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 1 

Abstract 2 

DNAM-1 is an activating receptor expressed on NK cells and T cells and plays an 3 

important role in cytotoxicity of these cells against target cells. Although the role of DNAM-1 4 

in the function of T cells and NK cells has been well studied, the expression and function of 5 

DNAM-1 on myeloid cells have been incompletely understood. In this study, we investigated 6 

expression of DNAM-1 on monocyte subsets in mouse peripheral blood and found that only 7 

inflammatory monocytes (iMos), but not patrolling monocytes (pMos), expressed high levels 8 

of DNAM-1. In addition, we found that DNAM-1 was highly expressed on iMos, rather than 9 

pMos, also in human. Furthermore, we found that DNAM-1 on inflammatory monocytes was 10 

involved in cell adhesion to CD155-expressing cells. Therefore, we propose that expression of 11 

DNAM-1 on inflammatory monocytes are evolutionally conserved and act as an adhesion 12 

molecule on blood inflammatory monocytes. 13 
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 1 
1. Introduction 2 

DNAM-1, also known as CD226, is a member of the immunoglobulin superfamily 3 

and is constitutively expressed on the majority of NK cells, CD8+ T cells, CD4+ T cells, 4 

monocytes, and platelets in both humans and mice (Shibuya et al., 1996; Tahara-Hanaoka et 5 

al., 2005). CD155 (also known as poliovirus receptor (PVR), Necl-5 or Tage4) and CD112 6 

(also known as PRR-2 or nectin-2) are ligands for human and mouse DNAM-1 (Bottino et al., 7 

2003; Tahara-Hanaoka, 2004; Tahara-Hanaoka et al., 2005). CD155 and CD112 are broadly 8 

expressed on hematopoietic, epithelial, and endothelial cells in many tissues in humans and 9 

mice (Aoki et al., 1997; Bottino et al., 2003; Iwasaki et al., 2002; Lopez et al., 1998; Maier et 10 

al., 2007; Morrison and Racaniello, 1992; Ravens et al., 2003; Reymond et al., 2004; 11 

Tahara-Hanaoka et al., 2006). Interactions between DNAM-1 on NK cells or CD8+ T cells 12 

and CD155 or CD112 on target cells enhances cell-mediated cytotoxicity against target cells 13 

and cytokine production (Bottino et al., 2003; Iguchi-Manaka et al., 2008; Martinet and 14 

Smyth, 2015; Nabekura et al., 2010; Tahara-Hanaoka, 2004; Verhoeven et al., 2008). 15 

Although the role of DNAM-1 as an activating receptor on NK cells and T cells has been well 16 

studied, expression and function of DNAM-1 on myeloid cell populations have not yet been 17 

well characterized. We previously observed that DNAM-1 is expressed on CD11b+ 18 



 4 

macrophages/monocytes in mouse spleen (Tahara-Hanaoka et al., 2005) and human CD14+ 1 

monocytes in the peripheral blood (Shibuya et al., 1996). However, expression and function 2 

on circulating monocyte populations in mouse peripheral blood remains undetermined. 3 

Monocytes are divided into two populations: CX3CR1intCCR2+Ly6Chi 4 

inflammatory monocytes (iMos) and CX3CR1hiCCR2-Ly6Clo patrolling monocytes (pMos) 5 

(Geissmann et al., 2003; Gordon and Taylor, 2005). Human counterparts of these subsets are 6 

classical CD14+CD16- monocytes (iMos) and non-classical CD14loCD16+ monocytes (pMos) 7 

(Geissmann et al., 2003; Gordon and Taylor, 2005; Passlick et al., 1989). iMos are rapidly 8 

recruited into the site of infection and plays an important role in host defense against 9 

pathogens; in contrast, pMos are patrolling along the endothelium, migrate into noninflamed 10 

tissue and act as a first line of detection of pathogens (Auffray et al., 2007; Geissmann et al., 11 

2003; Ginhoux and Jung, 2014; Soehnlein and Lindbom, 2010). One of the important steps of 12 

functions of iMos is to adhere to the blood vessels and migrate into inflamed peripheral tissue 13 

(Muller, 2011; Shi and Pamer, 2011). 14 

Here, we found that iMos, but not pMos, express DNAM-1 and it is conserved in 15 

mice and human. Furthermore, DNAM-1 contributed to the adhesion of iMos to 16 

CD155-expressing cells. These results suggest that DNAM-1 on iMos plays and important 17 



 5 

role in cell-cell adhesion via interaction with CD155, and may contribute to the migration 1 

ability of iMos.2 
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 1 

2. Materials and Methods 2 

2.1. Mice 3 

C57BL/6 mice were purchased from Clea Japan (Tokyo, Japan). DNAM-1-deficient 4 

(Cd226-/-) mice on the C57BL/6 background were generated as described previously 5 

(Iguchi-Manaka et al., 2008). All mice were 8–12-week-old and bred under specific 6 

pathogen–free conditions at the Laboratory Animal Resource Center (University of Tsukuba, 7 

Japan).  8 

 9 

2.2. Flow cytometry analysis  10 

Mouse peripheral bloods were collected by cardiac puncture and red blood 11 

cells were lysed by using ACK (Ammonium-Chloride-Potassium) buffer. Human 12 

peripheral blood mononuclear cells (PBMCs) were obtained from healthy donors and 13 

isolated by Ficoll density gradient following protocol of Lymphoprep (Stemcell 14 

Technologies, Vancouver, British Columbia, Canada). Ba/F3 transfectant expressing 15 

murine CD155 were generated as described previously (Tahara-Hanaoka et al., 2005).  16 

 FITC-conjugated anti-mouse CD11c (HL3) and CD49b/Pan-NK Cells 17 



 7 

(DX5), PE-conjugated anti-mouse Ly6G (1A8), Siglec-F (E50-2440), CD8 (53-6.7), 1 

and anti-human HLA-DR (G46-6), PE-Cy7-conjugated anti-mouse Ly6C (AL-21) and 2 

CD4 (RM4-5), APC-Cy7-conjugated anti-mouse CD11b (M1/70) and B220 3 

(RA3-6B2) mAbs, biotin-conjugated isotype-matched control antibodies, and Horizon 4 

V450-conjugated streptavidin were purchased from BD Biosciences (San Jose, CA, 5 

USA). APC-conjugated anti-mouse CD3 (145-2C11) mAb was purchased from 6 

TONBO Biosciences (San Diego, CA, USA). FITC-conjugated anti-human CD16 7 

(VEP13) and APC-conjugated anti-human CD14 (TÜK4) mAbs were purchased from 8 

Miltenyi Biotec (Bergisch Gladbach, Germany). Anti-mouse DNAM-1 (TX42) 9 

(Tahara-Hanaoka et al., 2005), CD155 (TX56) (Iguchi-Manaka et al., 2008) and 10 

anti-human DNAM-1 (TX25) mAbs were generated in our laboratory by standard 11 

method and conjugated with biotin. Propidium iodide was used to identify and exclude 12 

dead cells. Sample acquisition was performed by using FACSFortessa and 13 

FACSCallibur cell analyzer (BD Biosciences). FlowJo software (Tree Star, Ashland, 14 

OR, USA) was used for data analysis. 15 

 16 

2.3. Adhesion assay 17 



 8 

96 well flat-bottom culture plates (Costar, Corning, NY, USA) were pre-coated 1 

with Ba/F3 or Ba/F3 transfectants expressing CD155 overnight at 37°C and 5% CO2 in RPMI 2 

medium supplemented with 5%FBS. iMos were purified from mouse peripheral blood by 3 

using MACS cell separation system (Miltenyi Biotec, Bergisch Gladbach, Germany) as 4 

described previously (Totsuka et al., 2014), labeled with carboxyfluorescein succinimidyl 5 

ester (CFSE), plated over the pre-coated transfectants at 2 × 104 cells/well, and then incubated 6 

for 1 hour at 37°C and 5% CO2. The plate was gently washed with PBS once to remove 7 

non-adherent cells. For antibody-blocking assay, CFSE-labeled cells were pre-incubated with 8 

anti-mouse DNAM-1 mAb (TX42) or isotype-matched control antibody for 20 minutes at 4°C, 9 

prior to plating. After washing with PBS once, adherent cells were imaged by KEYENCE 10 

BZ-X700 fluorescence microscope, and all CFSE positive cells in wells were counted by 11 

using BZ-X analyzer software (KEYENCE, Osaka, Japan). Percentages of adherent cells were 12 

calculated as (%) = (# adherent cells) / (# cells plated). 13 

 14 

2.4. Statistical analysis 15 



 9 

Statistical analyses were performed by using the unpaired two-sided Student’s 1 

t-test (GraphPad Prism 5, GraphPad Software, La Jolla, CA, USA). P values less than 0.05 2 

were considered statistically significant. 3 

 4 

2.5. Ethics 5 

All animal experiments were performed humanely after receiving approval and in 6 

accordance with the guidelines of the Animal Ethics Committee of the Laboratory Animal 7 

Resource Center, University of Tsukuba. Peripheral blood was obtained from healthy 8 

volunteers after informed consent was obtained; this study was approved by the ethical review 9 

boards of University of Tsukuba. 10 

 11 

12 
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3. Results and discussion 2 

3.1. DNAM-1 expression on leukocytes in mouse peripheral blood 3 

Although DNAM-1 expression in mouse splenocytes was reported 4 

(Tahara-Hanaoka et al., 2005), DNAM-1 expression profiles on leukocyte subsets in mouse 5 

peripheral blood remains unclear. In addition, although the function of DNAM-1 on T cells 6 

and NK cells are well known (Bottino et al., 2003; Iguchi-Manaka et al., 2008; Martinet and 7 

Smyth, 2015; Nabekura et al., 2010; Tahara-Hanaoka, 2004; Verhoeven et al., 2008), the 8 

functional role of DNAM-1 in myeloid cells is incompletely understood. Therefore we aimed 9 

to investigate expression profile of DNAM-1 on mouse peripheral blood cells, especially on 10 

circulating myeloid cell populations. Peripheral bloods and splenocytes from wild type (WT) 11 

and DNAM-1-deficient (Cd226-/-) mice were collected and DNAM-1 expression on myeloid 12 

cell subsets and lymphocytes subsets were analyzed by flowcytometry. After CD11c+ DCs 13 

and Ly6G+ neutrophils in the peripheral blood were gated out, CD11b+ monocytes were 14 

divided into two populations on the basis of Ly6C expression (Fig. 1A, B). Eosinophils were 15 

gated by Siglec-F (Fig. 1C). Among myeloid cell subsets, we found that Ly6Chi iMos obtained 16 

from WT mice strongly expressed DNAM-1. In contrast, Ly6Clo pMos did not express 17 

DNAM-1, showing a striking difference of DNAM-1 expression on these distinct monocyte 18 
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subsets (Fig. 1A, B). 1 

Surprisingly, DNAM-1 was expressed on most circulating neutrophils at an 2 

intermediate level (Fig. 1A). This result was contrary to splenic neutrophils of which only a 3 

small subset expressed low levels of DNAM-1 (Supplementary figure), indicating that 4 

expression of DNAM-1 on neutrophils is different between the peripheral blood and the 5 

spleen. DNAM-1 was also expressed on most eosinophils and on a small population of 6 

dendritic cells (Fig. 1A, C). DNAM-1 expression on CD4+ and CD8+ T cells and NK cells in 7 

peripheral blood of mice (Fig. 1D) were similar to that in spleen cells (Supplementary figure). 8 

 9 

3.2. DNAM-1 expression on human monocytes. 10 

We next investigated DNAM-1 expression on human counterparts of monocyte 11 

subsets. PBMCs were isolated from healthy donors and analyzed by flowcytometry. After 12 

excluding CD14-CD16- cells (T cells, B cells, and DCs) and HLA-DR-CD16+ cells 13 

(contaminated neutrophils and NK cells) (Abeles et al., 2012), CD14+CD16- iMos and 14 

CD14loCD16+ pMos were analyzed. Similar to mouse iMos, CD14+CD16– human iMos 15 

strongly expressed DNAM-1 (Fig. 2A). In contrast, pMos, defined as CD14loCD16+ cells, 16 

scarcely expressed DNAM-1 (Fig. 2A). Five independent donors were studied and the mean 17 
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fluorescent intensity of DNAM-1 on iMos was significantly higher than that of pMos (Fig. 1 

2B). Thus, selective expression of DNAM-1 on iMos is conserved between mice and humans, 2 

suggesting that DNAM-1 is evolutionally conserved and plays an important role in the 3 

function of iMos. It is known that heterogeneity of monocytes is conserved among 4 

mammalian species including human, mouse, rat, and pig (Ancuta et al., 2009; Gordon and 5 

Taylor, 2005). Expression of some chemokine receptors and adhesion molecules is conserved 6 

between species. Among these, stronger expression of surface molecules that contribute to the 7 

major function of each subsets, such as CCR2 and CD62L on iMos and CX3CR1 on pMos, 8 

appears to be well conserved (Gordon and Taylor, 2005). In this context, DNAM-1 can be 9 

newly recognized as surface molecule that defines two subsets of monocytes. DNAM-1 10 

expression on other mammalian species is of interest. 11 

 12 

3.3. DNAM-1 is involved in cell adhesion of mouse iMos. 13 

Because DNAM-1 is an adhesion molecule (Shibuya et al., 1996), we next 14 

addressed the involvement of DNAM-1 in adhesion ability of iMos. Although CD155 and 15 

CD112 are ligands for DNAM-1 and both ligands are expressed on human endotherial cells 16 

(Lopez et al., 1998; Reymond et al., 2004), a previous report suggested that CD155 is solely 17 
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an important ligand on human endothelial cells for DNAM-1 (Reymond et al., 2004). 1 

Therefore we examined the role of DNAM-1 on iMos in adhesion to CD155. Ba/F3 or Ba/F3 2 

transfectant expressing CD155 (Fig.3A) were seeded on a 96 well cell culture plate, and then 3 

CFSE-labeled iMos from peripheral blood of WT or Cd226-/- mice were added over the plate. 4 

After washing, remaining of iMos was counted under fluolescent microscope. iMos from 5 

Cd226-/- mice showed lower ability of adhesion to CD155-expressing Ba/F3 transfectants 6 

compared with those from WT mice; in contrast, this difference in adhesion ability was not 7 

observed in Ba/F3 parental cells (Fig. 3B, C). Furthermore, adhesion of iMos was 8 

downregulated when iMos were pre-incubated with anti-DNAM-1 neutralizing antibody (Fig. 9 

3D). Taken together, these results indicate that DNAM-1 is involved in iMos adhesion to 10 

CD155-expressing cells. Given that CD155 is expressed on mouse endothelial cells (Maier et 11 

al., 2007), our results suggest that DNAM-1 may be involved in transendotherial migration of 12 

mouse iMos. Although previous reports showed that interaction of DNAM-1 on human 13 

monocytes with CD155 on endothelial cells was involved in transmigration in vitro (Manes 14 

and Pober, 2011; Reymond et al., 2004; Sullivan et al., 2013), physiological role of DNAM-115 

−CD155 interaction in monocyte transmigration has not been addressed in vivo. Since iMos 16 

highly expressed DNAM-1 in mice as well, contribution of DNAM-1−CD155 interaction 17 
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could be observed in vivo model in mice. 1 

pMos crawl along the endothelial cells of blood vessel in steady state and rapidly 2 

migrate out of the circulation into inflamed tissue within 1 hour after inflammation occurs 3 

(Auffray et al., 2009, 2007; Geissmann et al., 2003; Soehnlein and Lindbom, 2010). In 4 

contrast, iMos are selectively recruited into inflamed tissues and lymph nodes after several 5 

hours from the initiation of infection (Auffray et al., 2009, 2007; Shi and Pamer, 2011). The 6 

difference of the migratory characteristics of these monocyte subsets has been explained by 7 

expression profile of chemokine receptors such as CCR2 and CX3CR1 (Ancuta et al., 2009; 8 

Gordon and Taylor, 2005). Here we revealed that DNAM-1 is expressed on iMos, but not on 9 

pMos, in humans and mice and that DNAM-1 on mouse iMos is involved in iMos adhesion to 10 

CD155-expressing cells, suggesting that DNAM-1 is involved in transmigration of iMos 11 

through endothelial cells, which express CD155, into inflamed tissues. Although iMos in the 12 

bloodstream are derived from the bone marrow following bacterial infection (Ginhoux and 13 

Jung, 2014; Serbina and Pamer, 2006; Shi and Pamer, 2011), the dynamics of DNAM-1 14 

expression on iMos in the bone marrow, blood and inflamed tissue remain unclear. However, 15 

since DNAM-1 expression is upregulated on T cells, NK cells, and platelets during their 16 

proliferation and/or activation (Alici et al., 2008; Caruso et al., 2015; Nabekura et al., 2010), 17 



 15 

it might be possible that activation of iMos after infection upregulates DNAM-1 expression 1 

on iMos. Nonetheless, since CD155 expression is upregulated in inflamed liver (Erickson et 2 

al., 2006), transmigration of iMos trough endothelial cells may be promoted at inflamed sites 3 

as a result of increased interaction between DNAM-1 and CD155.  4 

 5 

6 
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 1 

Figure Legends 2 

 3 

Figure 1.  DNAM-1 expression on leukocytes in mouse peripheral blood. 4 

DNAM-1 expression on leukocytes populations in peripheral blood from naïve C57BL/6 5 

wild-type (WT) or DNAM-1-deficient (Cd226-/-) mice was detected by flow cytometry. After 6 

gating PI- viable cells, CD11c+ dendritic cells (DC), Ly6G+ Neutrophils, Ly6C- patrolling 7 

monocytes (pMo), and Ly6Chi inflammatory monocytes (iMo) (A, B), Siglec-F+ eosinophils 8 

(C), B220+ B cells, CD4+ T cells, CD8+ T cells, and NK cells (D) were analyzed.  9 

(A, C, D) Representative plots of staining of surface markers and DNAM-1. Open and shaded 10 

histograms indicate staining with anti-mouse DNAM-1 and isotype control mAb, respectively. 11 

Numbers indicate percentage of the population in each region and the mean fluorescence 12 

intensity (MFI). Data are representative of three independent experiments. (B) Scatter plot of 13 

MFI value of DNAM-1 expression and percentage of DNAM-1-positive cells in peripheral 14 

blood monocytes from WT (n=5) or Cd226-/- (n=3) mice. Error bars indicate SEM. *P <0.05. 15 

The MFI was determined by subtracting the MFI by staining with isotype control mAb from 16 

that by staining with anti-mouse DNAM-1 mAb. 17 

 18 
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Figure 2.  DNAM-1 expression on human monocytes. 1 

DNAM-1 expression on monocyte subsets in peripheral blood mononuclear cells from 2 

healthy donor was detected by flowcytometry. After gating monocytes based on FSC/SSC 3 

plot and gating PI- viable cells, HLA-DR-CD16+ cells (contaminated neutrophils and NK 4 

cells) were excluded, and then CD14loCD16+ patrolling monocytes (pMo) and CD14+CD16- 5 

inflammatory monocytes (iMo) were analyzed. 6 

(A) Representative plots of staining of surface markers and DNAM-1. Numbers indicate 7 

percentages of the population in each region. Open histograms indicate staining with 8 

anti-human DNAM-1 mAb and shaded histograms indicate staining with isotype control. 9 

(B) Scatter plot of MFI value of DNAM-1 expression on monocytes from 5 different donors. 10 

The value was obtained by subtracting the MFI of the anti-human DNAM-1 mAb stained 11 

cells from the MFI of isotype control. Error bars indicate SEM. *P <0.05. 12 

 13 

Figure 3.  DNAM-1 is involved in cell adhesion of mouse inflammatory monocytes. 14 

(A) Expression of CD155 on Ba/F3 transfectant expressing mouse CD155 was detected by 15 

using anti-mCD155 (open histogram). Shaded histograms indicate staining with isotype 16 

control. 17 
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(B, C) Ba/F3 and its transfectants expressing CD155 were seeded on a 96 well cell culture 1 

plate and cultured overnight. CCR2hi inflammatory monocytes (iMos) were MACS-isolated 2 

from peripheral blood of wild type (WT) and DNAM-1 deficient (Cd226-/-) mice, labeled with 3 

CFSE and plated over the pre-coated transfectants, following incubation for 1 hour. The 4 

cell-culture medium was aspirated and the cells were washed with PBS. The adherent cells 5 

were determined by counting CFSE-positive cells under fluorescence microscope. All cells in 6 

wells were counted. Representative images of WT and Cd226-/- iMos on CD155-expressing 7 

transfectants (B); Scale bar = 100 µm. Bar graph shows the average of percentages of 8 

adherent cells in triplicate wells (C). 9 

(D) Transfectants expressing CD155 were prepared as in B. iMos were isolated from wild 10 

type mice, labeled with CFSE as in B and pre-incubated with blocking anti-DNAM-1 11 

antibody (anti-DNAM-1) or its isotype control rat IgG2a (control Ig) before being plated over 12 

the transfectants. After incubation for 1 hour, the cells were PBS-washed and observed as in 13 

B. Bar graph shows the average of percentages of adherent cells in triplicate wells. 14 

Percentages of adherent cells were calculated as (%) = (# adherent cells) / (# cells plated). 15 

Error bars indicate SEM. *P <0.05. NS, not significant. Data are representative of two 16 

independent experiments. 17 
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Supplementary Figure Legends 

 

Supplementary Figure.  DNAM-1 expression on leukocytes in mouse spleen. 

Spleen cells from wild-type (WT) or DNAM-1-deficient (Cd226-/-) C57BL/6 mice was 

stained with anti-mouse DNAM-1 mAb (open histogram) or isotype control mAb. 

(shaded histograms) together with mAbs indicated against each lineage marker. After 

gating PI- viable cells, CD11c+ dendritic cells (DC) (A), CD11b+Ly6G+ neutrophils (B), 

CD11c-Ly6G-CD11b+ macrophages (C), Siglec-F+ eosinophils (D), B220+ B cells, 

CD4+ T cells, CD8+ T cells, and NK cells (E) were analyzed for DNAM-1 expression. 

Numbers indicate percentage of the population in each region and MFI.  
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