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1 Introduction

Expected utility (EU) maximization and mean-variance (MV) analysis are two tenets in
rational decision making under risk. A decision criterion in MV analysis is maximization of
MV utility in which random variables with the same mean and variance should be equally
desirable. It has been argued that EU maximization is incompatible with MV criterion
unless von Neumann-Morgenstern utility function is given by a quadratic function or random
variables under consideration are appropriately restricted (e.g., see Chapter 4 in [1]).
Preference structures of economic agents who maximize expected utility are well known

(e.g., see [2, 3]) since numerous axiomatic re�nements and generalizations have been investi-
gated under various structural assumptions to remedy the pioneering works by von Neumann
and Morgenstern [20] and Savage [19]. On the other hand, little is known for MV utility
although it has been widely used in �nance as an alternative to EU maximization since the
pioneering work by Markowitz [13, 14].
To the best of my knowledge, Pollatsek and Tversky [16] is the �rst to present conditions

for the existence of MV utility which is represented by the weighted sum of mean-value
and variance. Their axiomatization is preference-based, but their continuity condition is
explicitly stated in terms of means and variances of random variables under consideration.
The next challenge I am aware of is due to Fishburn [8, 9]. Assuming equal desirability of
random variables with the same mean and variance, he showed that a condition, dubbed
zero-degree stochastic dominance, implies that preferences are represented by a lexicographic
MV model in which random variables with larger means are more preferable, while random
variables with larger variances are less preferable as long as their mean-values are the same.
For the general functional form of MV utility which is strictly increasing in mean-values

and (strictly) decreasing in variances, Epstein [6] characterized its existence under Fréchet
di¤erentiability and some other technical conditions. He also provided a condition, dubbed
constant risk aversion, which is necessary and su¢ cient for Pollatsek-Tversky model to
hold as a special case of his general MV utility. As a di¤erent approach to arrive at MV
utility, Lö er [12] proved under a security market framework that so-called strict variance
aversion (see [4]) together with strict monotonicity implies that a trader�s preferences obey
maximization of MV utility.
The aim of the paper is to present an alternative characterization of MV utility. Unlike

Lö�er�s framework, we study preference conditions for random variables on the real line as
traditional EU axiomatizations. Unlike Epstein�s characterization, we do not assume the ex-
istence of a functional U on a set Y of random variables which represents the preferences. Our
axiomatization of the preferences provides a constructive way of MV utility on Y. Further-
more, it is di¤erent from Pollatsek-Tversky�s axiomatization and Fishburn�s investigation
in that our axioms do not explicitly assume any knowledge of variances. While Epstein [6]
introduced a general notion of decreasing risk aversion which makes Fréchet di¤erentiable
U depend only on mean and variance, our crucial axiom speci�es the exchange preferences
between two simple random variables X and Y , in which, given a binary 50-50 fair random
variable Z, it is asked which of the two compound random variables is preferred; one is to add
X to the positive outcome of Z and Y to the negative outcome, and the other is to exchange
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additions of X and Y to outcomes of Z. The notion of exchange preferences between a fair
random variable and sure outcome 0 is known as downside risk aversion (e.g., see Chapter 2
in [5]). Also, its more general form, called constant exchange risk property in [7], was applied
to specify functional forms of von Neumann and Morgenstern utility functions.
We also investigate necessary and su¢ cient axioms for four types of additively separable

forms of mean and variance in the MV utility representation. The most general of these
is given by sum of a strictly increasing function f of mean-values and a strictly decreasing
function g of variances. An adaptation of Thomsen condition well known in additive conjoint
measurement (see [11]) to the present framework is shown to be necessary and su¢ cient for
the separation. The other three types of additive separabilities are obtained by variants of
constant risk aversion. We derive the �rst of these, which makes f linear, by applying the
well known property of constant absolute risk aversion. Together with constant absolute
risk aversion, we apply the another well known property, constant proportional (also, called
relative) risk aversion, to obtain the third type of additive separable form in which g be-
comes a square root function, i.e., standard deviations. The last type is Pollatsek-Tversky
model. We prove that the model follows by applying Epstein�s constant risk aversion to
the present context. While constancies of absolute and proportional risk aversions come
from the property that agent�s attitudes toward risk are una¤ected by changing levels of the
agent�s wealth, Epstein�s constancy is more demanding in that the agent wealth levels can
be changed to any random variables.
Recently, Qu [17] studied a complementary approach to mean-variance preferences in de-

cision making under uncertainty. He adopted the Anscombe-Aumann framework and derived
two additively separable representations. However, his approach assumes the �rst-order sto-
chastic dominance which is not necessarily compatible with mean-variance preferences (see
[9]), and does not allow for the general non-separable representation.
The paper is organized as follows. Section 2 introduces three axiom systems for the

existence of MV utility. The �rst one is concerned with simple random variables. The
second covers the set of all random variables with bounded supports. The third focusses on
the set of random variables with �nite means which are bounded in preference. In Section
3, we presents necessary and su¢ cient axioms for four types of additively separable forms
of mean and variance. Section 4 concludes the paper. All the su¢ ciency proofs of the MV
representation theorems in Sections 2 and 3 are gathered respectively in Appendices A and
B.

2 Mean-Variance Utility

2.1 Preliminary De�nitions

Let X be the set of all random variables de�ned on a state space S whose cumulative
distribution functions are right-continuous on R. Elements of X will be denoted by capital
letters, X;Y; Z, and so on. Assume that a binary preference relation - is given on X. Then
X - Y reads as �random variable X is not preferred to random variable Y .�Asymmetric
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and symmetric parts of -, denoted � and � respectively, are de�ned in the usual way as
follows: for all X; Y 2 X, X � Y if : (Y - X), and X � Y if X - Y and Y - X.
The probability density function and cumulative distribution function of X are respec-

tively denoted by pX and PX . Let N be the set of all positive integers. When X is a random
variable with �nite support fx1; : : : ; xng � R for some n 2 N , where x1 < x2 < � � � < xn,
probability with which wealth level xk obtains under X is given by pX (fxkg) = PX (xk) �
PX (xk�1) for k = 1; : : : ; n, where x0 is any number such that PX (x0) = 0 and x0 < x1. In
what follows, we shall write pX (xk) in place of pX (fxkg).
Given n random variables X1; : : : ; Xn and numbers �1; : : : ; �n 2 (0; 1) with

Pn
i=1 �i = 1,

we de�ne a new random variable X, called (�1; : : : ; �n�1)-compound of X1; : : : ; Xn, to satisfy
that pX (I) =

Pn
i=1 �ipXi(I) for all intervals I � R. When the compound probabilities

�1; : : : ; �n are not speci�ed at the outset, we simply says thatX is a compound ofX1; : : : ; Xn.
In particular, �-compound of random variables X and Y will be denoted by hX;�;Y i. Each
x will be identi�ed with a random variable which gives wealth level x with probability one.
For X 2 X and a 2 R, let X + a and aX (dubbed a-proportional fraction of X) be random
variables whose cumulative distribution functions are given by PX+a (x+ a) = PX (x) and
PaX (ax) = PX (x) for all x 2 R. In particular, when a = �1, aX, denoted by �X, is a
mirror image of X. A random variable X is said to be symmetric if X = �X. Note that
symmetric random variables are fair, i.e., their mean-values equal 0.
Let R+ denote the half line of nonnegative numbers. Let �X and �2X respectively denote

the mean-value and variance of random variable X if they exist, so �X is the standard
deviation of X. Consider a subset Y of X, whose elements have �nite mean-values and
variances. We say that (Y;-) has an MV utility function U if it is a real valued function on
R� R+ such that, for all X; Y 2 Y,

X - Y () U
�
�X ; �

2
X

�
� U

�
�Y ; �

2
Y

�
;

where U is strictly increasing in the �rst argument and strictly decreasing in the second.

2.2 Necessary and Su¢ cient Axioms

Depending on structures of Y � X, we shall introduce three axiom systems which are neces-
sary and su¢ cient for (Y;-) to have an MV utility function. For each a 2 R and Y � X, let
Ya denote the set of all random variables in Y whose mean-values equal a. In what follows,
we shall assume that Y � [aXa, i.e., Y is a set of random variables whose mean-values are
�nite.
We shall consider three types of random variables. The �rst type is concerned with

random variables with �nite supports, which will be called simple, but otherwise non-simple.
Cumulative distribution functions of simple random variables are step-functions with �nite
steps. The second type consists of all random variables whose supports are bounded. Of
course, simple random variables have bounded supports and there is a non-simple random
variable with a bounded support.
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We say that a random variable X with �nite mean-value is bounded in preference if
Y - X for some simple random variable Y with �Y = �X . The third type consists of all
random variables which are bounded in preference. In our axiomatization, it is easily shown
that those random variables have �nite variances. By Theorem 2 below, it will be guaranteed
that random variables with bounded supports are bounded in preference.
The �rst axiom system for (Y;�), in which Y will be assumed to be the set of all simple

random variables, is necessary and su¢ cient for the existence of an MV utility function for
all simple random variables. It consists of the following seven axioms, which are understood
as applying to all X; Y; Z 2 Y and all a; b 2 R.

Axiom A1. - on Y is a weak order.

Axiom A2. If X; Y; Z 2 Ya and X � Y , then hX;�;Zi � hY ;�;Zi for all 0 < � < 1.

Axiom A3. If X; Y; Z 2 Ya, X � Z, and Z � Y , then hX;�;Y i � Z for some
� 2 (0; 1).

Axiom A4. If X 2 Y0, then X + a � �X + a.

Axiom A5. If X and Y are simple, and a > 0, then

�X � �Y ()


X � a; 1

2
;Y + a

�
-


Y � a; 1

2
;X + a

�
:

Axiom A6. If X is simple, then X � c for some c 2 R.

Axiom A7. If X is simple and fair, and a < b, then X + a � X + b.

First of all, we note that the above seven axioms apply to di¤erent sets of random
variables. The �rst four axioms apply to Y or sets of random variables in Y with the same
mean-values. Of course, speci�cations of Y depend on the axiom systems which we shall
propose. The last three axioms apply to the set of simple random variables or the set of fair
simple random variables, so that they are common to all three axiom systems.
Illustration of the axioms are given in order. The �rst three axioms are restricted versions

of the standard axioms of EU maximization (e.g., see [10]). In Axiom A1, which unrestrict-
edly applies to all random variables in Y, a weakly ordered - means that it is complete (i.e.,
for all X; Y 2 Y, X - Y or Y - X) and transitive (i.e., for all X; Y; Z 2 Y, if X - Y and
Y - Z, then X - Z). Axioms A2 and A3 restrictedly apply to all random variables in Y
with the same mean-value. Axiom A2 is the independence condition. Axiom A3 is a weak
version of the continuity condition, dubbed Lower Archimedean axiom in [15], who proved
in a more general setup that Axioms A1-A3 restricted to Ya are necessary and su¢ cient for
the existence of a linear functional Ua on Ya such that, for all X; Y 2 Ya and all 0 < � < 1,
X - Y i¤Ua (X) � Ua (Y ), and Ua (hX;�;Y i) = �Ua (X)+ (1� �)Ua (Y ). Furthermore, in
our present framework, it will be shown later in Lemma A3 of Appendix A that there is a real
valued function ua on R such that, for all simple X with �X = a, Ua (X) =

P
pX (x)ua (x).
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Axioms A4 and A5 are typical of MV utility. Axiom 4 says that any fair random variable
in Y0 is indi¤erent to its mirror image at any wealth level. To illustrate Axiom 5, consider
a situation that, given a binary 50-50 fair random variable Z =



�a; 1

2
; a
�
with a > 0, it

is asked which of the two compound random variables is preferred; one is to add X to the
positive outcome of Z and Y to the negative outcome, and the other is to exchange additions
of X and Y to outcomes of Z. Axiom A5 requires that the former is at least as preferable
as the latter if and only if mean-value of X is not greater than mean-value of Y . Although
mean-values of the compound random variables are equal, it is easily shown that variance of
the former is not greater than variance of the latter. Axiom A5 is a slight modi�cation of the
constant exchange risk property with 1

2
the exchange probability proposed in [7], in which

it was shown that, under EU framework, von Neumann-Morgenstren utility functions must
be quadratic. In our framework, Axiom A5 together with Axiom A4 implies that each ua is
symmetric around a and quadratic, so that Ua (X) = ��2X for all simple X with �X = a.
The remaining two axioms combine all ua to construct an MV utility function U . Axiom

6 requires that any simple random variable has its certainty equivalent, which will be used
to de�ne the U value at (�X ; �2X) 2 R � R+. Axiom A7 simply requires monotonicity of U
with respect to mean-values.
The representational implication of Axioms A1-A7 for simple random variables is stated

as follows.

Theorem 1. Suppose that Y is the set of all simple random variables. Then Axioms
A1-A7 hold for (Y;-) if and only if (Y;-) has an MV utility function.

While necessity of the axioms easily follows, a su¢ ciency proof will be deferred to Appendix
A.
The second axiom system for (Y;-) is concerned with random variables with bounded

supports. It assumes that Axioms A1-A7 hold when Y is the set of all random variables
whose supports are bounded. Therefore, it follows from the similar arguments of Axioms
A1-A3 for the �rst axiom system that, for every a 2 R, there is an order-preserving linear
functional Ua on the set of all random variables whose mean-values equal a and supports
are bounded. In particular, Ua (X) = ��2X for all simple X with �X = a. Thus, our task
is to guarantee that Ua (X + a) = ��2X for all symmetric and non-simple X with bounded
supports. To see this, take any non-simple X with a bounded support and �X = a. It follows
from linearity of Ua that

2Ua
�

X � a; 1

2
;�X + a

�
+ a
�
= Ua (X) + Ua (�X + 2a) :

Since �X�a = 0, Axiom A4 implies that X = (X � a) + a � � (X � a) + a = �X + 2a,
so that Ua (X) = Ua (�X + 2a). Hence, Ua

�

X � a; 1

2
;�X + a

�
+ a
�
= Ua (X). Since


X � a; 1
2
;�X + a

�
is symmetric and non-simple, it su¢ ces to show that Ua (Y + a) = ��2Y

for all symmetric and non-simple Y with bounded supports.
To accomplish the task for a symmetric and non-simple X with a bounded support, we

shall approximate the cumulative distribution function PX on the negative domain R�, the
half line of nonpositive numbers, from two directions. One is from below by a sequence
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of simple symmetric random variables, which is increasing in the sense of mean-preserving
spread, and the other is from above by a sequence of simple symmetric random variables,
which is decreasing in the sense of mean-preserving contraction. Because of symmetry, the
former (respectively, the latter) sequence decreasingly (respectively, increasingly) approaches
to PX on the positive domain R+.
We shall impose the following dominance axiom for the aforementioned approximation

to work.

Axiom A8. For all symmetric and non-simple random variables X and Y with bounded
supports, if pX ([a;1)) � pY ([a;1)) for all a > 0, then Y + x - X + x for all x 2 R.

This axiom says that, given symmetric and non-simple random variables X and Y with
bounded supports, if Y is a mean-preserving spread of X (or, in other words, X is a mean-
preserving contraction of Y ), then Y should not be preferred to X at all wealth level.
The representational implication of Axioms A1-A8 for random variables with bounded

supports is stated as follows.

Theorem 2. Suppose that Y is the set of all random variables with bounded supports.
Then Axiom A1�A8 hold for (Y;-) if and only if (Y;-) has an MV utility function.

It is easy to see that the axioms are necessary for the representation. The su¢ ciency proof
will be deferred to Appendix A.
The third axiom system for (Y;-) focuses on the set of all random variables which are

bounded in preference, so that in�nite variances will be excluded. It assumes that Axioms
A1-A8 hold when Y is the set of all bounded-in-preference random variable. It is easy to
see by Axiom 8 that all random variables with bounded supports are bounded in preference,
and there is a bounded-in-preference random variable with an unbounded support. Again
from the similar arguments of Axioms A1-A3, for every a 2 R, we know the existence
of an order-preserving linear functional Ua on the set of all bounded-in-preference random
variables whose mean values equal a such that Ua (X) = ��2X for all random variables X
with bounded supports and �X = a. Thus our task is again to prove that Ua (X) = ��2X for
all bounded-in-preference random variables X with unbounded supports and �X = a. But it
follows from the similar argument to the second axiom system that it su¢ ces to show that,
for all a 2 R, Ua (X + a) = ��2X for all symmetric bounded-in-preference X with unbounded
supports.
To accomplish the task for a symmetric bounded-in-preference X with unbounded sup-

ports, we shall introduce a symmetric truncation of X as follows. Since X is symmetric and
its support is unbounded, probability masses pX ([a;1)) and pX ((�1; a]) do not vanish for
all a > 0. By a truncation of X at a > 0, it means a random variable, denoted Xa;1, for
which probability masses pX ([a;1)) and pX ((�1; a]) are respectively transferred to points
a and �a, i.e.,
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pXa;1 (a) = pX ([a;1)) ;
pXa;1 (�a) = pX ((�1;�a]) ;
pXa;1 (I) = pX (I) for all intervals I � (�a; a) :

Obviously, Xa;1 is a symmetric random variable with a bounded support. Furthermore,
Xa;1 is a mean-preserving contraction of X and Xa;1 is a mean-preserving spread of Xb;1
whenever a > b. Now we approximate the cumulative distribution function PX on the
positive domain R+ from above only. The approximation is accomplished by a sequence of
symmetric truncations of X, which is increasing in the sense of mean-preserving spread.
For the approximation to work, we shall impose the following truncation continuity axiom.

Axiom A9. For all symmetric and bounded-in-preference random variables X and Y
with unbounded supports, and for all x 2 R, if X � Y , then Xa;1 + x � Y + x for some
a > 0.

This axiom says that, given symmetric bounded-in-preference random variables X and Y
whose supports are unbounded, if Y is preferred to X, then, at any wealth level, Y is still
preferred to a symmetric truncation of X at some a > 0.
The representational implication of Axioms A1-A9 for bounded-in-preference random

variables is stated as follows.

Theorem 3. Suppose that Y is the set of all bounded-in-preference random variables.
Then Axioms A1�A9 for (Y;-) hold if and only if (Y;-) has an MV utility function.

Again, the necessity of Axiom A9 is easily veri�ed. The su¢ ciency proof will be deferred to
Appendix A.

3 Additively Separable Forms

This section studies additively separable e¤ects of mean-values and variances on the utility
values of random variables. Speci�c separable functional forms of an MV utility function
U (�X ; �

2
X) that we shall examine are given as follows:

(a) additive trade-o¤: U (�X ; �2X) = f (�X) � g (�2X) for a strictly increasing continuous
and unbounded function f on R and a strictly increasing continuous function g on R+;
(b) additive mean-dispersion: U (�X ; �2X) = �X � g (�2X) for a strictly increasing contin-

uous function g on R+;
(c) additive mean and standard deviation: U (�X ; �2X) = �X � ��X for a � > 0.
(d) additive mean-variance: U (�X ; �2X) = �X � ��2X for a � > 0.

Since MV utility functions derived from Axioms A1-A7 may not be continuous on R �
R+, those axioms are not su¢ ciently rich enough to guarantee exact trade-o¤s between f
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evaluation of mean-values and g evaluation of variances in model (a). Therefore, we need to
strengthen two continuity axioms, Axioms A3 and A4, by the following two axioms:

Axiom A3*. If X; Y 2 Ya, Z 2 Y, X � Z, and Z � Y , then hX;�;Y i � Z for some
� 2 (0; 1).

Axiom A6*. If X and Y are simple, then X � Y + c for some c 2 R.

While, in Axiom A3, Z was assumed to belong to Ya as other two random variables X and
Y do, Axiom A3* requires that Z be any in Y to evaluate trade-o¤s along with varying
variances between random variables with di¤erent mean-values. What Axiom A6 required
was exact trade-o¤s between any simple random variable and outcome. Axiom A6* is more
demanding in that exact trade-o¤s along with varying mean-values should be made between
simple random variables with di¤erent variances.
Now we study conditions for models (a)-(d) when Y is the set of all simple random

variables. First of all, we shall consider additive trade-o¤ (a), in which MV utility function
is simply the sum of two functions of mean-values and variances. This functional form is
obtained by applying additive conjoint measurement (see [11]). Since U is two-dimensional,
the crucial condition for additive separability (a) is the following, well known as Thomsen
condition.

Axiom B1 (Thomsen condition). For all simple and fair random variables X; Y; and
Z and all a; x; y 2 R, if X+a � Z+a+x, and Y +a � Z+a+y, then X+a+y � Y +a+x.

This axiom is also called a cancellation. To see this, we assume from two premises of the
axiom that U (�X + a; �2X) = U (�Z + a+ x; �

2
Z) and U (�Z + a+ y; �

2
Z) = U (�Y + a; �

2
Y ).

Noting that �X = �Y = �Z = 0, if additive trade-o¤ (a) is to hold, then

f (a)� g
�
�2X
�
= f (a+ x)� g

�
�2Z
�
;

f (a+ y)� g
�
�2Z
�
= f (a)� g

�
�2Y
�
:

Adding these two together cancels out Z-related terms to give f (a+ y)�g (�2X) = f (a+ x)�
g (�2Y ). Hence, U (�X + a+ y; �

2
X) = U (�Y + a+ x; �

2
Y ), which is X + a+ y � Y + a+ x.

Axiomatizations of the remaining three separable forms are respectively based on three
types of attitudes toward risk that are invariant (or constant) over any changes of agent�s
wealth levels. Model (b) clearly satis�es the following standard concept of constant absolute
risk aversion, which says that if holding a fair and simple random variable X at wealth level
w is indi¤erent to receiving a > 0 (or paying �a if a < 0) at w, then so is at any wealth
level:

Axiom B2 (Constant absolute risk aversion). For all simple and fair random
variables X, if X + w � a+ w for some w; a 2 R, then X + x � a+ x for all x 2 R.
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It will be shown that this condition implies Thomsen condition, so that additive trade-o¤
model obtains. Furthermore, it makes mean-values linearly contribute to the whole utility
values.
Safra and Segal [18] studied e¤ects of combination of constant absolute and constant

proportional risk aversions on various functional forms which are assumed to represent pref-
erences. They termed the combination of the two constant risk aversion, formerly stated as
follows.

Axiom B3 (Constant risk aversion). For all simple and fair random variables X,
if X + w � a+ w for some w; a 2 R, then �X + x � �a+ x for all x 2 R and all � > 0.

This axiom says that if holding a fair and simple random variable X at wealth level w is
indi¤erent to receiving a > 0 (or paying �a if a < 0) at w, then any �-proportional fraction
of X will be judged to be indi¤erent to receiving �a > 0 (or paying ��a if a < 0) at any
wealth level. Together with constant absolute risk aversion (i.e., � = 1), it is proved that in
additive mean-dispersion model (b), g function of variances becomes a square root function,
i.e., it yields standard deviations.
Additive mean-variance model (d) was �rst axiomatized by Pollatsek and Tversky [16].

Later, Epstein [6] derived the model under the assumption that utility functional for random
variables is Fréchet di¤erentiable. His necessary and su¢ cient condition may be stated in
our framework as follows, where, for all simple random variables X and Y , we de�ne X + Y
to be a random variable which yields outcome x+ y with probability pX (x) pY (y).

Axiom B4 (Constant risk aversion for random wealth changes). For all simple
random variables X and Y , if X +Y � Y , then X +Z � Z for all simple random variables
Z.

While constancies of absolute and proportional risk aversions come from the requirement
that agent�s attitudes toward risk are una¤ected by changing levels of the wealth, Epstein�s
constancy is more demanding in that the agent�s wealth levels can be changed to any random
variables. This axiom is interpreted as follows: if holding a simple random variable X is
indi¤erent to the status quo when the decision maker�s wealth level is given by a random
variable Y , which is statistically independent of X, then the situation does not change
although his wealth level is transferred to any random variable as long as it remains to be
statistically independent of X.
In our framework, Axiom B4 is also necessary and su¢ cient for model (d). To grasp

the idea, recall that, for all simple random variables X and Y , �X+Y = �X + �Y and
�2X+Y = �

2
X+�

2
Y . Thus, on the (�X ; �

2
X)-plane, Axiom B4 requires that if point (a; b)+(c; d)

is indi¤erent to point (a; b), i.e., U (a+ c; b+ d) = U (a; b), then (x; y)+(c; d) is indi¤erent to
(x; y) for all (x; y) 2 R� R+. Hence indi¤erent curves on the (�X ; �2X)-plane is the straight
lines parallel to the vector (c; d), so model (d) follows.
Additively separable representations of U are summarized in the following theorem.

Theorem 4. Let Y be the set of all simple random variables. Suppose that Axioms A1,
A2, A3*, A4, A5, A6*, and A7 hold for (Y;-). Then we have:
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(1) Axiom B1 holds if and only if U(�X ; �2X) = f (�X) � g (�2X) for all simple random
variables X and for a strictly increasing, continuous, and unbounded function f on R and
a strictly increasing and continuous functions g on R+;
(2) Axiom B2 holds if and only if U(�X ; �2X) = �X � g (�2X) for all simple random

variables X and a strictly increasing and continuous function g on R+;
(3) Axiom B3 holds if and only if U(�X ; �2X) = �X���X for all simple random variables

X and some � > 0.
(4) Axiom B4 holds if and only if U(�X ; �2X) = �X���2X for all simple random variables

X and some � > 0.

Furthermore, f and g in (1) can be respectively replaced by a strictly increasing, continuous,
and unbounded function f 0 on R and a strictly increasing and continuous function g0 on R+
if and only if f 0 = cf + a and g0 = cg + b for some numbers a; b and a positive c, g in
(2) can be replaced by a strictly increasing and continuous function g0 on R+ if and only if
g0 = g + a for some number a, and �s in (3) and (4) are unique.

The proof of the theorem will be deferred to Appendix B. The �nal observation for the
need of strengthening Axioms A3 and A6 is that constructions of models (b) and (c) heavily
depend on model (a), while model (d) can be constructed directly by Axiom B4 without
those strengthening.

4 Conclusion

A vast amount of research have been devoted to re�nements and generalizations of the tra-
ditional EU axiomatization, in which the agent�s preference relation on a set of random
variables is taken as a primitive. However, little is known for similar axiomatization to guar-
antee the existence of MV utility, although several attempts have been made to characterize
MV utility. To my knowledge, only Pollatsek-Tversky�s characterization was preference-
based, but they explicitly assume means and variances of random variables in their axiom
system.
We developed preference-based axiom systems for the existence of MV utility. We specify

preferences for random variables with the same mean-value and show that those preferences
obey maximization of EU values of a quadratic utility. The key idea is to apply the con-
stant exchange risk property to the present context. Furthermore, we demonstrated that
constancies of attitudes toward risk additively separate e¤ects of mean-values and variances
on functional forms of MV utility.

Appendix A
This appendix proves su¢ ciency of Theorems 1, 2, and 3. We shall introduce three

notations for subsets of X as follows: X� is the set of all simple random variables, X�� is the
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set of all random variables with bounded supports, and X��� is the set of all bounded-in-
preference random variables. Recall that Ya is a set of random variables whose mean-values
equal a. Thus, for example, X�a is the set of all simple random variables whose mean-values
equal a.
First, we shall go through a series of lemmas to prove su¢ ciency of Axioms A1-A7 in

Theorem 1. For x; y 2 R, we say that �-compound hx;�; yi is a binary random variable. In
what follows, when hx;�; yi is fair and x 6= y, i.e., � = y= (y � x) > 0, we shall for simplicity
delete compound probability � in the notation and denote it by hx; yi.

Lemma A1. Every random variable in X�0 can be represented by a compound of a �nite
number of binary fair random variables.

Proof. Take anyX 2 X�0 for which the support ofX is given by fx1; : : : ; xm; 0;�y1; : : : ;�yng
and

pX (xi) = �i (i = 1; : : : ;m);

pX (0) = �0;

pX (�yj) = �j (j = 1; : : : ; n);

where n � 1, m � 1, xi > 0 for i = 1; : : : ;m, yi > 0 for i = 1; : : : ; n, and
Pm

i=1 �ixi =Pn
j=1 �jyj.
For k = 1; : : :m, we de�neXk to be a fair random variable whose support is fxk;�y1; : : : ;�yng,

so that its density function is given by

pXk (xk) = �k;

pXk (�yj) = j (j = 1; : : : ; n);

where

�k =

P
�ixiP

�ixi + xk
P
�j
;

` =
xk�`P

�ixi + xk
P
�j

(` = 1; : : : ; n).

Then X is a (�1; : : : ; �m)-compound of X1; : : : ; Xm, where, for k = 1; : : : ;m,

�k =
�k (

P
�ixi + xk

P
�j)P

�ixi
:

Therefore it remains to show that a fair random variable X whose support is given by
fx;�y1; : : : ;�yng is a compound of binary fair gambles hx;�y1i ; : : : ; hx;�yni, where x > 0
and yi > 0 for i = 1; : : : ; n. Let pX (x) = � and pX (�yi) = �i for i = 1; : : : ; n with

12



� +
P
�i = 1. Since X is fair, we have �x =

P
�iyi. Hence it is easy to see that X is

(�1; : : : ; �n)-compound of hx;�y1i ; : : : ; hx;�yni, where, for k = 1; : : : ; n,

�k =
�k (x+ yk)

x
:

This completes the proof of the lemma. �

For each a 2 R, we say that a real valued function Ua on Ya is linear if, for all X; Y 2 Ya
and all 0 < � < 1,

Ua (hX;�;Y i) = �Ua (X) + (1� �)Ua (Y ) ;
where Y = X� for Theorem 1, Y = X�� for Theorem 2, and Y = X��� for Theorem 3. The
existence of Ua is proved by the following lemma.

Lemma A2. Axioms A1-A3 hold for (Y;-) if and only if, for all a 2 R, there is a
linear function Ua on Ya such that, for all X; Y 2 Ya,

X - Y () Ua (X) � Ua (Y ) :
Furthermore, Ua is unique up to a positive linear transformation.

Proof. Since Ya is convex, it immediately follows from Lemma 5 in [15]. �

The following lemma proves that each Ua restricted to X�a can be represented by expected
utility form.

Lemma A3. If Axioms A1-A3 hold for (X�;-), then, for all a 2 R, there is a real
valued function ua on R such that, for all X; Y 2 X�a,

X - Y ()
X
x2R

pX (x)ua (x) �
X
x2R

pY (x)ua (x) .

Furthermore, if another real valued function va on R represents - as ua does, then there
are real numbers b > 0, c, and d such that, for all x 2 R,

va (x) = bua (x) + cx+ d.

Proof. Assume that axioms A1-A3 hold for (X�;-). Let Ua be a linear function on
X�a obtained in Lemma A2. By Lemma A1, it su¢ ces to show that there is a real valued
function ua on R such that, for all binary fair random variables hb;�ci with b > 0 and c > 0,

Ua(hb;�ci+ a) =
c

b+ c
ua(b+ a) +

b

b+ c
ua(�c+ a):
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Fix x0 > 0. Let ua (x0 + a) be assigned any real number. Then �rst we de�ne ua on
(�1; a) to satisfy that, for all x > 0,

Ua(hx0;�xi+ a) =
x

x0 + x
ua(x0 + a) +

x0
x0 + x

ua(�x+ a):

Then we de�ne ua on (a;1) to satisfy that, for all x > 0, but x 6= x0,

Ua(hx;�x0i+ a) =
x0

x+ x0
ua(x+ a) +

x

x+ x0
ua(�x0 + a):

For the time being, we shall �x x > 0 and y > 0. Let X and Y be compound random
variables de�ned by

X =

�
hx0;�x0i+ a;

2xy

K
; hx;�yi+ a

�
;

Y =

�
hx;�x0i+ a;

y(x+ x0)

K
; hx0;�yi+ a

�
;

where K = x(x0 + y) + y(x+ x0). Then X;Y 2 X�a, so that

Ua(X) =
2xy

K
Ua(hx0;�x0i+ a) +

x0(x+ y)

K
Ua(hx;�yi+ a);

Ua(Y ) =
y(x+ x0)

K
Ua(hx;�x0i+ a) +

x(x0 + y)

K
Ua(hx0;�yi+ a):

Since pX(x) = pY (x) for all x 2 R, we have Ua(X) = Ua(Y ), so that

2xyUa (hx0;�x0i+ a) + x0 (x+ y)Ua (hx;�yi+ a)
= y (x+ x0)Ua (hx;�x0i+ a) + x (x0 + y)Ua (hx0;�yi+ a) :

Substituting ua-expressions of Ua(hx0;�yi+ a) and Ua(hx;�x0i+ a) in the preceding para-
graph for this, its rearrangement gives

Ua(hx;�yi+ a) =
y

x+ y
ua(x+ a) +

x

x+ y
ua(�y + a):

Since x > 0 and y > 0 are arbitrary, this completes the representation part of the lemma.
Uniqueness proof goes as follows. Suppose that Va (X) =

P
x2R pX (x) va (x) represent

-. Then

Va (hx0;�xi+ a) =
x

x0 + x
va (x0 + a) +

x0
x0 + x

va (�x+ a) :

By Lemma A2, Va (X) = �Ua (X) + � for some � > 0 and �. Then
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va (�x+ a) =
x0 + x

x0

�
Va (hx0;�xi+ a)�

x

x0 + x
va (x0 + a)

�
=
x0 + x

x0

�
�Ua (hx0;�xi+ a) + � �

x

x0 + x
va (x0 + a)

�
=
x0 + x

x0

�
�

�
x

x0 + x
ua(x0 + a) +

x0
x0 + x

ua(�x+ a)
�
+ � � x

x0 + x
va (x0 + a)

�
=
�ua (x0 + a)� va (x0 + a) + �

x0
x+ �ua (�x+ a) + �:

Hence the uniqueness obtains. �

In fact, ua in Lemma A3 turns out to be quadratic as shown by the following lemma.

Lemma A4. If Axioms A1-A5 hold for (X�;-), then, for all X; Y 2 X�a,

X - Y () ��2X � ��2Y .

Proof. Let ua be a real valued function on R obtained in Lemma A3. It su¢ ces to
show that ua (x+ a) = �x2. First we show that ua can be scaled as a symmetric function
around a. With no loss of generality, we assume that ua (a) = 0. Fix x0 > 0. Assume
ua (x0 + a) 6= ua (�x0 + a). Then letting � = 1

2x0
(ua (�x0 + a)� ua (x0 + a)), we get

ua (x0 + a) + �x0 = ua (�x0 + a)� �x0.
Thus because of the uniqueness of ua in Lemma A3, this implies that we can assume
ua (x0 + a) = ua (�x0 + a), so that symmetry of ua around a follows. To see this, we
note, by Axiom A4, that hx;�x0i+ a � hx0;�xi+ a. Thus, by Lemma A3, we obtain that

x0
x+ x0

ua (x+ a) +
x

x+ x0
ua (�x0 + a) =

x

x+ x0
ua (x0 + a) +

x0
x+ x0

ua (�x+ a) ;

which gives

ua (x+ a)� ua (�x+ a) =
ua (x0 + a)� ua (�x0 + a)

x0
x

Hence ua (x+ a) = ua (�x+ a) for all x.
In what follows, we shall prove that ua (x+ a) = �bx2 for some b > 0. It follows from

Axiom A5 that, for X 2 X�a and � > 0,

X � �; 1

2
; a+ �

�
�


a� �; 1

2
;X + �

�
;

since �X = a. Then
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X
pX(x) (ua(x+ �)� ua(x� �)) = ua(a+ �)� ua(a� �):

By symmetry of ua around a, ua (a+ �) = ua (a� �), so thatX
pX(x) (ua(x+ �)� ua(x� �)) = 0:

Then, when X = hx;�x0i+ a, we get

x0
x+ x0

[ua(x+ a+ �)� ua(x+ a� �)] +
x

x+ x0
[ua(�x0 + a+ �)� ua(�x0 + a� �)] = 0;

so

ua(x+ a+ �)� ua(x+ a� �) = �
x

x0
[ua(�x0 + a+ �)� ua(�x0 + a� �)] :

Let � (�) = � 1
x0
[ua(�x0 + a+ �)� ua(�x0 + a� �)]. Hence

ua(x+ a+ �)� ua(x+ a� �) = � (�)x
for some � (�) 6= 0.
Substituting (2k � 1) � for x in the last equation of the previous paragraph, we obtain

that, for k = 1; 2; : : :,

ua (2k� + a)� ua (2 (k � 1) � + a) = (2k � 1) �� (�)
so that summation over k from 1 through m gives

ua (2m� + a) = m
2�� (�) : (1)

If � (�) = ��� for some � > 0, then

ua (2m� + a) = �
�

4
(2m�)2 :

Since � > 0 is arbitrary and ua is symmetric, we obtain the desired result, i.e., ua (x+ a) =
�bx2 for some b > 0.
In what follows, we shall show that � (�) = ��� for some � > 0. Substituting �

n
for � in

(1), we get

ua

�
2m�

n
+ a

�
=
m2�

n
�

�
�

n

�
: (2)

For m = n` in (2), we get

ua (2`� + a) = n`
2��

�
�

n

�
:

On the other hand, (1) for m = ` is ua (2`� + a) = `2�� (�). Hence,
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�

�
�

n

�
=
1

n
� (�) :

Substituting k
n
� for � in (1), we get

ua

�
2km�

n
+ a

�
=
m2k�

n
�

�
k

n
�

�
:

Substituting km for m in (2), we get

ua

�
2km�

n
+ a

�
=
k2m2�

n
�

�
�

n

�
=
k2m2�

n2
� (�) :

Hence,

�

�
k

n
�

�
=
k

n
� (�) :

If � (x) is strictly decreasing in x > 0, we must have that � (�x) = �� (x) for all � > 0.
Hence � (x) = ��x for some � > 0.
It remains to show that � (x) is strictly decreasing in x > 0. Let 0 < � < �0, R =


�; 1
2
;��0

�
, and S =



��; 1

2
; �0
�
. Then �R+a < �S+a. Thus by Axiom A5,


R + a� x0; 12 ;S + a+ x0
�
�


S + a� x0; 12 ;R + a+ x0

�
;

where those 1
2
-compound random variables belong to X�0. Thus we have

ua (�x0 + � + a) + ua (�x0 � �0 + a) + ua (x0 � � + a) + ua (x0 + �0 + a)
< ua (�x0 � � + a) + ua (�x0 + �0 + a) + ua (x0 + � + a) + ua (x0 � �0 + a) ;

which by symmetry of ua around a implies

ua (�x0 + � + a) + ua (�x0 � �0 + a) < ua (�x0 � � + a) + ua (�x0 + �0 + a) ;

so that

� (�0) = 1
x0
(ua (�x0 � �0 + a)� ua (�x0 + �0 + a))

< � (�) = 1
x0
(ua (�x0 � � + a)� ua (�x0 + � + a)) :

Hence � is strictly decreasing. �
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Su¢ ciency Proof of Theorem 1. Suppose that Y = X� and Axioms A1-A7 hold for
(Y;-). Then it follows from Lemma A4 that, for all X; Y 2 Y,

�X = �Y and �2X = �
2
Y =) X � Y:

For all X 2 Y, let cX denote the certainty equivalent of X, i.e., X � cX , whose unique
existence is assured by Axioms A6 and A7. Therefore, by Axiom A7, for all X; Y 2 Y,
X - Y () cX � cY . Thus we de�ne a real valued function U on R � R+ as follows: for
all X 2 Y,

U
�
�X ; �

2
X

�
= cX .

Hence, for all X; Y 2 Y,

X - Y () U
�
�X ; �

2
X

�
� U

�
�Y ; �

2
Y

�
.

By Axiom A7 and Lemma A4, it is easy to see that U (�; �) is strictly increasing in � and
strictly decreasing in �. �

Su¢ ciency Proofs of Theorems 2 and 3. In what follows, we assume that Axioms
A1-A7 hold for (Y;-). By Lemmas A2 and A4, there exist linear functions Ua on Ya for all
a 2 R such that

(1) for all X;Y 2 Ya, X - Y () Ua (X) � Ua (Y );
(2) for all X 2 X�a, Ua (X) = ��2X ,

where Y = X�� for Theorem 2 and Y = X��� for Theorem 3. Note that, for any X 2 Y0,

X; 1

2
;�X

�
is symmetric and belongs to Y0. Hence, by linearity of U0, we have

U0
�

X; 1

2
;�X

��
= 1

2
(U0 (X) + U0 (�X)) :

By Axiom A4, U0 (X) = U0 (�X), so that U0
�

X; 1

2
;�X

��
= U0 (X). Since, by Axioms

A8 and A9, dominance with respect to mean-preserving spreads and truncation dominance
respectively hold at any wealth level, it su¢ ces to prove that U0 (X) = ��2X > �1 for all
symmetric X which belong to X��0 nX�0 for su¢ ciency proof of Theorem 2 and X���0 nX��0 for
su¢ ciency proof of Theorem 3.
Assume that Axiom A8 holds. Consider a symmetric X 2 X��0 n X�0. We show that

there exist two sequences of simple symmetric random variables, fYng � X�0 and fZng � X�0,
such that Yn - X - Zn for all n 2 N , �2Yn � �2Yn+1 � �2Zn+1 � �2Zn for all n 2 N , and
limn!1 �

2
Yn
= limn!1 �

2
Zn
= �2X . With no loss of generality, we assume that pX ([�1; 1]) = 1.

Let xn;k =
q

k
2n
for n 2 N and k = 0; 1; : : : ; 2n. For n 2 N , let Yn and Zn be simple random

variables whose density functions are given as follows: for k = 1; : : : ; 2n and ` = 1; : : : ; 2n�1;
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pYn (xn;k) = pX ((xn;k�1; xn;k]) ;

pYn (�xn;k) = pX([�xn;k;�xn;k�1));
pYn (0) = pX (0) ;

pZn (xn;`) = pX ((xn;`; xn;`+1]) ;

pZn (�xn;`) = pX ([�xn;`+1;�xn;`)) ;
pZn (0) = pX ([�xn;1; xn;1]) :

Since X is symmetric, so are Yn and Zn for all n 2 N . Thus fYng � X�0 and fZng � X�0. Note
that, for all n 2 N , Yn is a mean-preserving spread of Yn+1 and Zn+1 is a mean-preserving
spread of Zn. Also, note that, for all n 2 N , Yn is a mean-preserving spread of X and X is
a mean-preserving spread of Zn. Hence, by Axiom A8, for all n 2 N ,

Yn - Yn+1 - X - Zn+1 - Zn:
Since Yn; Zn 2 X�0, it follows from Theorem 1 that infn �2Yn � supn �

2
Zn
. Therefore, for all

n 2 N ,

� �2Yn = �
2nX
k=1

k

2n
fpYn ((xn;k�1; xn;k]) + pYn ([�xn;k;�xn;k�1))g

� U0 (X) � ��2Zn = �
2n�1X
k=1

k

2n
fpZn ((xn;k; xn;k+1]) + pZn ([�xn;k+1;�xn;k))g

Since the di¤erence between the two sums above is not greater than 1
2n
, which vanishes as n

gets large, it follows from the de�nition of integration that

U0 (X) =

Z 1

�1
x2dpX (x) = ��2X :

This completes the su¢ ciency proof of Theorem 2.
To prove su¢ ciency of Theorem 3, we assume that Axioms 8 and 9 hold. Consider a

symmetric X 2 X���0 n X��0 . Since X is bounded in preference, there exists an a � 0 such
that ha;�ai - X. By Axiom A8, X - Xb;1 for all b � 0. Since Xb;1 2 X��0 , we obtain that

U0 (ha;�ai) � U0 (X) � inf
b
U0 (Xb;1) = �

Z 1

�1
x2dpX (x) :

This implies that variance of X is bounded. Assume that

U0 (X) < �
Z 1

�1
x2dpX (x) :
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Then there exists a c > 0 such that X � hc;�ci � Xb;1 for all b � 0. By Axiom A9,
Xd;1 � hc;�ci for some d � 0. This is a contradiction. Hence, we must have U0 (X) =
�
R1
�1 x

2dpX (x). This completes the su¢ ciency proof of Theorem 3. �

Appendix B
Recall that X� is the set of all simple random variables. We prove Theorem 4. In what

follows we shall assume that Axioms A1, A2, A3*, A4, A5, A6*, and A7 hold for (X�;-).

(1) Necessity of Axiom B1 easily obtains. Thus we shall prove its su¢ ciency. For nota-
tional abuse, by -, we shall denote the binary relation on R � R+ induced by - on X� as
follows: for all (�; a) ; (�; b) 2 R� R+,

(�; a) - (�; b) () X - Y for some X;Y 2 X� with
(�; a) =

�
�X ; �

2
X

�
and (�; b) =

�
�Y ; �

2
Y

�
:

Then it su¢ ces to show that there exist a strictly increasing, continuous, and unbounded
function f on R, and a strictly increasing and continuous function g on R+ such that, for all
(�; a) ; (�; b) 2 R� R+,

(�; a) - (�; b) () f (�)� g (a) � f (�)� g (b) .
It follows from [11] that su¢ cient axioms for the existence of f and g are given by the
following six conditions, C1-C6, which are understood as applying to all �; �;  2 R and
a; b; c 2 R+.

C1. (order). - is a weak order.

C2. (independence). If (�; a) - (�; a), then (�; b) - (�; b); if (�; a) - (�; b), then
(�; a) - (�; b).

C3. (Thomsen condition). If (�; c) � (; b) and (; a) � (�; c), then (�; a) � (�; b).

C4. (restricted solvability). If (�; b) - (�; a) - (; b), then (�; b) � (�; a) for some � 2 R;
if (�; b) - (�; a) - (�; c), then (�; d) � (�; a) for some d 2 R+.

C5. (Archimedeanity). Every bounded standard sequence is �nite, where f�i 2 R : i 2 Kg
(respectively, fai 2 R+ : i 2 Kg) is said to be a standard sequence if there exist d; e 2 R
(resp., �; � 2 R+) such that d 6= e (resp., � 6= �) and for all i; i + 1 2 K; (�i; d) � (�i+1; e)
(resp., (�; ai) � (�; ai+1)) for a set K of consecutive integers.

C6. (Essentiality). : ((�; d) � (�; d)) for some �; � 2 R and some d 2 R+; : ((�; d) � (�; e))
for some � 2 R and some d; e 2 R+.
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We prove that Axioms A1, A2, A3*, A4, A5, A6*, A7, and B1 imply C1-C6. C1 follows
from Axiom A1. The �rst part of C2 follows from Axiom A7. The second part of C2
follows from Lemma A4, which follows from Axioms A1-A5, in Appendix A. To prove C3,
suppose that (�; c) � (; b) and (; a) � (�; c). Then take any X; Y; Z 2 X� such that
 = �X = �X = �Z , b = �2X , a = �

2
Y , and c = �

2
Z . Thus X;Y; Z 2 X�

 and

(�; c) � (; b) =)
�
�Z + (�� �Z) ; �2Z

�
�
�
�X ; �

2
X

�
;

(; a) � (�; c) =)
�
�Y ; �

2
Y

�
�
�
�Z + (� � �Z) ; �2Z

�
;

which imply X � Z + ��  and Y � Z + � � . By Axiom B1, X + � �  � Y + �� , so
that (�; �2X) � (�; �2Y ). Hence, (�; b) � (�; a), so that Thomsen condition obtains.
The �rst part of C4 follows from Axioms A6* and A7. To see this, take any X 2 X�0,

Z 2 X�, and a 2 R. Then by Axiom A6*, Z � X + a + b for some b 2 R. Hence,
(a+ b0; �2X) - (�Z ; �

2
Z) - (a+ b00; �2X) for some b

0 � b � b00, and (�Z ; �2Z) � (a+ b; �2X), so
that the desired result obtains. The second part of C4 follows from Axioms A3*. To check
this, take anyX; Y 2 X�0, Z 2 X�, and a 2 R, which satisfy thatX+a - Z - Y +a. Then by
Axiom A3*, Z � hX + a;�;Y + ai for some 0 < � < 1. Hence (a; �2X) - (�Z ; �2Z) - (a; �2Y )
and (�Z ; �2Z) � (a; ��2X + (1� �)�2Y ), so that the desired result obtains.
For C5, we show �rst that any bounded standard sequence on R is �nite. Take any

X; Y 2 X�0 with �2X 6= �2Y , and a 2 R. Assume that �2X < �2Y . When �2Y < �2X , the proof is
similar. Then by Axiom A6*, a+X � �1+a+Y for some �1 > 0. Thus we de�ne a sequence
�2; �3; : : : recursively by the indi¤erence relations �k + a+X � �k+1 + a+ Y for k 2 N , so
that �1 < �2 < � � � , an increasing in�nite sequence. Assume that f�ig is bounded. Then
supk �k exists. Let �

� = supk �k, so �k < �
� for all k. Note that �k + a+X � �� + a+ Y .

However, By Axiom A6*, a+ � +X � �� + a+ Y for some � < ��. This is a contradiction,
so that f�ig must be unbounded. Hence, any bounded standard sequence on R must be
�nite.
Next we show that any bounded standard sequence on R+ is �nite. Take any a; b 2 R

with a 6= b, and X; Y 2 X�0 with �2X < �2Y and Y + b - X + a - b. Then, by Axiom
A3*, a + X � hY ;�1; 0i + b for some 0 � �1 � 1. Thus we de�ne a sequence, �2; �3; : : :,
recursively by the indi¤erence relations hY ;�k; 0i + a � hY ;�k+1; 0i + b for k = 1; 2; : : : as
long as b + Y - hY ;�k; 0i + a - b (i.e., U (b; �2Y ) � U (a; �k�2Y ) � U (b; 0)). Let K be the
set of ks thus de�ned. It may be �nite or in�nite. For all k 2 K, let Xk = hY ;�k; 0i. Then
�Xk = 0 and �

2
Xk
= �k�

2
Y . It follows from the indi¤erence relations which de�ne the sequence

that U (a; �2X) = U
�
b; �2X1

�
and U

�
a; �2Xk

�
= U

�
b; �2Xk+1

�
for k 2 K, so that U (a; �2X) =

U (b; �1�
2
Y ) and U (a; �k�

2
Y ) = U (b; �k+1�

2
Y ) for k 2 K. Therefore, f�k�2Y : k 2 Kg is a

bounded standard sequence on R+. We note that any bounded standard sequence on R+
can be constructed in this way.
Suppose that K is in�nite. Assume that a < b. When b < a, the proof is similar.

Then �2X < �2Xk < �2Xk+1 for k � 1, so f�k : k 2 Kg is a bounded increasing sequence.
Let �1 = supk �k and X1 = hY ;�1; 0i, so �X1 = 0 and �2X1 = �1�

2
Y . Since X1 +

a � X1 + b � X + a, Axiom A3* implies that X1 + b � hX + a; �;X1 + ai for some
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0 < � < 1. Let Z = hX; �;X1i. Then �Z = 0 and �2Z = ��2X + (1� �)�2X1, so that
�2Z < �

2
Xn
< �2Xn+1 < �

2
X1 for some n 2 K. However, X1+ b � Xn+1+ b � Xn+ a � Z + a,

so that X1 + b � Z + a. This contradicts X1 + b � Z + a. Hence K is �nite.
C6 obtains as follows. By Axiom A7, a+X � b+X for some a; b 2 R and some X 2 X�0.

Thus : ((a; �2X) � (b; �2X)). By Axiom A5,


X � a; 1

2
;Y + a

�
�


Y � a; 1

2
;X + a

�
whenever

�X < �Y . Let X 0 =


X � a; 1

2
;Y + a

�
and Y 0 =



Y � a; 1

2
;X + a

�
. Then �X0 = �Y 0 and

�2X0 > �2Y . Thus : ((b; �2X) � (b; �2Y )), where b = �X0. This completes the proofs of C1-C6.

Since C1-C6 hold true, we have U(�X ; �2X) = f (�X)� g (�2X). By Axiom A7, a < b =)
X + a � X + b for X 2 X�0, so that f (a) < f (b). Thus f is strictly increasing function f on
R. By Lemma A4, g is strictly increasing on R+.
Next we show continuity of f and g. We say that f has a gap at a 2 R if limi!1 f (ai) <

limi!1 f (bi) whenever ak < ak+1 < a < bk+1 < bk for all k and limi!1 ai = limi!1 bi = a.
When f has no gap at a 2 R, f is continuous at a. A gap of g at a 2 R+ is similarly de�ned.
Since there are at most countable number of points in R at which f and g have gaps, there
exist points in R (respectively, R+) at which f (respectively, g) is continuous.
Suppose that f has a gap at a. Let faig (respectively, fbig) be a strictly increasing

(respectively, decreasing) sequence which converges to a from below (respectively, above).
Assume that limi!1 f(ai) < f(a). We derive a contradiction. When limi!1 f(bi) > f(a),
the proof is similar. Let b 2 R+ be a point at which g is continuous. Take b0 such that
0 < g(b) � g(b0) < f (a) � limi!1 f(ai). Let X and Y be random variables in X�0 which
satisfy �2X = b and �

2
Y = b

0. Then, for all i,

U
�
�Y+ai ; �

2
Y+ai

�
= f (ai)� g (b0) < U

�
�X+a; �

2
X+a

�
= f (a)� g (b) :

Since U
�
�X+a; �

2
X+a

�
< U

�
�Y+a; �

2
Y+a

�
, it follows from Axiom A6* that X + a � Y + c for

some c < a. However, Y + ak � X + a for some c < ak < a. This is a contradiction. Hence
f has no gap, so is continuous on R.
Suppose that g has a gap at a 2 R+. Let faig (respectively, fbig) be a strictly increasing

(respectively, decreasing) sequence which converges to a from below when a > 0 (respectively,
from above when a � 0). Assume that limi!1 g(bi) > g(a) . We derive a contradiction.
When limi!1 g(ai) < g(a), the proof is similar. Let X and Xi for i be random variables
in X�0 such that �2X = a and �2Xi = bi. Since f is continuous, take b; b0 2 R such that
0 < f(b)� f(b0) < limi!1 g(bi)� g (a). Then for all i,

U
�
�Xi+b; �

2
Xi+b

�
= f (b)� g (bi) < U (�X+b0 ; �X+b0) = f (b0)� g (a) :

Since U
�
�X1+b; �

2
X1+b

�
< U (�X+b0 ; �X+b0) < U (�X+b; �X+b), it follows from Axiom A3* that

X + b0 � hX + b;�;X1 + bi for some 0 < � < 1. Then we have
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U (�X+b0 ; �X+b0) = f (b)� g
�
��2X + (1� �)�2X1

�
= f (b)� g (�a+ (1� �) b1)
< f (b)� g (bn) (for some n)
= U

�
�Xn+b; �

2
Xn+b

�
:

This is a contradiction. Hence g has no gap.
It remains to show that f is unbounded. To show this, take any X 2 X�0 with �2X > 0,

so g (�2X) > 0. By Axiom A7, we can de�ne fai : i 2 Ng by a1 � X, ak+1 � X + ak for
k = 1; 2; : : :. Then f (a1) = �g (�2X) and f (ak+1) = f (ak) + f (a1) for k 2 N . Hence
f (an) = nf (a1) < 0 for all positive integers n. Hence f is unbounded below. Similarly,
we de�ne fbi : i 2 Ng by 0 � X + b1, bk � X + bk+1 for k 2 N . Then f (b1) � g (�2X) = 0
and f (bk) = f (bk+1) � g (�2X) for k 2 N . Hence f (bn) = nf (b1) > 0 for all n, Hence f is
unbounded above. This completes the proof of (1). The uniqueness of f and g follows from
Theorem 2 in Chapter 6 of [11].

(2) Necessity of Axiom B2 easily follows. Thus we show its su¢ ciency. Take anyX; Y; Z 2
X�c for some c 2 R. By Axiom A6*, X � Z + a, and Y � Z + b for some a; b 2 R. Then by
Axiom B2, X + b � Z + a+ b and Y + a � Z + b+ a. By transitivity of �, X + b � Y + a,
so that Axiom B1 holds true.
Take any a 2 R and anyX; Y 2 X�0 with �2X 6= �2Y . By Axiom B6*, X+a � Y +c for some

c 2 R. By Axiom B2, X + a+ x � Y + c+ x for all x 2 R, so U (a+ x; �2X) = U (c+ x; �2Y ).
Thus, (1) implies that

f (a+ x)� f (c+ x) = g
�
�2X
�
� g

�
�2Y
�
6= 0:

Since �2X , �
2
Y , and x are arbitrary and f and g are continuous and strictly increasing, f must

be linear. The uniqueness of g follows from the uniqueness in (1).

(3) It is easy to show necessity of Axiom B3. Thus we show its su¢ ciency. Since
Axiom B3 implies Axiom B2, we have U(�X ; �2X) = �X � g (�2X) for all X 2 X�. Take any
X 2 X�0 and any w 2 R. Then, by Axiom A6, X + w � a + w for some a 2 R. Thus
U (X + w) = U (a+ w), which gives g (�2X) = �a. By Axiom B3, �X + x � �a + x for all
x 2 R and all � > 0, so that g (�2�2X) = ��a for all � > 0. Since X 2 X�0 is arbitrary, we
obtain that, for all � > 0 and all x � 0,

�g (x) = g
�
�2x2

�
:

Since g is continuous, we must have g (x) = �
p
x for a unique � > 0.

(4) Necessity of Axiom B4 easily obtains. Thus we show its su¢ ciency. Assume that
Axiom B4 holds. For X 2 X�, we shall write

P
nX = (� � � ((X +X) +X) � � � ) + X (or

simply X + � � �+X, n times in the sum). First, we show two claims.
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Claim 1. If X � 0, then
P

nX � 0.

Proof. If X + Y � Y , then by Axiom B4, X + X + Y � X + Y , so
P

2X + Y � Y .
Thus applying Axiom B4 n times, we obtain that

P
nX+Y � Y . Letting Y = 0, we obtain

the desired result. �

Claim 2. If X 6= 0, Y 6= 0, X � 0, and Y � 0, then �X=�Y = �2X=�2Y .

Proof. Take any X; Y 2 X� with X 6= 0, Y 6= 0, X � 0, and Y � 0. Suppose that
�X=�Y < �

2
X=�

2
Y . Then there is a rational number

m
n
> 0 such that �X=�Y < m

n
< �2X=�

2
Y .

Then n�X < m�Y and m�2Y < n�
2
X , so that U (n�X ; n�

2
X) < U (m�Y ;m�

2
Y ). Thus

U

�
�P

nX
; �2P

nX

�
< U

�
�P

m
; �2P

mY

�
so that

P
nX �

P
m Y . But, Claim 1 implies that 0 �

P
nX and 0 �

P
m Y , so

P
nX �P

m Y , a contradiction. When �
2
X=�

2
Y < �X=�Y , a similar contradiction obtains. Hence,

�X=�Y = �
2
X=�

2
Y . �

Fix Z 2 X� with Z � 0 and �Z > 0. Let � = �Z=�2Z . By Axiom A6, for any X 2 X�,
X � cX for some cX 2 R. Then (X � cX) + cX � cX , so by Axiom B4, X � cX � 0. By
Claim 2, �2X=�

2
Z = (�X � cX) =�Z . Hence, cX = �X � ��2X . Note that, for all X; Y 2 X�,

X - Y i¤ cX � cY . Hence, U (�X ; �2X) = � (�X � ��2X) for a strictly increasing function �
on R. The uniqueness of � follows from Claim 2. This completes the proof. �
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