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1. Introduction 

 Volumetric void fraction is one of very important physical values and key parameters 

in two-phase flow for designs and performance evaluations of devices. Numerous 

measurement techniques of void fraction have been developed, and these have been applied to 

two-phase flow. A quick shut valves method can directly measure volumetric void fraction, 

but the method cannot measure the time variation of void fraction due to shut flow. 

Measurements with radiations as X-ray, γ-ray and neutron are highly advantageous to its 

non-intrusiveness and its ability to penetrate opaque wall materials. In addition, computed 

tomography systems can measure 2D and quasi-3D distributions of void fraction in vessels. 

However, these measurement systems need safety reasons and cost issues that come with 

radiation sources. In flow visualization and image processing with a nuclear magnetic 

resonance (NMR), the advantage is non-intrusive and non-invasive measurement of a phase 

distribution and a velocity field. However, the imaging technique cannot estimate flow 

structures with high void fraction, and then the instrumentation is expensive. In various void 

fraction measurement techniques, electric sensing techniques are inline measurement 

techniques with lower cost and simpler instrumentations. If conductivity or permittivity of 

two phase fluid is different from each other, the electric resistance and the capacitance change 

according to the void fraction. 2D and 3D distributions of void fraction are measured by CT 

techniques. However, the accuracy of the measurement is affected by temperature and electric 

compositions of the fluid.  

For the measurement method of the resistance, a conductance void meter was 

developed to investigate the structures of bubbly two-phase flow[1]. The sensor was generally 

designed to be flush-mounted to the inner wall of the test section to avoid the flow 

disturbances. The sensor with a guard electrode which was electrically shielded was also 

developed in order not to affect the measurements of two-phase mixture conductance. A wire 

mesh method to bubble columns was applied and provided tomographic measurement images 
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of void fraction with a time resolution of 1000 measurements per second and a wire gap of 3.5 

mm[2]. A technique with the electric resistance tomography measurement to bubble behaviors 

in bubble columns was also applied[3]. They measured 2D distributions of void fractions, 

Sauter mean bubble sizes and bubble rise velocities. The data collection rate was 9.5 frames 

per second with an excitation signal frequency of 38.4 kHz.  

For utilization of permittivity, five capacitor configurations; parallel, strip-type plates, 

ring-type plates, unidirectional, and double-helix was manufactured and tested[4]. A 

capacitance wire mesh sensor with 5000 frame per second was developed and it obtained 

images of void fraction distributions, radial void fraction profiles and bubble size 

distributions[5]. Real-time flow structures in gas–liquid and gas–liquid–solid systems in a 

bubble column using electric capacitance tomography were measured[6]. Furthermore, recent 

advances and progress of electric capacitance volume tomography which provided the 

real-time and three-dimensional images of multi-phase flows with non-intrusiveness were 

described[7]. 

A constant electric current method is a measurement method of cross-sectional and 

volumetric average void fraction with high time resolution and simple principles[8]. The 

method has been applied to measure void fraction in annular flow and liquid film 

thickness[9-11]. However, the method cannot provide void fraction of three dimensional 

dispersed bubbly flow, because the void fractions are estimated with measured electric 

voltages on the assumption that a cross-section ratio of gas phase is constant in a flow 

direction. Meanwhile, Maxwell’s estimation and Bruggemann’s estimation were applied to 

measurements of void fractions in three dimensional dispersed bubbly flow by using a 

conductivity probe[12]. In the experimental results, Maxwell’s estimation was in good 

agreement with the measured results. These estimations were applied in order to investigate 

the relationship between void fraction and volume-averaged impedance in water–air mixtures, 

too[13]. Gas volume fractions measured by the electric resistance tomography was also 
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estimated by Maxwell’s estimation[3]. In the constant electric current method, it was 

experimentally confirmed that Maxwell’s estimation were more accurate estimation than the 

previous estimation for dispersed bubbly flow[14]. However, these studies did not discuss an 

effect of flow patterns and bubble shape on Maxwell’s estimation and Bruggemann’s 

estimation. The present study discussed the effect of flow pattern and bubble shape on these 

estimations of void fraction. In addition, new estimations taken account of flow patterns were 

proposed, and accuracy of the estimation was experimentally confirmed. In order to 

understand the effect of flow patterns and bubble shape, the constant electric current method 

was applied to a rising single spherical bubble and a rising single slug bubble without a forced 

convection. And then, void fraction was also measured by the constant electric current method 

in bubbly flow and bubbly-slug flow with a forced convection. Finally, the effects of flow 

patterns and bubble shape on void fraction estimations and the accuracy of the estimation 

were discussed in comparison with measurement results. 

 

2. Constant electric current method 

The constant electric current method is one of the conductance methods[8]. The 

method can provide cross-sectional and volumetric average void fraction. The principle and 

the system of the method are simple. For this reason, the time resolution is higher than other 

techniques although it cannot provide 2D and 3D distributions of void fraction such as wire 

mesh methods and tomography. In the constant electric current method, a constant electric 

current DC power supply applies to gas-liquid two-phase flow through a pair of electrodes 

which are mounted flush with a surface of a flow pass. These electrodes are called “applying 

electrodes”. A voltage is measured by a voltage drop method with another pair of electrodes 

which are set between the applied electrodes. These electrodes are called “measuring 

electrodes”. With this arrangement of electrodes, the voltage drop is picked-up through high 

impedance, then the electric current distribution is not disturbed with the presence of the pair 
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of measuring electrodes. Besides, interaction among measuring electrodes is also negligible. 

Therefore, a number of measuring electrodes can be set in a short distance[8, 9, 14]. 

 

3. Estimation methods of void fraction 

In the constant electric current method, a previous estimation method of void fraction 

is applied to a cross-sectional area of liquid phase between measuring electrodes[8]. A voltage 

ratio v’ which is value of normalized voltage in gas-liquid two phase flow with voltage in 

liquid single flow is shown by void fraction α. 

 
α−

=′
1

1v  (1) 

The void fraction α is estimated by electric voltage ratio v’ as above. This method is applied 

to annular flow, because the cross-sectional area of liquid phase is assumed to be constant 

between measuring electrodes in the estimation method. However, the void fraction in bubbly 

flow cannot be accurately estimated from Equation (1), because bubbles are dispersed in three 

dimensions in bubbly flow. 

Maxwell estimated a resistance of a mixture of two mediums which had different 

resistivity for each other in accordance with electromagnetism[14, 15]. In the present study, 

this estimation method is applied to the constant electric current method. Two mediums are 

assumed to be gas and liquid in this estimation. The void fraction is represented as, 

 
α

α
−

+
=′

1
5.01v  (2) 

The void fraction estimated by Maxwell’s estimation Equation (2) is lower than the void 

fraction estimated by the previous method Equation (1), because 1≥′v . Unlike the previous 

method, the void fraction α in dispersed bubbly flow is expected to measure by Maxwell’s 

estimation which calculates the resistance of gas-liquid two-phase flow in three dimensions. 

However, the theory is considered to be applicable when a gap between bubbles is longer than 
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bubble diameter, because it is assumed that the spatial distribution and the electric interaction 

of each bubble are negligible. 

Bruggemann also estimated a resistance of a mixture of two mediums which had 

different resistivity for each other in accordance with Maxwell’s estimation[12]. In the present 

study, this estimation method is also applied to the constant electric current method. Two 

mediums are assumed to be gas and liquid in this estimation. The void fraction is represented 

as, 

 ( ) 5.11 −−=′ αv . (3) 

However, it implies the assumption of a large size-range of bubbles in surrounding medium.  

When void fraction α << 1, Equations (2) and (3) are approximated to the following 

Equation by Maclaurin expansion.  

 α5.11+=′v . (4) 

In addition to the above estimations, in the present study, new estimations of void 

fraction are proposed in order to estimate accurately void fraction. These estimations of void 

fraction are estimated by calculating electric resistance taken account of bubble shapes and 

flow structures such as a spherical bubble, a slug bubble, bubbly flow and bubbly-slug flow as 

shown in Figure 1. When bubbles do not exist in a measurement section, the section is 

assumed to be filled with liquid. An electric resistance in the measurement section R’L is, 

 ∫ ′=′=′
2

0

12
L

LLL dz
SS

LR ρρ , (5) 

where ρ’L is electric resistivity of liquid, L is a length between measuring electrodes and S is a 

cross-sectional area of a flow pipe. 

<Figure 1> 
As shown in Figure 1(a), an electric resistance in the measurement section with a 

single spherical bubble R’b is, 
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where Sb is a cross-sectional area of the single bubble in the flow direction. The bubble shape 

is assumed to be a sphere. The first term of the right side shows an electric resistance around 

the bubble. The second term of the right side shows an electric resistance without the bubble. 

If the flow direction is z-direction, the cross-sectional area Sb for the bubble radius rb is, 

 ( )222 zrxS bb −== ππ . (7) 

Equation (7) is substituted for Equation (6). Then, Equation (6) is integrated,  
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Equation (8) shows the electric resistance in the measurement section when the single 

spherical bubble with the radius rb exists in the section. Calculating an electric voltage V’b by 

multiplying both sides by a constant electric current I’, 
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is shown. By Equation (5), electric voltage of liquid single phase V’L is, 

 
S
LIRIV LLL ρ′′=′′=′ . (10) 

Normalized Equation (9) by the electric voltage V’L, electric voltage ratio with a spherical 

bubble v’b is, 
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For a single spherical bubble, the increase of void fraction means increase of bubble radius. 
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Volumetric void fraction α is,  
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Solving for the bubble radius rb gives, 
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Substituting Equation (13) for Equation (11), the voltage ratio v’b is shown as the function of 

void fraction α. 

As shown in Figure 1(b), an electric resistance in the measurement section with a 

single slug bubble R’s is, 

 
( )

∫∫

∫∫
−

−−
′+

−
′+

−
′+′=′

l

L Ll
s

L

r

s
L

L

r Ls

dz
S

dz
SS

dz
zSS

dz
S

R s

s

2

0

2

0
1

2

11

11

ρρ

ρρ
.  (14) 

The first term and the forth term in the right side show resistances at the z-direction without 

the slug bubble. The second term shows a resistance with a bullet-shaped part of the slug 

bubble. The third term shows a resistance of a columnar part of the slug bubble. Here, the 

cross-sectional area in the z-direction of the bullet-shaped part 1sS ′  and the columnar part of 

the slug bubble 2sS ′  are, 

 ( )222
1 zrxS ss −==′ ππ , (15) 

 2
2 ss rS π=′ . (16) 

The Equation (14) is assumed to hold when the radius of the bullet-shaped part of the slug 

bubble is equal to the radius in the cross-section direction of the columnar part. Using 

Equations (14), (15) and (16), the electric resistance in the measurement section with a slug 

bubble R’s is, 
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A voltage ratio in the measurement section v’s is, 
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A volumetric void fraction α in the section is estimated by the sum of the volume of the 

bullet-shaped part and the columnar part of the slug bubble. 
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If the increase of void fraction corresponded to the increase of the length of the slug columnar 

part, the length of the columnar part l is,  
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This equation is substituted for Equation (18). The electric voltage ratio in the section v’s is, 
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In this equation, it is assumed that the slug length increases with an increase of the void 

fraction, and the radius of the slug bubble is constant.  

As shown in Figure 1(c), an electric resistance in bubbly flow R’bf is, 
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Bubbles are dealt with a single bubble which is the same volume as these bubbles in the 

cross-sectional direction (x-direction) as shown in Figure 1(c). Besides, the bubble shape is 
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assumed to be a sphere with same radius rb. As a single spherical bubble, the cross-sectional 

area Sb of these dispersed bubble is estimated with the bubble radius rb as shown in Equation 

(7). Substituting Equation (7) for Equation (22) gives, 
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An electric voltage ratio in the bubbly flow v’bf is, 

 
2

2

1tan

b

b

b

b
bf

rS

rS
r

r
Sv

ππ

π

π

−















−
=′

−

. (24) 

A void fraction is estimated by multiplication of volume of a single bubble and the number of 

a bubble, 
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The bubble radius rb is， 

 
π
α

2
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Substituting Equation (26) for Equation (24), 
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is shown. In the estimation of the above equation, it is assumed that bubbles did not overlap in 

the cross-sectional direction as shown in Figure 1(c). The voltage ratio v’bf depends on only 

the void fraction α by the assumption. 

 Applying above equations, bubbly-slug flow which consists of a slug bubble and 

dispersed bubbles is discussed as shown in Figure 1(d). Because the measuring electric 

resistance R’bsf is the sum of the resistance of the slug bubble R’s2 and dispersed bubbles R’bf2 
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in the model, Equation (17) for a single slug bubble and Equation (23) for bubbly flow is 

referred. Each resistance is shown as the following Equations, 

 22 bfsbsf RRR ′+′=′ , (28) 
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The slug length Ls is, 

 lrL ss += . (31) 

By Equations (29), (30) and (31), Equation (28) becomes， 
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An electric voltage ratio with bubbly-slug flow v’bsf is, 

 

( )






















−















−
−

−
+







 −

−















−
+

−















−
=′

−

−−

2

2

1

2

2

2

1

2

2

1

tan

1

tantan

b

b

b

bs

s

b

b

b

bs

s

s

bsf

rS

rS

r

r
S

rS
S

L
l

L
r

rS

rS

r

r
S

rS

rS

r

L
Sv

ππ

π

π

π

ππ

π

π

ππ

π

π

. (33) 



 12 

Here, a void fraction α is, 
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The length of the slug columnar part l is, 
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Substituting Equation (35) into Equation (33), v’bsf is, 

( )
( )























−















−
−

−






 −

−−−
+







 −

−















−
+

−















−
=′

−

−−

2

2

1

2
22

23

2

2

1

2

2

1

tan

3
2
3
2

3
2

1

tantan

b

b

b

bs
bs

sbs

s

b

b

b

bs

s

s

bsf

rS

rS

r

r
S

rS
S

rrL

rLrrLS

L
r

rS

rS

r

r
S

rS

rS

r

L
Sv

ππ

π

π

πππ

ππα

ππ

π

π

ππ

π

π

. (36) 

In the estimation of Equation (36), the radius of the slug bullet-shaped part and the columnar 

part rs are assumed to be constant. Besides, the radius of dispersed bubbles rb is also assumed 

to be constant. Therefore, the length of the slug columnar part l is expected to correspond to 

the void fraction α. 

 

4. Experimental apparatus and condition 

An experimental apparatus to measure void fraction of a single bubble is shown in 

Figure 2. The experiment apparatus consists of a gas injection section, electric void sensors, 

an observation section, a measurement section of a water level and a void fraction 

measurement apparatus with a shut valve. The section of the gas injection consists of an 
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acrylic pipe with an inner diameter of 20 mm and a manual ball valve made of polyvinyl 

chloride. The wall of the acrylic pipe is held with a hole in a diameter of 2 mm to inject gas 

by a syringe. The needle of the syringe is inserted into the hole of the pipe, and gas is injected. 

Several bubbles with a diameter of 1-10 mm are generated when gas is injected directly from 

the syringe. To make a single large bubble, several bubbles are corrected by closing the ball 

valve which is downstream of the injection point with the syringe. A single bubble flows into 

the test section by opening the ball valve after these bubbles coalesced. The interval between 

the gas injection and the center of the measuring section is 596 mm. The void fraction 

measurement systems consist of an electric measurement system and a quick shut valve 

system. The inner diameter of the measurement sections is 16 mm. As working fluids, tap 

water filtered with 5 µm-mesh and air were applied. The air injection quantity was 0 – 20 ml 

in this experiment with a single bubble. 

<Figure 2> 

An experimental apparatus to measure void fraction in bubbly flow and bubbly-slug 

flow is shown in Figure 3. It consists of a tank, a pump, a liquid flow meter, a compressor, a 

gas flow meter and void fraction measurement systems. A gas injection with a needle is 

applied in this experiment. Gas is supplied from the needle with inner diameter of 0.7 mm. 

The interval between the gas injection and the center of the measuring section is 596 mm. The 

inner diameter of the measurement sections is 16 mm. The void fraction measurement 

systems consist of an electric measurement system and a quick shut valve system. In the 

experimental condition, tap water filtered with 5 µm-mesh and air were applied as the 

experiment of a single bubble. Gas flow rates were controlled in each superficial velocity of 

liquid 1.66 m/s, 2.07 m/s and 2.49 m/s. Gas volume flow ratios from 0 to 0.50 were applied.  

<Figure 3> 

As shown in Figure 4, four ring-shaped electrodes are used in the electric 

measurement system. These electrodes are made of stainless steel with the length of 10 mm. 
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The shape is flange type. The inner diameter of the electrode is 16 mm as the diameter of the 

flow path. Two outer electrodes (applying electrodes) are connected to a constant current DC 

power supply (model 6911, Metronix) and two inner electrodes (measuring electrodes) are 

connected to a data logger (NR-500 and NR-HA08, KEYENCE). The void fraction is 

estimated with the measuring voltage between two measuring electrodes by the voltage drop 

method. The sampling frequency was 100 kHz and the measuring time was 0.5 s. The interval 

of two measuring electrodes is 100 mm, and then the interval of the applying electrode and 

the measuring electrode is 70 mm. The flow path between electrodes is made of an acrylic 

resin which is an insulator. In order to observe the flow pattern between the measuring 

electrodes, the test section is made of a clear acrylic resin and is covered with a water jacket 

to decrease an influence of refraction. The flow was observed with a high-speed video camera 

(Phantom V12.1, Vision Research) and a metal halide lamp (HVC-UL, Photron).  

<Figure 4> 

Measured voltages were revised with conductivity and temperature of water. The 

revision with conductivity is, 

 m
m VV ′
′
′

=′
0

0  
σ
σ

. (37) 

where V’m is measured voltage, σ’m is measured conductivity, σ’0 is a benchmark of 

conductivity and V’0 is revised voltage for conductivity. The revision with temperature is, 

 ( ){ } mmt VttV ′−+=′ 002.01  
0

, (38) 

where tm is temperature of gas-liquid two-phase flow, t0 is benchmark of temperature and V't0 

is revised voltage by temperature. 0.02 is a temperature correction factor and it is equivalent 

to factor of the conductivity meter. In this experiment, the conductivity was 300 - 310 µS/cm 

and the temperature was room temperature. 

The void fraction was measured with the quick shut valve method in order to compare 

with the void fraction measured with the constant electric current method. Air cylinders which 
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are set on the flow pass as shown in Figures 2 and 3 are operated with a solenoid valve 

connected to the compressor. Slide valves are made of stainless steel with thick of 0.5 mm. In 

the experiment of bubbly flow and bubbly-slug flow as shown in Figure 3, they are set on the 

upstream and the downstream, and then they close the flow path at the same time. The void 

fraction was measured with observations of a water level after separation of gas from liquid. 

The measurement error was 10 %. The void fraction were measured with 10 times for each 

experimental condition. 

 

5. Experimental results and discussion 

5.1. Void fraction measurement of a single bubble 

For a single rising bubble without a forced convection, the bubble behavior was 

observed, and then electric voltage was measured by the constant electric current method with 

the experiment apparatus as shown in Figures 2 and 4. Figure 5 shows observation results of 

a bubble behavior and time variation of voltage for the injection quantity about 0.5 ml. The 

both results are the observation and the voltage measurement between measuring electrodes. 

The voltage measurement was synchronized with the observation of the bubble behavior in 

order to discuss the effect of the bubble behavior. In the observation result, black rectangles 

upside and downside of the observation result in each time are ring electrodes of upstream 

and downstream. The rising sphere is the bubble. The voltage ratio was obtained by 

normalizing with measured voltage before the bubble flow into the test section between 0.0 s 

and 0.1 s. In the time variation of the voltage ratio, the amplitude of the voltage ratio became 

gradually large from 0.1 s. The bubble flowed into the test section at the time. The gradual 

increase of the voltage ratio is due to be caused by difference of line of electric forces around 

a bubble between center of electrodes and near the electrodes. Then, the voltage ratio 

fluctuated until the bubble flowed out of the measuring section at 0.95 s. In the interval, the 

measured voltage ratio did not correlate with the rising position of the bubble. Hence the 
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vertical position of a bubble did not affect the measurement of the voltage ratio. However, the 

voltage ratio fluctuated in the time of 0.25 – 0.80 s. The amplitude was small, but the 

amplitude range was 1.045 – 1.055 [-]. Here, the fluctuation is considered not to be electric 

noise because the fluctuation was not measured before inflow of the bubble to the measuring 

region. The fluctuation is expected to be the phenomenon caused by the bubble. As shown in 

the observation result, the interface of the rising bubble deformed. The shape became an 

ellipse from a sphere, or a sphere from an ellipse. In comparison of the voltage fluctuation 

with the bubble behavior, it was confirmed that the voltage ratio was lower when the shape of 

the bubble was a sphere. On the other hand, the voltage ratio was higher when the shape was 

an ellipse. Therefore, the voltage ratio changes by variation of cross-section ratio between gas 

and liquid with the deformation. The voltage variation is 0.01 [-], and then the variation 

means variation of void fraction of 0.01 [-] at the maximum in estimations proposed in the 

present study. In addition, the voltage ratio of 1.004 [-] was measured after 0.95 sec although 

the bubble flowed out of the measuring section. This cause is considered to be affected by an 

electric capacity in the measuring section. The voltage ratio of 1.004 [-] means void fraction 

of 0.004 [-] at the maximum in estimations proposed in the present study. 

<Figure 5> 

To validate estimation methods of void fraction for a single bubble, the experiment as 

shown in Figures 2 and 4 was conducted for the amount of the injected gas. Observation 

results between measuring electrodes are shown in Figure 6. A spherical bubble was observed 

below the void fraction of 0.007 [-]. Above the void fraction of 0.133 [-], a slug bubble was 

observed in the measuring section. The columnar part of the slug bubble became longer with 

an increase of the void fraction. The slug diameters at the center of the slug in the flow 

direction Ds were 13.5 mm in α = 0.238, 14.2 mm in α = 0.458, 14.8 mm in α = 0.675 and 

14.8 mm in α = 0.804 as shown in Figure 6. Importantly, the slug diameter was constant 

above α = 0.675. This means that the increase of the void fraction was caused by the increase 
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of the slug length in high void fraction. 

<Figure 6> 

The correlation of the voltage ratio and the void fraction is shown in Figure 7. 

Symbols in Figure 7 show the time average values. Standard deviations are below 0.1 [-]. 

Here, void fractions between 0.0 and 0.11 were measured by the observation. The volume of 

the bubble was estimated by assuming that the bubble was a sphere. Void fractions between 

0.13 [-] and 0.91 [-] were measured by the measurement of a water level with the shut method. 

From the results, it was confirmed that the voltage ratio correlate with the void fraction. The 

voltage ratio increased with an increase of the void fraction. In comparison of these 

experimental results with estimations – such as the previous method (Equation (1)), 

Maxwell’s estimation (Equation (2)), Bruggemann’s estimation (Equation (3)), low void 

fraction approximation (Equation (4)), new estimation for a spherical bubble (Equations (11) 

and (13)), and new estimation for a slug bubble (Equation (21)), experimental results were 

coincident with the new estimation for slug bubble (Equation (21)) with the slug radius rs = 

7.2 mm obtained by least squares method. On the other hand, the previous estimation, 

Maxwell’s estimation, Burggemann’s estimation and low void fraction approximation 

underestimated voltage ratio below α = 0.5. 

<Figure 7> 

Figure 8 shows the correlation between the voltage ratio and the void fraction, and the 

comparisons with various estimations of the void fraction in low void fraction below α = 0.05 

[-]. It was confirmed that the voltage ratio increased with an increase of the void fraction in 

low void fraction, too. Above the void fraction α = 0.018 [-], new estimation for a slug bubble 

with the slug radius rs = 7.2 mm was coincident with experimental data. The reason is 

considered that the bubble shape become elliptical shape and the horizontal diameter 

approach the slug diameter of the estimation above α = 0.018 [-] as shown in Fig. 6. Other 

estimations underestimated the voltage ratio. Below the void fraction α = 0.011, the new 
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estimation for a slug bubble also underestimated the voltage ratio because the bubble shape 

became a sphere from a slug shape with the decrease of the void fraction. This result was 

confirmed by the observation results in Figure 6. The interface between gas and liquid 

reached near the wall of the flow pass, and bubble shape was not sphere in the void fraction 

α = 0.018 [-]. Below the void fraction α = 0.007 [-], the gas-liquid interface of the bubble was 

separate from the wall, and the bubble shape was comparatively a sphere. In addition, 

experimental results was comparatively coincident with Maxwell’s estimation and 

Burggemann’s estimation below void fraction α = 0.005 [-]. However, the new estimation for 

a spherical bubble and the previous estimation underestimated voltage ratio. Therefore, the 

bubble shape is important for the void fraction measurement with the constant electric current 

method. Especially, the new estimation for a slug bubble can estimate more accurately the 

void fraction than the previous estimation, Maxwell’s estimation Burggemann’s estimation 

above the void fraction α = 0.018 [-]. 

<Figure 8> 

Figure 9 shows the comparison between experimental results and the new void 

fraction estimation for a slug bubble diameter Ds. It was confirmed that experimental results 

was covered the new void fraction estimation for a slug bubble diameter Ds = 13.6 mm – 14.6 

mm. These values were coincident with the observation result as shown in Figure 6. In 

addition, the estimations in large Ds were coincident comparatively with experimental results 

in higher void fraction. In comparison of the observation results in the void fraction α = 0.238 

[-] with 0.675 [-], the slug bubble diameter in the void fraction α = 0.238 [-] was shorter than 

the diameter in α = 0.675 [-]. This observation results agreed with the result of the voltage 

ratio as shown in Figure 9. Therefore, the slug bubble diameter is the important parameter for 

the void fraction measurement by the constant electric current method.  

<Figure 9> 
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5.2. Void fraction measurement of bubbly flow 

In this section, accuracy of each estimation method – such as the previous method 

(Equation (1)), Maxwell’s estimation (Equation (2)), Bruggemann’s estimation (Equation (3)), 

low void fraction approximation (Equation (4)), new estimation for bubbly flow (Equation 

(27)), and new estimation for a bubbly-slug flow (Equation (36)) for dispersed bubbly flow is 

experimentally discussed. Bubble behaviors in the bubbly flow for each void fraction are 

shown in Figure 10. These observation results were high speed video camera images between 

measuring electrodes with the superficial velocity of liquid jL = 1.66 m/s. In the void fraction 

α = 0.057 [-], dispersed bubbly flow was observed. Above the void fraction α = 0.146 [-], 

bubbly-slug flow was observed. The bubble diameters in bubbly flow and bubbly-slug flow 

were estimated to be 2 - 3 mm by the observation results. The slug diameters at the center in 

the flow direction Ds were 10.0 mm in α = 0.183, 11.5 mm in α = 0.260 and 12.0 mm in α = 

0.312 as shown in Figure 10. 

<Figure 10> 

Figure 11 shows the correlation between the voltage ratio and the void fraction in the 

bubbly flow and the bubbly-slug flow. Symbols are decided with time average values 

measured by the constant electric current method and average values of values measured by 

the quick shut method. Error bars of the voltage ratio are standard deviations of the 

time-average results. Error bars of the void fraction show the maximum values and the 

minimum value, which were measured by the quick shut method. With superficial velocities 

of liquid jL = 1.66 m/s, 2.07 m/s and 2.49 m/s, the voltage ratio increased with an increase of 

the void fraction. The standard deviation of the voltage ratio became larger with an increase of 

the void fraction, because the slug bubble grew larger with an increase of void fraction and 

then the distribution of the void fraction in the flow direction was not homogeneous. In 

addition, the experimental result were compared with each estimation method in Figure 11. 

The new estimation for bubbly-slug flow with rs = 5.9 mm and rb = 0.5 mm was coincident 
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with experimental results below the void fraction α = 0.2 [-]. On the other hand, the previous 

estimation, Maxwell’s estimation and Burggemann’s estimation underestimated the voltage 

ratio below the void fraction α = 0.2 [-]. Above the void fraction α = 0.2 [-], the value of the 

new estimation for bubbly-slug flow was near results estimated by Maxwell’s estimation and 

Burggemann’s estimation. These estimations were coincident with experimental results. 

Therefore, the new estimation for bubbly-slug flow was more accurate than other estimation 

methods below the void fraction α = 0.30 [-]. 

<Figure 11> 

Figure 12 shows the correlation between the voltage ratio and the void fraction below 

the void fraction α = 0.10 [-].The new estimation for bubbly-slug flow with rs = 5.9 mm and 

rb = 0.5 mm was coincident with experimental results in comparison with other estimations. 

The new estimation is applicable to bubbly flow as shown in Fig. 10 (α = 0.057 [-]). The 

reason is that the slug length becomes shorter and the bubbly flow region in the new 

estimation becomes larger with decrease of void fraction. However, in void fraction α = 0.02 

[-], the result of the new estimation for bubbly-slug flow was not different from the results of 

low void fraction approximation, Burggemann’s estimation and Maxwell’s estimation. 

Moreover, these estimated results were coincident with experimental results. Therefore, the 

new estimation for bubbly-slug flow was most accurate estimation above the void fraction α 

= 0.02 [-]. Near the void fraction α = 0.02 [-], Maxwell’s estimation, Burggemann’s 

estimation, low void fraction approximation, the new estimation for bubbly-slug flow were 

more accurate than the previous estimation and the new estimation for bubbly flow. From 

these results, it is proposed that the void fraction measurement by the constant electric current 

method is applicable to bubbly flow and bubbly-slug flow. 

<Figure 12> 

Figure 13 shows the comparison between the experimental result and the new void 

fraction estimation of bubbly-slug flow with the radius of spherical bubbles rb = 0.5 mm for 
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the parameter of a slug bubble diameter Ds. It was confirmed that experimental results were 

covered by the new void fraction estimation for the bubbly-slug flow with the slug bubble 

diameter of Ds = 11 – 12.6 mm. In observation results as shown in Figure 10, slug bubble 

diameters were 10.0 – 12.0 mm, and then they were coincident with Ds. 

<Figure 13> 

Figure 14 shows the comparison between experimental results and the new void 

fraction estimation of bubbly-slug flow with the radius of a slug bubble rs = 5.9 mm for the 

parameter of dispersed bubble diameter Db. It was confirmed that experimental results were 

covered by the new void fraction estimation for dispersed bubble diameter of Db = 0.2 mm – 

2.0 mm. However, increasing dispersed bubble diameter, the estimation was independent with 

dispersed bubble diameter as shown in results between Db = 0.2 mm and 2.0 mm. In the 

observation result as shown in Figure 10, bubble diameters were 2-3 mm. This result means 

that the new estimation for bubbly-slug flow does not depend on dispersed bubble diameter. 

Especially, the slug diameter is more effective than dispersed bubble diameter to the estimated 

void fraction in this experiment. As shown in Equation (34), this reason is that the new 

estimation for bubbly-slug flow is more sensitive to volume of a slug bubble (the first and 

second terms of the right side in Equation (34)) than volume of spherical bubbles (the third 

terms of the right side in Equation (34)) in this experiment as range of Ds = 11 mm – 12.6 mm 

and Db = 0.2 mm – 2 mm. 

<Figure 14> 

Time series of bubble behavior and the void fraction in the superficial velocity of 

liquid jL = 1.66 m/s is shown in Figure 15. The horizontal axis is time and the vertical axis is 

the void fraction. The void fraction was estimated with the new estimation for bubbly-slug 

flow (equation (36)) with rs = 5.9 mm and rb = 0.5 mm, because the estimation was 

considered to be applicable for bubbly-slug flow region from the results as shown in Fig. 11. 

Plots in this Figure show 0.329, 0.187, 0.072 and 0.006 [-] of time-average void fractions. The 
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time-average void fractions of 0.329 [-] and 0.187 [-] in bubbly-slug flow fluctuated largely in 

comparison of fluctuations of time-average void fractions of 0.072 [-] and 0.006 [-] in 

dispersed bubbly flow. Snapshots in Figure 15 are the observation results between measuring 

electrodes in the void fraction of 0.329 [-]. In comparison of the fluctuation of void fraction 

0.329 [-] with the observation results, the void fraction was the minimum in the time-average 

void fraction 0.329 [-] when dispersed bubbles existed in the test section at 0.264 s. Moreover, 

the rapid increase of void fraction to 0.6 [-] from 0.2 [-] was confirmed in according to inflow 

of a large bubble between 0.264 s and 0.292 s. From 0.292 s to 0.317 s, a large bubble flowed 

out the section when the void fraction decreased rapidly to 0.2 [-] from 0.6 [-]. Therefore, the 

constant electric current method is possible to measure continuously the variation of the 

volumetric void fraction in bubbly-slug flow. 

<Figure 15> 

 

6. Conclusion 

In the present study, the constant electric current method was applied to a single 

bubble and dispersed bubbly flow. Especially, the present study discussed the effect of flow 

pattern on estimation methods which estimate void fraction with voltage ratio. Moreover, new 

estimations considered flow patterns were proposed, and then the accuracy of the estimation 

was experimentally confirmed. In order to understand the effect of flow patterns, void fraction 

was measured by the constant electric current method for a single bubble and a single slug 

bubble without forced convection. The void fraction of bubbly flow and bubbly-slug flow 

were also measured by the constant electric current method. Then, the effects of flow patterns 

on void fraction estimations and the accuracy of the estimation were discussed with the 

measurement results. 

In the experiment with a single bubble, the voltage ratio increased with an increase of 

the void fraction. The time series of the voltage ratio was stable for the bubble position in the 
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flow direction. However, voltage ratio changed with the deformation of the bubble. In 

comparison of estimation methods with experimental results, the new estimation for a slug 

bubble is more effective in a slug bubble. The estimations in large Ds are comparatively 

coincident with experimental results in higher void fraction. 

In the experiment with bubbly flow and bubbly-slug flow, the voltage ratio increased 

with an increase of the void fraction as a single bubble. In comparison estimation methods 

with experimental results, the new estimation for bubbly-slug flow is more effective in 

bubbly-slug flow above the void fraction. Near the void fraction α = 0.2 [-], Maxwell’s 

estimation, Burggemann’s estimation, low void fraction approximation, the new estimation 

for bubbly-slug flow are more accurate than the previous estimation and the new estimation 

for bubbly flow. Therefore, it is proposed that the void fraction measurement by the constant 

electric current method is applicable to bubbly-slug flow. Moreover, in the new estimation for 

bubbly-slug flow, the slug diameter is more effective than dispersed bubble diameter to 

estimated void fractions in bubbly flow and bubbly-slug flow. 

Time series of void fraction was compared with bubble behavior. From the 

experimental result, it was confirmed that temporal fluctuations of void fraction in the three 

dimensional dispersed bubbly flow is possible to be continuously measured.  

Therefore, by applying the new estimation method for bubbly-slug flow which is 

proposed in this paper, the constant electric current method is possible to estimate void 

fraction of vertical upward bubbly-slug flow below liquid velocity 2.49 m/s in a pipe with an 

inner diameter of 16 mm, which has been measured in this experiment. 

 

Nomenclature 

I’ constant electric current [A] 

L length between measuring electrodes [m] 

Ls slug length [m] 
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l length of a slug columnar part [m] 

R’b electric resistance between measuring electrodes with a spherical bubble [Ω] 

R’bf electric resistance between measuring electrodes in bubbly flow [Ω] 

R’bf2 electric resistance in bubbly flow for bubbly-slug flow [Ω] 

R’bsf electric resistance between measuring electrodes in bubbly-slug flow [Ω] 

R’L electric resistance of liquid between measuring electrodes [Ω] 

R’s electric resistance between measuring electrodes with a slug bubble [Ω] 

R’s2 electric resistance between measuring electrodes with a slug bubble for 

bubbly-slug flow [Ω] 

rb radius of a spherical bubble [m] 

rs radius of a slug bubble [m] 

S cross-sectional area of a flow pipe [m2] 

Sb cross-sectional area of a single bubble [m2] 

Ss1 cross-sectional area of a bullet-shaped part of a single bubble [m2] 

Ss2 cross-sectional area of a columnar part of a single bubble [m2] 

tm temperature of gas-liquid two-phase flow [oC] 

t0  benchmark of temperature [oC] 

V volume between measuring electrodes [m3] 

VG gas volume between measuring electrodes [m3] 

V’b electric voltage between measuring electrodes with a spherical bubble [V] 

V’m measured electric voltage [V] 

V’L electric voltage between measuring electrodes with filled liquid [V] 

 V’t0 revised electric voltage with temperature [V] 

V’0  revised electric voltage with conductivity [V] 

v'b electric voltage ratio with a spherical bubble [-] 

v’bf electric voltage ratio with bubbly flow [-] 
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v’bsf electric voltage ratio with bubbly-slug flow [-] 

v’s electric voltage ratio with a slug bubble [-] 

x horizontal coordinate [m] 

z vertical coordinate [m] 

α void fraction [-] 

ρ'L electric resistivity of liquid [Ω m] 

σ'm measured electric conductivity [S/m] 

σ'0 benchmark of electric conductivity [S/m] 
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Figure captions 

 

 

Figure 1. A schematic of new estimation models of void fraction in each flow condition. 

 

 
Figure 2. A schematic of the experimental setup to measure a single bubble without 

forced convection. 
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Figure 3. A schematic of the experimental setup to measure bubbly flow and bubbly-slug 

flow. 

 

Figure 4. A snapshot of the electric void sensor. 
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Figure 5. Time series of the voltage ratio for a rising single bubble without forced 

convection. Snapshots showed bubble behaviors for each time. 

 

Figure 6. Snapshots of the rising single bubble behavior between the measuring 

electrodes for each void fraction. 
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Figure 7. The correlation between the voltage ratio and the void fraction for a single 

bubble. Plots indicated experimental results. Lines were results of each 

estimation methods. 

 

Figure 8. The correlation between the voltage ratio and the void fraction in low void 

fraction of a single bubble. Plots indicated experimental results. Lines were 

results of each estimation methods. 
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Figure 9. The correlation between the voltage ratio and the void fraction for each 

diameter of a slug bubble. Plots indicated experimental results. Lines were 

results of the new estimation method for a slug bubble. 

 

Figure 10. Snapshots of bubbly flow and bubbly-slug flow between the measuring 

electrodes for each void fraction. 
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Figure 11. The correlation between the voltage ratio and the void fraction in bubbly flow 

and bubbly-slug flow. Plots indicated experimental results. Lines were results 

of each estimation methods. 

 

Figure 12. The correlation between the voltage ratio and the void fraction in low void 

fraction of bubbly flow and bubbly-slug flow. Plots indicated experimental 

results. Lines were results of each estimation methods. 
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Figure 13. The correlation between the voltage ratio and the void fraction for each 

diameter of a slug bubble in bubbly-slug flow. Plots indicated experimental 

results. Lines were results of the new estimation method for bubbly-slug flow 

with the radius of spherical bubbles rb = 0.5 mm. 

 
Figure 14. The correlation between the voltage ratio and the void fraction for each 

diameter of bubbles in bubbly-slug flow. Plots indicated experimental results. 

Lines were results of the new estimation method for bubbly-slug flow with the 

radius of a slug bubble rs = 5.9 mm. 
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Figure 15. Temporal fluctuations of void fractions in bubbly flow and bubbly-slug flow 

with each time-average void fraction. Snapshots showed the bubble behavior 

for each time. 

 


	査読済み著者原稿
	1. Introduction
	2. Constant electric current method
	3. Estimation methods of void fraction
	4. Experimental apparatus and condition
	5. Experimental results and discussion
	6. Conclusion

	図とcaption

