verified. 
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Microscopic theories of nuclear level density should thus be de-
veloped.

The large-scale shell-model calculation provides, in principle, 
quite reliable level density because this method suitably takes two-
body correlations into account, thus well describing level struc-
tures. Although the Lanczos diagonalization [4] now makes possi-
ble the calculation of low-lying levels for Hamiltonian matrices up 
to O (1010) dimensions in an M-scheme [5], its applicability to the 
level density is much more limited because high-lying states are 
very slow to converge in the Lanczos iterations. Much effort has 
been paid to overcoming this limitation (e.g. the method based 
on the moment of the matrix [6–8]). The shell-model Monte Carlo 
(SMMC) method has been proposed and developed [9,10], but it is 
rather difficult for the SMMC to use realistic residual interactions 
which cause the sign problem. Recently several realistic interac-
tions have succeeded in systematically describing low-lying levels 
including those of exotic nuclei [5,11–16]. It is thus quite interest-
ing to investigate whether a unified description of low-lying levels 
and level density can be obtained with such modern realistic in-
teractions [17].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. (Color online.) Schematic view of the contour integral to count the eigen-
values (red crosses). Blue crosses denote the discretized mesh points z(1)

j along the 
integral contour �1. E(k−1) and E(k) are the intersections of �k and the real axis.

In this Letter, we apply a novel method of counting eigen-
values [18] to the shell-model calculation of level density, and 
demonstrate its feasibility and usefulness. This method is appli-
cable to any effective interaction and it straightforwardly provides 
spin-parity dependent level densities. More importantly, its com-
putational cost is almost at the same order as that of the usual 
Lanczos diagonalization for low-lying states. Taking these advan-
tages, we are successful in calculating spin-parity dependent level 
densities in 58Ni with a realistic effective interaction, and in resolv-
ing a puzzle that previous microscopic calculations failed to resolve 
in reproducing no parity dependence of the 2+ and 2− level den-
sities observed recently [19]. The M-scheme dimension for the 2−
levels reaches 1.5 × 1010, which is nearly the current limit of the 
Lanczos diagonalization.

2. Formalism

We first outline a method for stochastically estimating eigen-
value distribution proposed recently [18]. In nuclear shell model 
calculations, a many-body wave function is described as a linear 
combination of a huge amount of many-body configurations, which 
are called the M-scheme basis states [5]. The shell-model energy 
is obtained as an eigenvalue of the M-scheme shell-model Hamil-
tonian matrix, H . The number of eigenvalues μk in a specified 
energy range E(k−1) < E < E(k) is obtained by the contour integral 
�k on the complex plane in Fig. 1 as

μk = 1

2π i

∮

�k

dz tr((z − H)−1)

�
∑

j

w j tr((z(k)
j − H)−1). (1)

The contour integral on �k is numerically obtained by discretizing 
the contour line with mesh points z(k)

j (blue crosses of Fig. 1) and 
their weights w j .

The trace of the inverse of matrix in Eq. (1) is stochastically 
estimated by sampling dozens of random vectors from the whole 
Hilbert space. An unbiased estimation is given by

tr((z − H)−1) � 1

Ns

Ns∑
s

v T
s (z − H)−1 v s (2)

where Ns is the number of sample vectors and v s are vec-
tors whose elements take 1 or −1 with equal probability ran-
domly [20]. Note that the norm of v s equals the whole num-
ber of states. Since the Hamiltonian matrix is written in the 
M-scheme representation, whose basis states are the eigenstates 
of the z-component of spin and parity, we obtain the total level 
density with a fixed parity at once.

The remaining task is to obtain v T
s (z(k)

j − H)−1 v s , numerically. 
In preceding works, the recursion method with the Lanczos algo-
rithm with was used to compute this value [21], but the Lanc-
zos algorithm requires reorthogonalization procedure [22]. In the 
present work, we adopt the complex orthogonal conjugate gradi-
ent (COCG) method [23], which does not need reorthogonalization.

We briefly explain how to calculate the v T
s (z(k)

j − H)−1 v s with 
the COCG method. First, we calculate this value at a fixed value, 
z = zref, as a reference. Instead of calculating the matrix inverse in 
(z(k)

j − H)−1 v s , we solve a linear equation v s = (zref − H)x(s) with 
the COCG method for each s. In the COCG method, by omitting 
the index s for brevity, the following procedure is iterated to solve 
v s = (zref − H)x(s) until the residual rn is small enough:

xn = xn−1 + αn−1 pn−1

rn = rn−1 + αn−1(zref − H)pn−1

pn = rn + βn−1 pn−1 (3)

with x0 = p−1 = 0, r0 = v s , αn = rT
n rn/pT

n (zref − H)pn , and βn =
rT

n+1rn+1/rT
n rn . In actual calculations, x(s) (s = 1, 2, . . . , Ns) are ob-

tained simultaneously with a block algorithm (BCOCG) [24] with 
economical implementation for computing block bilinear form [25]
for efficient computation.

Second, we solve v s = (z(k)
j − H)x(sjk) for other z = z(k)

j . If 

we perform the COCG method for each z(k)
j individually, an im-

practically large amount of computation is required. However, the 
shifted Krylov-subspace method [26,27] enables us to solve these 
equations at once. The basic idea behind this method is the invari-
ance property of the shifted Krylov subspace: The Krylov subspace 
of the matrix z − H and vector v , which is defined as

Kn(z − H, v)

= span{v, (z − H)v, (z − H)2 v, . . . , (z − H)n−1 v}
= span{v, H v, H2 v, . . . , Hn−1 v} = Kn(H, v), (4)

is independent of z. Since the COCG method is one of the Krylov-
subspace methods, its solution of z = zref is described in this sub-
space. The solution of any z is also obtained in the same subspace 
simultaneously, if n is large enough. Thus, by utilizing the COCG 
solution at z = zref, the shifted method allows us to avoid the time-
consuming calculations of matrix-vector product for any z(k)

j , and 
to obtain the level density in the whole energy region at once. In 
practice, we adopt the shifted block CG-rQ (SBCG-rQ) method [24]
for efficient computation. This computation demands memory us-
age for only three vector blocks (xn , rn , and pn) and a working area 
for the matrix-vector products, while all eigenvectors are stored in 
the Lanczos method.

For spin-dependent ( J -dependent) level density, we replace v s

by v J
s = P J v s , where P J is the J -projection operator. This projec-

tion is actually realized by filtering out a specified range of the 
eigenvalue of the J 2 operator by the Sakurai–Sugiura method [22,
28]. Note that the J -projection is not necessary during the COCG 
iteration in this work, whereas J -projection is performed at every 
iteration to suppress numerical errors in the J -projected Lanczos 
method [5,22]. This is because an undesirable- J component caused 
by numerical error does not affect the inner product (v J

s )T xσ
n . Even 

using such a sophisticated method, the eigenvalue count of a huge 
matrix requires high-performance computing. We combine the nu-
clear shell-model code “KSHELL” [29] and the eigenvalue-solver 
library “z-Pares” [30], which enable us to utilize the latest super-
computer efficiently.

It is worth noting a pioneering work for the level density using 
the Lanczos method by estimating the traces with random vectors 
in Ref. [31].
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Fig. 2. (Color online.) (a) Total level density of 28Si by stochastic estimation (black 
line) and the Lanczos method (red solid stair) as a function of the excitation energy, 
Ex . (b) Low-energy region of (a).

3. Benchmark test

We demonstrate how this stochastic estimation works well in 
a small system. Fig. 2 shows the level density of 28Si with the 
USD interaction [32]. The level density is obtained with Ns = 32
and a 200 keV energy bin. We compare the present estimation 
with the exact values, which are provided by counting the 1000 
lowest states calculated with the Lanczos method. The present es-
timation successfully reproduces the exact values in 8% error at 
around Ex = 15 MeV with such a small bin. Non-empirical error 
evaluation remains as future work [40].

Fig. 3(a) shows the residual |rn|/|vs| of the BCOCG against the 
iteration number in the 28Si case. The residual rapidly converges 
to zero at low energies of practical interest. However, the conver-
gence becomes worse in high excited energies as the level density 
increases. While a similar tendency is also seen for the resultant 
level densities in Fig. 3(b), their convergence is much faster than 
the residual and is quite stable. For example, only 28 iterations are 
required for the convergence of the level density at Ex = 10 MeV.

4. Parity-equilibration of 58Ni level density

Now that the feasibility of the present method has been con-
firmed, we can move on to its application. Here we will demon-
strate that the 2+ and 2− level densities in 58Ni [19] are excel-
lently reproduced with the present method. To describe both parity 
states of nuclei around 58Ni with the shell model in a practical 
way, we take the 0h̄ω and 1h̄ω states in the full sd + pf + sdg
valence shell for natural- and unnatural-parity states, respectively. 
Since 58Ni is located in the middle of the pf shell, higher h̄ω
states are expected to be dominant in relatively high excitation 
energies, which will be confirmed later. The full 1h̄ω calculation is 
still impractical for 58Ni, and we truncate the basis states by ex-
cluding configurations involving more than six-particle excitations 
from the 0 f7/2 filling configurations. We have confirmed that this 
truncation has a minor effect on the level density in the 0h̄ω cal-
Fig. 3. (Color online.) Convergence patterns of the COCG and stochastic estimation 
of the total level density of 28Si as a function of the number of iterations of the 
BCOCG method. (a) Residual of the BCOCG iteration |rn|/|vs| at z = Egs + Ex with Egs

being the ground-state energy. (b) Total level densities at Ex = 10 (red), 20 (blue), 
30 (black) MeV.

culation. The resulting M-scheme dimension for the 2− states in 
58Ni, 1.5 ×1010, is much beyond the capability of the direct count-
ing of eigenstates by the Lanczos diagonalization, but within the 
scope of the present method. We remove the spurious center-of-
mass contamination associated with 1h̄ω excitation by using the 
Lawson method [33], whereas this removal is usually not included 
in SMMC. The spurious states are lifted up to Ex ∼ 600 MeV, 
thereby separated clearly with the Hamiltonian H ′ = H + βHCM
with βh̄ω/A = 10 MeV.

The effective interaction taken in this study is a natural exten-
sion of the SDPF–MU interaction for the sd–pf shell [16] to the one 
for the sd–pf –sdg shell. Namely, exactly in the same way as the 
SDPF–MU, the present interaction consists of the USD interaction 
[32] for the sd shell, the GXPF1B interaction [12] for the pf shell, 
and a refined monopole-based universal interaction (V MU) [34,35]
for the rest of the two-body matrix elements. It is noted that the 
SDPF-MU interaction well describes low-lying 1h̄ω levels [36,37] as 
well as 0h̄ω states [16]. Going back to the present sd–pf –sdg-shell 
Hamiltonian, the single-particle energies (SPEs) of the sdg orbits 
are left to be determined, while those of the sd–pf orbits are taken 
from the SDPF–MU interaction. Here, the SPEs for the 0g9/2, 1d5/2, 
and 2s1/2 orbits are fixed to reproduce experimental spectroscopic 
strengths around 58Ni, as shown in the next paragraph. On the 
other hand, experimental information on the remaining upper sdg
orbits is missing near 58Ni. These SPEs are chosen to fit the empir-
ical neutron effective SPEs on top of 90Zr [34].

The 1h̄ω shell gaps (the sd–pf and pf –sdg shell gaps) dominate 
the overall positions of the 1h̄ω states and thus, their level densi-
ties. The reliability of those shell gaps in the present Hamiltonian 
is examined by comparing theoretical and experimental spectro-
scopic strengths (C2 S) for the one-proton (±1p) and one-neutron 
(±1n) transfer reactions in 58Ni. The results are summarized in Ta-
ble 1, where the sd–pf shell gaps and the pf –sdg shell gaps are 
probed by the −1p and −1n reactions (57Co and 57Ni) and the 
+1p and +1n reactions (59Cu and 59Ni), respectively. Aside from 
some difference in C2 S fragmentation for the 3/2+ levels in 57Ni 
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Table 1
Excitation energies and one-nucleon spectroscopic factors (C2 S) of the ground 
states and low-lying unnatural parity states in 57Ni, 59Ni, 57Co, and 59Cu compared 
between the shell-model results and experiments [38]. The C2 S values are for one-
nucleon transfer reactions of 58Ni, and the transferred nucleon and its orbital are 
specified in the fifth column.

Nucl. Jπ Ex (MeV) C2 S

Cal. Exp. j Cal. Exp.

57Co 7/2−
1 0 0 π0 f −1

7/2 5.28 4.27, 5.53

1/2+
1 3.037 2.981 π1s−1

1/2 0.98 1.05, 1.31

3/2+
1 3.565 3.560 π0d−1

3/2 1.70 1.50, 2.33

57Ni 3/2−
1 0 0 ν1p−1

3/2 1.14 1.04, 1.25, 0.96

1/2+
1 5.581 5.580 ν1s−1

1/2 0.51 0.62, 1.08

3/2+
1 5.579 4.372 ν0d−1

3/2 0.29 0.01

3/2+
2 6.093 6.027 ν0d−1

3/2 0.22 0.66, 0.54

59Cu 3/2−
1 0 0 π1p+1

3/2 0.53 0.46, 0.49, 0.25

9/2+
1 3.139 3.023 π0g+1

9/2 0.26 0.24, 0.32, 0.27

59Ni 3/2−
1 0 0 ν1p+1

3/2 0.51 0.82, 0.33

9/2+
1 3.053 3.054 ν0g+1

9/2 0.63 0.84, 0.39

5/2+
1 4.088 3.544 ν1d+1

5/2 0.04 0.03

5/2+
2 4.595 4.506 ν1d+1

5/2 0.30 0.23, 0.14

1/2+
1 4.399 5.149 ν2s+1

1/2 0.00 0.09

1/2+
2 5.492 5.569 ν2s+1

1/2 0.18 0.02

1/2+
3 5.589 5.692 ν2s+1

1/2 0.02 0.13

Fig. 4. (Color online.) Level density of 58Ni as a function of excitation energy. The 
theoretical results are shown by the red solid ( Jπ = 2+) and blue dotted (2−) lines, 
while the experimental values are shown by circles (2+) and triangles (2−) [19].

and the 1/2+ levels in 59Ni, the present shell-model results agree 
well with the experimental data, thus confirming suitable effective 
SPEs for upper sd (1s1/2 and 0d3/2) and lower sdg (0g9/2, 1d5/2
and 2s1/2) orbits. In addition, the 3−

1 level in 58Ni is also well re-
produced: 4.55 MeV (Cal.) vs. 4.47 MeV (Exp.).

By utilizing this realistic interaction and the new stochastic 
method for estimating level density, we can calculate 2+ and 2−
level densities in 58Ni. The 2− level densities are calculated with 
Ns = 16 and 1000 BCOCG-iterations which are large enough to 
reach reasonable convergence. Fig. 4 compares 2± level densities 
in 58Ni between the experimental data [19] and the present cal-
culation. What is surprising in this experimental data is that the 
equilibration of 2+ and 2− levels occurs already at Ex ∼ 8 MeV
at variance with SMMC and HFB-based [39] estimates in which 
the equilibration is realized only at around 20 MeV [19]. Both of 
the calculations overestimate the 2+ level densities and underesti-
mate the 2− level densities in low excitation energies. In contrast, 
the present calculation correctly reproduces the early onset of the 
equilibration on the basis of good agreement of the 2+ and 2−
level densities there. It is worth pointing out that nucleon exci-
tation from the sd shell accounts for about half of the 2− level 
densities. With increasing excitation energy, the present calculation 
begins to underestimate the 2+ level densities probably because of 
the absence of 2h̄ω levels. The calculated 2− levels, on the other 
hand, keep following the experimental data up to 15 MeV, because 
the 3h̄ω level densities are expected to grow at higher energies.

5. Summary

In summary, we introduced a stochastic estimation of the level 
density in nuclear shell-model calculations and demonstrated its 
feasibility. This method is based on the shifted Krylov-subspace 
method and enables us to obtain the level density of a huge-
dimension matrix beyond the limitation of the conventional Lanc-
zos method. The contamination of spurious center-of-mass exci-
tation is clearly removed by the Lawson method. By combining 
proven SDPF–MU and V MU interactions, we constructed a real-
istic effective interaction which successfully describes low-lying 
levels and their spectroscopic factors around 58Ni. With this real-
istic interaction and the stochastic method, we obtained the level 
densities of Jπ = 2+ and Jπ = 2− in 58Ni. These densities are in 
excellent agreement with the experimental results and show the 
equilibration at Ex ≥ 8 MeV, whereas the preceding microscopic 
calculations showed strong parity dependence. The present frame-
work bridges the low-lying spectroscopy and microscopic under-
standing in statistical region; thus, further studies in this direction 
should be quite promising. Moreover, the application to ab initio
shell-model calculations in light nuclei is expected.
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