**Title:** 

| 2        | The preventive effect of calcium supplementation on weak bones caused by the interaction of exercise                                                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | and food restriction in young female rats during the period from acquiring bone mass to maintaining bone                                                                     |
| 4        | mass                                                                                                                                                                         |
| <b>5</b> | Names of authors:                                                                                                                                                            |
| 6        | Yuki Aikawa <sup>1</sup> , Umon Agata <sup>1</sup> , Yuya Kakutani <sup>1</sup> , Shoyo Kato <sup>1</sup> , Yuichi Noma <sup>1</sup> , Satoshi Hattori <sup>1</sup> , Hitomi |
| 7        | Ogata <sup>2</sup> , Ikuko Ezawa <sup>3</sup> , Naomi Omi <sup>2</sup>                                                                                                       |
| 8        | Institutions:                                                                                                                                                                |
| 9        | <sup>1</sup> Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572,                                                                 |
| 10       | Japan                                                                                                                                                                        |
| 11       | <sup>2</sup> Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki                                                                   |
| 12       | 305-8572, Japan                                                                                                                                                              |
| 13       | <sup>3</sup> Department of food and nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo                                                                   |
| 14       | 112-8681, Japan                                                                                                                                                              |
| 15       | Running head:                                                                                                                                                                |
| 16       | High Ca effect on bone in inadequate food                                                                                                                                    |
| 17       | Address for correspondence:                                                                                                                                                  |
| 18       | Naomi Omi, PhD                                                                                                                                                               |
| 19       | Institute of Health and Sports Sciences, Graduate School of Comprehensive Human Sciences, University                                                                         |
| 20       | of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan.                                                                                                                                |
| 21       | (TEL) +81-29-853-6319; (FAX) +81-29-853-6507                                                                                                                                 |
| 22       | <u>E-mail: ominaomi@taiiku.tsukuba.ac.jp</u>                                                                                                                                 |

| 0 | 1 |
|---|---|
| 4 | 4 |

| 25 | Abstract                                                                                               |
|----|--------------------------------------------------------------------------------------------------------|
| 26 | Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by     |
| 27 | inadequate food intake. The aim of the present study was to examine the preventive effect of Ca        |
| 28 | supplementation on low bone strength in young female athletes with inadequate food intake, using the   |
| 29 | rats as an experimental model. Seven- week-old female Sprague-Dawley rats were divided into four       |
| 30 | groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum    |
| 31 | feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary |
| 32 | running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we     |
| 33 | used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted |
| 34 | for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral |
| 35 | density (BMD), and Ca absorption in the EX-FR group were significantly lower than those in the EX      |
| 36 | group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those  |
| 37 | in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX      |
| 38 | group. These results suggested that Ca supplementation had a positive effect on bone strength, but the |
| 39 | effect was not sufficient to prevent lower bone strength caused by food restriction in young female    |
| 40 | athletes.                                                                                              |
|    |                                                                                                        |

41 Keywords:

| 43 | Introduction                                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------|
| 44 | Adequate food intake is important to maintain health, growth, and maturation and to minimize injury           |
| 45 | and optimize sports performance [1]. However, there are athletes who restrict food intake to reduce           |
| 46 | weight for endurance, aesthetic, and weight-class sports [2]. To prevent health problems caused by            |
| 47 | inadequate food intake in athlete, nutritional supplements are taken [3]. One of such nutritional             |
| 48 | supplements is calcium (Ca), preventing bone fragility in female athletes on low amount of energy intake      |
| 49 | [4,5].                                                                                                        |
| 50 | Low bone strength, including the condition caused by the combination of exercise and reduced food             |
| 51 | intake, may cause stress fractures [6], and it is an important problem to address. It is generally recognized |
| 52 | that exercise enhances bone strength by increasing mechanical loading [7,8]. However, for exercise to         |
| 53 | exert an anabolic effect on the bones, an adequate nutritional status is essential [9]. Females who exercise  |
| 54 | with an inadequate energy intake can suffer low bone mineral density (BMD) due to a reduction in energy       |
| 55 | availability (the amount of dietary energy remaining for other body functions after exercise training) [4].   |
| 56 | In animal study, it has been reported that energy restriction decreases Ca absorption rate in female rats     |
| 57 | [10]. Therefore, female athletes on a low amount of energy intake may be needed to intake much Ca.            |
| 58 | Moreover, food restriction in itself induces a reduction in Ca intake. Therefore, female athletes with a risk |
| 59 | of low bone strength by inadequate food intake for weight control should augment the amount of Ca             |

Young female athlete  $\cdot$  Inadequate food intake  $\cdot$  High Ca diet  $\cdot$  Bone strength  $\cdot$  Growing rat

61

intake. Ca does not increase energy intake, so Ca supplementation has an advantage that does not increase body weight.

| 62 | Ca supplementation may be particularly important in adolescent [11] because this development period         |
|----|-------------------------------------------------------------------------------------------------------------|
| 63 | is critical for acquiring bone mass [1,12]. It has been reported that higher the intake of Ca is associated |
| 64 | with significant gains in hip BMD and lower stress fracture rate [13]. Stear et al. [14] have reported that |
| 65 | Ca supplementation enhances the bone mineral status in adolescent girls. Dibba et al. [15] have found that  |
| 66 | increased Ca intake increases bone mineral status in children. However, the effect of Ca supplementation    |
| 67 | on the bones of young female athletes with a risk of low bone strength caused by inadequate food intake     |
| 68 | is still unclear.                                                                                           |
| 69 | Using animals for bone studies makes it possible to control the conditions and directly measure             |
| 70 | the bone strength and calcium absorption in a short period of time. Some studies have reported that         |
| 71 | food restriction in mature female rats under an exercise regimen lowers the bone mineral content (BMC)      |
| 72 | [16,17] and BMD [18]. Moreover, we have reported that in "young" female rats, the interaction of            |
| 73 | voluntary running exercise and food restriction results in lower bone strength and lower BMD than           |
| 74 | exercise or food restriction alone [19].                                                                    |
| 75 | The aim of the present study was to examine the preventive effect of Ca supplementation on low bone         |
|    |                                                                                                             |

strength in young female athletes with inadequate food intake, using the rats as an experimental model. In

the present study, to Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold
Ca of normal Ca diet. We hypothesize that the Ca supplementation would prevent low bone strength.

79

### 80 Materials and Methods

# 81 Experimental design

| 82 | Female Sprague-Dawley rats (n = 29, 7 weeks old) were randomly divided into four experimental                 |
|----|---------------------------------------------------------------------------------------------------------------|
| 83 | groups after a one-week acclimatization period. The groups included a sedentary and ad libitum feeding        |
| 84 | group (SED, n = 7), a voluntary running exercise and <i>ad libitum</i> feeding group (EX, n = 7), a voluntary |
| 85 | running exercise and 30% food-restricted group (EX-FR, n = 7), and a voluntary running exercise and           |
| 86 | 30% food-restricted and "high-Ca diet" group (EX-FR+Ca, n = 8). The experiment period was 12 weeks.           |
| 87 | The rats were purchased from CLEA Japan (Tokyo, Japan) and were fed the diet described in Table 1. The        |
| 88 | SED, EX and EX-FR groups were given normal diet (0.6% Ca), while the EX-FR+Ca group was given                 |
| 89 | "high-Ca diet" (1.2% Ca). The EX-FR and EX-FR+Ca groups were fed a 30% restricted diet that was               |
| 90 | calculated to contain 70% of the mean amount consumed in the previous week by the SED group. As a             |
| 91 | result, the diet in EX-FR and EX-FR+Ca groups was restricted by the mean of 35% in comparison with            |
| 92 | the EX group. The present study used 1.2% Ca diet as "high-Ca diet", because the composition is               |
| 93 | over two-fold of normal diet used in our previous study [19] and the AIN-93G diet is used as a                |
| 94 | standard diet of growing rat [20]. Viguet-Carrin et al. [21] also used 1.2% Ca diet as high Ca diet           |

| 95  | similarly. The SED group was individually housed in normal cages ( $15 \times 25 \times 19.5$ cm), while the EX,    |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 96  | EX-FR, and EX-FR+Ca groups were individually housed with free access to voluntary running exercise                  |
| 97  | on a wheel in the cage (wheel circumference, 1 m; cage, $27 \times 35 \times 35$ cm). We used the voluntary running |
| 98  | so that the changing daily running distance could be assessed. The room was maintained at $22 \pm 1^{\circ}$ C      |
| 99  | under a constant 12:12 h light-dark cycle (light 8:00 to 20:00). Animal care and experimental procedures            |
| 100 | were approved by the Animal Experimental Committee of the University of Tsukuba.                                    |
| 101 |                                                                                                                     |
| 102 | <the 1="" of="" position="" table=""></the>                                                                         |
| 103 |                                                                                                                     |
| 104 | Daily data collection and specimen harvesting                                                                       |
| 105 | The body weight and dietary intake were measured every second day, and the running distance was                     |
| 106 | measured every day. On the day prior to the dissection, all rats were made to fast for 12 h. Whole blood            |
| 107 | samples were collected from the abdominal aorta using syringes under diethyl ether anesthesia. Serum                |
| 108 | samples were separated by centrifugation at 2500 rpm for 20 min at 4°C. The serum was frozen at -80°C               |
| 109 | for the determination of bone metabolic markers. The abdominal fat, plantaris muscle, soleus muscle,                |
| 110 | uterus, adrenal gland, thymus, femur, tibia and the lumbar spine were collected from each rat after death.          |
| 111 | Femurs were collected, the adhering connective tissues were removed, and the bone strength was                      |
| 112 | immediately measured. Subsequently, the femur was dried at 100°C for 24 h in the electric furnace, and              |

| 113 | their dry weight was measured. Next, the dried femurs were burned to ash at 600°C for 15 h, and the ash            |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 114 | weight was measured. The tibia and lumbar spine were stored in 70% ethanol after being harvested and               |
| 115 | cleaned of soft tissue for the measurement of the BMC, bone area, and BMD. The animals were placed in              |
| 116 | individual metabolic cages ( $24 \times 20 \times 18$ cm) on the 80th and 81st day, just before the end of the     |
| 117 | experimental period. Urine and fecal was collected over two 24-h periods. Urine was collected under                |
| 118 | acidic conditions using 2 mL 2N hydrochloric acid. The urine was centrifuged at 2500 rpm for 15 min to             |
| 119 | eliminate refuse.                                                                                                  |
| 120 |                                                                                                                    |
| 121 | Calculation of energy availability                                                                                 |
| 122 | The energy intake, exercise-induced energy expenditure, and energy availability was calculated as                  |
| 123 | previously described [19]. Energy intake was calculated by multiplying the amount of normal diet intake            |
| 124 | (3.73 kcal/g) or "high-Ca diet" intake (3.68 kcal/g). Exercise-induced energy expenditure due to daily             |
| 125 | wheel-running was calculated as 5.0 kcal/kg body weight times the number of km run [22], as in the                 |
| 126 | previous study [16] (Exercise-induced energy expenditure energy expenditure = wheel-running distance               |
| 127 | $\times$ body weight $\times$ 5.0 kcal / kg body weight / km). Energy availability was calculated as energy intake |
| 128 | minus exercise energy expenditure [16].                                                                            |
| 129 |                                                                                                                    |

130 Evaluation of estrous cycle by spectral analysis of the running distance

| 131 | The estrous cycle by spectral analysis of the running distance was evaluated as previously described          |
|-----|---------------------------------------------------------------------------------------------------------------|
| 132 | [19]. The analysis was performed to determine whether the running distance increased every 4 or 5 days        |
| 133 | to assess the estrous cycle. To remove the slowly varying baseline from the data for the voluntary            |
| 134 | wheel-running distance, we used empirical mode decomposition (EMD) [23], a new adaptive data                  |
| 135 | analysis method for analyzing nonlinear and non-stationary data. The signal was decomposed into several       |
| 136 | basic components called intrinsic mode functions (IMFs), and the residual signal was understood as the        |
| 137 | signal trend.                                                                                                 |
| 138 | First, we used the voluntary wheel-running distance data after 30 days because, according to a                |
| 139 | previous study [16], estrus dysfunction due to food restriction with running exercise appears after 30 days.  |
| 140 | Second, we analyzed the data using the EMD method and re-created the data set to extract the residual         |
| 141 | signal trend and the lowest-frequency IMF component from the original data. Third, we analyzed the data       |
| 142 | with maximum entropy spectral analysis, using the final prediction error criterion for optimal order          |
| 143 | selection. Last, to exclude the inter-individual differences in the total power affecting the local power, we |
| 144 | also computed the proportion of the power spectrum of the running distance from 0.2 to 0.3 Hz in the          |
| 145 | total power spectrum, because some previous studies have shown that female rats have a 4- or 5-day            |
| 146 | running cycle in association with the estrus cycle, and their running activity is high during proestrus       |
| 147 | [16,22]. If the running distance increases cyclically every 4 or 5 days, the proportion of the power          |
| 148 | spectrum of the running distance from 0.2 to 0.3 Hz in the total power spectrum will be high. In contrast,    |

| 149 | a minimal wheel-running fluctuation has been reported in anestrous female rats [16]. Therefore, if the     |
|-----|------------------------------------------------------------------------------------------------------------|
| 150 | female rats are anestrous, the proportion of the power spectrum of the running distance from 0.2 to 0.3 Hz |
| 151 | in the total power spectrum will be low.                                                                   |
| 152 |                                                                                                            |
| 153 | Measurement of bone strength using three-point bending test                                                |
| 154 | The strength of the femoral mid-shaft was assessed using a three-point bending test (DYN-1255, IIO         |
| 155 | DENKI, Tokyo, Japan) as previously described (distance between the fulcrums, 1 cm; plunger speed, 100      |
| 156 | mm/min; full scale, 50 kg; chart speed, 120 cm/min) [24]. Breaking force refers to the loading weight      |
| 157 | (gravitational acceleration) required for bone breaking. Breaking energy refers to the workload that       |
| 158 | results in the breaking of the bone.                                                                       |
| 159 |                                                                                                            |
| 160 | Measurement of BMC, bone area and BMD using dual-energy X-ray absorptiometry                               |
| 161 | The BMC, bone area, and BMD of the tibia and L3-L6 lumbar spine were measured using                        |
| 162 | dual-energy X-ray absorptiometry (DXA; Aloka, DCS-600R, Tokyo, Japan) as previously described [25].        |
| 163 | The tibia was divided into five divisions, and the first division from the upper side was considered the   |
| 164 | proximal metaphysis site. The second and third divisions from the upper side were considered the           |
| 165 | diaphysis site. The tibia at the metaphysis site contains mainly cancellous bone, and the tibia at the     |
| 166 | diaphysis site contains mainly cortical bone.                                                              |

| 168 | Ca balance | study |  |
|-----|------------|-------|--|
|     |            |       |  |

- 169 Ca balance study was measured as previously described [26]. All feces were burned to ash at 600°C
- 170 for 15 h, and the fecal matter was dissolved in 1N nitric acid. Ca content in urine and feces was measured
- using inductively coupled plasma atomic emission spectroscopy (ICAP-AES; 575 V, Nippon Jarrell-Ash).
- 172 Ca absorption and Ca accumulation were calculated using Ca intake and the fecal and urinary excretion of
- 173 Ca. Amount of Ca absorption (mg/day) = Ca intake minus fecal Ca excretion. Rate of Ca absorption (%)
- 174 = amount of Ca absorption divided by Ca intake multiplied by 100. Amount of Ca accumulation (mg/day)
- 175 = amount of Ca absorption minus urine Ca excretion. Rate of Ca accumulation (%) = amount of Ca
- accumulation divided by Ca intake multiplied by 100.
- 177

#### 178 <u>Statistical analysis</u>

- 179 All data were expressed as mean ± standard error (SE). Statistical analysis was carried out using
- 180 one-way analysis of variance (ANOVA). In any analysis, if significant difference were observed, the
- 181 variables were analyzed using the Tukey's post-hoc comparison tests. SED group data were not included
- 182 in ANOVA. Unpaired t tests were used to compare results for SED group and EX group to assess the
- 183 effect of exercise. The significance level was set at p<0.05. All statistical analyses were performed using
- 184 SPSS Statistical Packages (Ver. 19.0; SPSS Inc., Chicago, USA).

| 185 |                                                                                                          |
|-----|----------------------------------------------------------------------------------------------------------|
| 186 | Results                                                                                                  |
| 187 |                                                                                                          |
| 188 | <the 1="" figure="" of="" position=""></the>                                                             |
| 189 | <the 2="" of="" position="" table=""></the>                                                              |
| 190 |                                                                                                          |
| 191 | Food intake, Ca intake, running distance, and energy availability                                        |
| 192 | Figure 1 presents the change in food intake (Fig. 1A), running distance (Fig. 1B), and energy            |
| 193 | availability (Fig. 1C) during the experimental period. The food intake, running distance, and energy     |
| 194 | availability are expressed as the mean of the weekly average. Food intake in the EX-FR and EX-FR+Ca      |
| 195 | groups continued was restricted throughout the experimental period. The average values of food intake,   |
| 196 | Ca intake, and energy intake in the EX group were significantly higher than those in the SED group. The  |
| 197 | food intake, Ca intake, energy intake, the percentage of the power spectrum of the running distance, and |
| 198 | energy availability in the EX-FR group were significantly lower than those in the EX group. The Ca       |
| 199 | intake in the EX-FR+Ca group was significantly higher than those in the EX-FR group.                     |
| 200 |                                                                                                          |
| 201 | <the 3="" of="" position="" table=""></the>                                                              |
| 202 |                                                                                                          |

# 203 Body weight and internal organ weight

| 204 | Figure 1D shows the changes in body weight during the experimental period. The body weight is              |
|-----|------------------------------------------------------------------------------------------------------------|
| 205 | expressed as the mean weight at the beginning of the week. The increase in body weight in the EX-FR        |
| 206 | and EX-FR+Ca groups were suppressed.                                                                       |
| 207 | The body weight and internal organ weight at dissection are presented in Table 3. The body weight          |
| 208 | and abdominal fat weight in the EX group were significantly lower than those in the SED group. The         |
| 209 | soleus muscle weight in the EX group was significantly higher than those in the SED group. The body        |
| 210 | weight, abdominal fat, plantaris muscle weight, soleus muscle weight, uterus weight, and adrenal gland     |
| 211 | weigh in the EX-FR group were significantly lower than those in the EX group. There were no significant    |
| 212 | differences between these parameters in the EX-FR and EX-FR+Ca group.                                      |
| 213 |                                                                                                            |
| 214 | <the 2="" figure="" of="" position=""></the>                                                               |
| 215 |                                                                                                            |
| 216 | Bone strength, BMD, bone weight, BMC, and bone area                                                        |
| 217 | The breaking force and breaking energy of the femur are presented in Figure 2. The breaking energy         |
| 218 | as well as the breaking force of the femur in the EX group were significantly higher than those in the SED |
| 219 | group. The breaking force and energy in the EX-FR group were significantly lower than those in the EX      |
| 220 | group, while the breaking energy of femur in the EX-FR+Ca group was significantly higher than that in      |

| 221 | the EX-FR group. However, the breaking energy of femur in the EX-FR+Ca group was significantly              |
|-----|-------------------------------------------------------------------------------------------------------------|
| 222 | lower than that in the EX group.                                                                            |
| 223 |                                                                                                             |
| 224 | <the 3="" figure="" of="" position=""></the>                                                                |
| 225 |                                                                                                             |
| 226 | The BMD of the lumbar spine, total tibia, proximal metaphysis tibia, and diaphysis tibia are presented      |
| 227 | in Figure 3. Those in the EX-FR group were significantly lower than those in the EX group. There were       |
| 228 | no significant differences between the EX-FR and EX-FR+Ca group.                                            |
| 229 |                                                                                                             |
| 230 | <the 4="" of="" position="" table=""></the>                                                                 |
| 231 |                                                                                                             |
| 232 | The bone weight, BMC, and bone area are presented in Table 4. The BMC of the diaphysis tibia, bone          |
| 233 | area of the diaphysis tibia, and of total tibia in the EX group were significantly higher than those in the |
| 234 | SED group. The dry weight of femur, ash weight of the femur, BMC of the lumbar, bone area of the            |
| 235 | lumbar, BMC of the total tibia, bone area of the total tibia, BMC of the proximal metaphysis tibia, bone    |
| 236 | area of the proximal metaphysis tibia, BMC of the diaphysis tibia, and bone area of the diaphysis tibia in  |
| 237 | the EX-FR group were significantly lower than those in the EX group. There were no significant              |
| 238 | differences between these parameters in the EX-FR and EX-FR+Ca group.                                       |

| 239 |                                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------|
| 240 | <the 5="" of="" position="" table=""></the>                                                             |
| 241 |                                                                                                         |
| 242 | <u>Ca balance</u>                                                                                       |
| 243 | Table 5 presents the results of Ca balance analysis. The amount of Ca absorption and accumulation in    |
| 244 | the EX-FR group were significantly lower than those in the EX group. The urinary Ca excretion, fecal Ca |
| 245 | excretion, amount of Ca absorption, and amount of Ca accumulation in the EX-FR+Ca group were            |
| 246 | significantly higher than those in the EX-FR group.                                                     |
| 247 |                                                                                                         |
| 248 | Discussion                                                                                              |
| 249 | The aim of the present study was to examine the preventive effect of Ca supplementation on the low      |
| 250 | bone strength in young female athletes with inadequate food intake, using the rats as an experimental   |
| 251 | model. To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of       |
| 252 | normal Ca diet. Our data demonstrated that the "high-Ca diet" resulted in higher bone strength in these |
| 253 | animals in comparison with similarly exercised rats kept on a restricted diet with normal Ca levels.    |
| 254 | However, the body weight, estrous cycle, BMD, bone weight, BMC, and bone area were not affected by      |
| 255 | "high-Ca diet".                                                                                         |

| 256 | Our previous study using young female rats has determined that the voluntary running exercise resulted in  |
|-----|------------------------------------------------------------------------------------------------------------|
| 257 | higher bone strength, and the interaction of voluntary running exercise and food restriction lowered       |
| 258 | energy availability, internal organ weight, bone strength, and BMD in comparison with exercise or food     |
| 259 | restriction alone [19]. The previous study was performed in young female rats aged 8-20 weeks. Sengupta    |
| 260 | et al. suggested that female SD rats acquired peak bone mass at 3 months [27]. Therefore, it is considered |
| 261 | that the period of our previous study was from the time of acquiring bone mass to maintaining bone mass.   |
| 262 | The present study newly examined the effect of a "high-Ca diet" on the bone characteristics of young       |
| 263 | female rats kept under voluntary running exercise and food restriction during the period from acquiring    |
| 264 | bone mass to maintaining bone mass.                                                                        |
| 265 | The present study used 1.2% Ca diet as high Ca diet to Ca supplementation. It is unclear whether 30%       |
| 266 | food restriction in the present study may have caused an inadequate Ca intake in young female rats under   |
| 267 | exercise or sedentary. However, it was lowly probable that the food restriction caused a calcium           |
| 268 | deficiency to young female rat with exercise, because they took Ca as much as the amount of 0.4% Ca        |
| 269 | diet with ad-libitum feeding. Hunt et al. [28] have reported that 0.2% and under Ca diet impair bone       |
| 270 | growth in young female rat, and this report supports our assessment. Moreover, as a result, the EX-FR+Ca   |
| 271 | group fed the mean +41% Ca compared to the SED group, fed the mean +28% Ca compared to the EX              |
| 272 | group, and fed the +99% Ca compared to EX-FR group. Therefore, we considered that intake of 1.2% Ca        |

diet in young female rats with exercise and food restriction performed not a relief of Ca deficiency but an

- intake of rich calcium for them.
- 275 The energy intake and energy availability were not affected by "high-Ca diet". Energy availability is
- 276 defined as energy intake minus exercise-induced energy expenditure, and low energy availability
- suppresses various physiological functions, including cellular maintenance and growth [29], thus
- decreasing the total energy expenditure [30]. We concluded that the body weight and internal organ weight
- 279 were not significantly different in the EX-FR and EX-FR+Ca group because of similar energy availability
- 280 levels in these groups. We also considered that "high-Ca diet" did not prevent reproductive dysfunction
- due to similar uterus weight and the proportion of the power spectrum of the running distance from 0.2 to
- 282 0.3 Hz in the total power spectrum.
- 283 The results demonstrated that a "high-Ca diet" led to high bone strength in young female rats under
- voluntary running exercise and food restriction (Fig. 2). In previous studies using young female rats, Hunt
- et al. [26] have reported that 0.1 % Ca diet and 0.2 % Ca diet lowered the bone strength in comparison
- with a 0.3-0.7 % Ca diet. Viguet-Carrin et al. [21] reported that a 0.2% Ca diet has a detrimental effect on
- bone strength; however, 1.2 % Ca diet has a positive effect on bone strength at a constant Ca/P ratio. As
- 288 previously described, we considered that food restriction didn't cause a calcium deficiency to young
- female rat with exercise. Thus, it is highly probable that the positive effect of "high-Ca diet" on bone
- 290 strength in exercising young female rat with food restriction was caused by the effect of high amount of

| 291 | Ca intake similar to Hunt et al. study in sedentary <i>ad-libitum</i> feeding rats. However, the bone strength in |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 292 | exercising young female rat with food restriction and "high-Ca diet" was lower than that in the rat with          |
| 293 | ad-libitum feeding and normal Ca diet. Furthermore, the breaking energy of femur in the EX-FR+Ca                  |
| 294 | group was significantly higher than that in the EX-FR group; however this was not the case for the                |
| 295 | breaking force of the femur. Lin et al. [31] have similarly reported that the maximal load energy of              |
| 296 | the femur was significantly different between groups but the maximal load of the femur was not                    |
| 297 | significantly different between groups using the three-point bending test in a study to determine the             |
| 298 | effects of a mechanical loading course on bone. They have also reported that the cortical area and                |
| 299 | thickness of the femur were significantly difference similar to the result of the maximal load, so their          |
| 300 | parameter may be factors of changing the maximal load in their study. However, the results of our                 |
| 301 | study on bone did not show a change with similar breaking energy; therefore, it is unclear how a                  |
| 302 | "high-Ca diet" caused a difference in the results of the breaking force and energy in the present study.          |
| 303 | BMD is frequently used as a proxy measure of bone strength and accounts for approximately 70% of                  |
| 304 | bone strength [32]. BMD is the main factor that determines bone strength. In the present study, a                 |
| 305 | "high-Ca diet" had no effect on the BMD in young female rat with exercise and food restriction (Fig. 3).          |
| 306 | This result is agreement with previous studies using young female [21] and young male rats [33].                  |
| 307 | Moreover, the "high-Ca diet" had no effect on the bone weight, BMC, bone area (Table 4); this result is           |
| 308 | similar to those from the previous studies using young female rats [21,34]. The study of Viguet-Carrin et         |

| 309 | al. has reported that a high-Ca diet has a positive effect on bone strength but does not affect the BMD or |
|-----|------------------------------------------------------------------------------------------------------------|
| 310 | bone microarchitectural parameters. The authors have concluded that a high-Ca diet has a beneficial        |
| 311 | effect on the attainment of peak bone strength with no evidence of a detrimental effect on bone modeling,  |
| 312 | at least in the short term. [34]. In the current study, we did not analyze the mechanisms by which the     |
| 313 | "high-Ca diet" induces high bone strength. However, our results suggested that the "high-Ca diet"          |
| 314 | induced high bone strength may be associated with factors other than BMD, bone weight, BMC, or bone        |
| 315 | area. Bone quality also accounts for bone strength [32]; therefore, bone architecture, turnover, damage    |
| 316 | accumulation, and mineralization might be altered by a "high-Ca diet".                                     |
| 317 | We tested the Ca balance to confirm the high Ca intake link to high Ca absorption. Food restriction        |
| 318 | reduces Ca intake. In the current study, food restriction lowered amount of Ca absorption, but did not     |
| 319 | lower the rate of Ca absorption in young female rat with voluntary wheel running (Table 4). Energy         |
| 320 | restriction reduces fractional calcium absorption [10]. However, low Ca intake induces high Ca             |
| 321 | absorption rate, and high Ca intake induce low Ca absorption rate [35,36]. We considered that food         |
| 322 | restriction did not significantly lower the rate of Ca absorption in young female rat with voluntary wheel |
| 323 | running because the restriction resulted in low energy intake and low Ca intake. However, for low amount   |
| 324 | of Ca intake, food restriction lowered the amount of Ca absorption. "High-Ca diet" caused high amount      |
| 325 | of Ca absorption and did not cause lower the rate of Ca absorption in young female rat with voluntary      |
| 326 | wheel running on food restriction. These results did not agree with the data from some of the previous     |

| 327 | studies in sedentary rats [35,36]. Our data suggest that the effect of "high-Ca diet" on Ca absorption is          |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 328 | different in sedentary rats with ad-libitum feeding compared to exercising rats on food restriction. We also       |
| 329 | found that "high-Ca diet" prevented the lower amount of Ca accumulation in young female rat with                   |
| 330 | voluntary wheel running and food restriction. Nevertheless, the bone weight and BMC did not                        |
| 331 | significantly differ between the normal Ca diet and "high-Ca diet" in young female rat with voluntary              |
| 332 | wheel running and food restriction. These results might suggest that absorbed Ca is accumulated to organs          |
| 333 | excepting bone in young female rats eating a "high-Ca diet" with voluntary wheel running and food                  |
| 334 | restriction.                                                                                                       |
| 335 | In conclusion, this is first study to examine the preventive effect of Ca supplementation on low bone              |
| 336 | strength in young females actively exercising on a restricted diet, using the rat as an experimental model         |
| 337 | and high-Ca diet. Food restriction caused lower energy availability, internal organs weight, bone strength,        |
| 338 | BMD, bone weight, BMC, bone area, Ca absorption, and Ca accumulation in these rats. "High-Ca diet"                 |
| 339 | induced higher bone strength, Ca absorption, and Ca accumulation in comparison with the normal Ca diet             |
| 340 | in the rats. However, this bone strength did not reach the bone strength in the rat with <i>ad-libitum</i> feeding |
| 341 | and normal diet. These results suggest that Ca supplementation had a positive effect on bone strength, but         |
| 342 | the effect was not sufficient to prevent lower bone strength caused by inadequate food intake in young             |
| 343 | female athletes during the period from acquiring bone mass to maintaining bone mass.                               |
| 344 |                                                                                                                    |

#### 345 **Conflict of interest**

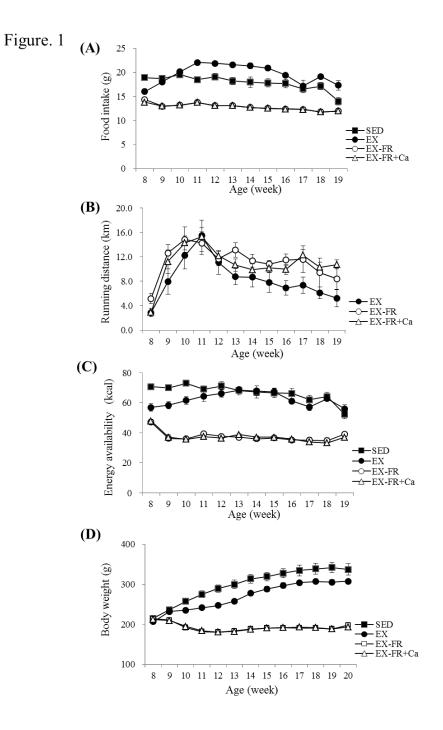
346 The authors declare that they have no conflict of interest.

347

348 **Reference** 

- 349 **1.** Meyer F, O'Connor H, Shirreffs SM; International Association of Athletics Federations (2007)
- 350 Nutrition for the young athlete. J Sports Sci 25 Suppl 1:S73-82
- 351 2. Fogelholm M (1994) Effects of bodyweight reduction on sports performance. Sports Med
- 352 18(4):249-267
- 353 3. Maughan RJ, King DS, Lea T (2004) Dietary supplements. J Sports Sci 22(1):95-113
- 4. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP (2007) American
- 355 College of Sports Medicine. American College of Sports Medicine The Female Athlete Triad. Med. Sci.
- 356 Sports Exerc 39(10):1867-1882
- **5.** Chen YT, Tenforde AS, Fredericson M (2013) Update on stress fractures in female athletes:
- epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med 6(2):173-181
- 6. Lauder TD, Dixit S, Pezzin LE, Williams MV, Campbell CS, Davis GD (2000) The relation between
- 360 stress fractures and bone mineral density: evidence from active-duty Army women. Arch Phys Med
- 361 Rehabil 81(1):73-79

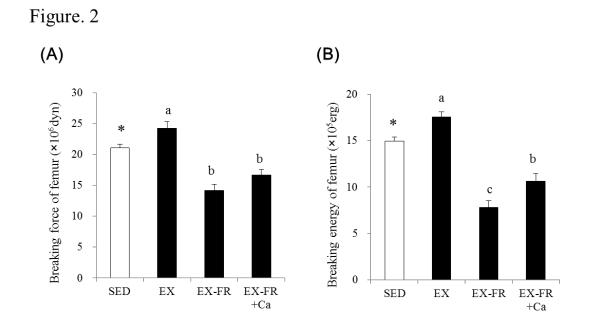
- 362 7. Newhall KM, Rodnick KJ, van der Meulen MC, Carter DR, Marcus R (1991) Effects of voluntary
- 363 exercise on bone mineral content in rats. J Bone Miner Res 6(3):289-296
- 364 8. Hind k, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and
- adolescents: A review of controlled trials. Bone 40(1):14–27
- 366 9. Borer KT (2005) Physical Activity in the Prevention and Amelioration of Osteoporosis in Women.
- 367 Sports Med 35(9):779-830
- 368 **10.** Cifuentes M, Morano AB, Chowdhury HA, Shapses SA (2002) Energy restriction reduces fractional
- 369 calcium absorption in mature obese and lean rats. J Nutr 132(9):2660-2666
- 370 11. Barrack MT, Ackerman KE, Gibbs JC (2013) Update on the female athlete triad. Curr Rev
- 371 Musculoskelet Med 6(2):195-204
- 12. Weaver CM (2002) Adolescence: the period of dramatic bone growth. Endocrine 17(1):43-48
- 373 13. Nieves JW, Melsop K, Curtis M, Kelsey JL, Bachrach LK, Greendale G, Sowers MF, Sainani KL
- 374 (2010) Nutritional factors that influence change in bone density and stress fracture risk among young
- female cross-country runners. PM R 2(8):740-750
- 376 14. Stear SJ, Prentice A, Jones SC, Cole TJ (2003) Effect of a calcium and exercise intervention on the
- bone mineral status of 16-18-y-old adolescent girls. Am J Clin Nutr 77(4):985-992


- 378 **15.** Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EM (2000) Effect of calcium
- 379 supplementation on bone mineral accretion in gambian children accustomed to a low-calcium diet. Am J
- 380 Clin Nutr 71(2):544-549
- 381 16. Dimarco NM, Dart L, Sanborn CB (2007) Modified activity-stress paradigm in an animal model of
- the female athlete triad. J Appl Physiol 103(5):1469-1478
- 383 17. Swift SN, Baek K, Swift JM, Bloomfield SA (2012) Restriction of dietary energy intake has a greater
- 384 impact on bone integrity than does restriction of calcium in exercising female rats. J Nutr
- 385 142(6):1038-1045
- 386 **18.** Yanaka K, Higuchi M, Ishimi Y (2012) Effect of long-term voluntary exercise and energy restriction
- 387 on bone mineral density in mature female rats. J Phys Fitness Sports Med 1(4):695-702
- 388 19. Aikawa Y, Agata U, Kakutani Y, Higano M, Hattori S, Ogata H, Ezawa I, Omi N (2015) The
- interaction of voluntary running exercise and food restriction induces low bone strength and low bone
- 390 mineral density in young female rats. Calcif Tissue Int 97(1):90-99
- 391 20. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report
- 392 of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A
- 393 rodent diet. J Nutr 123(11):1939-1951
- 394 **21.** Viguet-Carrin S, Hoppler M, Membrez Scalfo F, Vuichoud J, Vigo M, Offord EA, Ammann P (2014)
- Peak bone strength is influenced by calcium intake in growing rats. Bone. 68:85-91.

- 396 22. Anantharaman-Barr HG, Decombaz J (1989) The effect of wheel running and the estrous cycle on
- and the second s
- 398 **23.** Huang NE, Zheng Shen, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998)
- 399 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
- 400 analysis. Proc R Soc Lond A 454(1971): 903-995
- 401 24. Ezawa I, Okada R, Nozaki Y, Ogata, E (1979) Breaking-properties and ash contents of the femur of
- 402 growing rat fed a low calcium diet. Nippon Eiyo Shokuryo Gakkaishi J. Jpn. Soc. Food Nutr 32(5):
- 403 329-335
- 404 25. Omi N, Morikawa N, Ezawa I (1994) The effect of voluntary exercise on bone mineral density and
- 405 skeletal muscles in the rat model at ovariectomized and sham stages. Bone miner 24(3):211-222
- 406 **26.** Omi N, Aoi S, Murata K, Ezawa I (1994) Evaluation of the effect of soybean milk and soybean milk
- 407 peptide on bone metabolism in the rat model with ovariectomized osteoporosis. J Nutr Sci Vitaminol 40:
- 408 201-211
- 409 27. Sengupta S, Arshad M, Sharma S, Dubey M, Singh MM (2005) Attainment of peak bone mass and
- 410 bone turnover rate in relation to estrous cycle, pregnancy and lactation in colony-bred Sprague-Dawley
- 411 rats: suitability for studies on pathophysiology of bone and therapeutic measures for its management. J
- 412 Steroid Biochem Mol Biol. 94(5):421-9.

- 413 28. Hunt JR, Hunt CD, Zito CA, Idso JP, Johnson LK (2008) Calcium requirements of growing rats based
- 414 on bone mass, structure, or biomechanical strength are similar. J Nutr 138(8):1462-1468
- 415 29. Loucks AB, Kiens B, Wright HH (2011) Energy availability in athletes. J Sports Sci 29 Suppl
- 416 1:S7-S15
- 417 **30.** Stubbs RJ, Hughes DA, Johnstone AM, Whybrow S, Horgan GW, King N, Blundell J (2004) Rate and
- 418 extent of compensatory changes in energy intake and expenditure in response to altered exercise and diet
- 419 composition in humans. Am J Physiol Regul Integr Comp Physiol 286(2):R350–R358
- 420 **31.** Lin HS, Huang TH, Wang HS, Mao SW, Tai YS, Chiu HT, Cheng KY, Yang RS (2013) Short-term
- 421 free-fall landing causes reduced bone size and bending energy in femora of growing rats. J Sports Sci
- 422 Med. 1;12(1):1-9.
- 423 **32.** NIH Consens Statement (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consens
- 424 Statement. 17(1):1-45
- 425 **33.** Persson P, Gagnemo-Persson R, Håkanson R (1993) The effect of high or low dietary calcium on bone
- 426 and calcium homeostasis in young male rats. Calcif Tissue Int 52(6):460-464.
- 427 **34.** Creedon A, Cashman KD (2001) The effect of calcium intake on one composition and bone resorption
- 428 in the young growing rat. Br J Nutr 86(4):453-459
- 429 **35.** Shah BG, Trick KD, Belonje B (1990) Effects of dietary calcium on the metabolism of trace elements
- 430 in male and female rats. J Nutr Biochem 1(11):585-591

| 431 | <b>36.</b> Cashman KD, Flynn A (1996) Effect of dietary calcium intake and meal calcium content on calcium |
|-----|------------------------------------------------------------------------------------------------------------|
| 432 | absorption in the rat. Br J Nutr. 76(3):463-470                                                            |
| 433 |                                                                                                            |
| 434 |                                                                                                            |
| 435 |                                                                                                            |
| 436 |                                                                                                            |
| 437 |                                                                                                            |
| 438 |                                                                                                            |
| 439 |                                                                                                            |
| 440 |                                                                                                            |
| 441 |                                                                                                            |
| 442 |                                                                                                            |
| 443 |                                                                                                            |
| 444 |                                                                                                            |
| 445 |                                                                                                            |
| 446 |                                                                                                            |
| 447 |                                                                                                            |
| 448 |                                                                                                            |

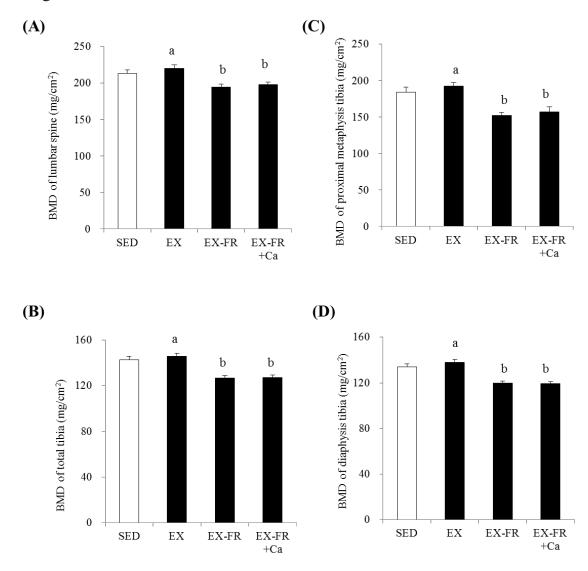

#### **Figure legends**



451 Figure 1. Changes in food intake (A), running distance (B), energy availability (C), and body weight

**(D).** 

| 453 | SED: sedentary group. EX: exercise group. EX-FR: exercise + food restriction group. EX-FR+Ca:            |
|-----|----------------------------------------------------------------------------------------------------------|
| 454 | exercise + food restriction + high-Ca diet group. Values are means $\pm$ SE. The small SEs may not be    |
| 455 | visible. Body weight, food intake, and energy availability were measured every other day, and running    |
| 456 | distance was measured every day. The values of food intake, running distance and energy availability are |
| 457 | expressed as the means of the weekly averages for each parameter. The body weight is expressed as the    |
| 458 | mean weight at the beginning of every week.                                                              |
| 459 |                                                                                                          |
| 460 |                                                                                                          |
| 461 |                                                                                                          |
| 462 |                                                                                                          |
| 463 |                                                                                                          |
| 464 |                                                                                                          |
| 465 |                                                                                                          |
| 466 |                                                                                                          |
| 467 |                                                                                                          |




#### 469 Figure 2. Breaking force and breaking energy of femur.

- 470 (A): Breaking force of femur. (B): Breaking energy of femur.
- 471 SED: sedentary group. EX: exercise group. EX-FR: exercise + food restriction group. EX-FR+Ca:
- 472 exercise + food restriction + high-Ca diet group. Values are expressed as means  $\pm$  SE.
- 473 Unpaired t tests were used to compare results for SED group and EX group to assess the effect of exercise.
- 474 \*p<0.05 vs. EX group.
- 475 Data in EX, EX-FR, and EX-FR+Ca groups were analyzed using the Tukey's post-hoc comparison test.
- 476 Means with unlike alphabet are significantly different.

477





480 Figure 3. Bone mineral density (BMD) of lumbar spine and tibia.

481 (A): BMD of lumbar spine. (B): BMD of total tibia. (C): BMD of proximal metaphysis tibia. (D): BMD

- 482 of diaphysis tibia.
- 483 SED: sedentary group. EX: exercise group. EX-FR: exercise + food restriction group. EX-FR+Ca:
- 484 exercise + food restriction + high-Ca diet group. Values are expressed as means  $\pm$  SE.

| 485 | Unpaired t tests we | ere used to compare rea | sults for SED group a | and EX group to assess | s the effect of |
|-----|---------------------|-------------------------|-----------------------|------------------------|-----------------|
|-----|---------------------|-------------------------|-----------------------|------------------------|-----------------|

- 486 exercise. \*p<0.05 vs. EX group.
- 487 Data in EX, EX-FR, and EX-FR+Ca groups were analyzed using the Tukey's post-hoc comparison
- 488 test. Means with unlike alphabet are significantly different.

|                                            | normal | high-Ca |
|--------------------------------------------|--------|---------|
| Constituents                               | (g)    | (g)     |
| Glucose monohydrate                        | 62.37  | 60.87   |
| Casein <sup>1</sup>                        | 18.0   | 18.0    |
| Cystine                                    | 0.2    | 0.2     |
| Cottonseed oil                             | 10.0   | 10.0    |
| CaCO <sub>3</sub>                          | 1.490  | 2.988   |
| KH <sub>2</sub> PO <sub>4</sub>            | 1.158  | 1.158   |
| K <sub>2</sub> HPO <sub>4</sub>            | 1.482  | 1.482   |
| Roughage                                   | 3.0    | 3.0     |
| Choline chloride                           | 0.2    | 0.2     |
| Water-soluble vitamin mixture <sup>2</sup> | 0.1    | 0.1     |
| Oil-soluble vitamin mixture                | ()3    | ()3     |
| Ca- and P-free salt mixture <sup>4</sup>   | 2.0    | 2.0     |
| Energy (kcal/100 g)                        | 373    | 368     |

#### **Table 1. Compositions of the experimental diets.**

 $\begin{array}{c} 504 \\ 505 \end{array}$ 

Crude protein, 18.0 %; Ca, 0.6 %; P, 0.6 %

506 <sup>1</sup>Casein contained 0.22 mg calcium/g and 4 mg phosphorus/g.

- 507 <sup>2</sup>The water-soluble vitamin mixture(in%): thiamin, 0.5; riboflavin, 0.5; pyridoxine, 0.5; calcium
- pantothenate, 2.8; nicotinamide, 2.0; inositol, 20.0: folic acid, 0.02; vitamin B<sub>12</sub>, 0.002; biotin, 0.01; and
- 509 glucose monohydrate, 73.7.

510 <sup>3</sup>The rats received a supplement of the following oil –soluble vitamins in cottonseed oil three times a

511 week: β-carotene, 70  $\mu$ g; 2-methyl-1.4-naphthoquinone, 105  $\mu$ g; α-tocopherol, 875  $\mu$ g; and vitamin D<sub>3</sub>,

512 525 IU.

513 <sup>4</sup>Ca- and P-free salt mixture(in%): KCl, 57.7; NaCl, 20.9; MgSO<sub>4</sub>, 17.9; FeSO<sub>4</sub>  $\cdot$  7H<sub>2</sub>O , 3.22; CuSO<sub>4</sub>  $\cdot$ 

- 514 5H<sub>2</sub>O, 0.078; NaF, 0.133; CoCl<sub>2</sub> · 6H<sub>2</sub>O, 0.004; KI, 0.01; MnSO<sub>4</sub> · 5H<sub>2</sub>O, 0.06; ZnSO<sub>4</sub> · 7H<sub>2</sub>O, 0.44; and
- 515  $(NH_4)_6 Mo_7 O_{24} \cdot 4H_2 O, 0.005.$
- 516
- 517

|                                                                                       | SED             | EX                  | EX-FR               | EX-FR+Ca            |
|---------------------------------------------------------------------------------------|-----------------|---------------------|---------------------|---------------------|
| Food intake<br>(g/day)                                                                | $17.8 \pm 0.6*$ | $19.6 \pm 0.3^{a}$  | $12.6 \pm 0.1^{b}$  | $12.6 \pm 0.1^{b}$  |
| Ca intake<br>(mg/day)                                                                 | 107 ± 3*        | $118 \pm 2^{b}$     | $76 \pm 0^{c}$      | $151 \pm 0^a$       |
| Energy intake <sup>1</sup><br>(kcal/day)                                              | 66.4 ± 2.1*     | $73.3 \pm 1.2^{a}$  | $47.2 \pm 0.1^{b}$  | $46.4 \pm 0.1^{b}$  |
| Wheel running<br>distance<br>(km/day)                                                 | -               | 8.7 ± 1.3           | $11.2~\pm~0.6$      | $10.9 \pm 0.7$      |
| Percentage of the<br>power spectrum of<br>the running distance <sup>2</sup><br>(Rate) | -               | $0.44 \pm 0.04^{a}$ | $0.17 \pm 0.04^{b}$ | $0.18 \pm 0.03^{b}$ |
| Exercise-induced<br>Energy expenditure <sup>3</sup><br>(kcal/day)                     | -               | 11.4 ± 1.6          | $10.7 \pm 0.5$      | $10.3~\pm~0.5$      |
| Energy availability <sup>4</sup><br>(kcal/day)                                        | 66.4 ± 2.1      | $61.9 \pm 1.4^{a}$  | $36.5~\pm~0.5^{b}$  | $36.1~\pm~0.5^{b}$  |

#### 518 Table 2. Food intake, Ca intake, running distance, and energy availability.

519

520 SED: sedentary group. EX: exercise group. EX-FR: exercise + food restriction group. EX-FR+Ca:

521 exercise + food restriction + high-Ca diet group. Values are expressed as means  $\pm$  SE. The values are

522 expressed as the means of average of entire experimental period.

523 Unpaired t tests were used to compare results for SED group and EX group to assess the effect of exercise.

524 \*p<0.05 for vs. EX group.

525 Data in EX, EX-FR, and EX-FR+Ca groups were analyzed by the Tukey's post-hoc comparison test.

526 Means with unlike alphabet are significantly different.

527 <sup>1</sup>Energy intake was calculated by multiplying the amount of normal diet intake (normal diet, 3.73)

- 528 kcal/g; high-Ca diet, 3.68 kcal/g).
- 529 <sup>2</sup>To quantify the periodic component at about 4- or 5- day observed in the temporal profile of the running

530 distance, we estimated the power in the frequency band from 0.2 to 0.3 Hz using spectral analysis of the

531 detrended time series. Moreover, to exclude the interindividual difference in the total power affecting the

532 local power, we also computed the proportion of the power spectrum of the running distance from 0.2 to

- 533 0.3 Hz in the total power spectrum.
- <sup>3</sup> Exercise induced energy expenditure from daily wheel running was calculated as 5.0 kcal/kg body
  weight times kilometers run [22].
- <sup>4</sup>Energy availability was calculated as energy intake minus exercise energy expenditure.
- 537

|                                                                                                            | SED                | EX                    | EX-FR                  | EX-FR+Ca              |  |  |
|------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|------------------------|-----------------------|--|--|
| Body weight<br>(g)                                                                                         | 340 ± 15*          | $295 \pm 5^{a}$       | 194 ± 4 <sup>b</sup>   | $187 \pm 4^{b}$       |  |  |
| Abdominal fat<br>weight<br>(g)                                                                             | 26.0 ± 5.3*        | $12.4 \pm 1.7^{a}$    | $1.6 \pm 0.2^{b}$      | $1.0~\pm~0.1^{b}$     |  |  |
| Plantaris muscle<br>weight<br>(g)                                                                          | 0.34 ± 0.02        | $0.34 \pm 0.01^{a}$   | $0.25 \pm 0.13^{b}$    | $0.23 \pm 0.08^{b}$   |  |  |
| Soleus muscle weight (g)                                                                                   | $0.111 \pm 0.005*$ | $0.138 \pm 0.005^{a}$ | $0.095 \pm 0.006^{b}$  | $0.086 \pm 0.005^{b}$ |  |  |
| Uterus weight<br>(g)                                                                                       | $0.53 \pm 0.03$    | $0.62 \pm 0.04^{a}$   | $0.32 \pm 0.07^{b}$    | $0.27 \pm 0.06^{b}$   |  |  |
| Adrenal gland weight (g)                                                                                   | $0.037 \pm 0.001$  | $0.043 \pm 0.003^{a}$ | $0.033 \pm 0.002^{b}$  | $0.034 \pm 0.002^{b}$ |  |  |
| Thymus weight<br>(g)                                                                                       | $0.29 \pm 0.03$    | $0.23 \pm 0.08^{a}$   | $0.18~\pm~0.05^{ab}$   | $0.15 \pm 0.13^{b}$   |  |  |
| SED: sedentary group. ]                                                                                    | EX: exercise group | . EX-FR: exercise +   | - food restriction gro | up. EX-FR+Ca:         |  |  |
| exercise + food restriction + high-Ca diet group. Values are expressed as means $\pm$ SE. The values are   |                    |                       |                        |                       |  |  |
| expressed as the means of average of entire experimental period.                                           |                    |                       |                        |                       |  |  |
| Unpaired t tests were used to compare results for SED group and EX group to assess the effect of exercise. |                    |                       |                        |                       |  |  |
| *p<0.05 for vs. EX group.                                                                                  |                    |                       |                        |                       |  |  |
| Data in EX, EX-FR, and EX-FR+Ca groups were analyzed by the Tukey's post-hoc comparison test.              |                    |                       |                        |                       |  |  |
| Means with unlike alphabet are significantly different.                                                    |                    |                       |                        |                       |  |  |
|                                                                                                            |                    |                       |                        |                       |  |  |
|                                                                                                            |                    |                       |                        |                       |  |  |
|                                                                                                            |                    |                       |                        |                       |  |  |

# **Table 3. Body weight and internal organ weight**

|                                                                 | SED              | EX                  | EX-FR               | EX-FR+Ca              |
|-----------------------------------------------------------------|------------------|---------------------|---------------------|-----------------------|
| Dry weight of femur<br>(g)                                      | $0.61~\pm~0.01$  | $0.60 \pm 0.01^{a}$ | $0.46 \pm 0.01^{b}$ | 0.49 ± 0.0            |
| Ash weight of femur<br>(g)                                      | $0.43 \pm 0.01$  | $0.42 \pm 0.01^{a}$ | $0.30 \pm 0.01^{b}$ | $0.31 \pm 0.0$        |
| BMC of lumbar (mg)                                              | 558 ± 26         | $545 \pm 8.9^{a}$   | $378 \pm 13^{b}$    | 406 ± 17 <sup>b</sup> |
| Bone area of lumbar<br>(cm <sup>2</sup> )                       | $2.61 \pm 0.07$  | $2.48 \pm 0.03^{a}$ | $1.94~\pm~0.04^{b}$ | $2.05 \pm 0.00$       |
| BMC of total tibia<br>(mg)                                      | $284 \pm 11$     | $309 \pm 7^{a}$     | $225 \pm 6^{b}$     | $235 \pm 9^{b}$       |
| Bone area of total tibia<br>(cm <sup>2</sup> )                  | $1.97 \pm 0.05*$ | $2.15 \pm 0.02^{a}$ | $1.79 \pm 0.02^{b}$ | $1.85 \pm 0.03$       |
| BMC of proximal<br>metaphysis tibia<br>(mg)                     | 92 ± 4           | $101 \pm 3^{a}$     | $65 \pm 3^{b}$      | $71 \pm 5^{b}$        |
| Bone area of proximal<br>metaphysis tibia<br>(cm <sup>2</sup> ) | $0.50~\pm~0.02$  | $0.53 \pm 0.01^{a}$ | $0.43 \pm 0.02^{b}$ | $0.45 \pm 0.02$       |
| BMC of diaphysis tibia<br>(mg)                                  | $108 \pm 4*$     | $121 \pm 2^{a}$     | $91 \pm 2^b$        | $92 \pm 2^{b}$        |
| Bone area of diaphysis<br>tibia<br>(cm <sup>2</sup> )           | $0.80 \pm 0.01*$ | $0.90 \pm 0.02^{a}$ | $0.77 \pm 0.01^{b}$ | 0.78 ± 0.03           |

# **Table 4. Bone weight, BMC, and bone area.**

554

555 SED: sedentary group. EX: exercise group. EX-FR: exercise + food restriction group. EX-FR+Ca:

556 exercise + food restriction + high-Ca diet group. Values are expressed as means  $\pm$  SE. The values are

557 expressed as the means of average of entire experimental period.

558 Unpaired t tests were used to compare results for SED group and EX group to assess the effect of exercise.

559 \*p<0.05 for vs. EX group.

560 Data in EX, EX-FR, and EX-FR+Ca groups were analyzed by the Tukey's post-hoc comparison test.

561 Means with unlike alphabet are significantly different.

562

563

## 565 **Table 5. Ca balance study.**

|                                          | SED            | EX                  | EX-FR               | EX-FR+Ca            |
|------------------------------------------|----------------|---------------------|---------------------|---------------------|
| Urine Ca<br>excretion<br>(mg/day)        | 0.89 ± 0.11    | $1.17 \pm 0.25^{b}$ | $1.61 \pm 0.29^{b}$ | $3.99 \pm 0.97^{a}$ |
| Fecal Ca excretion<br>(mg/day)           | $32.5 \pm 4.0$ | $32.6 \pm 7.2^{b}$  | $36.3 \pm 5.2^{b}$  | $73.7 \pm 3.6^{a}$  |
| Amount of Ca<br>absorption<br>(mg/day)   | 59.4 ± 2.9     | $79.4 \pm 14.3^{a}$ | $35.1 \pm 5.1^{b}$  | $69.1 \pm 4.8^{a}$  |
| Rate of Ca<br>absorption<br>(%)          | 65.1 ± 3.4     | 66.5 ± 10.9         | 49.1 ± 7.3          | 48.3 ± 2.6          |
| Amount of Ca<br>accumulation<br>(mg/day) | 58.5 ± 2.9     | $78.3 \pm 14.2^{a}$ | $33.5 \pm 5.3^{b}$  | $66.4~\pm~4.6^{ab}$ |
| Rate of Ca<br>accumulation<br>(%)        | 64.2 ± 3.5     | $65.5 \pm 10.8$     | 46.9 ± 7.4          | 46.6 ± 3.2          |

566

567 SED: sedentary group. EX: exercise group. EX-FR: exercise + food restriction group. EX-FR+Ca:

568 exercise + food restriction + high-Ca diet group. Values are expressed as means  $\pm$  SE. The values are

569 expressed as the means of average of entire experimental period.

570 Unpaired t tests were used to compare results for SED group and EX group to assess the effect of exercise.

571 \*p<0.05 for vs. EX group.

572 Data in EX, EX-FR, and EX-FR+Ca groups were analyzed by the Tukey's post-hoc comparison test.

573 Means with unlike alphabet are significantly different.

- 574
- 575
- 576
- 577
- 578
- 579