
Vol. 42 No. 1 IPSJ Journal Jan. 2001

Regular Paper

A Type-Free Context Calculus

Azza A. Taha,† Masahiko Sato† and Yukiyoshi Kameyama†

This paper develops a type free context calculus λxc. The calculus λxc includes contexts
as first-class values and hole-filling as an explicit operation. In λxc, holes are represented by
ordinary variables and hole-filling is represented by the usual application together with a new
abstraction mechanism which represents the variables intended to be bound after filling in the
hole. We show that this calculus has desirable properties such as confluence, conservativity
over λβ calculus and has the preservation of strong normalization (PSN) property.

1. Introduction

In the lambda calculus, a context is a term
with some holes in it, e.g., λx.[.], where [.] indi-
cates a hole. The basic operation for a context
is to fill its holes with a term. For example,
filling the hole above with the term x + y re-
sults in λx.x + y, in which x is captured by λ.
So, unlike capture-avoiding substitution in the
lambda calculus, hole-filling may introduce new
and intended bound variables.
In this paper, we introduce the calculus λxc

as an extension of the calculus λx defined by
Bloo and Rose 2). In addition to the terms
of λx, we added two new terms to be able to
compute with contexts. In our calculus, holes
are represented by ordinary variables and hole-
filling is represented by the usual application to-
gether with a new abstraction mechanism which
represents the variables intended to be bound
after filling in the hole. It is clear that holes
are first-class objects in this calculus, so we
can pass it to and return it from a function.
This idea of representing contexts is due to
Sato, et al. 8). They extend the explicit envi-
ronment calculus λε 9), which contains environ-
ments as first-class objects, to include contexts
also as first-class objects. Our system is differ-
ent from Sato, et al.’s system 8) in the following
four points:
(1) Our system is untyped so it is allowed

to consider expressions like FF , i.e., F
applied to itself, and so there will be a
lot of freedom in combining terms.

(2) The system defined by Sato, et al. 8) is
based on explicit environments. How-
ever, to treat contexts it is sufficient to
use explicit substitutions which is sim-

† Graduate School of Informatics, Kyoto University

pler than explicit environments. So, we
adopted explicit substitutions instead of
environments.

(3) Another point which makes our system
simpler than that of Sato, et al.’s system
is that we restrict the variables bound by
λ as well as the variables bound by the
set {x} to pure variables—variables with-
out #’s—so we do not have to introduce
more complex operations.

(4) The reduction in our calculus respects
the α-equivalence, while this does not
hold in Sato, et al.’s system due to the
presence of the environment type.

In general, when computing with contexts
two problems arise.
First, α-conversion and hole-filling do not

commute. To see this problem, consider the
term λx.[.] which is α-equivalent to λy.[.]. Af-
ter filling these two terms with a variable x, we
get λx.x and λy.x, respectively, which are not
α-equivalent.
We solve this problem by writing the above

terms as λx.(X • [〈x := x〉]) and λy.(X • [〈x :=
y〉]) where X represents a hole. If we fill this
hole X with the variable x, we substitute the
new abstraction {x}.x for it, which dictates
that the variable x is intended to be bound,
and we get:

λx.({x}.x) • [〈x := x〉] ≡ λx.x, and
λy.({x}.x) • [〈x := y〉] ≡ λy.y

which are α-equivalent.
Second, β-reduction and hole-filling also do

not commute. For example, in the term
(λz.[.])y, if the hole in it is filled first with a
variable z and then the β-reduction is applied,
we get y, while if the β-reduction is applied first
and then the variable z is filled in the hole we
get z, and the results are not the same.
In our calculus, the above term is written as:

38

Vol. 42 No. 1 A Type-Free Context Calculus 39

(λX.(λz.X • [〈z := z〉])y)({z}.z)
If the hole in this term is filled first and then
the β-reduction is applied, or the β-reduction is
applied and then the term is filled in the hole,
we get the same result y.
Also, note that the usual α-conversion cannot

be used here to rename the variables bound by
the {x} binder for the following reason:
Consider the following program taken from

Ref. 8):
(({x}.x+ y)〈y := x〉) • [〈x := 2〉]

If α-conversion is applied here and then we sub-
stitute x for y we get:

α→ (({z}.z + y)〈y := x〉) • [〈x := 2〉]
→ ({z}.z + x) • [〈x := 2〉]

which cannot be further reduced since the vari-
able x in 〈x := 2〉 does not match the binder
{z}.
To remedy this problem, we adapt the

method defined by Sato, et al. 8) to rename free
variables (if necessary). We can compute the
above term as follows:

({x}.x+#x) • [〈x := 2〉] → 2 + x
Recently, there have been several attempts to

formalize and compute with contexts. However,
this is the first untyped context calculus which
has contexts as first-class values, hole-filling as
an explicit operation and which is at the same
time pure in the sense of Ref. 9), i.e., (i) it
is a conservative extension of the untyped λβ-
calculus, (ii) confluent and (iii) has the preser-
vation of strong normalization (PSN) property.
There are also a lot of calculi which made

notable contribution in this field:
Sands 7) outlines the use of higher order syn-

tax to represent and compute with contexts. In
his approach, holes are represented by an ap-
plication of some function variable to a vector
of variables. Each function variable has a given
fixed arity, which dictates exactly how many
arguments it expects. His representation of a
context can be α-converted in the usual man-
ner. Hole-filling is represented by substituting
a meta-abstraction for this variable. In his ap-
proach, substitution commutes with hole-filling
and there is no problem with the α-equivalence.
However, since hole-filling is a meta level opera-
tion in his system, it is not possible to compute
hole-filling within his system. This approach
is reministic of Klop’s Combinatory Reduction
Systems 5).
Mason 6) provides a representation of con-

texts within the framework of the λ-calculus,

and shows how one can compute with such con-
texts using this representation. However, as in
Sands’ approach, although holes are first-class
objects in his system, hole-filling is a meta level
operation.
Hashimoto-Ohori 4) develop a typed calculus

which has contexts as first-class objects and
hole-filling as an explicit operation. However, in
their system β-reduction is restricted to those
redices that do not contain holes.
Dami 3) defines a calculus λN , in which the

representation of both contexts and hole-filling
is possible. However, he did not define any for-
mal system for it, and this representation is
done by a translation from λβ to λN .
The rest of the paper is organized as follows.

In Section 2, we introduce the system λxc. In
Section 3, we prove that λxc has a number of
desirable properties such as confluence, conse-
vativity over λβ calculus and PSN, and also
we define the α-equivalence and the meta-level
substitution. Finally, the conclusion is given in
Section 4.

2. The System

2.1 Terms
Notation 〈x := N〉 will be used to abbrevi-

ate 〈x1 := N1〉, . . . , 〈xn := Nn〉, x to abbreviate
x1, . . . , xn, and xn,i to abbreviate xn, . . . , xi for
n ≥ i ≥ 0.
Assume that P is the set of pure variables

x, y, z, . . . , and V is the set of variables given by
V ::= P |#V . We will use u, v, w, . . . as meta-
variables for variables. As a shorthand we will
write #0x = x and #n+1x = #(#nx). Assume
that pure is a function which takes a variable
and returns its pure version, e.g., pure(x) = x
and pure(#y) = y. Terms are given by the
following grammar.

M,N ::= V | λx.M | MN | M〈v := N〉
| {x}.M | M • [〈x := N〉]

Note that, the order of the variables in the
set {x} is irrelevant, in contrast to the order of
〈xi := Ni〉 in the term M • [〈x := N〉] is im-
portant as we have to reduce it in the order it
is given to achieve confluence. This is another
point which differentiates this system from the
system defined in Ref. 8), which has environ-
ment instead of this sequence of substitutions,
and this environment is evaluated simultane-
ously.
Also note that we have the following no-

tions of boundness of variables. The vari-

40 IPSJ Journal Jan. 2001

ables x, v and x1, · · · , xn are considered bound
in M in the terms λx.M , M〈v := N〉 and
{x1, · · · , xn}.M , respectively. Besides, in the
term M • [〈x1 := N1〉, . . . , 〈xn := Nn〉], if xj is
in the set of free variables of Ni for j > i, then
they are considered bound. For example, in the
term M • [〈x1 := x2y〉, 〈x2 := N2〉], the variable
x2 in the first substitution is considered bound
while y is free.

2.2 The Push and Pull Operators
Before giving the formal definition, some ex-

planation is necessary to clarify the motivation
behind using the push and pull operators.
Suppose we have the term (λx.λy.y+ x)y. It

is known that before reducing this term, the α-
conversion is necessary to avoid the unwanted
capture of y by the inner λ. Thus, if y is re-
named to e.g., z, we get λz.z+y as a correct re-
sult of reducing the above term. For the reason
explained in the introduction, the α-conversion
is no longer appropriate for our calculus. In-
stead, the push operator is used to rename the
free variables that would otherwise be captured.
For the above term, the free variable y is re-
named to #y and we get λy.y + #y as a re-
sult of reducing the above term. Note that in
this term the variable #y is different from y.
Suppose now that 3 is substituted for y in this
term, then #y will no longer be in the scope of
λ and we have to pull one #y out of y and get
3 + y. It is clear that when there is no collision
with the other existing variables, there is no
need to rename the free variable. For example,
(λy.λz.y)(z + x) is reduced to λz.#z + x.
The relation ≤ on variables is defined as: v ≤

w iff w = #nv for some n ∈ N or pure(v) =
pure(w). It is clear that for any two variables
v, w, we have v ≤ w or w ≤ v.
The following definitions, “push M through

v” and “pull M from v” written as M ↑ v and
M ↓ v respectively were invented by Sato, et
al. 8). Here it is modified to fit the terms in
λxc.

w ↑ v is defined as:
(1) w ↑ v = #w if v ≤ w and pure(w) =

pure(v), and
(2) w ↑ v = w, otherwise.
Let E be a finite set of variables, then w ↑ E

is defined inductively on the number of elements
in E as follows:
(1) If E = φ, then w ↑ E = w.
(2) Otherwise, ∃F∃v s.t. E = F ∪{v}, where

∀v′ ∈ F, v′ ≤ v and w ↑ E = (w ↑ F) ↑
v.

Note that, in (2) above when the set E con-
tains different pure variables, the choice of v in
F ∪ {v} is not uniquely determinated, but still
the final result is unique. For example, the or-
der of pushing #2x through the elements in the
set {#x, y} is not important and we always get
#3x as a correct result.
The operation ↓ is defined as the inverse par-

tial function of ↑. The term w ↓ E is defined
only when w ∈ E.

Example 1
(1) If pure(x) = pure(y), then x ↑

{x,#x, y} = #2x, and x ↑ {#x, y} = x.
(2) #2x ↓ {x,#x} = x and #3x ↓ {x,#3x}

is undefined.
Let F = {v1, . . . , vn}. We put F ↑ E = {v1 ↑

E, . . . , vn ↑ E}.
Let M be a term and E,F be finite sets

of variables, then the operation M ↑F E is
defined inductively as follows. (When F is
empty and M is a variable then this defini-
tion coincides with the previous one.) Suppose
that we wished to push M〈v := N〉 through
E then we have to keep free occurrences of v
in M as they are, since they are bound by
v. Namely, what we have to do is to push
M〈v := N〉 through E keeping free occurrences
of M . So, in general we will need a set F of
variables which must be kept in the process of
pushing M〈v := N〉 through E. For exam-
ple (v〈v := N〉) ↑ v = v〈v := N ↑ v〉 and
(v〈#v := N〉) ↑ v = #2v〈#v := N ↑ v〉.
(1) u ↑F E =

{
u if u ∈ F,
((u ↓ F) ↑ E) ↑ F o.w.

(2) (λz.M) ↑F E = λz.(M ↑(F↑z) (E ↑ z)).
(3) (MN) ↑F E = (M ↑F E)(N ↑F E).
(4) (M〈v′ := N〉) ↑F E = (M ↑((F↑v′)∪v′)

E)〈v′ := N ↑F E〉.
(5) ({x}.M) ↑F E = {x}.(M ↑(F↑{x}) (E ↑

{x})).
(6) (M • [〈x := N〉]) ↑F E = (M ↑F E)•

[〈x1 := (N1 ↑(F↑xn,2) (E ↑ xn,2))〉 . . .
〈xn := (Nn ↑F E)〉].

When F is empty, we write M ↑ E for M ↑F E.
Note that, M ↑ xn ↑ xn−1 . . . ↑ xi stands for

(((M ↑ xn) ↑ xn−1) . . . ↑ xi).
The operation ↓ is defined as the inverse par-

tial function of ↑. M ↓ E is defined only when
FV(M) ∩E = φ.
The set of free variables in a term M , written
as FV(M) is defined as:
(1) FV(v) = {v}.
(2) FV(λx.M) = FV(M)− {x}.

Vol. 42 No. 1 A Type-Free Context Calculus 41

(3) FV(MN) = FV(M) ∪ FV(N).
(4) FV(M〈v := N〉) = (FV(M) − {v}) ∪

FV(N).
(5) FV({x}.M) = FV(M)− {x}.
(6) FV(M • [〈x1 := N1〉, . . . , 〈xn := Nn〉]) =

FV(M) ∪ (FV(N1) − {xn,2}) ∪ (FV(N2) −
{xn,3}) ∪ . . . ∪ FV(Nn).

where the above minus operator is defined be-
low.
Let w be a variable and E be {v1, . . . , vn}, V

be {x1, . . . , xm}, respectively. We also put E1

be E − {vn}, that is, {v1, . . . , vn−1}. Then we
define a set of variables E − V as follows:

(1) E−{w} =

φ if E = φ,
E1 − {w} if vn = w,
(E1 − {w}) ∪ {vn ↓ w} o.w.

(2) E − V = ((E − {x1}) · · · − {xm}).
Note that, in (2) above any order of subtract-
ing the xi’s will give the same result as it is a
sequence of distinct pure variables.

Example 2 FV(({x, y}.(x+y))•[〈x := #3y〉
〈y := N〉]) = {#2y} ∪ FV(N).

2.3 Reductions
The reduction rules of λxc are the union of

the following 3 relations →b, →c and →x.
The relation→b is defined by the following rule:

(b) (λx.M)N →b M〈x := N〉.
The relation→c is defined by the following rule:

(c) ({x}.M) • [〈x := N〉] →c M〈x := N〉
The relation →x is defined by the following 6
rules:

(xvar) v〈v := N〉 →x N.

(gc) M〈v := N〉 →x M ↓ v

if v ∈ FV (M).
(xabs) (λx.M)〈v := N〉 →x

λx.M〈v ↑ x := N ↑ x〉.
(xapp) (M1M2)〈v := N〉 →x

(M1〈v := N〉)(M2〈v := N〉).
(abs) ({x}.M)〈v := N〉 →x

{x}.(M〈v ↑ {x} := N ↑ {x}〉).
(app) (M • [〈x := N〉])〈v := P 〉

→x M〈v := P 〉 •
[〈x1 := N1〈v ↑ xn,2 := P ↑ xn,2〉〉
· · ·
〈xn := Nn〈v := P 〉〉].

Note that, in the (c) rule, although the order
of the variables in the set {x} is irrelevant, they
must match the variables xi’s which appear in
the sequence of the substitution.
We write M →b N if N is obtained from M

by replacing a subterm M1 in M by N1 such
that M1 →b N1. Similarly →c, →x and →bxc

are defined. The reflexive and transitive closure
of the → reduction is denoted by ∗→. →bc is the
union of the two reduction relations →b and
→c.

Example 3 Consider the following exam-
ple taken from Hashimoto-Ohori’s paper 4):

(λy.(δX.(λx.X)3)� (x+ y))x
In our system, this term can be written as:

(λy.(λX.(λx.X•[〈x := x〉])3)({x}.(x+y)))x
Let M be {x}.(x + y). Then the above term
can be computed as follows:
→b (λy.(λX.(X • [〈x := x〉])〈x := 3〉)M)x
∗→x (λy.(λX.(X • [〈x := 3〉]))M)x

→b (λX.(X • [〈x := 3〉])M)〈y := x〉
∗→x (λX.(X • [〈x := 3〉])({x}.(x+#x)))

→b (X • [〈x := 3〉])〈X := {x}.(x+#x)〉
∗→x {x}.(x+#x) • [〈x := 3〉]

→c (x+#x)〈x := 3〉
∗→x 3 + x.
Example 4 The following example is taken

from Ref. 8). Let N1 be {x, y}.(x + y), N2 be
X•[〈x := x〉, 〈y := y〉], andN3 beN1•[〈x := x〉,
〈y := y〉].

(λX.λx.(λy.(x+N2))3)N1

→b (λx.(λy.(x+N2))3))〈X := N1〉
∗→x λx.(λy.(x+N3))3

→b λx.(x+N3)〈y := 3〉
∗→x λx.(x+N1 • [〈x := x〉, 〈y := 3〉])

→c λx.x+ ((x+ y)〈x := x〉〈y := 3〉)
∗→x λx.x+ (x+ 3).

Thus, we have much freedom of reductions.

3. Properties of λxc

In this section, we show that λxc has a num-
ber of desirable properties. First, we prove the
confluence.

3.1 Confluence
Lemma 1 The relation →x on λxc-terms

is noetherian and confluent.
Proof In order to show that →x is noether-

ian, the length |M | is introduced, which is a
positive integer defined for each term as follows:
(1) |v| := 1.
(2) |λx.M | := |M |+ 1.
(3) |MN | := |M |+ |N |+ 1.
(4) |M〈v := N〉| := (|N |+ 1)|M |.
(5) |{x}.M | := |M |+ 1.
(6) |M • [〈x1 := N1〉 . . . 〈xn := Nn〉]| :=

|M |+ |N1|+ . . . + |Nn|+ 1.
Then, it can easily be verified that if M →x

42 IPSJ Journal Jan. 2001

N then |M | > |N |. By checking the overlapping
cases, it can easily be verified that →x on λxc
is weakly Church-Rosser. Combining these two,
we have confluence by Newman’s lemma. ✷

A term M is x-normal if M →x N holds for
no N . By the above lemma, it is clear that for
any term M , there uniquely exists an x-normal
term N s.t. M ∗→x N . We will write x(M) for
this N . The x-normal terms are characterized
by the following grammar where c ranges over
x-normal terms:

c ::= v | λx.c | cc | {x}.c | c • [〈x := c〉]
The parallel reduction relation ⇒ on x-normal

terms is defined as:
(1) v ⇒ v.
(2) If M ⇒ N , then λx.M ⇒ λx.N .
(3) If M1 ⇒ M2 and N1 ⇒ N2, then

(λx.M1)N1 ⇒ x(M2〈x := N2〉).
(4) If M1 ⇒ M2 and N1 ⇒ N2, then

M1N1 ⇒ M2N2.
(5) M ⇒ N , then {x}.M ⇒ {x}.N .
(6) If M ⇒ N and Pi ⇒ Qi, 1 ≤ i ≤ n then

({x}.M) • [〈x1 := P1〉 . . . 〈xn := Pn〉] ⇒
x(N〈x1 := Q1〉 . . . 〈xn := Qn〉).

(7) If M ⇒ N and Pi ⇒ Qi, 1 ≤ i ≤ n
then M • [〈x1 := P1〉, . . . , 〈xn := Pn〉] ⇒
N • [〈x1 := Q1〉 . . . 〈xn := Qn〉].

Next, with each x-normal term M , we asso-
ciate an x-normal term M∗ as follows:
(1) v∗ := v.
(2) (λx.M)∗ := λx.M∗.
(3) ((λx.M)N)∗ := x(M∗〈x := N∗〉).
(4) (MN)∗ := M∗N∗, if M is not a λ ab-

straction.
(5) ({x}.M)∗ := {x}.M∗.
(6) (({x}.M) • [〈x1 := P1〉 . . . 〈xn := Pn〉])∗

:= x(M∗〈x1 := P ∗
1 〉 . . . 〈xn := P ∗

n〉).
(7) (M1 • [〈x1 := P1〉 . . . 〈xn := Pn〉])∗ :=

M∗
1 • [〈x1 := P ∗

1 〉 . . . 〈xn := P ∗
n〉], if M1 is

not in the form {x}.M .
It can easily be verified that M ⇒ M and

M ⇒ M∗ hold for any x-normal term M .
The following lemma is important in proving

Theorem 1.
Lemma 2 If M ⇒ N , then M →∗

bxc N .
Proof By induction on the construction of

M .
We need the following lemma in proving

Lemma 6.
Lemma 3 If x(M) ⇒ x(M ′) then we have

x(M ↑ v) ⇒ x(M ′ ↑ v).
Proof By induction on the construction of

x(M).
The following lemma is important to prove

Corollary 1, which is important to prove
Lemma 6.

Lemma 4 (Substitution lemma)
If M is an x-normal term, then we have
x(M〈v := N〉〈w := O〉) ≡
x(M〈w ↑ v := O ↑ (v ↓ (w ↑ v))〉〈v ↓ (w ↑ v) :=
N〈w := O〉〉)

Proof We shall prove this lemma by induc-
tion on the construction of M . Since M is x-
normal, we have the following cases.
(1) M is a variable.
(a) M ≡ v.
LHS ≡ x(v〈v := N〉〈w := O〉)

≡ x(N〈w := O〉) (by (xvar)).
RHS ≡ x(v〈w ↑ v := O ↑ (v ↓ (w ↑ v))〉

〈v ↓ (w ↑ v) := N〈w := O〉〉)
≡ x((v ↓ (w ↑ v))〈v ↓ (w ↑ v) :=

N〈w := O〉〉) (by (gc))
≡ x(N〈w := O〉) (by (xvar)).

(b) M ≡ v, M ↓ v ≡ w i.e., w ↑ v ≡ M .
LHS ≡ x(M〈v := N〉〈w := O〉)

≡ x((M ↓ v)〈w := O〉) (by (gc))
≡ x(O) (by (xvar)).

RHS ≡ x(M〈w ↑ v := O ↑ (v ↓ (w ↑ v))〉
〈v ↓ (w ↑ v) := N〈w := O〉〉)

≡ x(O ↑ (v ↓ (w ↑ v))〈v ↓ (w ↑ v) :=
N〈w := O〉〉) (by (xvar))

≡ x(O) (by (gc)).
Note that the (xvar) can be used above since
w ↑ v ≡ M and (gc) is used since we have:
(O ↑ u)〈u := Q〉 ≡ O,
which can easily be proved by induction on the
construction of O.
(c) Otherwise (M ≡ v and M ↓ v ≡ w i.e.,
w ↑ v ≡ M).
LHS ≡ x(M〈v := N〉〈w := O〉)

≡ x(M ↓ v〈w := O〉) (by (gc))
≡ x((M ↓ v) ↓ w) (by (gc)).

RHS ≡ x(M〈w ↑ v := O ↑ (v ↓ (w ↑ v))〉
〈v ↓ (w ↑ v) := N〈w := O〉〉)

≡ x(M ↓ (w ↑ v)〈v ↓ (w ↑ v) :=
N〈w := O〉〉) (by (gc))

≡ x(M ↓ (w ↑ v) ↓ (v ↓ (w ↑ v)))
(by (gc))

≡ x((M ↓ v) ↓ w).
Note that, we can use the first (gc) above since
w ↑ v ≡ M , and the second since M ≡ v and
then M ↓ (w ↑ v) ≡ v ↓ (w ↑ v). Also it can
easily be verified that M ↓ (w ↑ v) ↓ (v ↓ (w ↑
v)) ≡ (M ↓ v) ↓ w.
(2) M ≡ λz.Q where z is a pure variable.
It is desired to obtain:

Vol. 42 No. 1 A Type-Free Context Calculus 43

x((λz.Q)〈v := N〉〈w := O〉)
≡ x((λz.Q)〈w ↑ v := O ↑ (v ↓ (w ↑ v))〉
〈v ↓ (w ↑ v) := N〈w := O〉〉).

x((λz.Q)〈v := N〉〈w := O〉)
≡ x((λz.Q〈v ↑ z := N ↑ z〉)〈w := O〉)
≡ x(λz.Q〈v ↑ z := N ↑ z〉〈w ↑ z := O ↑ z〉)
≡ λz.x(Q〈v ↑ z := N ↑ z〉〈w ↑ z := O ↑ z〉)
IH≡ λz.x(Q〈(w ↑ z) ↑ (v ↑ z) := (O ↑ z) ↑ ((v ↑

z) ↓ ((w ↑ z) ↑ (v ↑ z)))〉〈(v ↑ z) ↓ ((w ↑ z) ↑
(v ↑ z)) := (N ↑ z)〈w ↑ z := O ↑ z〉〉)

≡ x(λz.Q〈(w ↑ z) ↑ (v ↑ z) := (O ↑ z) ↑ ((v ↑
z) ↓ ((w ↑ z) ↑ (v ↑ z)))〉〈(v ↑ z) ↓ ((w ↑ z) ↑
(v ↑ z)) := (N〈w := O〉) ↑ z〉)

≡ x((λz.Q〈(w ↑ z) ↑ (v ↑ z) := (O ↑ z)
↑ ((v ↑ z) ↓ (w ↑ z) ↑ (v ↑ z))〉)〈v ↓ (w ↑
v) := N〈w := O〉〉)

≡ x((λz.Q)〈w ↑ v := O ↑ (v ↓ (w ↑ v))〉
〈v ↓ (w ↑ v) := N〈w := O〉〉).

Note that, in the above derivation we used the
following equalities which can easily be verified
when z is a pure variable:
(N ↑ z)〈w ↑ z := O ↑ z〉 ≡ (N〈w := O〉) ↑ z.
(v ↑ z) ↓ ((w ↑ z) ↑ (v ↑ z)) ≡ (v ↓ (w ↑ v)) ↑ z.
(w ↑ z) ↑ (v ↑ z) ≡ (w ↑ v) ↑ z.
(O ↑ z) ↑ (v ↑ z ↓ (w ↑ z) ↑ (v ↑ z)) ≡ O ↑ (v ↓
(w ↑ v)) ↑ z.
(3) M ≡ Q′Q′′.
Easy.
(4) M ≡ {x}.Q.
Similar to case 2.
(5) M ≡ Q • [〈x := Q′〉].
Easy. ✷

Corollary 1 If M is an x-normal term and
y is a pure variable, then:
x(M〈y := N〉〈w := O〉) ≡ x(M〈w ↑ y := O ↑
y〉〈y := N〈w := O〉〉).

Proof This can easily be concluded from
Lemma 4 by observing that y ↓ (w ↑ y) = y.
The following lemma will be used in the proof

of Lemma 6.
Lemma 5 (General form of the substitu-

tion lemma) If M is an x-normal λxc-term,
then:
x(M〈x1 := N1〉 . . . 〈xn := Nn〉〈w := O〉) ≡
x(M〈w ↑ {x} := O ↑ {x}〉〈x1 := N1〈w ↑
xn,2 := O ↑ xn,2〉〉 . . . 〈xn := Nn〈w := O〉〉).

Proof By applying Corollary 1 repeatedly.
In proving Lemma 7 we need the following

lemma.
Lemma 6 If x(M) ⇒ x(M ′) and x(N) ⇒

x(N ′), then x(M〈v := N〉) ⇒ x(M ′〈v := N ′〉).
Proof By induction on the construction of

x(M). Since x(M) is x-normal, we have the

following cases:
(1) x(M) is a variable.

(a) x(M) ≡ v. We have v ⇒ v ≡
x(M ′).

x(M〈v := N〉)
≡ x(x(M)〈v := N〉)
≡ x(v〈v := N〉)
≡ x(N)
⇒ x(N ′)
≡ x(v〈v := N ′〉)
≡ x(x(M ′)〈v := N ′〉)
≡ x(M ′〈v := N ′〉).

(b) x(M) ≡ w and w ≡ v.
We have w ⇒ w ≡ x(M ′).

x(M〈v := N〉)
≡ x(x(M)〈v := N〉)
≡ x(w〈v := N〉)
≡ x(w ↓ v)
≡ w ↓ v
⇒ w ↓ v

≡ x(w〈v := N ′〉)
≡ x(x(M ′)〈v := N ′〉)
≡ x(M ′〈v := N ′〉).

(2) x(M) ≡ λx.P , P ⇒ P ′ and x(M ′) ≡
λx.P ′.
From the induction hypothesis we have:
x(P 〈v ↑ x := N ↑ x〉) ⇒

x(P ′〈v ↑ x := N ′ ↑ x〉)
x(M〈v := N〉)
≡ x((λx.P)〈v := N〉)
≡ x(λx.P 〈v ↑ x := N ↑ x〉)
≡ λx.x(P 〈v ↑ x := N ↑ x〉)
⇒ λx.x(P ′〈v ↑ x := N ′ ↑ x〉)
≡ x(λx.P ′〈v ↑ x := N ′ ↑ x〉)
≡ x((λx.P ′)〈v := N ′〉).

(3) x(M) ≡ PQ, P ⇒ P ′, Q ⇒ Q′ and
x(M ′) ≡ P ′Q′.
From the induction hypothesis we have:
x(P 〈v := N〉) ⇒ x(P ′〈v := N ′〉), and
x(Q〈v := N〉) ⇒ x(Q′〈v := N ′〉).

x(M〈v := N〉)
≡ x(x(M)〈v := N〉)
≡ x((PQ)〈v := N〉)
≡ x(P 〈v := N〉)x(Q〈v := N〉)
⇒ x(P ′〈v := N ′〉)x(Q′〈v := N ′〉)
≡ x((P ′Q′)〈v := N ′〉)
≡ (M ′〈v := N ′〉).

(4) x(M) ≡ (λy.P)Q, P ⇒ P ′, Q ⇒ Q′ and
x(M ′) ≡ x(P ′〈y := Q′〉).

44 IPSJ Journal Jan. 2001

From the induction hypothesis we have:
x(P 〈v ↑ y := N ↑ y〉) ⇒

x(P ′〈v ↑ y := N ′ ↑ y〉), and
x(Q〈v := N〉) ⇒ x(Q′〈v := N ′〉).

x(M〈v := N〉)
≡ x(x(M)〈v := N〉)
≡ x(((λy.P)Q)〈v := N〉)
≡ x((λy.P)〈v := N〉)x(Q〈v := N〉)
≡ x(λy.P 〈v ↑ y := N ↑ y〉)

x(Q〈v := N〉)
⇒x(x(P ′〈v ↑ y := N ′ ↑ y〉)

〈y := x(Q′〈v := N ′〉)〉)
≡ x(P ′〈v ↑ y := N ′ ↑ y〉

〈y := Q′〈v := N ′〉〉)
Cor.1≡ x(P ′〈y := Q′〉〈v := N ′〉)
≡ x(M ′〈v := N ′〉).

(5) x(M) ≡ {x}.P , P ⇒ P ′, and x(M ′) ≡
{x}.P ′.

x(M〈v := N〉)
≡ x(x(M)〈v := N〉)
≡ x(({x}.P)〈v := N〉)
≡ x({x}.P 〈v ↑ {x} := N ↑ {x}〉)
≡ {x}.x(P 〈v ↑ {x} := N ↑ {x}〉)
⇒ {x}.x(P ′〈v ↑ {x} := N ′ ↑ {x}〉)
≡ x({x}.P ′〈v ↑ {x} := N ′ ↑ {x}〉)
≡ x(({x}.P ′)〈v := N ′〉)
≡ x(N ′〈v := N ′〉).

(6) x(M) ≡ P • [〈x1 := Q1〉 . . . 〈xn := Qn〉],
P ⇒ P ′, Qi ⇒ Q′

i, (1 ≤ i ≤ n), and
x(M ′) ≡ P ′ • [〈x1 := Q′

1〉 . . . 〈xn := Q′
n〉].

x(M〈v := N〉)
≡ x(x(M)〈v := N〉)
≡ x((P • [〈x1 := Q1〉 . . . 〈xn := Qn〉

])〈v := N〉)
≡ x(P 〈v := N〉 • [〈x1 := Q1

〈v ↑ xn,2 := N ↑ xn,2〉〉
· · · 〈xn := Qn〈v := N〉〉])

⇒ x(P ′〈v := N ′〉) • [〈x1 :=
x(Q′

1〈v ↑ xn,2 := N ′ ↑ xn,2〉)〉
· · · 〈xn := x(Q′

n〈v := N ′〉)〉]
≡ x(P ′〈v := N ′〉 • [〈x1 := Q′

1

〈v ↑ xn,2 := N ′ ↑ xn,2〉〉 · · ·
〈xn := Q′

n〈v := N ′〉〉])
≡ x((P ′ • [〈x1 := Q′

1〉 . . . 〈xn := Q′
n〉

])〈v := N ′〉)
≡ x(M ′〈v := N ′〉).

(7) x(M) ≡ ({x}.P) • [〈x1 := Q1〉 . . . 〈xn :=
Qn〉], P ⇒ P ′, Qi ⇒ Q′

i, (1 ≤ i ≤ n),
and x(M ′) ≡ x(P ′〈x1 := Q′

1〉 . . . 〈xn :=
Q′

n〉).
From the induction hypothesis we have:

x(P 〈v ↑ {x} := N ↑ {x}〉) ⇒
x(P ′〈v ↑ {x} := N ′ ↑ {x}〉),

x(Q1〈v ↑ xn,2 := N ↑ xn,2〉) ⇒
x(Q′

1〈v ↑ xn,2 := N ′ ↑ xn,2〉),
...

x(Qn〈v := N〉) ⇒ x(Q′
n〈v := N ′〉).

x(M〈v := N〉)
≡ x(x(M)〈v := N〉)
≡ x(({x}.P) • [〈x1 := Q1〉

· · ·
〈xn := Qn〉])〈v := N〉)

≡ x(({x}.P)〈v := N〉 • [〈x1 :=
Q1〈v ↑ xn,2 := N ↑ xn,2〉〉
· · ·
〈xn := Qn〈v := N〉〉])

⇒ x(x(P ′〈v ↑ {x} := N ′ ↑ {x}〉)
〈x1 := x(Q′

1〈v ↑ xn,2 := N ′ ↑
xn,2〉)〉 · · ·
〈xn := x(Q′

n〈v := N ′〉)〉)
≡ x(P ′〈v ↑ {x} := N ′ ↑ {x}〉
〈x1 := Q′

1〈v ↑ xn,2 := N ′ ↑ xn,2〉〉
· · · 〈xn := Q′

n〈v := N ′〉〉)
≡ x(P ′〈x1 := Q′

1〉 . . . 〈xn := Q′
n〉

〈v := N ′〉) (by Lemma 5)
≡ x(M ′〈v := N ′〉). ✷

The following two lemmas are important in
proving the confluence property of λxc.

Lemma 7 If M →b,c M ′, then x(M) ⇒
x(M ′).

Proof By induction on the construction of
M :
(1) M ≡ (λx.N)Q, M ′ ≡ N〈x := Q〉 and

M →b,c M ′. We have:
x(M) ≡ x(λx.N)(x(Q))

≡ (λx.x(N))(x(Q))
⇒ x(x(N)〈x := x(Q)〉)
≡ x(N〈x := Q〉)
≡ x(M ′).

(2) M ≡ ({x}.P) • [〈x := N〉], M ′ ≡
P 〈x := N〉 and M →b,c M ′. We have:
x(M) ≡ {x}.x(P) • [〈x := x(N)〉]

⇒ x(x(P)〈x := x(N)〉)
≡ x(P 〈x := N〉)

Vol. 42 No. 1 A Type-Free Context Calculus 45

≡ x(M ′).
(3) M ≡ λx.N , N →b,c N ′ and M ′ ≡ λx.N ′.

From the induction hypothesis we have:
x(N) ⇒ x(N ′). Hence, x(M) ≡
λx.x(N) ⇒ λx.x(N ′) ≡ x(M ′).

(4) M ≡ NQ, N →b,c N ′ and M ′ ≡ N ′Q.
From the induction hypothesis we have
x(N) ⇒ x(N ′). So, we have:
x(M) ≡ x(NQ)

≡ x(N)x(Q)
⇒ x(N ′)x(Q)
≡ x(N ′Q)
≡ x(M ′).

(5) M ≡ NQ, Q →b,c Q′ and M ′ ≡ NQ′:
similar to the above case.

(6) M ≡ N〈v := Q〉, N →b,c N ′ and M ′ ≡
N ′〈v := Q〉. From the induction hypoth-
esis we have:
x(N) ⇒ x(N ′) and from the reflexivity
of ⇒ we have x(Q) ⇒ x(Q).
From Lemma 6 we have x(N〈v := Q〉) ⇒
x(N ′〈v := Q〉).

(7) M ≡ N〈v := Q〉, Q →b,c Q′ and M ′ ≡
N〈v := Q′〉: similar to the above case.

(8) M ≡ {x}.N , N →b,c N ′ and M ′ ≡
{x}.N ′. From the induction hypothesis
we have x(N) ⇒ x(N ′), hence
x(M) ≡ {x}.x(N) ⇒ {x}.x(N ′) ≡
x(M ′).

(9) M ≡ P • [〈x := N〉], P →b,c P ′ and
M ′ ≡ P ′ • [〈x := N〉]. From the induc-
tion hypothesis we have: x(P) ⇒ x(P ′),
hence

x(M) ≡ x(P) • [〈x := x(N)〉]
⇒ x(P ′) • [〈x := x(N)〉]
≡ x(M ′).

(10) M ≡ P • [〈x := N〉], Ni →b,c N ′
i , i :=

1, . . . , n and M ′ ≡ P • [〈x := N ′〉].
From the induction hypothesis we have:
x(Ni) ⇒ x(N ′

i), hence

x(M) ≡ x(P) • [〈x := x(N)〉]
⇒ x(P) • [〈x := x(N ′)〉]
≡ x(M ′). ✷

Lemma 8 If M →x M ′ then x(M) ⇒
x(M ′).

Proof Easy.
Remark 1 From Lemmas 7 and 8 we have,

if M →bxc M ′, then x(M) ⇒ x(M ′).
To prove the confluence of ⇒, the following

lemma is important.
Lemma 9 If M ⇒ N , then N ⇒ M∗.

Proof By induction on the construction of
M .

Lemma 10 ⇒ on x-normal terms is con-
fluent.

Proof Immediate consequence of Lemma 9.
Theorem 1 (Confluence) →bxc on λxc-

terms is confluent.
Proof Suppose that M ∗→bxc N and M

∗→bxc

P , then from Remark 1 we have x(M) ⇒ x(N)
and x(M) ⇒ x(P), and from the confluency
of ⇒ (Lemma 10) there is Q s.t. x(N) ⇒ Q
and x(P) ⇒ Q. Then from Lemma 2 we have
x(N) ∗→bxc Q and x(P) ∗→bxc Q. Since N

∗→bxc

x(N) and P
∗→bxc x(P), we have N

∗→bxc Q
and P

∗→bxc Q. ✷

3.2 Conservativity
In proving that λxc is a conservative exten-

sion of the λβ calculus, we need the following
definitions.
Two terms M and N are α-equivalent, writ-

ten as M ≡α N , if they are identical except for
renaming of bound variables bound by λ and
by the v in the term P 〈v := Q〉 only, and is
defined inductively as:
(1) v ≡α v.
(2) λx.M ≡α λy.N if (M [x := z]) ≡α

(N [y := z]) for some z ∈ FV (MN).
(3) MN ≡α PQ if M ≡α P and N ≡α Q.
(4) M〈v := N〉 ≡α P 〈w := Q〉 if N ≡α Q

and M [v := u] ≡α P [w := u] for some
u ∈ FV (MP).

(5) {x}.M ≡α {x}.N if M ≡α N .
(6) M • [〈x := N〉] ≡α P • [〈x := Q〉] if M ≡α

P and Ni ≡α Qi, for 1 ≤ i ≤ n.
Example 5 λz.z + x ≡α λx.x+#x.
Note that, if M ≡α N then FV(M) = FV(N).
The notation P [v := N] denotes the term ob-

tained by substitution of the term N for all free
occurrences of v in P and is defined inductively
as:
(1) v[v := N] ≡ N .
(2) w[v := N] ≡ w ↓ v if v = w.
(3) (λy.M)[v := N] ≡ λy.M [v ↑ y := N ↑ y].
(4) (M1M2)[v := N] ≡ (M1[v :=

N])(M2[v := N]).
(5) (P 〈w := M〉)[v := N] ≡ P [v ↑ w := N ↑

(w ↓ (v ↑ w))]〈w ↓ (v ↑ w) := M [v :=
N]〉.

(6) ({x}.M)[v := N] ≡ {x}.M [v ↑ {x} :=
N ↑ {x}].

(7) (M • [〈x := P 〉])[v := N]
≡ M [v := N] •
[〈x1 := P1[v ↑ xn,2 := N ↑ xn,2]〉

46 IPSJ Journal Jan. 2001

· · ·
〈xn := Pn[v := N]〉].

Theorem 2 (The Reduction in λxc re-
spects the α-equivalence) If M ≡α N and
M →bxc M ′ then there is a termN ′ s.t.N →bxc

N ′ and M ′ ≡α N ′.
Proof By induction on the construction of

M .
Note that, the calculus defined by Sato, et

al. 8) cannot express the above theorem as it is
given here, since M ′ and N ′ do not always have
the same type and then they are not necessarily
α-equivalent.
If M and N are λxc-terms with only vari-

ables, λ-abstraction and application, then they
can be regarded as λβ-terms.

Theorem 3 (Conservativity) If M and N
are λβ-terms, then M

∗→β N iff M
∗→bxc N ′

and N ≡α N ′ for some term N ′ in λxc.
Proof By induction on the construction of

M .
3.3 PSN
Finally, we will show that λxc has the PSN

property, which states that if a λβ-term M
is strongly normalizing under the ordinary β-
reduction, then it is also strongly normaliz-
ing under λxc-reductions. We will follow the
method given in Ref. 2). Another method can
be found in Ref. 1).
First, a garbage-free reduction →bxc|gc is de-

fined as follows:
Let M and N be gc-normal terms (M is

gc-normal if M →gc P holds for no P) then
M →bxc|gc N iff ∃ P s.t.

M →x P and P
∗→gc N or

M →b P and P
∗→gc N or

M →c P and P
∗→gc N .

The garbage-free reduction calculus will be
denoted by λxc|gc, and the gc-normal form of
M will be denoted by gc(M).

Theorem 4 (PSN for λxc|gc) λβ-terms
that are β-strongly normalizing are also
strongly normalizing for λxc|gc.

Proof Since λβ-terms has no reduction with
the (c) rule, the proof is a straight forward ex-
tension of that of λx 2).
Next, garbage-reduction is defined as the con-

textual closure of the reduction generated by:
(1) If N →bxc N ′ and v ∈ FV(gc(M)), then

M〈v := N〉 →bxc M〈v := N ′〉 is a
garbage-reduction.

(2) If v ∈ FV(gc(MN)) then (MN)〈v := P 〉
→bxc (M〈v := P 〉) (N〈v := P 〉) is a

garbage-reduction.
(3) If v ∈ FV(gc(λy.M)) then (λy.M)〈v :=

N〉 →bxc λy.M〈v ↑ y := N ↑ y〉 is a
garbage-reduction.

(4) If v ∈ FV(M) then M〈v := N〉 →bxc M ↓
v is a garbage-reduction.

(5) If v ∈ FV(gc({y}.M)) then ({y}.M)〈v :=
P 〉 →bxc {y}.M〈v ↑ {y} := P ↑ {y}〉 is a
garbage-reduction.

(6) If v ∈ FV(gc(M • [〈y := P 〉])) then (M •
[〈y := P 〉])〈v := N〉 →bxc M〈v := N〉 •
[〈y1 := P1〈v ↑ yn,2 := N ↑ yn,2〉〉 . . .
〈yn := Pn〈v := N〉〉] is a garbage-
reduction.

The following proposition and lemmas are
needed in the proof of Theorem 5.

Proposition 1 If M →bxc N is not a
garbage-reduction then gc(M) →bxc|gc gc(N)

Proof By induction on the construction of
M .
Recall the following definition from Ref. 2):

N is said to be body of a substitution in M if
for some P and x we have P 〈x := N〉 is a sub-
term of M . The predicate subSN(M) should
be read to be all bodies of substitutions in M
are strongly normalizing for λxc-reduction.

Lemma 11 Let M be a λxc-term, then
if subSN(M) and M →bxc N is a garbage-
reduction then subSN(N).

Proof Easy.
Lemma 12 If subSN(M) then M is

strongly normalizing for garbage-reduction.
Proof The proof is a straightforward exten-

sion of that of λx 2).
For all terms M , define Ngf(M) to be

the maximum length of garbage-free reduction
paths starting in gc(M).

Theorem 5
If Ngf(M) < ∞ and subSN(M) then M is

strongly normalizing for →bxc-reduction.
Proof By induction on Ngf(M) using Lem-

mas 11, 12 and Proposition 1.
Corollary 2 (PSN for λxc) A λβ-term is

strongly normalizing for β-reduction iff it is
strongly normalizing for λxc-reduction.

Proof Using Theorems 4 and 5, Lemma 12,
and the fact that for λβ-term M if M →β N

then M
∗→b,x x(N).

4. Conclusion

We have developed a type free calculus for
contexts, which is an extension of the explicit
substitution calculus λx. In this calculus con-

Vol. 42 No. 1 A Type-Free Context Calculus 47

texts and lambda terms share the same set of
variables and can be freely mixed. Also, con-
texts are first-class values and hole-filling is an
explicit operation.
We have shown that λxc is confluent, conser-

vative over type free λβ calculus and has the
PSN property, i.e., pure in the sense of Ref. 9).
Unlike the system defined in Ref. 8), we re-

strict the variables bound by the set {x} as well
as the variables bound by λ to pure variables,
which makes our calculus simpler and it does
not affect our intended motivation about con-
texts. Our motivation behind giving the vari-
ables one or more # is to avoid collision with
other existing variables. However, in the pro-
cess of writing programs we can choose these
variables (the variables bound by λ and the
variables bound by the set {x}) as pure vari-
ables, and during the computation according to
the λxc-rules they will never take #.
For future work, we suggest defining a set of

typing rules for the terms of λxc to get a typed
version of this calculus which includes part of
Martin-Löf’s type theory ML0, e.g., sum, prod-
uct, well-ordering, etc. For the resulting typ-
ing calculus, designing a type inference algo-
rithm which produces principal typing for each
typable term is also promising.

References

1) Bloo, R. and Geuvers, H.: Explicit Substitu-
tion on the edge of Strong Normalization, The-
oretical Computer Science, Vol.211, pp.375–395
(1999).

2) Bloo, R. and Rose, K.H.: Preservation of
Strong Normalization in Named Lambda Cal-
culi with Explicit Substitution and Garbage
Collection, van Vliet, J.C. (Ed.), Proc. Com-
puter Science in Netherlands ’95 (1995).
(ftp://ftp.diku.dk/diku/semantics/papers
/D-246.ps)

3) Dami, L.: A Lambda-Calculus for Dy-
namic Binding, Theoretical Computer Science,
Vol.192, pp.201–231 (1998).

4) Hashimoto, M. and Ohori, A.: A Typed Con-
text Calculus, Theoretical Computer Science,
(to appear).

5) Klop, J.W., et al.: Combinatory reduction
systems: Introduction and Survey, Theoretical
Computer Science, Vol.121, pp.279–308 (1993).

6) Mason, I.: Computing with Contexts, Higher-
Order and Symbolic Computation, Vol.12,
No.2, pp.171–201 (1999).

7) Sands, D.: Computing with Contexts – A Sim-
ple Approach, Electronic Notes in Theoretical
Computer Science (1998).

8) Sato, M., Sakurai, T. and Kameyama, Y.:
A Simply Typed Context Calculus with First
Class Environment, Proc. Fifth International
Symposium on Functional and Logic Program-
ming, Lecture Notes in Computer Science (to
appear).

9) Sato, M., Sakurai, T. and Burstall, R.: Ex-
plicit Environments, Lecture Notes in Com-
puter Science, Vol.1581, pp.340–354 (1999).

10) Takahashi, M.: Parallel Reduction in λ-
calculus, J. Symbolic Computation, Vol.7,
pp.113–123 (1989).

(Received November 25, 1999)
(Accepted October 6, 2000)

Azza A. Taha received the
Master of Science degree in
Computer Science from Ain
Shams University, Cairo, Egypt.
She is a Ph.D. student at Kyoto
University since April 1997. Her
research interests are in foun-

dation of information science, lambda-calculus
and type theory.

Masahiko Sato received the
degree of Master of Science in
Mathematics from University of
Tokyo in 1973, and the degree
of Doctor of Science in Mathe-
matics from Kyoto University in
1977. He is currently a professor

in the Graduate School of Informatics, Kyoto
University. His main research interest is theory
of programs, especially constructive program-
ming. He is a member of IPSJ, JSSST, and
Mathematical Society of Japan.

Yukiyoshi Kameyama re-
ceived the degrees of Master
of Science from University of
Tokyo and Doctor of Engineer-
ing from Kyoto University. He
belongs to the Graduate School
of Informatics, Kyoto Univer-

sity. His main research interests are in founda-
tion of software science, including logic in com-
putation, type theory, and functional program-
ming. He is a member of JSSST and IPSJ.

