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Abstract. Modularity proposed by Newman and Girvan is the most commonly used
measure when the nodes of a graph are grouped into communities consisting of tightly
connected nodes. However, some authors pointed out drawbacks of the modularity, the
main issue of which is resolution limit. Resolution limit refers to the sensitivity of the
modularity to the total number of edges in the graph, which leaves small communities
not identified and hidden inside larger ones. To overcome this drawback, Li et al. have
proposed a new measure called modularity density. In this paper, introducing a variant of
the semidefinite programming called 0-1SDP, we show that the modularity density maxi-
mization can be modeled as 0-1SDP equivalently. Then we solve a relaxation problem of
0-1SDP to obtain an upper bound on the modularity density, and propose a lower bounding
algorithm based on the combination of spectral heuristics and dynamic programming.

1. Introduction

Network analysis has received a growing attention. One of the most important issues
in the network analysis is to find a meaningful structure, which often addresses identifying
or detecting community structure. Here communities are the sets of nodes consisting of
tightly connected nodes, but loosely connected each other. Community detection is applied
to analyze the underlying relationship of diverse networks such as the social network, the
biological network, the world-wide-web, and VLSI network.

A variety of approaches to detect communities has been proposed by several researchers,
then a novel measure, called modularity, is proposed by Newman and Girvan [24]. The mod-
ularity was originally used as a stopping criterion of the hierarchical divisive algorithm [24],
and then Newman [23] suggested the alternative approach of maximizing the modularity
directly since a high value of the modularity represents a good community structure. The
NP-hardness of the modularity maximization problem shown by Brandes et al. [6] turned
researchers’ attention to heuristic algorithms resulting in several efficient heuristics, while
exact algorithms have been proposed only in a few papers [2, 29, 3].

The modularity maximization became one of the central subjects of research, but some
authors pointed out its drawbacks, the main issue of which is resolution limit. Resolution
limit, brought up in Fortunato and Barthélemy [11], refers to the sensitivity of the modular-
ity to the total number of edges in the graph, which leaves small communities not identified
and hidden inside larger ones. This narrows the application area of the modularity maxi-
mization since most of real-world networks may contain communities with different scales.
To overcome the resolution limit, there have been extensive studies so far [4, 22, 13, 28].
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Recently, Li et al. [17] have proposed a new measure for community detection, which is
called modularity density, and the problem of maximizing the modularity density can be
straightforwardly formulated as a nonlinear binary programming.

As for the mathematical optimization approaches for the modularity density maximiza-
tion, Costa [7] has presented some mixed integer linear programming formulations, MILP
for short, which enables an application of general-purpose solvers, e.g., CPLEX, Gurobi and
Xpress, to the problem. However, the number of communities must be fixed in advance,
and a difficult auxiliary problem need be solved in their formulations. More recently, a
hierarchical divisive heuristics has been proposed by Costa et al. [8] to obtain a good lower
bound on the modularity density.

In this paper, for the modularity density maximization, we give a new formulation based
on a variant of the semidefinite programming called 0-1SDP. The advantage of this formu-
lation is twofold: it does not require the number of communities be known, and its size is
independent of the number of edges of the graph in contrast to MILP formulations. In order
to obtain an upper bound on the modularity density, we propose to relax 0-1SDP to a semi-
definite programming problem with non-negative constraints, and the resulting problem can
be solved in polynomial time. Moreover, we develop a method based on the combination
of spectral heuristics and dynamic programming to construct a feasible solution from the
solution obtained by the relaxation problem.

This paper is organized as follows. In Sections 2 and 3, giving the definition of the
modularity density and a nonlinear binary programming formulation of the modularity
density maximization, we review some properties of the modularity density. In Section 4,
we present 0-1SDP formulation for the modularity density maximization and show the
equivalence between both problems. In Section 5, we propose a method to solve a doubly
non-negative relaxation problem of 0-1SDP, and in Section 6 we explain a heuristic algorithm
which constructs a feasible solution by means of the solution of the relaxation problem. In
Section 7, we report the computational experiments. Finally, we give some conclusions and
further research in Section 8.

2. Definitions and Notation

Let G = (V, E) be an undirected graph with the set V of n nodes and the set E of m
edges. We assume that V has at least two nodes. We say that Π = {C1, C2, . . . , Ck } is a
partition of V if V = ∪k

p=1Cp, Cp ∩ Cq = ∅ for any distinct pair p and q, and Cp $= ∅ for
any p. Each member Cp of a partition is called a community. We denote the set of edges
that have one end-node in C and the other end-node in C ′ by E(C, C ′). When C = C ′, we
abbreviate E(C,C ′) to E(C) for the sake of simplicity. Then modularity density, denoted
by D(Π), for a partition Π is defined as

D(Π) =
∑

C∈Π

(
2|E(C)|−

∑
C′∈Π |E(C, C ′)|
|C|

)
,

where | · | denotes the cardinality of the corresponding set. We refer to each term of the
above summation as the contribution of community to the modularity density.



DOUBLY NONNEGATIVE RELAXATION FOR MODULARITY DENSITY MAXIMIZATION 3

Modularity density maximization problem, MD for short, is to find a partition Π of V
that maximizes the modularity density D(Π), which is formulated as

MD

∣∣∣∣∣∣∣

maximize
∑

C∈Π

(
2|E(C)|−

∑
C′∈Π |E(C, C ′)|
|C|

)

subject to Π is a partition of V .

A nonlinear binary programming formulation for MD has been proposed in Li et al. [17].
Although the optimal number of communities is a priori unknown similarly to the modularity
maximization problem, we suppose it is known for the time being, and denote it by t, and let
T be the index set { 1, 2, . . . , t }. Introducing a binary variable xip indicating whether node i
belongs to community Cp, we have the following nonlinear binary programming formulation:

NLP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

p∈T

(2
∑

i∈V

∑
j∈V aijxipxjp −

∑
i∈V dixip∑

i∈V xip

)

subject to
∑

p∈T

xip = 1 (i ∈ V ),
∑

i∈V

xip ≥ 1 (p ∈ T ),

xip ∈ { 0, 1 } (i ∈ V, p ∈ T ),

where aij is the (i, j) element of the adjacency matrix A of graph G, and di is the degree
of node i ∈ V . The first set of constraints states that each node belongs to exactly one
community, and the second set of constraints imposes that each community should be a
nonempty subset of V . The objective function in this problem is the sum of fractional
functions with a quadratic numerator and a linear denominator. One of the widely used
solution approaches for the problem of this kind is a parametric algorithm by Dinkelbach [9].
Another approach is a branch-and-bound algorithm [5, 16] in global optimization area.

3. Some Properties of Modularity Density

Now suppose that there exist several isolated nodes in a graph G. After removing the
isolated nodes from G, we find a partition Π! that maximizes the modularity density on the
reduced graph of G. If the contribution of a community is non-negative for any community
of Π!, then Π!∪{C̄} is an optimal partition on the original graph G, where C̄ consists of the
isolated nodes once deleted. If there exist some communities with a negative contribution,
then the contribution increases by adding the isolated nodes to these communities since the
denominator of the contribution increases. Therefore we have the following lemma.

Lemma 3.1 (Costa [7], Lemma 1.). The isolated nodes can be assigned to communities a
posteriori.

Due to Lemma 3.1, we have only to consider graphs with no isolated nodes.

Proposition 3.2 (Costa [7], Proposition 1, Corollary 1, and Corollary 2.). Let Π! be a par-
tition with maximum modularity density, then the size of each community is between 2 and
n − 2(|Π!|− 1), i.e.,

2 ≤ |C| ≤ n − 2(|Π!|− 1) for any C ∈ Π!.
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4. Formulations

In this section, we first present a reformulation of the modularity density maximization,
which is based on MILP formulation according to Costa [7]. Next, we show that modularity
density maximization can be equivalently formulated as 0-1SDP, a variant of the semidefinite
programming.

Hereafter, Sn,S+
n and Nn denote the set of n× n symmetric matrices, the positive semi-

definite cone, and the symmetric non-negative cone, i.e.,

Sn = {Y ∈ Rn×n | Y = Y $ },

S+
n = {Y ∈ Sn | u$Y u ≥ 0 for all u ∈ Rn },

Nn = {Y = (yij) ∈ Sn | yij ≥ 0 for all i, j ∈ {1, 2, . . . , n} }.

For a given vector u, Diag(u) is the diagonal matrix with ui as the i-th diagonal element,
and vec(U) is the vector obtained by stacking columns of a given matrix U .

4.1. MILP formulation. We can rewrite the objective function in the problem MD as
follows:

∑

p∈T

(
4

∑
{i,j}∈E xipxjp −

∑
i∈V dixip∑

i∈V xip

)
,

due to the definition of adjacency matrix A = (aij)ij∈V . The quadratic term xipxjp can be
linearized by replacing it with a new variable yijp and adding the following Fartet inequali-
ties [10]:

yijp ≤ xip, yijp ≤ xjp, xip + xjp ≤ yijp + 1 for p ∈ T . (4.1)

Note that the last inequality in (4.1) is redundant owing to the objective function of max-
imizing with respect to the variable yijp, hence can be omitted. Next, we introduce a
continuous variable αp defined as:

αp =
4

∑
{i,j}∈E yijp −

∑
i∈V dixip∑

i∈V xip
.

This equality constraint can be relaxed to

αp ≤
4

∑
{i,j}∈E yijp −

∑
i∈V dixip∑

i∈V xip
, (4.2)

without overlooking an optimal solution due to the objective function. Since the denomi-
nator in (4.2) is positive, we can rewrite it as

αp

∑

i∈V

xip ≤ 4
∑

{i,j}∈E

yijp −
∑

i∈V

dixip.

Finally, to linearize the product αpxip, we then introduce a continuous variable γip to replace
αpxip and make use of the following McCormick inequalities [19]:

Lαxip ≤ γip ≤ Uαxip for i ∈ V , p ∈ T ,

αp − Uα(1 − xip) ≤ γip ≤ αp − Lα(1 − xip) for i ∈ V , p ∈ T ,



DOUBLY NONNEGATIVE RELAXATION FOR MODULARITY DENSITY MAXIMIZATION 5

where Lα and Uα are lower and upper bounds of αp, respectively. From the above discussion,
MILP formulation is given as

MILP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

p∈T

αp

subject to
∑

p∈T

xip = 1 (i ∈ V ),

2 ≤
∑

i∈V

xip ≤ n − 2 (t − 1) (p ∈ T ),

yijp ≤ xip, yijp ≤ xjp ({i, j} ∈ E, p ∈ T ),∑

i∈V

γip ≤ 4
∑

{i,j}∈E

yijp −
∑

i∈V

dixip (p ∈ T ),

Lαxip ≤ γip ≤ Uαxip (i ∈ V, p ∈ T ),
αp − Uα(1 − xip) ≤ γip ≤ αp − Lα(1 − xip) (i ∈ V, p ∈ T ),
xip ∈ {0, 1} (i ∈ V, p ∈ T ),
yijp ∈ R ({i, j} ∈ E, p ∈ T ),
Lα ≤ αp ≤ Uα (p ∈ T ),
γip ∈ R (i ∈ V, p ∈ T ).

From the inequality (4.2) and Proposition 3.1, a valid lower bound on the variable αp is
attained when the corresponding community consists of only two nodes with the largest
degree, thus Lα is given as Lα = −(dmax1 + dmax2)/2 where dmax1 and dmax2 are the largest
and the second largest degrees, respectively. On the other hand, in order to obtain the
upper bound on αp, we need to solve the following auxiliary problem:

AP

∣∣∣∣∣∣∣∣∣∣

maximize
4

∑
{i,j}∈E xixj −

∑
i∈V dixi∑

i∈V xi

subject to 2 ≤
∑

i∈V

xi ≤ n − 2(t − 1),

xi ∈ {0, 1} (i ∈ V ).

The problem AP is a problem of maximizing a nonlinear objective function with binary vari-
ables, thus difficult to optimize globally. Using a nonlinear programming solver SCIP [1],
Costa solved the continuous relaxation problem of AP. In our experiment which is done for
the purpose of comparing the solutions obtained by MILP formulation and 0-1SDP formu-
lation introduced in Subsection 4.2, we solve the problem AP to optimality by Dinkelbach’s
parametric algorithm.

4.2. 0-1SDP formulation. Now we consider the following problem:

0-1SDP

∣∣∣∣∣∣∣∣

maximize Tr((2A − D)Z)
subject to Zen = en,

Z2 = Z,
Z ∈ Nn,

where D is a diagonal matrix whose i-th diagonal entry is the degree of node i, i.e., D =
Diag(d1, d2, . . . , dn) ∈ Rn×n, and en is the n-dimensional vector of 1’s. We call the problem
0-1SDP because Peng and Xia stated “we call it 0-1SDP owing to the similarity of the
constraint Z2 = Z to the classical 0-1 requirement in integer programming” in [25].

Henceforth we will show the equivalence between the problems MD and 0-1SDP.
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Lemma 4.1. For any feasible solution Z = (zij) of 0-1SDP, there is a matrix X which
satisfies

Xe# = en, (4.3)

X$en ≥ e#, (4.4)

X ∈ {0, 1}n×#, (4.5)

Z = X(X$X)−1X$, (4.6)

for some positive integer #.

Proof. Let Z be a feasible solution of 0-1SDP. Then it clearly satisfies the positive semi-
definiteness due to the idempotence constraint. Then there exists an index i1 ∈ V which
satisfies zi1i1 = max{ zij | i, j ∈ V }, which is positive owing to the non-negativity of Z and
the constraint Zen = en. Let us define the index set I1 = { j ∈ V | zi1j > 0 }, then we
readily obtain the following equalities

∑

j∈I1

(zi1j)2 = zi1i1 and
∑

j∈I1

zi1j = 1,

due to the constraints Z2 = Z, Zen = en and the symmetry of Z. Since zi1i1 is positive,
the first equality reduces to

∑

j∈I1

(
zi1j

zi1i1

)
zi1j = 1.

By using the second equality, this yields
∑

j∈I1

(
zi1j

zi1i1

)
zi1j =

∑

j∈I1

zi1j ,

which is rewritten as
∑

j∈I1

(
zi1j

zi1i1
− 1

)
zi1j = 0.

From the non-negativity of zij and the maximality of zi1i1 , we have (zi1j/zi1i1 − 1) = 0,
which implies zi1j = zi1i1 for any j ∈ I1. Then we have

zi1i1 = zi1j =
1

|I1|
for any j ∈ I1. (4.7)

For an index j ∈ I1, we consider the (i1, j) element, denoted by Z2
i1j , of the matrix Z2,

which is given as

Z2
i1j =

∑

k∈V

zi1kzkj =
∑

k∈I1

zi1kzkj = zi1i1




∑

k∈I1

zkj



 .

Note that the last equality is due to (4.7). The above equality, Z2 = Z and (4.7) yield

zi1i1 = zi1i1




∑

k∈I1

zkj



 ,
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which is reduced to
1 =

∑

k∈I1

zkj .

This implies that zjk = 1/|I1| for any j, k ∈ I1 owing to the maximality of zi1i1 and the
constraint Zen = en. Denote the sub-matrix (zij)i,j∈I1 by ZI1 . By permuting the rows and
columns of Z simultaneously, we obtain

P$ZP =
[
ZI1 O
O ZĪ1

]

where P is an appropriate permutation matrix, and Ī1 = V \ I1. Then it is clear that the
sub-matrix ZĪ1

satisfies the following:

ZĪ1
e|Ī1| = e|Ī1|, Z2

Ī1
= ZĪ1

and ZĪ1
∈ N|Ī1|.

Thus repeating the process described above, we can convert Z to a block diagonal matrix
as follows:

P$ZP =





ZI1

ZI2

. . .
ZI!




,

where each block diagonal element ZIp is the |Ip|× |Ip| matrix whose elements are all 1/|Ip|.
Now, we construct a matrix X = (xip) such that

xip =

{
1 (if i ∈ Ip),
0 (otherwise),

then X clearly satisfies (4.3), (4.4) and (4.5), and we can confirm Z = X(X$X)−1X$

by a simple calculation. Note that the inverse of X$X exists since the matrix X$X is a
nonsingular diagonal matrix whose diagonal entry is the number of 1’s of each column of X
by (4.3), (4.4) and (4.5). !

We say that the matrix X = (xip) which satisfies the conditions (4.3), (4.4) and (4.5) is
an incidence matrix of a partition Π = {C1, C2, . . . , Ck }, that is, each member Cp of Π is
represented as Cp = { i ∈ V | xip = 1 }.

Theorem 4.2. The problem 0-1SDP is equivalent to the problem MD.

Proof. Let Z be an optimal solution of 0-1SDP, then we obtain an incidence matrix X
representing a partition Π which satisfies Z = X(X$X)−1X$ due to Lemma 4.1, and let us
denote the optimal value of an optimization problem by ω. Since the objective function in
the problem MD is written as Tr((2A − D)Z) by means of the matrix which satisfies (4.6),
we have the following inequality

Tr((2A − D)Z) = Tr((2A − D)X(X$X)−1X$)

=
∑

C∈Π

(
2|E(C)|−

∑
C′∈Π |E(C, C ′)|
|C|

)

≤ ω(MD). (4.8)
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Next, we show the optimality of the partition Π obtained from Z for the problem MD.
For an optimal solution Π̂ of MD, let X̂ be an incidence matrix corresponding to Π̂, and let
Ẑ = X̂(X̂$X̂)−1X̂$. Clearly Ẑ satisfies

Ẑen = ẐX̂et = X̂et = en

from (4.3) and (4.6). Moreover, it is symmetric, non-negative and idempotent, i.e., Ẑ ∈ Nn

and Ẑ2 = Ẑ due to (4.6), hence Ẑ is feasible to 0-1SDP. Then we have

ω(MD) =
∑

C∈Π̂

(2|E(C)|−
∑

C′∈Π̂ |E(C, C ′)|
|C|

)

= Tr((2A − D)X̂(X̂$X̂)−1X̂$)

= Tr((2A − D)Ẑ)
≤ Tr((2A − D)Z) = ω(0-1SDP). (4.9)

The last inequality is due to the optimality of Z for the problem 0-1SDP. By the inequali-
ties (4.8) and (4.9), we conclude that ω(MD) = ω(0-1SDP), which implies the optimality of
the partition Π obtained from Z for the problem MD. !

Note that the size of 0-1SDP depends on neither the number of edges nor the number
of communities. Moreover, we need not solve the auxiliary problem unlike the case of
MILP formulation. These features make 0-1SDP more attractive than MILP formulation.
Although the objective function in 0-1SDP is linear with respect to the matrix Z, the
idempotence constraint makes the problem difficult. We will discuss how to deal with this
difficult part in the next section.

5. Doubly Nonnegative Relaxation

As stated in Subsection 4.2, what makes 0-1SDP difficult to solve is the idempotence
constraint, which imposes the condition that each eigenvalue of Z, denoted by λi, is either
0 or 1. Then it would be a natural strategy to relax the constraint to a more tractable
constraint. The first choice is to relax the binary constraint to 0 ≤ λi ≤ 1, which is
expressed as Z ∈ S+

n and I −Z ∈ S+
n , where I is the identity matrix. The latter constraint

I − Z ∈ S+
n which represents the upper bound constraint of λi is redundant owing to the

presence of Z ∈ Nn and Zen = en, hence can be omitted. Then we obtain the following
relaxation problem over the doubly non-negative cone Nn ∩ S+

n :

DNN

∣∣∣∣∣∣

maximize Tr((2A − D)Z)
subject to Zen = en,

Z ∈ Nn ∩ S+
n .

The optimization problems over a symmetric cone are solved efficiently, e.g., linear pro-
gramming, second-order cone programming, and semidefinite programming problems. In-
deed, the primal-dual-interior-point method solves the problems in polynomial time. On
the other hand, since the doubly non-negative cone is not symmetric, we cannot directly
apply the primal-dual-interior-point method to solve the problem DNN. Representing the
doubly non-negative cone as a symmetric cone embedded in a higher dimension, we could
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apply the primal-dual-interior-point method to the embedded problem which is described
as follows: ∣∣∣∣∣∣∣∣

maximize Tr((2A − D)Z)
subject to Zen = en,[

Z O
O Diag(vec(Z))

]
∈ S+

n+n2 .

Although the above problem can be solved in polynomial time theoretically, it is a quite large
optimization problem over the positive semidefinite cone and computationally expensive to
solve in practice. Nevertheless it is worthwhile to solve the problem DNN due to the fact
that the doubly non-negative relaxation often provides significantly tight bound for some
combinatorial optimization problems.

Now, we introduce valid inequalities for 0-1SDP in order to strengthen the bound obtained
by the relaxation problem. From the proof of Lemma 4.1, any feasible solution Z of 0-1SDP
can be transformed to a block diagonal matrix. It is easy to see that the maximum value in
the i-th row of Z is located on the (i, i) element for each i ∈ V , hence we have the following
result.

Lemma 5.1. The following inequalities are valid for 0-1SDP.

zii ≥ zij for i, j ∈ V .

We denote the problem DNN with the above valid inequalities added by DNN.

6. Heuristics based on Dynamic Programming

In this section, we will develop an algorithm to construct a feasible solution for MD
from the solution obtained by solving the relaxation problems DNN and DNN presented at
the end of Section 5. The algorithm we propose is based on the combination of spectral
heuristics and dynamic programming.

6.1. Permutation based on spectrum. From the proof of Lemma 4.1, we have seen that
an optimal solution of 0-1SDP forms a matrix with block diagonal structure by applying an
appropriate simultaneous permutation of the rows and columns, and each block corresponds
to a community. Unless otherwise stated, we refer to the simultaneous permutation of the
rows and columns simply as a permutation. The optimal solution of the problem DNN or
DNN is not necessarily transformed to a block diagonal matrix by any permutation since
we relaxed some constraints. The solution however may provide a clue as to possibly a good
solution of the original problem MD. Thus, it would be helpful to transform the solution
matrix to a matrix which is close to a block diagonal one. To this end, we exploit the
spectrum of the optimal solution.

Let λ1, λ2, . . . , λn ∈ R be the eigenvalues of an optimal solution Z∗ for the relaxation
problem and u1,u2, . . . ,un ∈ Rn be their corresponding eigenvectors. We assume that
the eigenvalues are sorted in the non-increasing order, that is, 1 = λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0. Focusing on the eigenvector u2 = (u2

1, u
2
2, . . . , u

2
n)$ corresponding to the second

largest eigenvalue, we permute the rows and columns of the matrix Z∗ consistent with the
non-decreasing order of values of components of u2. Take a benchmark instance Karate
for example, we show an optimal solution Z∗ of DNN and the matrix obtained in the
manner described above in Figures 1 (a) and (b). The color-code in the figures indicates the
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magnitude of elements: elements whose value is greater than or equal to 1/n are marked
with gray, while other elements (with value of less than 1/n) are marked with white. From

(a) Original matrix (b) Permuted matrix

Figure 1: Comparison with two matrices

these figures, we observe that the permuted matrix is considerably close to a block diagonal
matrix. However, there is no theoretical validity of using the eigenvector corresponding to
the second largest eigenvalue. Here still remains room for further research.

6.2. Dynamic programming. Next, we discuss how to construct a feasible solution of
MD from the permuted matrix. Let V̄ be a sequence of nodes consistent with the non-
decreasing order of components of u2. For the sake of notational simplicity, we renumber
the nodes in V and denote the sequence V̄ by (1, 2, . . . , n). Now, we try to find a partition
with maximum modularity density of V̄ under the constraint that each member consists
of consecutive indices of V̄ . For this problem, we propose an algorithm using the dynamic
programming. We define q(k, l) by

q(k, l) =
2

∑l
i=k

∑l
j=k aij −

∑l
i=k di

l − (k − 1)

for k and l of V̄ with k ≤ l. The value q(k, l) represents the contribution of the community
(k, . . . , l) of V̄ to the modularity density when it is selected as a member of the partition.
For any index s of V̄ , let µ(s) be the maximum modularity density that is achieved by
partitioning the sequence (1, . . . , s) into several consecutive subsequences. If we define
µ(0) = 0 for notational convenience, then µ(s) satisfies the recursive equation

µ(s) = max{µ(h) + q(h + 1, s) | h ∈ {0, 1, . . . , s − 1} }. (6.1)

Owing to (6.1), starting from µ(1) = q(1, 1), we first obtain

µ(2) = max{ q(1, 2), µ(1) + q(2, 2) },

then obtain µ(3) by means of µ(1) and µ(2), and so on. Our algorithm is given as follows.

AlgorithmDP
Step 1 : Solve the relaxation problem to obtain an optimal solution Z∗.
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Step 2 : Find the eigenvector u2 corresponding to the second largest eigenvalue of Z∗.
Let V̄ = (1, 2, . . . , n) be a sequence of nodes obtained by rearranging them in non-
decreasing order of corresponding components in u2.

Step 3 : Set µ(0) := 0.
for s = 1 to n do

Compute µ(s) according to (6.1).
end-do

7. Computational Experiments

To evaluate the lower and upper bounds obtained by our algorithm, we conducted the
computational experiments on a computer with Intel Core i7, 3.70GHz processor and 32.0 GB
of memory. Using SeDuMi 1.2 as an SDP solver, we implemented the algorithm in MAT-
LAB2010.

In the experiments, we used seven instances; Michael’s strike dataset [20], Zachary’s
karate dataset [30], Gil-Mendieta and Schmidt’s Mexico dataset [12], Michael and Massey’s
sawmill dataset [21], Lusseau’s dolphins dataset [18], Hugo’s Les Misérables dataset [14], and
Krebs’ books dataset [15]. Details of each instance are listed in Table 1, where the columns
“LB! ” and “ t! ” represent the known best lower bound and the corresponding number
of communities, respectively. Since the first four instances in the table were solved to
optimality in Costa [7], we list the optimal values and the optimal numbers of communities,
for the remaining instances, the lower bounds and the number of communities reported in
Costa et al. [8] since the instances were not solved so far to our knowledge.

Table 1: Instances

ID name n m LB! t!

1 Strike 24 38 8.8611 4
2 Karate 34 78 7.8451 3
3 Mexico 35 117 8.7180 3
4 Sawmill 36 62 8.6233 4
5 Dolphins 62 159 12.1252 5
6 Les Misérables 77 254 24.5339 9
7 Books 105 441 21.9652 7

Table 2 shows the computational results of the algorithm described in Subsection 6.2,
where the columns “UB”, “LB”, “gap” and “time” represent the optimal value of the relax-
ation problem, the lower bound obtained by the algorithm DP, the duality gap defined by
100(UB − LB)/LB, and the computation time in seconds, respectively. For each instance,
we observed that the predominant portion of the computation time was spent for solving
the relaxation problem, and the remaining parts of the algorithm require a fraction of time,
specifically less than one second.
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Table 2: Computational results of our algorithm

ID DNN DNN
UB LB gap(%) time(sec.) UB LB gap(%) time(sec.)

1 9.5808 8.8611 8.122 1.05 9.3049 8.8611 5.008 3.54
2 8.9548 7.8424 14.184 5.83 8.4141 7.8451 7.253 36.04
3 10.3151 8.5580 20.532 7.64 9.9570 8.5227 16.829 43.48
4 10.5048 7.0486 49.034 7.75 10.0311 7.3587 36.316 54.21
5 15.0218 9.8286 52.838 316.61 14.3552 11.4610 25.253 1681.81
6 28.0957 22.2680 35.279 658.28 27.4276 23.3416 17.505 7018.03
7 26.5387 20.2470 31.075 4626.11 24.7749 20.3150 21.953 60437.45

From Table 2, we observe that the upper bounds UB provided by DNN are tighter than
those provided by DNN for all instances, which indicates the effectiveness of the valid in-
equalities in Lemma 5.1. Moreover, we also confirm that the lower bounds obtained for DNN
are equal to or larger than those obtained for DNN for all instances except Mexico (ID=3).
However, solving the problem DNN requires a rather long computation time compared with
solving DNN as the instance size grows. To be specific, for the instance Books (ID=7), DNN
takes approximately 4,600 seconds, whereas DNN takes over 60,000 seconds, approximately
16 hours.

Table 3: Computational results of the branch-and-bound algorithm for MILP formulation

ID MILP
UB LB gap(%) time(sec.)

1 8.8611 8.8611 0 0.50
2 7.8451 7.8451 0 0.74
3 8.7180 8.7180 0 7.84
4 8.6233 8.6233 0 6.10
5 13.8466 12.1252 14.196 86400.00
6 61.6302 24.5339 151.204 86400.00
7 54.6234 21.6803 151.949 86400.00

Next, we solve the problem MILP by the branch-and-bound algorithm in Gurobi 6.0.0
to compare the quality of the solutions obtained by our algorithm for 0-1SDP formulation.
The computational results are given in Table 3. In our experiments, we impose a time limit
of 86,400 seconds, 24 hours, on the computation time of the branch-and-bound algorithm.

In Table 3, we see that the first four instances are solved to optimality within a short
computation time, while the remaining instances cannot be solved within the time limit.
Especially, for the instances Les Misérables (ID=6) and Books (ID=7), a quite large duality
gap remains. Figures 2 (a) and (b) show the upper and lower bounds vs. the elapsed time.
From the figures, we observe the following behavior: (i) the branch-and-bound algorithm
gives a good lower bound in early stage, and (ii) the improvement of upper bound rarely
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Figure 2: The upper and lower bounds vs. elapsed time in the branch-and-bound

occurs throughout the computation. Owing to the latter of these, the duality gap still
remains large even though a good feasible solution has been found. This suggests that
deriving a tight upper bound enables us to estimate the accuracy of an incumbent solution
obtained by the branch-and-bound algorithm more precisely.

8. Conclusion

In this paper, we presented 0-1SDP formulation originally introduced by Peng and Xia [25]
for minimum sum-of-squares clustering problem, and showed that the equivalence between
the problem 0-1SDP and the modularity density maximization. The problem 0-1SDP has
the big advantage that its size is independent of the number of both edges and communities.
Then, we proposed to solve a doubly non-negative relaxation of the problem 0-1SDP in
order to obtain an upper bound on the modularity density. In addition, we developed a
lower bounding algorithm based on the combination of spectral heuristics and dynamic
programming.

The relaxation problem for our formulation was numerically compared to MILP formula-
tion, and the results showed that the upper bounds provided by our formulation are much
tighter than those provided by MILP formulation.

We observed that the solution matrix showed a block-diagonal-like structure when its
rows and columns are rearranged simultaneously in accordance with the magnitude of the
components of the eigenvector corresponding to the second largest eigenvalue. Theoretical
study should be carried out about whether this procedure functions effectively, and why
if it does. The alternative to form a block-diagonal-like matrix is to develop a heuristics
based on the numerical linear algebraic computation such as the algorithms of Sargent and
Westerberg [26], and Tarjan [27].
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