1 Short communication

2	
3	Expression of DNAM-1 (CD226) on inflammatory monocytes
4	
5	Anh Van Vo ^{a,b,1} , Eri Takenaka ^{a,1} , Akira Shibuya ^{a,c,d,e} , Kazuko Shibuya ^{a,*}
6	
7	^a Department of Immunology, Faculty of Medicine, ^b Human Biology Program, School of
8	Integrative and Global Majors, ^c Life Science Center of Tsukuba Advanced Research Alliance
9	(TARA), ^d Japan Science and Technology Agency, Core Research for Evolutional Science and
10	Technology (CREST), University of Tsukuba, 1-1-1, Tennohdai, Tsukuba, Ibaraki 305-8575,
11	Japan.
12	eAMED-CREST, AMED, Japan Agency for Medical Research and Development, 1-7-1
13	Otemachi, Chiyodaku, Tokyo 100-0004, Japan
14	¹ These authors contributed equally to this work.
15	
16	Email addresses
17	A.V.V. (s1435009@u.tsukuba.ac.jp)
18	E.T. (eri.takenaka.78@gmail.com)
19	A.S. (ashibuya@md.tsukuba.ac.jp)
20	K.S. (kazukos@md.tsukuba.ac.jp)
21	
22	Author contributions: A.V.V., E.T., A.S., and K.S. designed research; A.V.V., E.T., and K.S.
23	performed research; A.V.V., E.T., A.S., and K.S. analyzed data; and A.V.V., E.T., A.S., and
24	K.S. wrote the paper. All authors read and approved the final manuscript.
25	
26	The authors declare no conflict of interest.
27	
28	*Corresponding author. Kazuko Shibuya, MD, PhD
29	E-mail: kazukos@md.tsukuba.ac.jp
30	Department of Immunology, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai,
31	Tsukuba, Ibaraki 305-8575, Japan., Phone: (+81) 29-853-3281, Fax: (+81) 29-853-3410
32	

2 Abstract

3	DNAM-1 is an activating receptor expressed on NK cells and T cells and plays an
4	important role in cytotoxicity of these cells against target cells. Although the role of DNAM-1
5	in the function of T cells and NK cells has been well studied, the expression and function of
6	DNAM-1 on myeloid cells have been incompletely understood. In this study, we investigated
7	expression of DNAM-1 on monocyte subsets in mouse peripheral blood and found that only
8	inflammatory monocytes (iMos), but not patrolling monocytes (pMos), expressed high levels
9	of DNAM-1. In addition, we found that DNAM-1 was highly expressed on iMos, rather than
10	pMos, also in human. Furthermore, we found that DNAM-1 on inflammatory monocytes was
11	involved in cell adhesion to CD155-expressing cells. Therefore, we propose that expression of
12	DNAM-1 on inflammatory monocytes are evolutionally conserved and act as an adhesion
13	molecule on blood inflammatory monocytes.
14	
15	Key words
16	DNAM-1 (CD226); inflammatory monocytes; patrolling monocytes; adhesion
17	
18	Abbreviations
19	DNAM-1, DNAX accessory molecule-1; iMos, inflammatory monocytes; pMos, patrolling
20	monocytes; CCR2, chemokine (C-C motif) receptor 2; CX ₃ CR1, chemokine (C-X3-C Motif)
21	receptor 1; DC, dendritic cells; PBMC, peripheral blood mononuclear cells; mAb,
22	monoclonal antibody; CFSE, carboxyfluorescein succinimidyl ester
93	

1. Introduction

3	DNAM-1, also known as CD226, is a member of the immunoglobulin superfamily
4	and is constitutively expressed on the majority of NK cells, $CD8^+$ T cells, $CD4^+$ T cells,
5	monocytes, and platelets in both humans and mice (Shibuya et al., 1996; Tahara-Hanaoka et
6	al., 2005). CD155 (also known as poliovirus receptor (PVR), Necl-5 or Tage4) and CD112
7	(also known as PRR-2 or nectin-2) are ligands for human and mouse DNAM-1 (Bottino et al.,
8	2003; Tahara-Hanaoka, 2004; Tahara-Hanaoka et al., 2005). CD155 and CD112 are broadly
9	expressed on hematopoietic, epithelial, and endothelial cells in many tissues in humans and
10	mice (Aoki et al., 1997; Bottino et al., 2003; Iwasaki et al., 2002; Lopez et al., 1998; Maier et
11	al., 2007; Morrison and Racaniello, 1992; Ravens et al., 2003; Reymond et al., 2004;
12	Tahara-Hanaoka et al., 2006). Interactions between DNAM-1 on NK cells or CD8 ⁺ T cells
13	and CD155 or CD112 on target cells enhances cell-mediated cytotoxicity against target cells
14	and cytokine production (Bottino et al., 2003; Iguchi-Manaka et al., 2008; Martinet and
15	Smyth, 2015; Nabekura et al., 2010; Tahara-Hanaoka, 2004; Verhoeven et al., 2008).
16	Although the role of DNAM-1 as an activating receptor on NK cells and T cells has been well
17	studied, expression and function of DNAM-1 on myeloid cell populations have not yet been
18	well characterized. We previously observed that DNAM-1 is expressed on CD11b^+

1	macrophages/monocytes in mouse spleen (Tahara-Hanaoka et al., 2005) and human CD14^+
2	monocytes in the peripheral blood (Shibuya et al., 1996). However, expression and function
3	on circulating monocyte populations in mouse peripheral blood remains undetermined.
4	Monocytes are divided into two populations: CX ₃ CR1 ^{int} CCR2 ⁺ Ly6C ^{hi}
5	inflammatory monocytes (iMos) and CX ₃ CR1 ^{hi} CCR2 ⁻ Ly6C ^{lo} patrolling monocytes (pMos)
6	(Geissmann et al., 2003; Gordon and Taylor, 2005). Human counterparts of these subsets are
7	classical CD14 ⁺ CD16 ⁻ monocytes (iMos) and non-classical CD14 ^{lo} CD16 ⁺ monocytes (pMos)
8	(Geissmann et al., 2003; Gordon and Taylor, 2005; Passlick et al., 1989). iMos are rapidly
9	recruited into the site of infection and plays an important role in host defense against
10	pathogens; in contrast, pMos are patrolling along the endothelium, migrate into noninflamed
11	tissue and act as a first line of detection of pathogens (Auffray et al., 2007; Geissmann et al.,
12	2003; Ginhoux and Jung, 2014; Soehnlein and Lindbom, 2010). One of the important steps of
13	functions of iMos is to adhere to the blood vessels and migrate into inflamed peripheral tissue
14	(Muller, 2011; Shi and Pamer, 2011).
15	Here, we found that iMos, but not pMos, express DNAM-1 and it is conserved in
16	mice and human. Furthermore, DNAM-1 contributed to the adhesion of iMos to
17	CD155-expressing cells. These results suggest that DNAM-1 on iMos plays and important

- 1 role in cell-cell adhesion via interaction with CD155, and may contribute to the migration
- 2 ability of iMos.

2 2. Materials and Methods

4	C57BL/6 mice were purchased from Clea Japan (Tokyo, Japan). DNAM-1-deficient
5	$(Cd226^{-/-})$ mice on the C57BL/6 background were generated as described previously
6	(Iguchi-Manaka et al., 2008). All mice were 8-12-week-old and bred under specific
7	pathogen-free conditions at the Laboratory Animal Resource Center (University of Tsukuba,
8	Japan).

9

10 2.2. Flow cytometry analysis

11	Mouse peripheral bloods were collected by cardiac puncture and red blood
12	cells were lysed by using ACK (Ammonium-Chloride-Potassium) buffer. Human
13	peripheral blood mononuclear cells (PBMCs) were obtained from healthy donors and
14	isolated by Ficoll density gradient following protocol of Lymphoprep (Stemcell
15	Technologies, Vancouver, British Columbia, Canada). Ba/F3 transfectant expressing
16	murine CD155 were generated as described previously (Tahara-Hanaoka et al., 2005).
17	FITC-conjugated anti-mouse CD11c (HL3) and CD49b/Pan-NK Cells

1	(DX5), PE-conjugated anti-mouse Ly6G (1A8), Siglec-F (E50-2440), CD8 (53-6.7),
2	and anti-human HLA-DR (G46-6), PE-Cy7-conjugated anti-mouse Ly6C (AL-21) and
3	CD4 (RM4-5), APC-Cy7-conjugated anti-mouse CD11b (M1/70) and B220
4	(RA3-6B2) mAbs, biotin-conjugated isotype-matched control antibodies, and Horizon
5	V450-conjugated streptavidin were purchased from BD Biosciences (San Jose, CA,
6	USA). APC-conjugated anti-mouse CD3 (145-2C11) mAb was purchased from
7	TONBO Biosciences (San Diego, CA, USA). FITC-conjugated anti-human CD16
8	(VEP13) and APC-conjugated anti-human CD14 (TÜK4) mAbs were purchased from
9	Miltenyi Biotec (Bergisch Gladbach, Germany). Anti-mouse DNAM-1 (TX42)
10	(Tahara-Hanaoka et al., 2005), CD155 (TX56) (Iguchi-Manaka et al., 2008) and
11	anti-human DNAM-1 (TX25) mAbs were generated in our laboratory by standard
12	method and conjugated with biotin. Propidium iodide was used to identify and exclude
13	dead cells. Sample acquisition was performed by using FACSFortessa and
14	FACSCallibur cell analyzer (BD Biosciences). FlowJo software (Tree Star, Ashland,
15	OR, USA) was used for data analysis.

17 2.3. Adhesion assay

1	96 well flat-bottom culture plates (Costar, Corning, NY, USA) were pre-coated
2	with Ba/F3 or Ba/F3 transfectants expressing CD155 overnight at 37°C and 5% CO_2 in RPMI
3	medium supplemented with 5%FBS. iMos were purified from mouse peripheral blood by
4	using MACS cell separation system (Miltenyi Biotec, Bergisch Gladbach, Germany) as
5	described previously (Totsuka et al., 2014), labeled with carboxyfluorescein succinimidyl
6	ester (CFSE), plated over the pre-coated transfectants at 2×10^4 cells/well, and then incubated
7	for 1 hour at 37°C and 5% CO ₂ . The plate was gently washed with PBS once to remove
8	non-adherent cells. For antibody-blocking assay, CFSE-labeled cells were pre-incubated with
9	anti-mouse DNAM-1 mAb (TX42) or isotype-matched control antibody for 20 minutes at 4°C,
10	prior to plating. After washing with PBS once, adherent cells were imaged by KEYENCE
11	BZ-X700 fluorescence microscope, and all CFSE positive cells in wells were counted by
12	using BZ-X analyzer software (KEYENCE, Osaka, Japan). Percentages of adherent cells were
13	calculated as $(\%) = (\# \text{ adherent cells}) / (\# \text{ cells plated}).$

15 2.4. Statistical analysis

1	Statistical analyses were performed by using the unpaired two-sided Student's
2	t-test (GraphPad Prism 5, GraphPad Software, La Jolla, CA, USA). P values less than 0.05
3	were considered statistically significant.
4	
5	2.5. Ethics
6	All animal experiments were performed humanely after receiving approval and in
7	accordance with the guidelines of the Animal Ethics Committee of the Laboratory Animal
8	Resource Center, University of Tsukuba. Peripheral blood was obtained from healthy
9	volunteers after informed consent was obtained; this study was approved by the ethical review
10	boards of University of Tsukuba.
11	
12	

3. Results and discussion

3 3.1. DNAM-1 expression on leukocytes in mouse peripheral blood

4	Although DNAM-1 expression in mouse splenocytes was reported
5	(Tahara-Hanaoka et al., 2005), DNAM-1 expression profiles on leukocyte subsets in mouse
6	peripheral blood remains unclear. In addition, although the function of DNAM-1 on T cells
7	and NK cells are well known (Bottino et al., 2003; Iguchi-Manaka et al., 2008; Martinet and
8	Smyth, 2015; Nabekura et al., 2010; Tahara-Hanaoka, 2004; Verhoeven et al., 2008), the
9	functional role of DNAM-1 in myeloid cells is incompletely understood. Therefore we aimed
10	to investigate expression profile of DNAM-1 on mouse peripheral blood cells, especially on
11	circulating myeloid cell populations. Peripheral bloods and splenocytes from wild type (WT)
12	and DNAM-1-deficient ($Cd226^{-/-}$) mice were collected and DNAM-1 expression on myeloid
13	cell subsets and lymphocytes subsets were analyzed by flowcytometry. After $\text{CD11c}^+\text{DCs}$
14	and $Ly6G^+$ neutrophils in the peripheral blood were gated out, $CD11b^+$ monocytes were
15	divided into two populations on the basis of Ly6C expression (Fig. 1A, B). Eosinophils were
16	gated by Siglec-F (Fig. 1C). Among myeloid cell subsets, we found that Ly6C ^{hi} iMos obtained
17	from WT mice strongly expressed DNAM-1. In contrast, Ly6C ^{lo} pMos did not express
18	DNAM-1, showing a striking difference of DNAM-1 expression on these distinct monocyte

1 subsets (Fig. 1A, B).

2	Surprisingly, DNAM-1 was expressed on most circulating neutrophils at an
3	intermediate level (Fig. 1A). This result was contrary to splenic neutrophils of which only a
4	small subset expressed low levels of DNAM-1 (Supplementary figure), indicating that
5	expression of DNAM-1 on neutrophils is different between the peripheral blood and the
6	spleen. DNAM-1 was also expressed on most eosinophils and on a small population of
7	dendritic cells (Fig. 1A, C). DNAM-1 expression on CD4 ⁺ and CD8 ⁺ T cells and NK cells in
8	peripheral blood of mice (Fig. 1D) were similar to that in spleen cells (Supplementary figure).
9	

10 3.2. DNAM-1 expression on human monocytes.

We next investigated DNAM-1 expression on human counterparts of monocyte subsets. PBMCs were isolated from healthy donors and analyzed by flowcytometry. After excluding CD14⁻CD16⁻ cells (T cells, B cells, and DCs) and HLA-DR⁻CD16⁺ cells (contaminated neutrophils and NK cells) (Abeles et al., 2012), CD14⁺CD16⁻ iMos and CD14^{lo}CD16⁺ pMos were analyzed. Similar to mouse iMos, CD14⁺CD16⁻ human iMos strongly expressed DNAM-1 (Fig. 2A). In contrast, pMos, defined as CD14^{lo}CD16⁺ cells, scarcely expressed DNAM-1 (Fig. 2A). Five independent donors were studied and the mean

1	fluorescent intensity of DNAM-1 on iMos was significantly higher than that of pMos (Fig.
2	2B). Thus, selective expression of DNAM-1 on iMos is conserved between mice and humans,
3	suggesting that DNAM-1 is evolutionally conserved and plays an important role in the
4	function of iMos. It is known that heterogeneity of monocytes is conserved among
5	mammalian species including human, mouse, rat, and pig (Ancuta et al., 2009; Gordon and
6	Taylor, 2005). Expression of some chemokine receptors and adhesion molecules is conserved
7	between species. Among these, stronger expression of surface molecules that contribute to the
8	major function of each subsets, such as CCR2 and CD62L on iMos and CX ₃ CR1 on pMos,
9	appears to be well conserved (Gordon and Taylor, 2005). In this context, DNAM-1 can be
10	newly recognized as surface molecule that defines two subsets of monocytes. DNAM-1
11	expression on other mammalian species is of interest.
12	
13	3.3. DNAM-1 is involved in cell adhesion of mouse iMos.
14	Because DNAM-1 is an adhesion molecule (Shibuya et al., 1996), we next
15	addressed the involvement of DNAM-1 in adhesion ability of iMos. Although CD155 and
16	CD112 are ligands for DNAM-1 and both ligands are expressed on human endotherial cells

17 (Lopez et al., 1998; Reymond et al., 2004), a previous report suggested that CD155 is solely

1	an important ligand on human endothelial cells for DNAM-1 (Reymond et al., 2004).
2	Therefore we examined the role of DNAM-1 on iMos in adhesion to CD155. Ba/F3 or Ba/F3
3	transfectant expressing CD155 (Fig.3A) were seeded on a 96 well cell culture plate, and then
4	CFSE-labeled iMos from peripheral blood of WT or $Cd226^{-/-}$ mice were added over the plate.
5	After washing, remaining of iMos was counted under fluolescent microscope. iMos from
6	Cd226 ^{-/-} mice showed lower ability of adhesion to CD155-expressing Ba/F3 transfectants
7	compared with those from WT mice; in contrast, this difference in adhesion ability was not
8	observed in Ba/F3 parental cells (Fig. 3B, C). Furthermore, adhesion of iMos was
9	downregulated when iMos were pre-incubated with anti-DNAM-1 neutralizing antibody (Fig.
10	3D). Taken together, these results indicate that DNAM-1 is involved in iMos adhesion to
11	CD155-expressing cells. Given that CD155 is expressed on mouse endothelial cells (Maier et
12	al., 2007), our results suggest that DNAM-1 may be involved in transendotherial migration of
13	mouse iMos. Although previous reports showed that interaction of DNAM-1 on human
14	monocytes with CD155 on endothelial cells was involved in transmigration in vitro (Manes
15	and Pober, 2011; Reymond et al., 2004; Sullivan et al., 2013), physiological role of DNAM-1
16	-CD155 interaction in monocyte transmigration has not been addressed in vivo. Since iMos
17	highly expressed DNAM-1 in mice as well, contribution of DNAM-1-CD155 interaction

1 could be observed *in vivo* model in mice.

2	pMos crawl along the endothelial cells of blood vessel in steady state and rapidly
3	migrate out of the circulation into inflamed tissue within 1 hour after inflammation occurs
4	(Auffray et al., 2009, 2007; Geissmann et al., 2003; Soehnlein and Lindbom, 2010). In
5	contrast, iMos are selectively recruited into inflamed tissues and lymph nodes after several
6	hours from the initiation of infection (Auffray et al., 2009, 2007; Shi and Pamer, 2011). The
7	difference of the migratory characteristics of these monocyte subsets has been explained by
8	expression profile of chemokine receptors such as CCR2 and CX ₃ CR1 (Ancuta et al., 2009;
9	Gordon and Taylor, 2005). Here we revealed that DNAM-1 is expressed on iMos, but not on
10	pMos, in humans and mice and that DNAM-1 on mouse iMos is involved in iMos adhesion to
11	CD155-expressing cells, suggesting that DNAM-1 is involved in transmigration of iMos
12	through endothelial cells, which express CD155, into inflamed tissues. Although iMos in the
13	bloodstream are derived from the bone marrow following bacterial infection (Ginhoux and
14	Jung, 2014; Serbina and Pamer, 2006; Shi and Pamer, 2011), the dynamics of DNAM-1
15	expression on iMos in the bone marrow, blood and inflamed tissue remain unclear. However,
16	since DNAM-1 expression is upregulated on T cells, NK cells, and platelets during their
17	proliferation and/or activation (Alici et al., 2008; Caruso et al., 2015; Nabekura et al., 2010),

1	it might be possible that activation of iMos after infection upregulates DNAM-1 expression
2	on iMos. Nonetheless, since CD155 expression is upregulated in inflamed liver (Erickson et
3	al., 2006), transmigration of iMos trough endothelial cells may be promoted at inflamed sites
4	as a result of increased interaction between DNAM-1 and CD155.

- $\mathbf{5}$

2 Acknowledgments

3	We thank R. Hirochika and F. Abe for technical assistance, Y
4	Yamashita-Kanemaru and K. Niizuma for helpful discussions, and S. Mitsuishi and Y
5	Nomura for secretarial assistance. This research was supported in part by grants provided by
6	the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to AS and KS)
7	and grant-in-aid for Japan Society for the Promotion of Science Fellows (to ET).

References

3	Abeles, R.D., McPhail, M.J., Sowter, D., Antoniades, C.G., Vergis, N., Vijay, G.K.M.,
4	Xystrakis, E., Khamri, W., Shawcross, D.L., Ma, Y., Wendon, J.A., Vergani, D., 2012.
5	CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the
6	context of pathologically reduced HLA-DR expression by CD14hi/CD16neg monocytes:
7	Expansion of CD14hi/CD16pos and contraction of CD14lo/CD16pos monocytes in acute
8	liver fail. Cytom. Part A 81 A, 823-834. doi:10.1002/cyto.a.22104
9	Alici, E., Sutlu, T., Björkstrand, B., Gilljam, M., Stellan, B., Nahi, H., Quezada, H.C.,
10	Gahrton, G., Ljunggren, H.G., Dilber, M.S., 2008. Autologous antitumor activity by NK
11	cells expanded from myeloma patients using GMP-compliant components. Blood 111,
12	3155-3162. doi:10.1182/blood-2007-09-110312
13	Ancuta, P., Liu, K., Misra, V., Wacleche, V.S., Gosselin, A., Zhou, X., Gabuzda, D., 2009.
14	Transcriptional profiling reveals developmental relationship and distinct biological
15	functions of CD16+ and CD16- monocyte subsets. BMC Genomics 10, 403.
16	doi:10.1186/1471-2164-10-403
17	Aoki, J., Koike, S., Asou, H., Ise, I., Suwa, H., Tanaka, T., Miyasaka, M., Nomoto, A., 1997.
18	Mouse homolog of poliovirus receptor-related gene 2 product, mPRR2, mediates
19	homophilic cell aggregation. Exp. Cell Res. 235, 374–384. doi:10.1006/excr.1997.3685
20	Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., Sarnacki, S.,
21	Cumano, A., Lauvau, G., Geissmann, F., 2007. Monitoring of blood vessels and tissues
22	by a population of monocytes with patrolling behavior. Science 317, 666-670.
23	doi:10.1126/science.1142883
24	Auffray, C., Sieweke, M.H., Geissmann, F., 2009. Blood monocytes: development,
25	heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669-692.
26	doi:10.1146/annurev.immunol.021908.132557

1	Bottino, C., Castriconi, R., Pende, D., Rivera, P., Nanni, M., Carnemolla, B., Cantoni, C.,
2	Grassi, J., Marcenaro, S., Reymond, N., Vitale, M., Moretta, L., Lopez, M., Moretta, A.,
3	2003. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for
4	the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567.
5	doi:10.1084/jem.20030788
6	Caruso, R., Rocchiccioli, S., Gori, A.M., Cecchettini, A., Giusti, B., Parodi, G., Cozzi, L.,
7	Marcucci, R., Parolini, M., Romagnuolo, I., Citti, L., Abbate, R., Parodi, O., 2015.
8	Inflammatory and antioxidant pattern unbalance in "clopidogrel-resistant" patients
9	during acute coronary syndrome. Mediators Inflamm. 2015, 710123.
10	doi:10.1155/2015/710123
11	Erickson, B.M., Thompson, N.L., Hixson, D.C., 2006. Tightly regulated induction of the
12	adhesion molecule necl-5/CD155 during rat liver regeneration and acute liver injury.
13	Hepatology 43, 325-334. doi:10.1002/hep.21021
14	Geissmann, F., Jung, S., Littman, D.R., 2003. Blood Monocytes Consist of Two Principal
15	Subsets with Distinct Migratory Properties. Immunity 19, 71-82.
16	doi:10.1016/S1074-7613(03)00174-2
17	Ginhoux, F., Jung, S., 2014. Monocytes and macrophages: developmental pathways and
18	tissue homeostasis. Nat. Rev. Immunol. 14, 392–404. doi:10.1038/nri3671
19	Gordon, S., Taylor, P.R., 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol.
20	5, 953–964. doi:10.1038/nri1733
21	Iguchi-Manaka, A., Kai, H., Yamashita, Y., Shibata, K., Tahara-Hanaoka, S., Honda, S.,
22	Yasui, T., Kikutani, H., Shibuya, K., Shibuya, A., 2008. Accelerated tumor growth in
23	mice deficient in DNAM-1 receptor. J. Exp. Med. 205, 2959–2964.
24	doi:10.1084/jem.20081611
25	Iwasaki, A., Welker, R., Mueller, S., Linehan, M., Nomoto, A., Wimmer, E., 2002.
26	Immunofluorescence analysis of poliovirus receptor expression in Peyer's patches of
27	humans, primates, and CD155 transgenic mice: implications for poliovirus infection. J.

1 Infect. Dis. 186, 585-592. $\mathbf{2}$ Kojima, H., Kanada, H., Shimizu, S., Kasama, E., Shibuya, K., Nakauchi, H., Nagasawa, T., 3 Shibuya, A., 2003. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J. Biol. Chem. 278, 36748-53. doi:10.1074/jbc.M300702200 4 $\mathbf{5}$ Lopez, M., Aoubala, M., Jordier, F., Isnardon, D., Gomez, S., Dubreuil, P., 1998. The human 6 poliovirus receptor related 2 protein is a new hematopoietic/endothelial homophilic 7adhesion molecule. Blood 92, 4602-4611. 8 Ma, D., Sun, Y., Lin, D., Wang, H., Dai, B., Zhang, X., Ouyang, W., Jian, J., Jia, W., Xu, X., 9 Jin, B., 2005. CD226 is expressed on the megakaryocytic lineage from hematopoietic 10 stem cells/progenitor cells and involved in its polyploidization. Eur. J. Haematol. 74, 11 228–40. doi:10.1111/j.1600-0609.2004.00345.x 12Maier, M.K., Seth, S., Czeloth, N., Qiu, Q., Ravens, I., Kremmer, E., Ebel, M., Müller, W., 13 Pabst, O., Förster, R., Bernhardt, G., 2007. The adhesion receptor CD155 determines the 14magnitude of humoral immune responses against orally ingested antigens. Eur. J. 15Immunol. 37, 2214–2225. doi:10.1002/eji.200737072 16Manes, T.D., Pober, J.S., 2011. Identification of endothelial cell junctional proteins and 17lymphocyte receptors involved in transendothelial migration of human effector memory 18 CD4+ T cells. J. Immunol. 186, 1763–1768. doi:10.4049/jimmunol.1002835 19 Martinet, L., Smyth, M.J., 2015. Balancing natural killer cell activation through paired 20receptors. Nat. Rev. Immunol. 15, 243-254. doi:10.1038/nri3799 21Morrison, M.E., Racaniello, V.R., 1992. Molecular cloning and expression of a murine 22homolog of the human poliovirus receptor gene. Microbiology 66, 2807–2813. 23Muller, W.A., 2014. How Endothelial Cells Regulate Transmigration of Leukocytes in the $\mathbf{24}$ Inflammatory Response. Am. J. Pathol. 184, 886–896. doi:10.1016/j.ajpath.2013.12.033 25Muller, W.A., 2011. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 266, 323-344. doi:10.1146/annurev-pathol-011110-130224

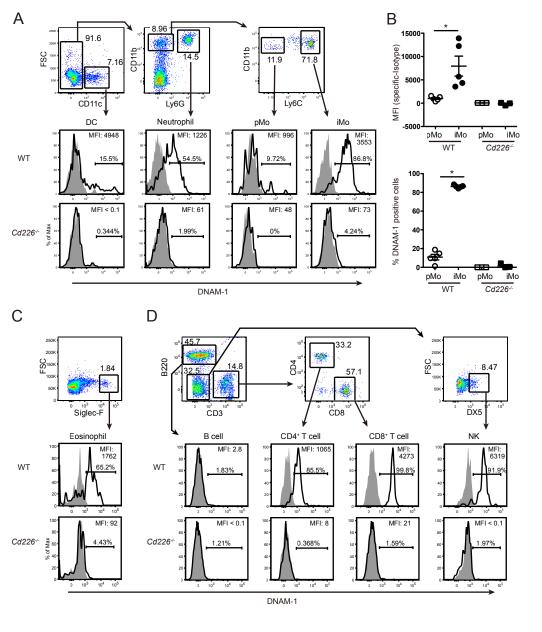
1	Nabekura, T., Shibuya, K., Takenaka, E., Kai, H., Shibata, K., Yamashita, Y., Harada, K.,
2	Tahara-Hanaoka, S., Honda, S., Shibuya, A., 2010. Critical role of DNAX accessory
3	molecule-1 (DNAM-1) in the development of acute graft-versus-host disease in mice.
4	Proc. Natl. Acad. Sci. U. S. A. 107, 18593-18598. doi:10.1073/pnas.1005582107
5	Nourshargh, S., Alon, R., 2014. Leukocyte Migration into Inflamed Tissues. Immunity 41,
6	694–707. doi:10.1016/j.immuni.2014.10.008
7	Passlick, B., Flieger, D., Ziegler-Heitbrock, H.W., 1989. Identification and characterization of
8	a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527–2534.
9	Ravens, I., Seth, S., Förster, R., Bernhardt, G., 2003. Characterization and identification of
10	Tage4 as the murine orthologue of human poliovirus receptor/CD155. Biochem. Biophys.
11	Res. Commun. 312, 1364–1371. doi:10.1016/j.bbrc.2003.11.067
12	Reymond, N., Imbert, AM., Devilard, E., Fabre, S., Chabannon, C., Xerri, L., Farnarier, C.,
13	Cantoni, C., Bottino, C., Moretta, A., Dubreuil, P., Lopez, M., 2004. DNAM-1 and PVR
14	regulate monocyte migration through endothelial junctions. J. Exp. Med. 199,
15	1331–1341. doi:10.1084/jem.20032206
16	Serbina, N. V, Pamer, E.G., 2006. Monocyte emigration from bone marrow during bacterial
17	infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7,
18	311–317. doi:10.1038/ni1309
19	Shi, C., Pamer, E.G., 2011. Monocyte recruitment during infection and inflammation. Nat.
20	Rev. Immunol. 11, 762–774. doi:10.1038/nri3070
21	Shibuya, A., Campbell, D., Hannum, C., Yssel, H., Franz-Bacon, K., McClanahan, T.,
22	Kitamura, T., Nicholl, J., Sutherland, G.R., Lanier, L.L., Phillips, J.H., 1996. DNAM-1,
23	A Novel Adhesion Molecule Involved in the Cytolytic Function of T Lymphocytes.
24	Immunity 4, 573–581. doi:10.1016/S1074-7613(00)70060-4
25	Soehnlein, O., Lindbom, L., 2010. Phagocyte partnership during the onset and resolution of
26	inflammation. Nat. Rev. Immunol. 10, 427-439. doi:10.1038/nri2779

1	Sullivan, D.P., Seidman, M.A., Muller, W.A., 2013. Poliovirus receptor (CD155) regulates a
2	step in transendothelial migration between PECAM and CD99. Am. J. Pathol. 182,
3	1031–1042. doi:10.1016/j.ajpath.2012.11.037
4	Tahara-Hanaoka, S., 2004. Functional characterization of DNAM-1 (CD226) interaction with
5	its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 16, 533-538.
6	doi:10.1093/intimm/dxh059
7	Tahara-Hanaoka, S., Miyamoto, A., Hara, A., Honda, S., Shibuya, K., Shibuya, A., 2005.
8	Identification and characterization of murine DNAM-1 (CD226) and its poliovirus
9	receptor family ligands. Biochem. Biophys. Res. Commun. 329, 996-1000.
10	doi:10.1016/j.bbrc.2005.02.067
11	Tahara-Hanaoka, S., Shibuya, K., Kai, H., Miyamoto, A., Morikawa, Y., Ohkochi, N., Honda,
12	S., Shibuya, A., 2006. Tumor rejection by the poliovirus receptor family ligands of the
13	DNAM-1 (CD226) receptor. Blood 107, 1491-6. doi:10.1182/blood-2005-04-1684
14	Totsuka, N., Kim, YG., Kanemaru, K., Niizuma, K., Umemoto, E., Nagai, K.,
15	Tahara-Hanaoka, S., Nakahasi-Oda, C., Honda, S., Miyasaka, M., Shibuya, K., Shibuya,
16	A., 2014. Toll-like receptor 4 and MAIR-II/CLM-4/LMIR2 immunoreceptor regulate
17	VLA-4-mediated inflammatory monocyte migration. Nat. Commun. 5, 4710.
18	doi:10.1038/ncomms5710
19	Verhoeven, D.H.J., de Hooge, A.S.K., Mooiman, E.C.K., Santos, S.J., ten Dam, M.M.,
20	Gelderblom, H., Melief, C.J.M., Hogendoorn, P.C.W., Egeler, R.M., van Tol, M.J.D.,
21	Schilham, M.W., Lankester, A.C., 2008. NK cells recognize and lyse Ewing sarcoma
22	cells through NKG2D and DNAM-1 receptor dependent pathways. Mol. Immunol. 45,
23	3917-3925. doi:10.1016/j.molimm.2008.06.016
24	
25	

2 Figure Legends

4	Figure 1. DNAM-1 expression on leukocytes in mouse peripheral blood.
5	DNAM-1 expression on leukocytes populations in peripheral blood from naïve C57BL/6
6	wild-type (WT) or DNAM-1-deficient ($Cd226^{-/-}$) mice was detected by flow cytometry. After
7	gating PI ⁻ viable cells, $CD11c^+$ dendritic cells (DC), $Ly6G^+$ Neutrophils, $Ly6C^-$ patrolling
8	monocytes (pMo), and Ly6C ^{hi} inflammatory monocytes (iMo) (A, B), Siglec-F ⁺ eosinophils
9	(C), B220 ⁺ B cells, $CD4^+$ T cells, $CD8^+$ T cells, and NK cells (D) were analyzed.
10	(A, C, D) Representative plots of staining of surface markers and DNAM-1. Open and shaded
11	histograms indicate staining with anti-mouse DNAM-1 and isotype control mAb, respectively.
12	Numbers indicate percentage of the population in each region and the mean fluorescence
13	intensity (MFI). Data are representative of three independent experiments. (B) Scatter plot of
14	MFI value of DNAM-1 expression and percentage of DNAM-1-positive cells in peripheral
15	blood monocytes from WT (n=5) or $Cd226^{-}$ (n=3) mice. Error bars indicate SEM. * $P < 0.05$.
16	The MFI was determined by subtracting the MFI by staining with isotype control mAb from
17	that by staining with anti-mouse DNAM-1 mAb.

1 Figure 2. DNAM-1 expression on human monocytes.


2	DNAM-1 expression on monocyte subsets in peripheral blood mononuclear cells from
3	healthy donor was detected by flowcytometry. After gating monocytes based on FSC/SSC
4	plot and gating PI ⁻ viable cells, HLA-DR ⁻ CD16 ⁺ cells (contaminated neutrophils and NK
5	cells) were excluded, and then CD14 ^{lo} CD16 ⁺ patrolling monocytes (pMo) and CD14 ⁺ CD16 ⁻
6	inflammatory monocytes (iMo) were analyzed.
7	(A) Representative plots of staining of surface markers and DNAM-1. Numbers indicate
8	percentages of the population in each region. Open histograms indicate staining with
9	anti-human DNAM-1 mAb and shaded histograms indicate staining with isotype control.
10	(B) Scatter plot of MFI value of DNAM-1 expression on monocytes from 5 different donors.
11	The value was obtained by subtracting the MFI of the anti-human DNAM-1 mAb stained
12	cells from the MFI of isotype control. Error bars indicate SEM. * $P < 0.05$.
13	
14	Figure 3. DNAM-1 is involved in cell adhesion of mouse inflammatory monocytes.
15	(A) Expression of CD155 on Ba/F3 transfectant expressing mouse CD155 was detected by
16	using anti-mCD155 (open histogram). Shaded histograms indicate staining with isotype
17	control.

1	(B, C) Ba/F3 and its transfectants expressing CD155 were seeded on a 96 well cell culture
2	plate and cultured overnight. CCR2 ^{hi} inflammatory monocytes (iMos) were MACS-isolated
3	from peripheral blood of wild type (WT) and DNAM-1 deficient (Cd226 ^{-/-}) mice, labeled with
4	CFSE and plated over the pre-coated transfectants, following incubation for 1 hour. The
5	cell-culture medium was aspirated and the cells were washed with PBS. The adherent cells
6	were determined by counting CFSE-positive cells under fluorescence microscope. All cells in
7	wells were counted. Representative images of WT and Cd226 ^{-/-} iMos on CD155-expressing
8	transfectants (B); Scale bar = 100 μ m. Bar graph shows the average of percentages of
9	adherent cells in triplicate wells (C).
10	(D) Transfectants expressing CD155 were prepared as in B. iMos were isolated from wild
11	type mice, labeled with CFSE as in B and pre-incubated with blocking anti-DNAM-1
12	antibody (anti-DNAM-1) or its isotype control rat IgG2a (control Ig) before being plated over
13	the transfectants. After incubation for 1 hour, the cells were PBS-washed and observed as in
14	B. Bar graph shows the average of percentages of adherent cells in triplicate wells.
15	Percentages of adherent cells were calculated as $(\%) = (\# \text{ adherent cells}) / (\# \text{ cells plated}).$
16	Error bars indicate SEM. * $P < 0.05$. NS, not significant. Data are representative of two
17	independent experiments.

Supplementary Figure Legends

Supplementary Figure. DNAM-1 expression on leukocytes in mouse spleen.

Spleen cells from wild-type (WT) or DNAM-1-deficient (*Cd226^{-/-}*) C57BL/6 mice was stained with anti-mouse DNAM-1 mAb (open histogram) or isotype control mAb. (shaded histograms) together with mAbs indicated against each lineage marker. After gating PI⁻ viable cells, CD11c⁺ dendritic cells (DC) (A), CD11b⁺Ly6G⁺ neutrophils (B), CD11c⁻Ly6G⁻CD11b⁺ macrophages (C), Siglec-F⁺ eosinophils (D), B220⁺ B cells, CD4⁺ T cells, CD8⁺ T cells, and NK cells (E) were analyzed for DNAM-1 expression. Numbers indicate percentage of the population in each region and MFI.

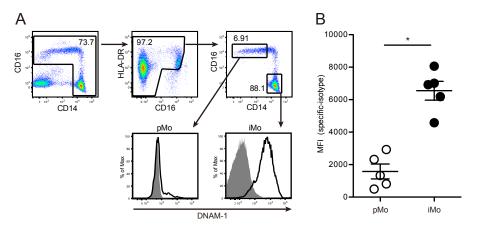


Figure 2.

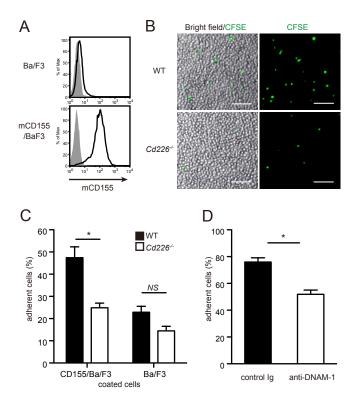
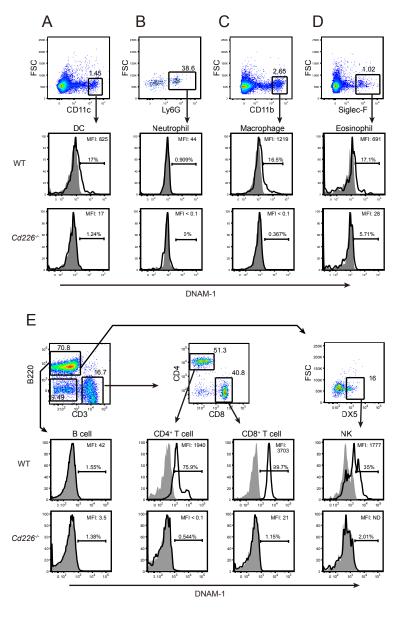



Figure 3.

Supplementary Figure