1	Volatile fatty acids (VFAs) production from swine manure through short-term
2	dry anaerobic digestion and its separation from nitrogen and phosphorus
3	resources in the digestate
4	
5	Weiwei Huang ^a , Wenli Huang ^a , Tian Yuan ^a , Ziwen Zhao ^a , Wei Cai ^a , Zhenya Zhang ^{a, *} ,
6	Zhongfang Lei ^{a, **} , Chuanping Feng ^b
7	^a Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai,
8	Tsukuba, Ibaraki 305-8572, Japan
9	^b School of Water Resources and Environment, China University of Geosciences Beijing, Key
10	Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing),
11	Ministry of Education, Beijing 100083, China
12	
13	*Corresponding author. Tel./fax: +81 29 853 4712.
14	**Corresponding author. Tel./fax: +81 29 853 6703.
15	Email addresses: zhang.zhenya.fu@u.tsukuba.ac.jp (Z. Zhang), lei.zhongfang.gu@u.tsukuba.ac.jp
16	(Z. Lei).

18 Abstract

19	The sustainability of an agricultural system depends highly upon the recycling of
20	all useful substances from agricultural wastes. This study explored the feasibility of
21	comprehensive utilization of C, N and P resources in swine manure (SM) through
22	short-term dry anaerobic digestion (AD) followed by dry ammonia stripping, aiming
23	at achieving (1) effective total volatile fatty acids (VFAs) production and separation;
24	(2) ammonia recovery from the digestate; and (3) preservation of high P
25	bioavailability in the solid residue for further applications. Specifically, two ammonia
26	stripping strategies were applied and compared in this work: (I) ammonia stripping
27	was directly performed with the digestate from dry AD of SM (i.e. dry ammonia
28	stripping); and (II) wet ammonia stripping was conducted by using the resultant
29	filtrate from solid-liquid separation of the mixture of digestate and added water.
30	Results showed that dry AD of the tested SM at 55 °C, 20% TS and unadjusted initial
31	pH (8.6) for 8 days produced relatively high concentrations of total VFAs (94.4 mg-
32	COD/g-VS) and ammonia-N (20.0 mg/g-VS) with high potentially bioavailable P
33	(10.6 mg/g-TS) remained in the digestate, which was considered optimal in this study.
34	In addition, high ammonia removal efficiencies of 96.2% and 99.7% were achieved
35	through 3 hours' dry and wet stripping (at 55 °C and initial pH 11.0), respectively,
36	while the total VFAs concentration in the digestate/filtrate remained favorably
37	unchanged. All experimental data from the two stripping processes well fitted to the
38	pseudo first-order kinetic model ($R^2 = 0.9916-0.9997$) with comparable theoretical
39	maximum ammonia removal efficiencies (A_{eq} , > 90%) being obtained under the tested

40	dry and wet stripping conditions, implying that the former was more advantageous
41	due to its much higher volumetric total ammonia-N removal rate thus much smaller
42	reactor volume, less energy/chemicals consumption and no foaming problems. After 8
43	days' dry AD and 3 hours' dry ammonia stripping, the separated liquid containing
44	VFAs and the recovered ammonia were both marketable products, and the solid
45	residues with averagely higher C/N ratios of 25.7 than those of raw SM (18.0)
46	meanwhile maintaining a relatively high bioavailable P content of 8.1 mg/g-TS can
47	serve as better feedstock for methane fermentation.
48	
49	Keywords: Swine manure; Dry anaerobic digestion; Volatile fatty acids; Dry
50	ammonia stripping; Phosphorus fractionation

1. Introduction

53	Intensive livestock industry annually produces staggering amounts of animal
54	manure in China. Generally, manure wastes are generated in two forms, i.e. liquid
55	manure (animal excrement) flushed by water which runs through a sloping concrete
56	floor, and solid manure (a mixture of manure and urine with bedding materials).
57	These manure wastes represent a huge burden to the environment. According to a
58	report published by MEP China (2014), the livestock husbandry in China annually
59	releases 10.7 million tons of chemical oxygen demand (COD) and 0.6 million tons of
60	ammonia-N, resulting in serious environmental issues. For this reason, appropriate
61	methods for manure treatment and management are demanding for the sustainability
62	of our society.
63	Anaerobic digestion (AD) has been recognized as a promising practice for
64	animal manure stabilization due to its potentials for bioenergy production through
65	organic matters decomposition, reduction in greenhouse gas emission and
66	deactivation of pathogens (Abbasi et al., 2012; Massé et al., 2011). Traditionally, AD
67	is performed in wet state with total solids (TS) content < 15% (always \leq 10% TS), and
68	a large volume of water is required to achieve such a low TS condition. Despite its
69	efficacy for biogas production, wet AD has some shortcomings such as large reactor
70	volume, high construction cost, and discharge of large volume of digestate with high
71	contents of organics and nutrients (mainly N and P), posing a serious threat to the
72	surrounding water bodies. On the other hand, although this digestate can be re-utilized
73	and applied on farmlands, a large proportion of N in the liquid digestate occurs as

ammonia-N which can easily lose and release during storage and land spreading,
leading to insufficient nutrients utilization and air pollution. What's more, ammonia-N
can be further nitrified in soil environment into nitrate, a highly movable form
through the soil matrix to the aquifer, contributing to groundwater contamination
(Alburquerque et al., 2012).

To optimize the economic efficiency for AD of livestock manure and to avoid the 79 production of large quantities of liquid digestate, dry AD (TS \ge 20%) can be adopted 80 for the treatment of solid manure fraction obtained through solid-liquid separation, 81 82 meanwhile the liquid fraction can be treated separately. Operation of AD in dry conditions contributes to smaller biogas facilities, easy handling of the digestate and 83 minimal loss of nutrients that can be fully recovered and utilized as fertilizers 84 85 (Karthikeyan and Visvanathan, 2013). Rico et al. (2015) reported a high methane yield of 265 ml/g-VS from thermophilic dry AD of dairy manure using percolate 86 recirculation technology. High rate psychrophilic (20 °C) dry AD of dairy manure at 87 35% TS has been proven to be possible when sufficient quantity of well acclimatized 88 inocula was used (Saady and Massé, 2015). Chen et al. (2015) further justified the 89 90 technical and economic feasibility of a continuous plug-flow dry AD reactor operated at ambient temperature for swine manure treatment. Although being advantageous in 91 size and costs of required facilities, dry AD of livestock manure frequently encounters 92 ammonia inhibition and volatile fatty acids (VFAs) buildups which would to a greater 93 94 extent exert inhibition effect on methanogenic activity, hindering its full application to treat livestock manure in practice. During dry AD of swine manure, noticeable 95

96	inhibition to methane production was observed when ammonia-N concentration
97	exceeded 3000 mg/L (Chen et al., 2015). In a solid-phase AD system developed for
98	dairy manure treatment, high concentration of accumulated VFAs also brought about
99	decrease in organics degradation rate and daily methane yield (Rico et al., 2015).
100	Hence, it is important to timely remove and recover these useful while inhibitory
101	substances to guarantee high efficiencies of a dry AD system. Up to now, however,
102	little information is available as per this aspect.
103	This study sought to maximize the utilization of the three major resources (C, N
104	and P) in the manure so as to reduce its risk to the environment, aiming at realizing
105	the specific goals outlined as follows: (1) VFAs production from short-term dry AD of
106	animal manure and its separation; (2) ammonia recovery from the digestate by
107	stripping; and (3) preservation of high bioavailable P in the solid residue for further
108	application (as solid fertilizer or feedstock for composting and/or methane
109	fermentation). Swine manure (SM) was chosen as an example of livestock manure in
110	this study.
111	In order to obtain separated VFAs solutions and ammonia-N resource from SM, a
112	two-step process involving dry AD followed by ammonia stripping was adopted as
113	illustrated in Fig.1a. For ammonia stripping and final acquisition of the VFAs
114	solutions, two strategies were tested in this study: (I) stripping of ammonia directly
115	from the digestate in dry state followed by water dilution, mixing and solid-liquid
116	separation (i.e. dry ammonia stripping); and (II) addition of water to the digestate,
117	then solid-liquid separation, and finally ammonia stripping from the filtrate (i.e. wet

118	ammonia stripping). Both the ammonia recovered from the digestate and the final
119	liquid extract containing VFAs have market values. To the best of our knowledge, the
120	feasibility of ammonia stripping from the digestate at TS $\geq 20\%$ has not yet been
121	documented.
122	In this study, VFAs production efficiency was investigated under different dry
123	AD conditions, and the fractionations of P before and after dry AD were revealed.
124	Much attention was paid to the performance of ammonia stripping through the two
125	proposed strategies, which was further compared in terms of technical and economic
126	feasibility. Finally, the availability of VFAs, N and P resources in the liquid extract
127	and solid residue obtained after the two-step treatment process was evaluated. Results
128	from this study are expected to provide new concepts and useful information for the
129	integral and comprehensive utilization of manure wastes in practice.
130	
131	2. Materials and methods
132	2.1. Swine manure
133	Raw swine manure (RSM) was collected from a pig farm in Ibaraki, Japan.
134	Chopped straw was used as bedding materials in the pig house. Solid RSM containing

- straw was sampled directly from the floor of pig house. The obtained RSM was mixed
- thoroughly and stored at 4 °C before experimental analyses, and its main
- 137 characteristics are presented in Table 1 based on five tests in parallel.
- 138

139 2.2. Dry AD for VFAs production

140	The SM was anaerobically incubated at controlled experimental conditions, i.e.
141	temperature ranging from 25 °C to 55 °C, TS content from 20% to 35%, and initial
142	pH from 7.0-12.0, respectively. The initial system pH was adjusted with 6 M HCl
143	solution or solid $Ca(OH)_2$. In this section, $Ca(OH)_2$ was used due to its low cost, wide
144	availability, and better performance for VFAs production than other alkalis like
145	NaOH, KOH, and CaO according to our preliminary tests (Fig. S1, Supporting
146	Information). For the dry AD trials, 12 identical cylindrical reactors (4.4 cm in
147	diameter, 7 cm in height) with working volume of 100 ml were used. The manure was
148	first added with water and mixed thoroughly to achieve a designed TS content, and 90
149	g of the mixture was loaded into each reactor. The reactors were then flushed with $N_{\rm 2}$
150	for 2 min, and sealed with silicone stoppers before being placed in a temperature-
151	controlled water bath and incubated at the designed temperature for 8 days. During
152	the incubation three of them were sacrificed for determination of related parameters
153	every other day.
154	To get sufficient amount of VFAs and ammonia enriched digestate for the
155	stripping experiments (Fig. 1b), an anaerobic reactor (18.8 cm in diameter, 14.5 cm in
156	height) with a working volume of 4 L was operated for 8 days without mixing under
157	the optimal conditions determined in the above trials. The digestate was then
158	homogenized and stored at 4 °C before used for ammonia stripping experiments.
159	
160	2.3. Ammonia stripping

161 Ammonia stripping from the solid digestate was conducted in an enclosed

system as illustrated in Fig. 1b. For dry ammonia stripping, 130 g digestate was 162 loaded into a 500 ml glass vessel equipped with motor-driven propeller. As for wet 163 ammonia stripping, 130 g liquid was introduced into a bubbling reactor with a 164 working volume of 500 ml and a buffer tank was followed to prevent the foams from 165 entering the acid solution bottle. Air was firstly pumped into a vessel containing water 166 to pre-warm the gas and to compensate the moisture loss from the stripping reactor. It 167 was then flushed into the digestate containing vessel through a circular tube with 168 small openings (ϕ 2) at the bottom or purged into the bubbling reactor and carried the 169 170 volatile ammonia into the HCl absorption bottles (500 ml×2, 1.5 M) for entrapment. The gas was circulated among the vessels and acid solutions at a gas flow rate of 216 171 ml/min. Temperature and pH were tested respectively at two levels (35 °C, 55 °C and 172 173 initial pH of 10.0 and 11.0) for a stripping duration of 3 hours. NaOH was applied for pH adjustment in the ammonia stripping experiments due to its efficacy and retention 174 of P availability. Concentrations of ammonia and total volatile fatty acids (TVFAs) in 175 176 the solid digestate/liquid filtrate were detected every 30 min during the stripping process. 177

For solid-liquid separation, the mixture of water and digestate was centrifuged at 9000 rpm for 20 min and then filtered by filter papers. Characteristics of the VFAs containing solution and the final solid residue obtained through the two proposed strategies (Fig. 1a) under their optimal stripping conditions were also tested.

182

183 *2.4. Analytical methods*

184	TS content was measured by drying the manure sample at 105 °C till constant
185	weight, and volatile solids (VS) content was determined by igniting the dried manure
186	at 600 °C for 3 hours. C/N ratio of the manure was measured using an organic
187	element analyzer (Perkin-Elmer 2004 CHN, USA). The manure pH was measured
188	with a semi-solid pH meter (Testo 206, Germany). Total Kjeldahl nitrogen (TKN) was
189	determined by adding known amount of deionized water into 1 g solid manure and
190	then analyzing the mixture in accordance with standard method (APHA, 2012). Total
191	organic nitrogen (TON) was calculated as the difference between TKN and total
192	ammonia nitrogen (TAN).
193	For analysis of soluble products, 4 g manure sample (wet weight) was diluted
194	with 40 ml deionized water. The mixture was centrifuged at 9000 rpm for 20 min and
195	then filtered through a 0.45 μm microfiber filter. Measurements of TAN, ortho-P and
196	soluble chemical oxygen demand (SCOD) were conducted in accordance with
197	standard method (APHA, 2012). The filtrate was acidified by 3% phosphoric acid
198	solution to pH around 4.0 before VFAs analysis by a Shimadzu GC-14B/FID packed
199	with Unisole F-200 30/60 column. The column and the injector temperatures were set
200	at 150 °C and 180 °C, respectively. The pressure of N_2 carrier gas was maintained at
201	200 Kpa. In this study, the concentrations of VFAs were presented as equivalent COD
202	values calculated from the theoretical formula of each VFA component.
203	To reveal the dynamic change of P species in SM before and after dry AD,
204	fractionation of P was conducted according to Standards, Measurements and Testing
205	(SMT) Programme extraction protocol (Medeiros et al., 2005; Ruban et al., 1999).

206	Details of P fractionation are illustrated in Fig. S2 (Supporting Information). P in the
207	solid SM was classified into 2 categories: organic phosphorus (OP) and inorganic
208	phosphorus (IP). Two main forms of IP were fractionated, i.e. bio-available non-
209	apatite inorganic phosphorus (NAIP) loosely bound on exchange sites or associated
210	with Al, Fe and Mn oxide, and Ca-bound apatite phosphorus (AP) which is not able to
211	be utilized by most microorganisms and plants (Manning et al., 1984; Ruban et al.,
212	1999). Total phosphorus (TP) was the sum of OP and IP. The fractions of P that can be
213	potentially released and utilized by microorganisms and plants were termed
214	potentially bioavailable P (i.e. OP and NAIP).
215	
216	2.5. Kinetics of ammonia stripping process
217	Pseudo first-order kinetic model expressed as Eq. (1) was applied for process
218	analysis in order to disclose the mechanisms of ammonia stripping at dry or wet state.
219	$A_t = A_{eq} \left(1 - e^{-kt} \right) \tag{1}$
220	where t (min) is the stripping duration, and k (min ⁻¹) the TAN removal rate constant.
221	A_{eq} and A_{t} (%) represent the TAN removal efficiency at equilibrium and time t,
222	respectively.
223	In addition to TAN removal efficiency, effective TAN removal duration (τ_e , min)
224	defined as the stripping duration for achieving 80% TAN removal was used to
225	indicate the performance of the stripping process.

2.6. Statistical analysis

- 228 One-way analysis of variance (ANOVA) was used to analyze the statistical
- difference among the experimental scenarios by using Microsoft Office Excel 2010.
- 230 Significance was assumed if p < 0.05.
- 231
- 232 **3. Results and discussion**
- 233 *3.1. VFAs production from swine manure during 8 days' dry AD*
- 234 *3.1.1. Effect of temperature*

The effect of temperature on net VFAs yield at 25% TS without initial pH 235 236 adjustment (pH~8.6) is shown in Fig. 2a. It is clear that an increase in temperature favored the production of VFAs. After 8 days' dry AD, a low TVFAs yield of 5.5 mg-237 COD/g-VS was obtained at 25 °C. In comparison, the final TVFAs yield was 238 increased by 1.3 and 5.8 times at 35 °C and 55 °C, about 12.6 and 37.2 mg-COD/g-239 VS, respectively. The VFAs detectable during dry AD of SM were mainly short-chain 240 fatty acids with 2-5 C atoms, including acetic, propionic, iso-butyric, n-butyric, iso-241 242 valeric and trace of n-valeric acids. Acetic acid (HAc) was the dominant VFAs product at all tested temperatures, accounting for 71.7%, 62.9% and 56.6% of the 243 TVFAs produced after 8 days' dry AD of SM at 25 °C, 35 °C and 55 °C, respectively. 244 Propionic acid (HPr) was the second most prevalent VFAs product at 25 °C and 245 35 °C, respectively accounting for 11.9% and 16.4% of the TVFAs generated at the 246 end of fermentation, whereas iso-valeric acid (iso-HVa) was the second major VFAs 247 at higher temperature of 55 °C, and its percentage in the produced TVFAs remained 248 pretty stable between 22.2-24.2% (p = 0.3962 > 0.05) throughout the whole dry AD 249

251	55 °C was considered to be the most favorable among the three tested temperatures.
252	
253	3.1.2. Effect of TS content
254	In this section, dry AD of SM was performed at 55 °C and different TS contents
255	(without initial pH adjustment), and the profiles of VFAs yield are shown in Fig. 2b.
256	At 20% TS, the TVFAs yield increased with fermentation time and reached a
257	maximum of 66.4 mg-COD/g-VS on day 6. After that, obvious VFAs consumption
258	was observed, leading to decreased final TVFAs yield to 55.3 mg-COD/g-VS at the
259	end of fermentation. As for TS contents of 25%, 30% and 35%, the highest TVFAs
260	yields were recorded as 39.6 mg-COD/g-VS on day 8, 38.5 mg-COD/g-VS on day 8,
261	and 30.7 mg-COD/g-VS on day 6, respectively. During the dry AD of SM at 55 $^\circ$ C,
262	HAc was the most abundant VFAs product at all tested TS levels, followed by iso-
263	HVa.
264	It is noteworthy that under the same operational conditions (55 °C, TS 25%, and
265	initial pH~8.6), the results of VFAs yield and its composition obtained in these
266	experiments were slightly different from those presented in section 3.1.1. A similar
267	phenomenon was also noticed for ammonia production and P fractionation, most
268	probably attributable to the complexity of dry AD process and heterogeneous nature
269	of the SM investigated. Considering the efficiency of VFAs production, 20% TS was
270	applied in the following tests.

process at this thermophilic temperature. In view of VFAs production efficiency,

3.1.3. Effect of initial pH

273	The effect of different initial pH on VFAs production at 55 °C and 20% TS is
274	demonstrated in Fig. 2c. As shown, the highest yields of TVFAs were detected on day
275	8 at all tested initial pH levels, which followed a descending order as pH 11.0 (79.1
276	mg-COD/g-VS) > pH 10.0 (75.7 mg-COD/g-VS) > pH 9.0 (60.0 mg-COD/g-VS) >
277	pH 7.0 (54.0 mg-COD/g-VS) > pH 8.0 (50.5 mg-COD/g-VS) > pH 12.0 (11.5 mg-
278	COD/g-VS). Obviously, initial pHs of 11.0 and 10.0 were beneficial for VFAs
279	accumulation. Despite a slightly higher TVFAs yield was obtained at initial pH 11.0
280	than that at pH 10.0, their difference was statistically insignificant ($p = 0.4589 >$
281	0.05). After 8 days' dry AD at 55 °C, 20% TS and initial pH 8.0-10.0, high volumetric
282	TVFAs production rate of 979.7 to 1468.6 mg-COD/L/d was achieved in this study.
283	After 8 days' fermentation, the proportion of HAc yield to TVFAs yield was in
284	the following order: pH 12.0 (80.4%) > pH 10.0 (63.2%) > pH 11.0 (60.5%) > pH 9.0
285	(55.8%) > pH 8.0 (38.0%) > pH 7.0 (33.3%). It is apparently that the proportion of
286	HAc increased almost linearly with the increase of initial pH, suggesting that HAc
287	production pathway is more dominant and robust than the production of other VFAs
288	under alkaline dry AD conditions.
289	As pointed out by Lin et al. (2013), initial pH adjustment could alter the
290	microbial communities in SM thus affecting its hydrolysis and acidification processes.
291	It is interesting to notice that, when operated at 55 °C, 20% TS and similar initial pHs
292	of 8.0 (adjusted with HCl), 8.6 (unadjusted) and 9.0 (adjusted with Ca(OH) ₂), the
293	patterns of VFAs accumulation were quite different (Figs. 2b and 2c). At adjusted
294	initial pHs 8.0 and 9.0, the TVFAs yield increased gradually during the dry AD

295	process and reached a maximum on day 8 although impermanent stagnation seemed
296	to occur during days 2-4 and days 4-6, respectively. In comparison, quicker TVFAs
297	accumulation was observed at unadjusted initial pH 8.6 with higher maximum TVFAs
298	yield on day 6. This observation was most probably brought about by the disturbance
299	of chemical (HCl or $Ca(OH)_2$) addition on the microbial communities localized in
300	SM, that is, some adaptation or acclimation was necessary for the fermentation
301	bacteria to accommodate to the resultant microenvironment like elevated ionic
302	strength or free ammonia.

304 *3.2. Ammonia recovery by stripping*

During dry AD of SM, substantial amount of ammonia-N was released gradually 305 306 through organic matters decomposition. Fig. S3 (Supporting Information) illustrates the effects of different temperature, TS content and initial pH on ammonia production 307 after the 8 days' dry AD trials. Similar to the production of VFAs, thermophilic 308 temperature (55 °C), lower TS (20%) and moderate alkaline initial pH (8.0-10.0) were 309 beneficial for the production of ammonia. Despite a higher TAN yield obtained after 310 dry AD at initial pH 10.0, ANOVA analysis indicated statistically insignificant 311 difference in the final TAN yield among initial pH 8.0-10.0 (including the scenario of 312 initial pH 8.6, i.e. without initial pH adjustment). 313 For the purpose of maximizing the utilization of C, N and P resources in the 314 digestate as well as minimizing chemicals consumption (detailed discussion was 315

given in section 3.3), ammonia stripping was conducted with the digestate obtained

317	after 8 days' dry AD at 55 °C, 20% TS and unadjusted initial pH. Table 2 lists the
318	main resources available in the digestate after dry AD under 4 typical experimental
319	conditions in this study.

321 *3.2.1. Dry ammonia stripping*

Fig. 3a displays the removal efficiencies of TAN from the solid digestate under 322 different stripping conditions. An increase in both initial pH and temperature gave rise 323 to higher concentrations of free ammonia nitrogen (FAN) (Hansen et al., 1998), 324 325 contributing to higher removal efficiencies of TAN from the digestate. The highest TAN removal efficiency of 96.2% was achieved at 55 °C and initial pH 11.0 after 3 326 hours' stripping. Quantitative analysis of the amount of TAN entrapped by acid 327 328 solution or water and that escaped from the digestate revealed a high TAN recovery efficiency \geq 95.5% under all stripping conditions. 329 As illustrated in Fig. 3b, most probably as a consequence of ammonia removal 330 331 the digestate pH dropped in all circumstances, from 10.0 to 8.9 and 8.5, and from 11.0 to 9.6 and 9.1 when the stripping was conducted at 35 °C and 55 °C, respectively. On 332 the other hand, the concentration of TVFAs in the digestate remained pretty stable 333 throughout the whole stripping process. As it is known, VFAs are volatile under acidic 334 conditions while they become stable and exist as ionic forms in alkaline solutions. In 335

the stripping systems, due to the fact that pH was maintained at pH > 7.0, the escaped

337 TVFAs from the reactor were considered insignificant. In these trials, averagely

338 92.5% of the TVFAs were successfully retained in the digestate after 3 hours'

339	stripping at 55 °C and initial pH 11.0. Only 4.7% and 2.1% of TVFAs were averagely
340	detected in the scrubbing solutions and the water containing bottle (vessel 3 in Fig.
341	1b), respectively. And the loss of TVFAs from the stripping system was most probably
342	brought about by measurement errors. Based on the experimental results (Fig. 3a), the
343	effective TAN removal duration (τ_e), about 60 min and 90 min, was obtained for the
344	stripping process at initial pH 11.0 and pH 10.0 (55 °C), respectively. The former
345	(55 °C and initial pH 11.0) was considered to be the optimal dry ammonia stripping
346	condition in this study.
347	
348	3.2.2. Wet ammonia stripping
349	The removal efficiencies of TAN during wet ammonia stripping are shown in
350	Fig. 3c. At the end of stripping (the 3^{rd} h), the removal efficiencies of TAN were
351	detected to be 79.1% at 35 °C and initial pH 10.0, 91.5% at 55 °C and initial pH 10.0,
352	and 95.0% at 35 °C and initial pH 11.0, respectively. The highest TAN removal
353	efficiency was achieved at 55 °C and initial pH 11.0, which increased rapidly to
354	98.7% after stripping for 2 hours, and then climbed slowly to 99.7% after 3 hours'
355	stripping. TAN balance analysis again revealed good performance of TAN recovery
356	by using the stripping/absorption processes. Greater than 94.0% of the stripped TAN
357	from the filtrate was able to be entrapped by the acid solution and water in all cases
358	studied.
359	As shown in Fig. 3d, the filtrate pH declined during the process of stripping from
360	10.0 to 8.8 (35 °C) and 8.4 (55 °C), and from 11.0 to 9.7 (35 °C) and 9.1 (55 °C),

361	respectively. On the other hand, the decrease of TVFAs in the filtrate was found to be	
362	less than 11% in all the tested scenarios. For instance, an average decrease of 6.3%	
363	after stripping was detected when the stripping was conducted at 55 °C and initial pH	
364	11.0. Moreover, to a great extent the lost TVFAs could be re-entrapped by the	
365	scrubbing solutions (~ 61%) and water containing vessel 3 (~ 32%, Fig. 1b). Again,	
366	based on Fig. 3c, the effective TAN removal duration (τ_e) was determined to be	
367	around 65 min and 85 min, respectively for wet stripping at initial pH 11.0 and pH	
368	10.0 (55 °C), which was almost similar to that of dry ammonia stripping process (Fig.	
369	3a).	

371 *3.2.3. Comparative analysis*

372 Two ammonia stripping strategies (dry or wet) were employed for ammonia recovery from the digestate, which were further compared in terms of technical and 373 economic aspects. According to the results of kinetic analysis presented in Table 3, 374 the experimental data from both dry and wet ammonia stripping processes fitted well 375 to the pseudo first-order kinetic model ($R^2 = 0.9916-0.9997$). Interestingly, when 376 operated under the same temperature and initial pH conditions, almost similar A_{eq} 377 values were obtained by either dry or wet ammonia stripping. This observation 378 indicated that TS content could only affect the kinetics of TAN removal since similar 379 A_{eq} values were achieved under both dry and wet stripping conditions while a higher 380 TAN removal rate constant (k) for wet stripping process. Results indicated that the 381 extent to which ammonia stripping could proceed was driven by the substrate 382

383	FAN/TAN ratio closely related to system pH and temperature, whereas the ammonia	
384	removal rate was largely affected not only by the effective contact between gas and	
385	substrate, but also the influencing factors like gas distribution and existing form,	
386	viscosity and fluidity of the substrate. Among all the tested scenarios, 55 $^\circ$ C, the	
387	optimal temperature for VFAs production, was also found to be the optimal	
388	temperature for both dry and wet ammonia stripping in this study. In addition, for	
389	these two stripping strategies, about 60-65 min and 85-90 min were necessary for	
390	achieving 80% of TAN removal from the digestate or filtrate when ammonia stripping	
391	was conducted at 55 °C with initial pH 11.0 and pH 10.0, respectively (Table 3).	
392	In the stripping system developed in this study, the gas was circulated among the	
393	vessels and acid absorption solutions in a close loop, to a great extent avoiding	
394	unnecessary ammonia loss and OH ⁻ consumption resulted from the reaction between	
395	NaOH and CO ₂ in the air. From this work, dry ammonia stripping possesses the	
396	following advantages compared to traditional wet stripping. Firstly, dry ammonia	
397	stripping can avoid the foaming problems which always occur in wet systems.	
398	Secondly, much higher volumetric TAN removal rates (0.75-0.99 g/L-digestate/h)	
399	were obtained in the dry ammonia stripping systems operated at 20% TS, in	
400	comparison to those (0.14-0.17 g/L-filtrate/h) of wet ammonia stripping systems. In	
401	addition, processing of the digestate in semi-solid state requires much smaller reactor	
402	and thus less construction investment. And thirdly, the consumptions of energy for	
403	heating as well as chemicals (i.e. both alkalis applied to raise digestate/filtrate pH	
404	during ammonia stripping and acids used for re-neutralization of the ammonia-	

405	stripped digestate/filtrate before being further processed) are considerably saved.	
406	Zhang and Chen (2009) stated that it's feasible to use struvite precipitation for	
407	simultaneous recovery of ammonia-N and soluble ortho-P from sludge fermentation	
408	liquor. This process, however, is less beneficial for the liquid extract from fermented	
409	manure mainly due to the following two considerations. (1) Numerous organic	
410	compounds and inorganic ions co-existing in the liquid would definitely affect the	
411	purity of struvite precipitates. (2) The theoretical molecular ratio of N:P in struvite is	
412	1:1, while the molecular ratio of TAN to ortho-P in the liquid extract was close to	
413	13:1. The concentration of water extractable ortho-P (~90 mg/L) in the fermented	
414	manure was disproportionally lower than that of TAN (~540 mg/L) due to the fact that	
415	most P was fixed in biomass or formed precipitates with the co-existing metallic ions	
416	like $Fe^{2+/3+}$ and Ca^{2+} (Huang et al., 2015). In this context, dry ammonia stripping	
417	offers a promising alternative for direct separation and recovery of ammonia-N from	
418	the dry AD digestate.	

420 *3.3. Changes in P bioavailability in the digestate*

421 *3.3.1. During VFAs fermentation*

Fig. 4a depicts the analytical results of P fractions and pH variations in RSM andthe digestates obtained from the 8 days' dry AD at different temperatures. As shown,

424 TP remained stable at around 18.0 mg/g-TS in all tested manure samples. The

425 increase in temperature, however, has some positive effect on the conversion of OP to

426 IP. Generally, the P group in OP compounds is bound to C by an ester bond. Thus OP

427	is mineralized as a byproduct of the C cycle, during which enzymatic hydrolysis is an
428	essential step for the degradation of OP to IP (Tiessen, 2011). Various enzymes such
429	as nucleases, phytase, phospholipase, and phosphatases are involved in this enzymatic
430	hydrolysis process, and the activity of each enzyme depends highly upon system
431	temperature and pH (Tiessen, 2011; Turner et al., 2005). After the 8 days' dry AD
432	process, the proportion of potentially bioavailable P decreased slightly from 61.3%
433	(RSM) to 59.8%-58.6%. This is to some extent consistent with the finding of Güngör
434	and karthikeyan (2008) who declared that AD of dairy manure was capable of
435	reducing the immediately available P in the solid phases. On the other hand, the
436	system pH dropped from 8.6 to 8.0, 7.8 and 7.7 after dry AD at 25 °C, 35 °C and
437	55 °C, respectively, most probably resulting from VFAs accumulation (Fig. 2a).
438	Results of P fractionation and pH in RSM and the digestates after the 8 days' dry
439	AD at 55 °C and different TS contents are displayed in Fig. 4b. It was observed that at
440	the end of experiments, the conversion efficiency of OP increased from 18.4% to
441	47.4% with TS increased from 20% to 35%. This observation might be partially
442	explained by the increase in their final pHs from 7.7 at 20% TS to 8.3 at 35% TS. A
443	strong correlation relationship was found between the OP conversion efficiency and
444	the final pH of the digestate by using linear regression analysis ($R^2 = 0.9960$). Unlike
445	the production of VFAs, TS content was not the limiting factor dictating the
446	conversion efficiency of OP to IP. Instead, system pH played a more important role in
447	OP mineralization. A proper increase in the system pH might be beneficial for the
448	microbial degradation of OP. In this work a greater extent of OP mineralization

seemed to be accompanied by a slightly higher final pH (like 35% TS).

Fig. 4c displays the effects of initial system pH on P speciation after the 8 days' 450 dry AD at 55 °C and 20% TS. An increase in initial pH from 7.0 to 10.0 contributed to 451 an increased OP conversion efficiency from 15.8% to 68.4%. Further increase of 452 system pH to 11.0 or 12.0, however, led to a decline in OP conversion efficiency. On 453 the other hand, a larger proportion of AP in IP was detected in the digestate when dry 454 AD was conducted at higher initial pHs. This phenomenon was due to the fact that in 455 this study Ca(OH)₂ was employed to adjust the initial pH of SM to alkaline conditions 456 under which Ca^{2+} and PO_4^{3-} could react with OH^- to form apatite (Van Kemenade and 457 De Bruyn, 1987), contributing to a higher amount of AP in the digestate. The lowest 458 potentially bioavailable P was detected to be 1.7 mg/g-TS at initial pH of 10.0, 459 460 accounting for 9.5% of TP in the digestate.

461

462 *3.3.2. During ammonia stripping*

Table 2 also lists the availabilities of TVFAs, TAN and P species in the digestate 463 after dry AD under 4 typical conditions. In spite of the highest TVFAs and TAN yields 464 obtained in the digestate from dry AD at 55 °C, 20% TS and initial pH 10.0, its 465 bioavailable P (OP + NAIP) was very low. In contrast, after 8 days' dry AD at 55 °C, 466 20% TS and no adjustment of initial pH, relatively high concentrations of TVFAs, 467 TAN and bioavailable P in the digestate were obtained simultaneously. In order to 468 optimize the costs relating to chemicals consumption and to meet the requirements of 469 multipurpose utilization of the digestate, the optimal dry AD condition was 470

471	determined as 55 °C, 20% TS and unadjusted initial pH. The digestate obtained after 8
472	days' dry AD under the optimal conditions underwent dry or wet ammonia stripping;
473	thereafter the availability of C, N and P in the separated liquid solution and solid
474	residue were explored.
475	Table 4 presents the main characteristics of the liquid and solid phases obtained
476	by strategies I and II, respectively, at stripping conditions of 55 °C and initial pH 11.0.
477	As it can be seen, the final concentration of TVFAs was almost same in the liquid
478	phase by using both stripping processes, around 2250 mg-COD/L. As for P
479	availability, slightly higher concentration of soluble ortho-P was detected in the liquid
480	after dry ammonia stripping, possibly due to thermal-alkaline hydrolysis of the
481	organic solids during the stripping process. As expected, a slightly lower
482	concentration of OP was detected in the solid residue after strategy I, about 2.4 mg/g-
483	TS in comparison to 3.1 mg/g-TS of OP in the solid residue acquired with strategy II.
484	AP and NAIP concentrations were almost similar regardless of different stripping
485	strategies applied. In summary, the potentially bioavailable P in the solid residue was
486	able to be maintained at a relatively high level of 8.1-8.4 mg/g-TS (51.6%-53.5% of
487	TP) after ammonia stripping and solid-liquid separation through both strategies. Most
488	notably, the C/N ratios in the solid residues after strategies I and II were detected to be
489	25.7 and 21.9, respectively, both higher than that of RSM (C/N=18.0, Table 1) and
490	falling within the optimal C/N range (20-30) for biomethane production (Esposito et
491	al., 2012).

3.4. Implication of this study to practice

494	After the two-step treatment process under optimal conditions, the obtained	
495	liquid rich in VFAs (Table 4) might be utilized as external carbon source to enhance	
496	biological nutrients removal after being further processed (like extraction or	
497	adsorption) or used for other industrial purposes. The recovered ammonia, on the	
498	other hand, is a valuable raw material that can be used for synthesis of chemical	
499	fertilizers (e.g. urea), antibacterial agents and many commercial cleaning products.	
500	The solid residue with much lower N content while maintaining a relatively high	
501	content of bioavailable P can serve as feedstock for dry methane fermentation or	
502	composting for solid fertilizer production. In brief, it is practically feasible to achieve	
503	maximum utilization of C, N and P resources in livestock manure by combining short-	
504	term dry AD and dry ammonia stripping technologies.	
505	To make full use of livestock manure, future research on further enhancement of	
506	VFAs production from dry AD of SM and dry methane production of the resultant	
507	solid residue should be followed up. Specifically, in addition to cost-effectiveness	
508	analysis of the whole system, attentions should also be paid to the preservation and	
509	retention of the bioavailable N and P resources in the digestate and utilization of the	
510	digestate as high quality fertilizers as well.	

4. Conclusions

This paper presented a novel strategy for stabilization and utilization of SMusing short-term dry AD followed by dry ammonia stripping, specifically focusing on

515	the changes in VFAs, TAN and P bioavailability throughout the treatment procedure.	
516	From this work, the following conclusions can be arrived at:	
517	(1) Thermophilic temperature, lower TS of 20% and moderate alkaline initial pH	
518	of 8.0-10.0 are beneficial for the accumulation of VFAs and ammonia during short-	
519	term dry AD of SM. After 8 days' dry AD under above conditions, high volumetric	
520	TVFAs and TAN production rates of 979.7-1468.6 mg-COD/L/d and 181.3-214.0	
521	mg/L/d were achieved, respectively.	
522	(2) In the thermophilic dry AD system, proper increase in system pH (brought	
523	about by increasing TS from 20% to 35%) was beneficial for the microbial	
524	degradation of OP. Mineralization of OP was found to be significantly enhanced when	
525	SM was fermented under 20% TS and 55 °C by using $Ca(OH)_2$ to adjust initial pH,	
526	which lowered the amount of bioavailable P (OP + NAIP). Considering full	
527	utilization of C, N and P resources in the SM, the short-term dry AD without initial	
528	pH adjustment (pH~8.6) is suggested in practice.	
529	(3) The two-step procedure involving short-term dry AD and dry ammonia	
530	stripping not only provides an alternative for the production and separation of VFAs	
531	from ammonia and P resources, but also serves as pretreatment to reduce ammonia	
532	buildups. Thus the treated SM residue is also expected to have high potential for dry	
533	methane fermentation, which has been manifested by our followed-up experiments	
534	(data not shown).	
535		

536 Acknowledgements

537	This work was supported by JSPS KAKENHI Grant Numbers 25281046 and
538	15K00599.

540	References
541	Abbasi, T., Tauseef, S.M., Abbasi, S.A., 2012. Anaerobic digestion for global
542	warming control and energy generation—An overview. Renew. Sust. Energ. Rev.
543	16, 3228-3242.
544	Alburquerque, J.A., de la Fuente, C., Ferrer-Costa, A., Carrasco, L., Cegarra, J., Abad,
545	M., Bernal, M.P., 2012. Assessment of the fertiliser potential of digestates from
546	farm and agroindustrial residues. Biomass Bioenerg. 40, 181-189.
547	APHA, 2012. Standard Methods for the Examination of Water and Wastewater, 22 nd
548	Edition edited by E.W. Rice, R. B. Baird, A.D. Eaton and L.S. Clesceri.
549	American Public Health Association (APHA), American Water Works
550	Association (AWWA) and Water Environment Federation (WEF), Washington,
551	D.C., USA.
552	Chen, C., Zheng, D., Liu, G., Deng, L., Long, Y., Fan, Z., 2015. Continuous dry
553	fermentation of swine manure for biogas production. Waste Manage. 38, 436-
554	442.
555	Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., Pirozzi, F., 2012.
556	Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Biotechnol. 11,
557	325-341.
558	Güngör, K., Karthikeyan, K.G., 2008. Phosphorus forms and extractability in dairy

560

manure: A case study for Wisconsin on-farm anaerobic digesters. Bioresource Technol. 99, 425-436.

- Hansen, K.H., Angelidaki, I., Ahring, B.K., 1998. Anaerobic digestion of swine
 manure: Inhibition by ammonia. Water Res. 32, 5-12.
- Huang, H., He, L., Lei, Z., Zhang, Z., 2015. Contribution of precipitates formed in
- fermentation liquor to the enhanced biogasification of ammonia-rich swine

565 manure by wheat-rice-stone addition. Bioresource Technol. 175, 486-493.

- 566 Karthikeyan, O.P., Visvanathan, C., 2013. Bio-energy recovery from high-solid
- organic substrates by dry anaerobic bio-conversion processes: a review. Rev.
- 568 Environ. Sci. Biotechnol. 12, 257-284.
- 569 Lin, L., Wan, C., Liu, X., Lee, D.-J., Lei, Z., Zhang, Y., Tay, J. H., 2013. Effect of

570 initial pH on mesophilic hydrolysis and acidification of swine manure.

- 571 Bioresource Technol. 136, 302-308
- 572 Manning, P.G., Birchall, T., Jones, W., 1984. The partitioning of non-apatite inorganic
- phosphorus in sediments from lakes Erie and Ontario. Can. Mineral. 22, 357-365.
- 574 Massé, D., Gilbert, Y., Topp, E., 2011. Pathogen removal in farm-scale psychrophilic

anaerobic digesters processing swine manure. Bioresource Technol. 102, 641-

- 576 646.
- 577 Medeiros, J.J.G., Cid, B.P., Gómez, E.F., 2005. Analytical phosphorus fractionation in
 578 sewage sludge and sediment samples. Anal. Bioanal. Chem. 381, 873-878.
- 579 MEP China (Ministry of Environmental Protection of the People's Republic of
- 580 China), 2014.

- http://zls.mep.gov.cn/hjtj/nb/2013tjnb/201411/t20141124_291868.htm (accessed
 on 14th December, 2015).
- 583 Rico, C., Montes, J.A., Muñoz, N., Rico, J.L., 2015. Thermophilic anaerobic digestion
- of the screened solid fraction of dairy manure in a solid-phase percolating reactor
- 585 system. J. Clean. Prod. 102, 512-520.
- 586 Ruban, V., López-Sánchez, J.F., Pardo, P., Rauret, G., Muntau, H., Quevauviller, P.,
- 587 1999. Selection and evaluation of sequential extraction procedures for the
- determination of phosphorus forms in lake sediment. J. Environ. Monit. 1, 51-56.
- 589 Saady, N.M.C., Massé, D.I., 2015. High rate psychrophilic anaerobic digestion of
- high solids (35%) dairy manure in sequence batch reactor. Bioresource Technol.
 186, 74-80.
- 592 Tiessen, H. 2011. Phosphorus Availability in the Environment. in: eLS, John Wiley &

593 Sons, Chichester. DOI: 10.1002/9780470015902.a0003188.pub2.

- 594 Turner, B.L., Frossard, E., Baldwin, D.S. 2005. Organic phosphorus in the
- 595 environment. CABI, Wallingford.
- Van Kemenade, M.J.J.M., De Bruyn, P.L., 1987. A kinetic study of precipitation from

supersaturated calcium phosphate solutions. J. Colloid and Interface Sci. 118,

- 598 564-585.
- 599 Zhang, C., Chen, Y., 2009. Simultaneous nitrogen and phosphorus recovery from
- sludge-fermentation liquid mixture and application of the fermentation liquid to
- 601 enhance municipal wastewater biological nutrient removal. Environ. Sci.
- 602 Technol. 43, 6164-6170.

Tables

Table 1. Characteristics of raw swine manure used in the experiments.

Parameters	Raw swine manure (RSM)
Total solids (TS)	37.1 (±0.2) %
Volatile solids (VS, TS based)	77.6 (±0.2) %
Total ammonia nitrogen (TAN)	10.6 (±0.3) mg/g-VS
Total organic nitrogen (TON)	19.3 (±1.1) mg/g-VS
Organic phosphorus (OP)	3.8 (±0.3) mg/g-TS
Apatite phosphorus (AP)	7.0 (±0.5) mg/g-TS
Non-apatite inorganic phosphorus (NAIP)	7.3 (±0.5) mg/g-TS
Total volatile fatty acids (TVFAs)	39.1 (±1.1) mg-COD/g-VS
C/N	18.0 (±0.5)
pH	8.6 (±0.1)

607 The data are expressed as mean (\pm SD).

Table 2. Availability of nutrient elements and total volatile fatty acids in the digestate under 4 typical experimental conditions after 8 days' dry

611 AD.

Fermentation conditions			conditions	Compositions of nutrient elements and TVFAs in the digestate						
No.	Temperature	TS	Initial pH	TVFAs	TAN	TON	OP	NAIP	AP	P bioavailability ^b
	(°C)	(%)	(chemical used)	(mg-COD/g-VS)	(mg/g-VS)	(mg/g-VS)	(mg/g-TS)	(mg/g-TS)	(mg/g-TS)	(%)
1	55	20	8.6 ^a	94.4	20.0	9.7	3.1	7.5	7.4	58.9
2	55	35	8.6 ^a	67.4	16.2	13.7	2.0	8.5	7.8	57.3
3	55	20	8.0 (HCl)	89.6	19.9	9.9	2.9	7.1	7.9	55.9
4	55	20	10.0 (Ca(OH) ₂)	114.8	21.3	8.3	1.2	0.5	16.2	9.5

612 ^aNo initial pH adjustment. ^bP bioavailability (%)= $100 \times (OP + NAIP)/TP$.

AP-apatite phosphorus, NIAP-non-apatite inorganic phosphorus, OP-organic phosphorus, TAN-total ammonia nitrogen, TON-total organic nitrogen, TS-total solids,
 TVFAs-total volatile fatty acids, VS-volatile solids.

	Stripping co	onditions	Pseudo fir	τ		
Strategy	Temperature	Initial		1 (1)	D ²	ue .
	(°C)	pH	A _{eq} (%)	K (min)	К	(min)
	35	10.0	83.4	0.0117	0.9916	278.5
I: Dry	55	10.0	90.6	0.0238	0.9970	90.2
stripping	35	11.0	95.2	0.0154	0.9974	119.1
	55	11.0	97.3	0.0280	0.9958	61.7
	35	10.0	83.9	0.0165	0.9996	186.0
II: Wet	55	10.0	91.9	0.0242	0.9997	84.5
stripping	35	11.0	96.4	0.0176	0.9984	100.6
	55	11.0	99.9	0.0251	0.9977	64.3

Table 3. Stripping rate constants associated with the pseudo first-order kinetic model

617

and effective TAN removal durations under different stripping conditions.

Table 4. Main characteristics of the final liquid solutions and solid residues obtained

from the two operation strategies under their corresponding optimal stripping

	Parameters	Unit	Strategy I	Strategy II	
			(Dry stripping)	(Wet stripping)	
	Total ammonia nitrogen (TAN)	mg/L	19.5 (±3.3)	1.6 (±1.1)	
	Soluble ortho-P	mg/L	93.1 (±4.6)	86.7 (±6.7)	
Liquid	Total volatile fatty acids (TVFAs)	mg-COD/L	2247.3 (±114.2)	2261.2 (±125.0)	
phase	Soluble chemical oxygen	mg/L	3926.6 (±163.6)	3728.5 (±177.9)	
	demand (SCOD)				
	рН	_	9.2 (±0.3)	9.1 (±0.2)	
	Total solids (TS)	%	17.5 (±1.6)	16.4 (±1.6)	
	Volatile solids (VS, TS based)	%	76.3 (±1.0)	77.0 (±1.5)	
	Total ammonia nitrogen (TAN)	mg/g-VS	0.5 (±0.0)	4.0 (±0.3)	
	Total organic nitrogen (TON)	mg/g-VS	9.1 (±0.3)	9.5 (±0.5)	
Solid	Organic phosphorus (OP)	mg/g-TS	2.4 (±0.3)	3.1 (±0.3)	
phase	Apatite phosphorus (AP)	mg/g-TS	7.6 (±0.8)	7.3 (±0.6)	
	Non-apatite inorganic	mg/g-TS	5.7 (±0.3)	5.3 (±0.2)	
	phosphorus (NAIP)				
	C/N	_	25.7 (±0.6)	21.9 (±0.5)	
	рН	_	8.4 (±0.2)	7.6 (±0.3)	

620 conditions (both at 55 °C and initial pH 11.0).

621 The data are expressed as mean (\pm SD).

Fig. 1 - Schematics of (a) the procedure for VFAs separation from the fermented swine manure; and (b) the recirculating system for ammonia stripping and recovery.

- 1-gas pump, 2-gas flow meter, 3-vessel with water, 4-vessel with digestate, 5-
- temperature controlled thermostat, 6-propeller, 7-motor, 8-circular hollow tube with
- openings at the bottom, 9-acid absorption bottles, 10-porous ceramic head, 11-buffer
- 670 bottle.

Fig. 2 - Effects of temperature (a, TS=25% without pH adjustment), TS content (b,

- 55 °C without pH adjustment) and initial pH (c, 55 °C and 20% TS) on dry AD for the
- 678 production of VFAs. Acetic acid (HAc), propionic acid (HPr), iso-butyric acid (iso-
- HBu), n-butyric acid (n-HBu), iso-valeric acid (iso-HVa) and n-valeric acid (n-HVa).

Fig. 3 - Effects of different operational conditions on (a) ammonia removal efficiency
and (b) variations of pH and TVFAs during dry ammonia stripping, and those of
different stripping conditions on (c) ammonia removal efficiency and (d) changes of
pH and TVFAs during wet ammonia stripping.

Fig. 4 - Profiles of pH and P fractionation in raw swine manure (RSM) and the

- 697 35 °C and 55 °C (25% TS and no initial pH adjustment); (b) TS content of 20-35% (at
- ⁶⁹⁸ 55 °C without pH adjustment); and (c) initial pH varied from 7.0 to 12.0 (at 55 °C and
- 699 20% TS), respectively.
- 700
- 701