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Abstract
Influenza virus particles are assembled at the plasmamembrane in concert with incorporation

of the virus genome, but the details of its spatio-temporal regulation are not understood. Here

we showed that influenza virus infection induces the assembly of pericentrosomal endocytic

recycling compartment (ERC) through the activation of Rab11a GTPase and cell cycle-inde-

pendent maturation of centrosome by YB-1, a multifunctional protein that is involved in mitotic

division, RNAmetabolism and tumorigenesis. YB-1 is recruited to the centrosome in infected

cells and is required for anchoring microtubules to the centrosome. We also found that viral

infection accumulates cholesterol in ERC and is dependent on YB-1. Depletion of YB-1

shows reduced cholesterol-enriched ERC and prevented budozone formation at the plasma

membrane. These results suggest that cholesterol in recycling endosomes, which are ema-

nated from ERC, may trigger the virus assembly concomitantly with the packaging of the virus

genome. We propose that the virus genome is transported to the plasmamembrane by cho-

lesterol-enriched recycling endosomes through cell cycle-independent activation of the cen-

trosome by YB-1.

Author Summary

Influenza virus particles are assembled at the plasma membrane in concert with incorpo-
ration of the virus genome, but the details of its spatiotemporal regulation are unknown.
We found that the virus genome is transported to the plasma membrane using choles-
terol-enriched recycling endosomes through cell cycle-independent activation of the cen-
trosome by recruiting YB-1, which is a mitotic centrosomal protein. We also revealed that
the cholesterol-enriched endosomes are important for clustering of viral structural pro-
teins at lipid rafts to assemble the virus particles. These results suggest that local accumula-
tion of cholesterol, via fusion of endosomes to the plasma membrane, is one of the triggers
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for the virus assembly concomitantly with arrival of the virus genome beneath the plasma
membrane.

Introduction
Endocytic transport pathways are important to arrange the plasma membrane components for
diversified cellular processes at the plasma membrane including virus budding. Endocytosed
proteins are first delivered to the early/sorting endosomes, from where proteins are either recy-
cled back to the plasma membrane or transported to late endosomes and lysosomes. Rab small
GTPase family members show distinct intracellular localization and function as molecular
switches to regulate vesicle carrier formation and fusion with target membranes. Rab11a-posi-
tive recycling endosomes are crucial for recycling and delivery of plasma membrane compo-
nents to the cell surface [1–3]. The Rab11a-positive transport vesicles emerge from specific
organelles called endocytic recycling compartments (ERC). ERCs constitute a collection of
tubular organelles that are close to the nucleus and associated with the microtubule organizing
centre (MTOC). However, the functional significance of ERCs is not fully understood.

MTOC is a highly dynamic structure that achieves precise control of the microtubule array
for the spatial and temporal regulation of several fundamental processes. Microtubule dynam-
ics is controlled through continuous switching between phases of growth and shrinkage, as
well as the level and timing of nucleation from the centrosome, which is the major MTOC in
animal cells. The centrosome is composed of a pair of centrioles surrounded by pericentriolar
material (PCM), a matrix of more than a hundred different proteins. PCM proteins are orga-
nized radially around the centriole in a toroid-like arrangement [4–7] and PCM serves as a
platform for microtubule nucleation. During mitosis, in a process known as centrosome matu-
ration, PCM increases in size to promote the microtubule nucleation for mitotic spindle forma-
tion [8,9].

The influenza viral genome forms a viral ribonucleoprotein complex (vRNP) with viral
RNA polymerases and nucleoprotein (NP). After viral genome replication in the nucleus, the
progeny vRNP is nuclear-exported and then accumulates around the centrosome [10]. vRNP is
then transported to the budding site beneath the cell surface along microtubules through
Rab11a-dependent recycling endosomes [11–13]. Recently, Y-box binding protein-1 (YB-1)
was reported to function as a porter to facilitate vRNP accumulation at the centrosome [14].
YB-1 is a major component of cellular mRNA ribonucleoprotein complexes and it regulates
mRNA translation and degradation [15]. It is also reported that YB-1 accumulates in the cen-
trosome during G2/M phases [16] and is required for the centrosome maturation [17].

Cholesterol is a major constituent of the plasma membrane in eukaryotic cells. It regulates
the physical state of the plasma membrane and is involved in the formation of membrane
microdomains, called lipid rafts. Lipid rafts are defined as small (10–200 nm), heterogeneous,
highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular
processes [18]. Small rafts can sometimes coalesce to form larger platforms through protein-
protein, protein-lipid, and lipid-lipid interactions. Three viral membrane proteins, HA, NA,
and M2, are embedded in the influenza virus envelope. M1 covers the inner viral membrane
leaflet and binds to the cytoplasmic tails of HA and NA [19]. The assembly and budding of
viral particles are coupled with the formation of functionalized raft domains, called budozone
[20]. In the budozone, HA, possibly together with NA, is enriched by clustering several small
rafts [21,22]. M2 possesses cholesterol-binding motifs [23,24], but a relatively short transmem-
brane domain of M2 prevents complete immersion of the protein in the more ordered raft
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domains. Thus, M2 is thought to localize to the edge of the budozone to mediate the pinching
off of virus particles from the plasma membrane [25]. Finally, vRNP is recruited to the budo-
zone through the interaction of vRNP with M1 to initiate budding and release of virus
particles.

Here we showed that influenza virus infection induces the assembly of pericentrosomal
ERCs through the activation of Rab11a and microtubule dynamics. Using three-dimensional
structured illumination microscopy (3D-SIM), we found that YB-1 forms a toroid-like struc-
ture with a beads-on-a-string distribution pattern around the centriole. Knockdown (KD) anal-
yses indicated that influenza virus stimulates the spontaneous centrosome maturation in
interphase by recruiting YB-1 to anchor newly synthesized microtubules onto the centrosome.
We also found that cholesterol accumulates in the pericentrosomal ERC with vRNP in an YB-
1-dependent manner. Disruption of the cholesterol-enriched ERC formation by YB-1 KD
results in defective viral budozone formation at the plasma membrane. Collectively, these
results suggest that the recycling endosomes containing cholesterol and vRNP emanate from
ERC, and cholesterol in recycling endosomes is a trigger for the viral budozone formation con-
comitantly with vRNP trafficking to the plasma membrane.

Results

Influenza virus infection stimulates the pericentrosomal ERC formation
Transferrin is a typical marker to monitor the organization of active recycling endosomes dur-
ing endocytosis and its return to the cell surface. To examine the dynamics of the recycling
pathway in influenza virus-infected cells, cells were pulse-labeled for 30 min with transferrin
Alexa fluor 568, followed by a chase for 30 min without fluorescent transferrin. At 3 h post
infection, transferrin-positive recycling endosomes were accumulated in ERC at a juxta-
nuclear region, possibly near the centrosome (Fig 1A and 1B, white arrowheads). Transferrin
recycling proceeds with a t1/2 of approximately 20 min [26], therefore the transferrin uptake
should correspond to a steady-state distribution of the labeled ligand (Fig 1A). We next per-
formed an indirect immunofluorescence assay using anti-Rab11a antibody and FISH assay
using a probe that hybridizes with the segment 1 virus genome (Fig 1C, arrowheads). As is the
case for transferrin, Rab11a was also present in the juxta-nuclear region and colocalized with
the virus genome in approximately 40% of infected cells at 6 h post infection (P<0.001), sug-
gesting that the virus genome is recruited to the pericentrosomal ERC after nuclear-export, as
previously reported [10–14].

It has been shown that active Rab11a shows a marked accumulation of ERC at the centro-
some [27]. To evaluate whether Rab11a is activated by influenza virus infection, we purified
active Rab11a (Rab11-GTP) by GST pull-down assays using Rab11-binding domain of Rab11-
FIP2. Rab11-FIP2 acts as an effector molecule for Rab11-GTP through a highly conserved
Rab11-binding domain (RBD) among Rab11-FIP family proteins [28]. Therefore, we can
purify Rab11-GTP (constitutive active mutant Q70L, lane 8), but not the GDP form (dominant
negative mutant S25N, lane 9), using GST-fused 41 amino acid peptide derived from RBD of
Rab11-FIP2 (GST-RBD) (Fig 2A). Next, we performed GST pull-down assays with lysates pre-
pared from infected cells using GST-RBD at 8 h post infection (at which the virus genome is
actively transported) and the co-purified Rab11a was analyzed by western blotting with anti-
Rab11a antibody (Fig 2B). The amount of Rab11a co-purified with GST-RBD from infected
lysates was 4.5 ± 0.6 times more than that from mock-treated lysates (Fig 2B; representative
results from three independent experiments are shown), suggesting that a guanine nucleotide
exchange factor (GEF) for Rab11a may be activated in response to infection.
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Centrosome maturation by YB-1 is required for ERC formation
By interacting with a number of Rab11-FIPs, Rab11a associates with distinct motor proteins,
enabling bidirectional transport along microtubules. Thus, recycling endosomes closely associ-
ate with microtubules, and their intracellular transport is fully dependent on the microtubule
dynamics, which undergo cycles of nucleation, growing, and shrinking. The precise spatial and

Fig 1. Formation of pericentrosomal ERCwith the virus genome and YB-1 in infected cells. (A and B) Transferrin uptake. HeLa cells were pulse-
labeled with 100 μg/ml of transferrin conjugated with Alexa 568 (red; arrowhead) for 30 min at 37°C at 0, 3, and 6 h post infection, respectively. After washing
with medium, cells were further incubated for 30 min at 37°C. Nuclei were counter-stained with DAPI (blue). The average number of cells showing
accumulation of transferrin larger than 1 μmwas obtained from three independent experiments (panel B; n = 100). (C) Intracellular localization of the virus
genome, YB-1, and Rab11a. At 6 h post infection, uninfected (upper panels) and infected HeLa cells (lower panels) were subjected to indirect
immunofluorescence assays with anti-YB-1 (red) and anti-Rab11a (blue) antibodies, followed by FISH assays using an RNA probe complementary to the
virus genome (green). The representative results from three independent experiments are shown. Scale bar, 10 μm.

doi:10.1371/journal.ppat.1005284.g001
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temporal regulation of the cycles is essential for the numerous cellular functions in which
microtubules are involved.

Previously, we reported that YB-1 accumulates in the centrosome with vRNP during inter-
phase [as shown in Fig 1C, and [14]]. At 48 h post transfection of YB-1 siRNA, the expression
level of YB-1 in KD cells decreased to 25% of that in control cells (S1 Fig). The virus titer in
YB-1 KD cells decreased to approximately 30% of that in control cells (Fig 3A). We also found
that Rab11a does not accumulate in the centrosome of infected YB-1 KD cells (Fig 3B), sug-
gesting that YB-1 is required for pericentrosomal ERC formation. Note that YB-1 is responsible
for centrosome maturation in order to establish the polarity-dependent dynamic instability in
the mitotic phase [17]. Thus, we hypothesized that YB-1 may stimulate pericentrosomal ERC
formation through spontaneous centrosome maturation in infected interphase cells as it does
in the mitotic phase. To test this hypothesis, we examined the centrosomal localization of YB-1
using 3D-SIM super-resolution microscopy (Fig 3C, 3D, 3E and 3F). Note that only centro-
somes showing a cross-sectional view of PCM during interphase were selected for this analysis.

Fig 2. Activation of Rab11a GTPase in infected cells. (A) HeLa cells were transfected with a plasmid expressing either GFP (lanes 1, 4, and 7), GFP-fused
Rab11a constitutive active mutant (CA; lanes 2, 5, and 8), or GFP-fused Rab11a dominant negative mutant (DN; lanes 3, 6, and 9). At 24 h post transfection,
cell lysates were prepared and subjected to GST pull-down assays with either GST (lanes 4–6) or GST-RBD (lanes 7–9). (B) At 8 h post infection (MOI = 10),
mock-infected (lanes 1, 3, and 5) and infected HeLa cells (lanes 2, 4, and 6) were subjected to GST pull-down assays with either GST (lanes 3 and 4) or
GST-RBD (lanes 5 and 6). Co-purified proteins were detected by western blotting assays with anti-Rab11a antibody. GST and GST-RBD were detected by
CBB staining.

doi:10.1371/journal.ppat.1005284.g002
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Fig 3. YB-1 is required for pericentrosomal ERC formation. (A) Production of infectious virions. HeLa cells were transfected with non-targeting or YB-1
siRNA. At 48 h post transfection of siRNA, control and YB-1 KD cells were infected with influenza virus at MOI of 0.01. The culture supernatants collected at
24, 36, 48, 60, and 72 h post infection were subjected to plaque assays to examine the production of infectious virions. The average titers and standard
deviations determined from three independent experiments are shown. (B) Intracellular localization of the virus genome and Rab11a in YB-1 KD cells. At 48 h
post transfection of siRNA, control and YB-1 KD HeLa cells were infected with influenza virus at MOI of 10. At 8 h post infection, immunofluorescence assays
were carried out with anti-Rab11a antibody (red), followed by FISH assays using an RNA probe complementary to segment 1 virus genome. Scale bar, 5 μm.
(C and E) Centrosomal localization of YB-1 and GFP-centrin-2. At 8 h post infection (MOI = 10), uninfected and infected HeLa cells constitutively expressing
GFP-centrin-2 were subjected to indirect immunofluorescence assays with rabbit anti-YB-1 antibody (red). In panel E, quantitative determination of the each
signal (centrin-2, green; YB-1, red) was performed along the white dashed arrows shown inside the panel E, bottom panel. Y-axis indicates the normalized
pixel intensity. (D and F) Centrosomal localization of YB-1 and pericentrin. At 8 h post infection (MOI = 10), uninfected and infected cells were subjected to
indirect immunofluorescence assays with mouse anti-pericentrin (green) and rabbit anti-YB-1 (red) antibodies. In panel F, quantitative determination of the
each signal (pericentrin, green; YB-1, red) was performed along the white dashed arrows shown within the panel E, bottom panel. Y-axis indicates the
normalized pixel intensity. In panel C and D, all images were acquired with a super-resolution microscopy (3D-SIM; Carl Zeiss). Scale bar, 500 nm.

doi:10.1371/journal.ppat.1005284.g003
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YB-1 formed a toroidal structure with a beads-on-a-string distribution pattern around GFP-
centrin-2, a marker protein of the centriole (Fig 3C and 3E). The mean diameter of the YB-1
toroid at the peak intensity (545 ± 48 nm; n = 8) was similar to that of pericentrin toroid (a
marker for PCM; 581 ± 42 nm; n = 8), suggesting that YB-1 localizes in PCM (Fig 3D and 3F).
However, YB-1 did not co-localize with pericentrin (Fig 3E). It has been proposed that pericen-
trin exists as elongated fibrils that extend radially from the centriole [5,6]. The spatial domains
separated by pericentrin are filled with a number of PCM proteins required for microtubule
nucleation and anchoring, suggesting that YB-1 also regulates the microtubule nucleation and/
or anchoring at PCM in response to infection at interphases.

Next, we observed the dynamics of microtubule nucleation to examine the centrosome
function in infected cells using EB1-GFP [8], which interacts specifically with growing micro-
tubule ends (Fig 4 and S1, S2, S3 and S4 Videos). The time series of EB1-GFP were acquired at
1.56-sec intervals for 1 min. In image sequences, EB1-GFP comets continually emerged from
the centrosome. In the control, the mean growth rate of nucleated microtubules in the infected

Fig 4. Microtubule nucleation from the centrosome visualized by EB1-GFP. (A) Live-cell imaging of EB1-GFP nucleated from the centrosome. After 48 h
post treatment of either non-targeting or YB-1 siRNA, HeLa-EB1-GFP cells were infected with influenza virus. At 8 h post infection (MOI = 10), the cells were
subjected to the live-cell imaging using confocal microscopy. Images were acquired at 1.56-sec intervals for 1 min (see also S1, S2, S3 and S4 Videos). The
stack examples of each time-lapse image are shown (panel A). Red arrowheads indicate the position of the centrosome. Scale bar, 5 μm. (B) The
quantitative results of growth rate distribution of EB1-GFP particles (over 80 particles obtained frommore than ten cells) were determined from three
independent experiments. The level of significance was determined by Student’s t test. N.D., not detectable.

doi:10.1371/journal.ppat.1005284.g004
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cells was increased compared to that of the uninfected mock cells (Fig 4B, P<0.001). In con-
trast, EB1-GFP in infected cells treated with YB-1 siRNA mostly did not move in a straight
line, but rather in a Brownian motion (Fig 4A and S4 Video). Because growing microtubule
ends decorated with EB1-GFP accumulated primarily in the centrosome of infected YB-1 KD
cells (Fig 4A, arrow head), it is likely that the microtubules nucleated from the centrosome
even in infected YB-1 KD cells. Therefore, it is possible that the newly synthesized microtu-
bules are released from the centrosome in infected YB-1 KD cells. Further, although most
microtubules were still elongated radially from the centrosome (Fig 4A), some of the EB1-GFP
signals showed a faster migration rate in uninfected YB-1 KD cells (Fig 4A and 4B). It has been
reported that short microtubules released from the centrosome migrate faster than the centro-
somal microtubules [29], therefore YB-1 appears to be required, at least in part, for anchoring
microtubules to the centrosome in uninfected interphase cells.

To address whether YB-1 is involved in the anchoring of microtubules to the centrosome in
response to infection, we carried out microtubule regrowth assays using nocodazole, a potent
inhibitor of microtubule polymerization (Fig 5). After nocodazole treatment for 1 h, microtu-
bules were depolymerized, and α-tubulin was dispersed throughout the cytoplasm (Fig 5B, 5G,
5L and 5Q). After washing out the drug, cells were incubated at 37°C to allow the regrowth of
the microtubules for 3, 5, and 15 min. As expected, the nucleation of microtubules from the
centrosome was stimulated by infection in control cells at 5 min post release (Fig 5I). In con-
trast, noncentrosomal microtubules were sporadically found at peripheral regions of the cyto-
plasm in infected YB-1 KD cells (Fig 5R and 5S, arrowheads). These results suggest that YB-1
is required for anchoring newly polymerized microtubules to PCM when the microtubule
nucleation is stimulated by infection.

Pericentrosomal ERC is important for enrichment of vRNP and
cholesterol as cargo
ERC is reported to be involved in intracellular sorting and polarized trafficking of apical
plasma membrane components [26]. However, details regarding the roles of ERC remain to be
clarified. Therefore, we next examined the loading of vRNP onto the recycling endosomes by
using YB-1 siRNA to disrupt ERC formation. Cells constitutively expressing FLAG-Rab11a
were subjected to immunoprecipitation assays with anti-FLAG antibody (Fig 6A). We found
that the amount of PB1 subunit of viral polymerase and NP coimmunoprecipitated with FLA-
G-Rab11a from YB-1 KD lysates were decreased to approximately 30% of those from control
lysates (Fig 6A, lane 6). This result is supported by the fact that vRNP hardly colocalized with
Rab11a in YB-1 KD cells as shown in the enlarged panel of Fig 3B. Furthermore, we examined
the activation of Rab11a in YB-1 KD cells by GST pull-down assays using GST-RBD. The
amount of Rab11-GTP was not changed between the control and YB-1 KD cells (Fig 6B), sug-
gesting that YB-1 KD does not influence the amount of active recycling endosomes. Thus, it is
likely that the formation of pericentrosomal ERC is important to load vRNP onto the endoso-
mal vesicles.

Cholesterol is not uniformly distributed in the membrane, and 80–90% of total cellular cho-
lesterol is enriched in the plasma membrane [30]. Although recycling endosomes contain con-
siderably less cholesterol than the plasma membrane, it is known that the endocytic transport
pathway through recycling endosomes is important for cholesterol trafficking and homeostasis
in cells [31,32]. Therefore, we hypothesized that vRNP is transported to the plasma membrane
via recycling endosomes with cholesterol. To test this hypothesis, we observed the intracellular
localization of cholesterol in infected cells using the fluorescent cholesterol-binding polyene
antibiotic, filipin. Some recycling endosomes were partially colocalized with cholesterol in
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uninfected cells (Fig 6C). However, along with the formation of pericentrosomal ERC by infec-
tion, we found that cholesterol is highly enriched in ERC in an YB-1-dependent manner. Simi-
lar results were obtained in A549 cells infected with A/Panama/2007/99, which is one of the
representative strains of seasonal influenza A virus (H3N2) (S2 Fig). These findings suggest
that vRNP is transported to the plasma membrane via recycling endosome vesicles that contain
a higher concentration of cholesterol.

ERC is involved in viral budozone formation at the plasma membrane
Some viruses, including influenza virus, are known to utilize lipid rafts for budding from the
plasma membrane [33]. Viral budozone formation is thought to be dependent on the spatial
assembly of eight-segmented vRNP complexes and viral membrane proteins via clustering of
lipid rafts. Although it has been reported that reorganization of cortical actin is required for the

Fig 5. Microtubule nucleation after releasing from nocodazole treatment. At 48 h post transfection with either non-targeting (panel A-J) or YB-1 siRNA
(panel K-T), HeLa cells were infected with influenza virus at MOI of 10. At 8 h post infection, cells were treated for 1 h without (Noc(-)) or with 1 μg/ml of
nocodazole (Noc(+)). At 3 (panel C, H, M, and R), 5 (panel D, I, N, and S), and 15 min (panel E, J, O, and T) post releasing from nocodazole treatment, cells
were fixed and subjected to indirect immunofluorescence assays with mouse anti-α-tubulin antibody. Arrowheads indicate the microtubules sporadically
localized at the peripheral cytoplasm (panel R and S). Scale bar, 5 m.

doi:10.1371/journal.ppat.1005284.g005
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Fig 6. The pericentrosomal ERC is important for the enrichment of vRNP and cholesterol. (A and B) Association of vRNP with Rab11a in YB-1 KD
cells. At 48 h post transfection with either non-targeting or YB-1 siRNA, HeLa cells constitutively expressing FLAG-Rab11a were infected with influenza virus
at MOI of 10. At 8 h post infection, cells were subjected to immunoprecipitation assays with either non-specific IgG or anti-FLAG antibody (panel A) and GST
pull-down assays using GST-RBD (panel B) as descried in Fig 2, respectively. Co-precipitated proteins were analyzed by western blotting with anti-PB1, anti-
NP, and anti-Rab11a antibodies. (C) Accumulation of cholesterol in ERC in infected cells. At 48 h post transfection with either non-targeting or YB-1 siRNA,
HeLa cells were infected with influenza virus at MOI of 10. At 6 h post infection, cells were pulse-labeled with 100 μg/ml of transferrin conjugated with Alexa
568 (red) for 30 min at 37°C, followed by incubation without Alexa 568-labeled transferrin for 30 min. After fixing in 4% PFA, cells were incubated with 200 μg/
ml filipin to visualize cholesterol (green). In panel C, quantitative determination of the each signal (cholesterol, green; transferrin, red) was performed along
the white dashed arrows shown within the panel C, enlarged panels. Y-axis indicates the normalized pixel intensity.

doi:10.1371/journal.ppat.1005284.g006
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control of viral budozone formation [25,34,35], the trigger to initiate the coalescence of lipid
rafts is unclear. Thus, we examined whether the pericentrosomal ERC is required for budozone
formation by using in situ proximity ligation assay (PLA) to detect the proximity between M2
and HA. In the in situ PLA system, the theoretical maximum distance between two target pro-
teins is around 40 nm to yield amplified signals. At 8 h post infection, cells were subjected to in
situ PLA using anti-HA and either anti-M2 or anti-M1 antibodies (Fig 7). Strong punctate
PLA signals (red) between HA and M2 or between HA and M1 were observed at the plasma
membrane in the infected control cells (Fig 7A and 7B). Although HA and M2 were success-
fully transported to the plasma membrane in YB-1 KD cells (Fig 7C), the intensity of PLA sig-
nals between HA and M2 was significantly decreased by YB-1 KD (P<0.001; Fig 7B, left
panel). In contrast, the signal intensity between HA and M1 was not decreased in YB-1 KD
cells (Fig 7B, right panel). This could be due to the direct binding of M1 with the cytoplasmic
tail of HA [19]. Next, we examined whether cholesterol is required for the YB-1-dependent
viral budozone formation using nonraft HA mutant virus, which has alanine substitutions at
I533, Y534, and S535 in the transmembrane domain of HA. It is reported that this mutant HA
rarely associates with lipid rafts and that the apical transport is delayed, but not blocked [36].
At 12 h post infection, a significant amount of HA was observed at the plasma membrane in
nonraft virus infected cells (Fig 7D, green). However, the intensity of PLA signals between HA
and M2 was dramatically reduced in nonraft virus-infected cells compared with that in wild-
type infected cells (Fig 7D and 7E). Thus, as expected, it is likely that most of the signals
observed in the in situ PLA system were mediated by lipid rafts. Furthermore, in contrast to
wild type virus (Fig 7B), the PLA signals between nonraft HA and M2 were nearly unaffected
by YB-1 KD (Fig 7E, compare lane 2 with lane 3), suggesting that the interaction of HA with
cholesterol is important for YB-1-mediated viral budozone formation.

Discussion
The lipid-lipid, lipid-protein, and protein-protein interactions facilitate the formation of small
raft domains into functional platforms for signal transduction, membrane trafficking, and cell
adhesion [37–39]. Sphingolipids that have been enriched in these assemblies have saturated
and longer acyl chains with larger polar headgroups, so cholesterol functions as spacers
between sphingolipids through their acyl chains [40]. This cholesterol-sphingolipids interac-
tion results in the packing and condensing of lipid rafts for their clustering. Fig 7 shows that
YB-1 is important for clustering of viral membrane proteins at the plasma membrane through
the interaction of viral raft protein with cholesterol. It is noteworthy that the amount of choles-
terol at the plasma membrane was unchanged between the control and YB-1 KD cells (S3 Fig),
suggesting that small raft domains should be intact at the plasma membrane in YB-1 KD cells.
This is possibly due to the fact that the recycling endosomes and TGN contain much less cho-
lesterol than the plasma membrane [41]. However, it is known that moderate changes in the
level of cholesterol transported through these compartments appear to have drastic effects on
cellular homeostasis [41]. Taking these findings together, we propose that the fusion of choles-
terol-enriched recycling endosomes with the plasma membrane induces the accumulation of
sphingolipids that contain viral raft proteins which form viral budozone concomitantly with
the arrival of vRNP beneath the plasma membrane (Fig 8).

In general, cells acquire cholesterol mainly through receptor-mediated endocytosis of low-
density lipoprotein (LDL) [30]. After LDL internalization, LDL-cholesterol is delivered to late
endosomes and lysosomes to release the cholesterol molecules from LDL. The majority of cho-
lesterol in late endosomes is then delivered to the plasma membrane. Although the itinerary of
cholesterol from late endosomes to the plasma membrane is not clear, it is thought that
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Fig 7. Clustering of HA andM2 requires ERC formationmediated by YB-1. (A, B, and C) in situ PLA assays using wild-type virus. At 48 h post
transfection with either non-targeting or YB-1 siRNA, HeLa cells were infected with wild-type influenza virus at MOI of 10. At 8 h post infection, cells were
fixed and subjected to in situ PLA assays with anti-HA and either anti-M1 or anti-M2 antibodies without permeabilization in 0.5% Triton X-100 (red). HA and
DNA were counter-stained with anti-mouse IgG conjugated with Alexa 488 (green) and DAPI (blue), respectively. In panel B, the mean intensity of each
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cholesterol is transported through ER, TGN, and recycling endosomes. We found that influ-
enza virus infection stimulates cholesterol accumulation in ERC (Fig 6C). This could be due to
a possibility that the accumulation of recycling endosomes in ERC (Fig 1A) may slow down the
delivery of cholesterol to the plasma membrane.

YB-1 is required for centrosome maturation during mitosis [17], but little is known about
the function of YB-1 in the centrosome. In infected cells, YB-1 was localized in PCM and
formed a radial and toroidal structure around the centriole (Fig 3). It is proposed that the PCM

punctate PLA signal obtained from three independent experiments was quantitated using IMARIS software (n>5,000). In panel C, cells were subjected to the
indirect immunofluorescence assays with anti-HA (green) and anti-M2 antibodies (red). The single optical sections in the x-z plane are taken. (D and E) in situ
PLA assays using nonraft HA virus. Control and YB-1 KD cells were infected with a mutant virus at MOI of 10, which has alanine substitutions at I533, Y534,
and S535 in the transmembrane domain of HA (nonraft), and subjected to in situ PLA assays with anti-HA and anti-M2 antibodies (red). HA and DNA were
counter-stained with anti-mouse IgG conjugated with Alexa 488 (green) and DAPI (blue), respectively. In panel E, the mean intensity of each punctate PLA
signal obtained from three independent experiments was quantitated using IMARIS software (n>5,000). The stacking images along the z-axis were obtained
by Maximum intensity projection processing of ZEN 2009 software (Carl Zeiss) (panel A and D). The level of significance was determined by Student’s t test.
Scale bar, 5 μm.

doi:10.1371/journal.ppat.1005284.g007

Fig 8. A proposedmodel. Influenza virus infection induces the accumulation of pericentrosomal ERC through the activation of Rab11a GTPase and
microtubule formation from the centrosome. YB-1 is required for anchoring of nucleated microtubules at the centrosome. Along with the formation of
pericentrosomal ERC, cholesterol accumulates in ERC with vRNP in an YB-1-dependent manner. The recycling endosome for transport of vRNP emanates
from the cholesterol-enriched ERC, and the cholesterol in the recycling endosomemay be a trigger for budozone formation concomitantly with vRNP
trafficking.

doi:10.1371/journal.ppat.1005284.g008
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proteins might be assembled based on the nine-fold radial symmetry of the centriole [5,6]. In
which case, it is assumed that YB-1 is also a structural component of the PCMmatrix for
microtubule assembly. It is also reported that YB-1 interacts with microtubules and coats the
outer surface of the microtubule wall in vitro [42]. Thus, YB-1 may connect microtubules to
the PCMmatrix by decorating the microtubules’minus ends.

The spatiotemporal regulation of Rab GTPase activity is of particular importance. Among
the several GEFs known to regulate Rab GTPases, no GEF that activates Rab11a has been iden-
tified in mammalian cells despite a systematic characterization of the DENN domain subfamily
of Rab GEFs [43]. It is necessary to identify the GEFs responsible for virus infection.

Rab11a plays a role in the transport of M2 to the apical membrane [25], although M2 is
directly transported through TGN to the plasma membrane [44]. This is due to the fact that
Rab11a also functions in constitutive exocytosis from TGN in addition to the recycling pro-
cesses via ERC [45,46]. In YB-1 KD cells, HA and M2 were successfully transported to the
plasma membrane (Fig 7D), suggesting that centrosome maturation by YB-1 is required for
their transport through ERC but not through TGN. It has been reported that the minus end of
microtubules, which is released from the centrosome, could subsequently be captured by the
Golgi membrane and then elongated into linear arrays [47]. Thus, even in the absence of YB-1,
the exocytic transport from TGNmight be achieved along microtubules that are elongated
from Golgi stacks.

The majority of membrane proteins are sorted at TGN before their delivery to the appropri-
ate cell surface domain. In addition to TGN, some other cellular lipid raft proteins, such as
TLR4 and EGF receptor, are transported to the plasma membrane through the recycling endo-
somes [48,49]. Additionally, the transport rates of recycling endosomes are controlled in
response to signaling pathways to increase or decrease the surface expression of molecules,
such as insulin-regulated glucose transporter GLUT4 [50,51]. In this study, we propose that
the recycling endosomes deliver cholesterol to the plasma membrane for not only cholesterol
homeostasis, but also lipid raft clustering. Our findings contribute to the understanding of the
molecular mechanism of lipid raft clustering in response to several signals that utilize lipid
rafts as a platform.

Materials and Methods

Biological materials
Influenza virus A/Puerto Rico/8/34 strain and rabbit polyclonal antibodies against PB1, NP,
M1, and YB-1 were prepared as previously described [14]. Mouse antibodies against HA
(TaKaRa; C179), Rab11a (BD; 47/Rab11), Pericentrin (Abcam; ab28144), α-tubulin (Sigma;
DM1A), and a rabbit antibody against M2 (Abcam; ab56086) were purchased. HeLa cells (a
gift from Dr. Masa-atsu Yamada of University of Tokyo) were grown in minimal essential
medium (MEM) containing 10% fetal bovine serum. Plasmids expressing GFP-centrin-2 and
EB1-GFP were prepared as previously described [14]. To establish HeLa cell lines constitutively
expressing either GFP-centrin-2 or EB1-GFP, cells were transfected with pSV2-Neo and either
pCAGGS-GFP-centrin-2 or pCAGGS-EB1-GFP. The transfected cells were cultured in the
presence of 1 mg/ml of G418 for 2 weeks, and then the G418-resistant colonies were isolated.
For the construction of plasmid expressing GST-Rab-binding domain (RBD) of FIP2, cDNA
was amplified from pCAGGS-FIP2 (provided by Dr. F. Momose, Kitasato University) with
primers 5ʹ-CCGGAATTCGAGCTGGTGAAACAC-3ʹ and 5ʹ-ACGCGTCGACTCACGG
CACTCTGAG-3ʹ. The cDNA was cloned into pGEX-6P-1. Nonraft HA virus was generously
provided by Drs. Y. Morikawa and F. Momose (Kitasato University) [36] and amplified using
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MDCK cells constitutively expressing HA (provided by Dr. N. Takizawa, Institute of Microbial
Chemistry).

Transferrin uptake
Transferrin conjugated with Alexa 568 was purchased (Life Technologies). Cells were incu-
bated with 100 μg/ml of Transferrin for 30 min at 37°C. After washing with medium, cells were
further incubated for 30 min at 37°C and then fixed in 4% paraformaldehyde (PFA).

Cellular localization of viral RNAs and proteins
Indirect immunofluorescence assays and fluorescence in situ hybridization (FISH) assays were
carried out as previously described [14]. Briefly, cells infected with influenza virus at multiplic-
ity of infection (MOI) of 10 were fixed with 1% PFA for 10 min and then pre-permeabilized on
ice with 0.01% digitonin in PBS for 5 min on ice. After being washed with PBS, cells were fixed
in 4% PFA for 10 min and permeabilized on ice with 0.5% Triton X-100 in PBS for 5 min.
After incubation in PBS containing 1% bovine serum albumin for 1 h, coverslips were incu-
bated with each antibody for 1 h and then with Alexa Fluor 488-, 568-, and 633-conjugated sec-
ondary antibodies, respectively (Life Technologies). After indirect immunofluorescence assays,
FISH assays were performed using an RNA probe complementary to the segment 1 virus
genome. Images were acquired using confocal laser scanning microscopy (LSM700; Carl Zeiss)
or super-resolution microscopy (3D-SIM ELYRA; Carl Zeiss).

Cholesterol staining
Cells were fixed in 4% PFA for 10 min and then incubated with 200 μg/ml of filipin (Sigma).
After washing with PBS, images were acquired by Axio Observer Z1 microscope using 63x
Apochromat objective (NA = 1.4) with AxioCamMRm camera (Carl Zeiss).

Live-cell imaging
Observations were made with Axio Observer Z1 microscope using 63x Apochromat objective.
Images were acquired at 1.56-sec intervals for 1 min with confocal laser scanning microscopy
(LSM700; Carl Zeiss). All experiments were carried out at 37°C under 5% CO2 in a tempera-
ture-controlled stage (Carl Zeiss). Sequential images were processed using Image J digital
image processing software (National Institutes of Health, Bethesda). The average velocity of
the punctate fluorescent signals of EB1-GFP was measured using a manual object tracking
plugin, MTrackJ, for Image J.

In situ Proximity Ligation Assay (PLA)
Cells were fixed with 4% PFA, followed by blocking with 1% milk for 30 min. The cells were
incubated with mouse anti-HA antibody for 1 h and fixed again in 4% PFA. Cells were then
permeabilized with 0.5% Triton X-100 for 5 min and incubated with either rabbit anti-M1 or
anti-M2 antibody for 1 h. PLA was carried out using Duolink In Situ PLA kit (Olink Biosci-
ence) according to the manufacturer’s protocol. The mean intensity of the PLA signals was
measured using IMARIS software (Carl Zeiss).

Gene silencing mediated by siRNA
Knockdown of YB-1 was examined as previously described [14]. Briefly, cells (5 x105) were
transfected with 30 pmol of siRNA using Lipofectamine RNAi Max (Life Technologies)
according to the manufacturer’s protocol.
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Supporting Information
S1 Fig. The amount of YB-1 protein in siRNA-treated cells.HeLa cells were transfected with
either non-targeting (control; lanes 1–3) or YB-1 siRNA (YB-1 KD; lanes 4–6). After 48 h post
transfection, the cells were lysed, and the lysate (5 x103, 1 x104, and 2 x104 cells) were analyzed
by SDS-PAGE followed by western blotting assays with anti-YB-1 and anti-α-tubulin antibod-
ies, respectively.
(TIF)

S2 Fig. Accumulation of cholesterol in ERC in infected A549 cells. A549 cells were infected
with either A/Puerto Rico/8/34 or A/Panama/2007/99. At 6 h post infection, A549 cells were
pulse-labeled with 100 μg/ml of transferrin conjugated with Alexa 568 (red) for 30 min at
37°C, followed by incubation without Alexa 568-labeled transferrin for 30 min. After fixing in
4% PFA, cells were incubated with 200 μg/ml filipin to visualize cholesterol (green).
(TIF)

S3 Fig. Quantitation of the amount of cholesterol in the plasma membrane. At 48 h post
transfection of either non-specific or YB-1 siRNA, cells were collected and swollen in a buffer
containing 20 mM Tris-Cl (pH 7.9), 10 mM KCl, and 5 mMMgCl2 for 10 min. After passing
through a 27-gauge needle, unbroken cells and nuclei were removed by centrifugation at 1,000
xg for 5 min. The supernatant faction was mixed with 72.5% (w/w) sucrose in a buffer contain-
ing 10 mM Tris-Cl (pH 7.9), 25 mM KCl, and 5 mMMgCl2 to adjust the sucrose concentration
to 62.5% (w/w). The sample was transferred to ultracentrifuge tubes, and 55% (w/w) and 5%
(w/w) of sucrose buffer were subsequently added, respectively. After ultracentrifugation with
SW55Ti at 40,000 rpm for 18 h at 4°C, the plasma membrane fraction recovered between 5%
and 55% sucrose layers was collected. The amounts of cholesterol and phospholipids were
determined using Amplex Red (Life Technologies) and Labassay phospholipid (Wako) accord-
ing to the manufacturer’s protocol, respectively. The amount of phospholipids was used as an
internal control.
(TIF)

S1 Video. Live-cell imaging of EB1-GFP in uninfected control cells, related to Fig 4A.Unin-
fected cells were subjected to live-cell imaging of EB1-GFP nucleated from the centrosome.
EB1-GFP continually emerged from the centrosome. The images were acquired at 1.56-sec
intervals for 1 min.
(AVI)

S2 Video. Live-cell imaging of EB1-GFP in infected control cells, related to Fig 4A. At 8 h
post infection, infected cells were subjected to live-cell imaging of EB1-GFP nucleated from the
centrosome. In response to the infection, the nucleation of EB1-GFP from the centrosome was
stimulated. The images were acquired at 1.56-sec intervals for 1 min.
(AVI)

S3 Video. Live-cell imaging of EB1-GFP in uninfected YB-1 KD cells, related to Fig 4A.
Uninfected YB-1 KD cells were subjected to live-cell imaging of EB1-GFP nucleated from the
centrosome. The growth rates of EB1-GFP were diversified as shown in Fig 4B. The images
were acquired at 1.56-sec intervals for 1 min.
(AVI)

S4 Video. Live-cell imaging of EB1-GFP in infected YB-1 KD cells, related to Fig 4A. At 8 h
post infection, infected YB-1 KD cells were subjected to live-cell imaging of EB1-GFP nucleated
from the centrosome. EB1-GFP moved in a Brownian-like motion in response to the infection.
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The images were acquired at 1.56-sec intervals for 1 min.
(AVI)
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