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Abstract 

Vision, especially image-forming vision, provides animals crucial information from environments. 

In vertebrates, the image-forming vision is evolved independently from those of the crustaceans or 

cephalopods. To establish the image-forming vision, several visual system components need to be 

functionally integrated. For example, a camera-type eye forms a image of environmental objects, 

the optic nerve project to the visual center to send the visual information, the visual center 

integrates the information with other information and sends motor outputs, and extra-ocular muscles 

move the eyeball to change the visual field. A key animal to solve this issue is the lamprey, because 

it shows unique “dual visual development”; in the “primary” phase, the lamprey has only ocellus-

like eyes, and in the “secondary” phase, the eyes develops into well-focused mature camera eyes.  

 Firstly, I analyzed the expression pattern of Eph genes in the lamprey. In the results, EphB 

and EphC show expression gradients in the “secondary” phase, similar to the gnathostomes. On the 

other hand, in the “primary” phase, these genes did not show expression gradients, but showed 

unique pattern. These results indicate that the gnathostomes-type image-forming vision is 

established in the “secondary” phase and the “primary” phase represents unique state. 

 Secondly, I focused on the neuroarchitecture of the “primary” visual system in the lamprey. 

By the neurotrace experiment and the expression pattern analysis on Pax6, it is clarified that the 

“primary” visual center locates in the prosencephalic region. Also, immunohistochemistry 

experiments and the expression pattern analysis on Pax6 in amphioxus showed that the visual 

center of the amphioxus also locates in the prosencephalic region. These results indicate the 

evolutionary similarity of the visual center between the “primary” phase of the lamprey and 
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amphioxus. 

 Finally, I investigated the developmental mechanisms of the extra-ocular muscles (EOMs). 

The expression analyses revealed that mesodermal patterning and genetic cascade of EOMs are 

conserved in lampreys, compared to the gnathostomes. However, I found a notable in the 

expression of muscle differentiation between mesodermal specification phase and 

determination/differentiation phase, that may cooperate the functional change of the vision in the 

“dual visual development”. 

 Based on these findings, I discuss the evolutionary origin of the vertebrate visual system. 

The “dual visual system” of the lampreys seems to represent “recapitulation” from a protochordate-

like ancestor to a gnathostome-like vertebrate ancestor, and the vertebrate image-forming vision and 

the visual system for it evolved de novo in the vertebrate lineage.
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1. General Introduction 

Vision, especially image-forming vision, provides animals crucial information from environments. 

Based on the visual information, a predator can detect the location of the food and a prey can 

recognize their enemy.  

 Parker (2003) argued that the evolution of the image-forming vision caused “Cambrian 

explosion”, the explosive diversification of animal forms. When a group of the predator evolved it, 

the animals of the group could ecologically success because they could find much food. On the 

other hand, each group of their prey evolved its own countermeasure under higher selective 

pressure. One countermeasure of a prey was to evolve the image-forming vision itself, find its 

enemy by it, and escape as soon as possible. 

 Vertebrates are one of the animal groups that evolved the image-forming vision, 

independently from other groups that evolved the image forming vision; arthropods and 

cephalopods. Resent findings of a fossil record of the earliest vertebrate Metaspriggina suggests 

that it could possess image-forming vision by its camera-type eye, but was a filter-feeder and used 

the image-forming vision for the escape behavior (Conway Morris & Caron 2014). And the image-

forming vision enabled some groups of the vertebrates to evolve a novel body plan and to change 

successfully their lifestyle as predators, such as conodonts and gnathostomes (Lacalli 2001). 

 Since Darwin (1859), a long time issue is how the image-forming vision evolved. To 

establish the image-forming vision, many visual system components need to be functionally 

integrated, for example, a camera-type eye, a visual center and the optic nerve projection to it, and 

extra-ocular muscles for moving the eyeball. Whether there was any evolutionary precursor of the 
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components for image-forming vision or those evolved de novo? 

 A key animal to solve this issue is the lamprey because it shows unique “dual visual 

development” described below. And I also study a basal chordate amphioxus, which has only the 

directional vision, for comparison. 

 Here, I focus on three components of the visual system; the expression pattern of the Eph 

genes and the development of the topographical retinotectal optic nerve projection (Chapter 2), the 

“primary” visual center (Chapter 3), and extra-ocular muscles (Chapter 4). And finally (Chapter 5), 

I discuss the evolution of the vertebrate image-forming vision showing that it evolved de novo and 

the “dual visual development” of the lamprey may represent “recapitulation” from a protochordate-

like ancestor to a gnathostome-like vertebrate ancestor. 
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2. Expression patterns of Eph genes in the “dual visual development” of the 

lamprey and their significance in the evolution of vision in vertebrates 

 

2.1 Abstract  

The vertebrate image-forming vision evolved independently from that of other animals and is 

regarded as a key innovation for enhancing predatory ability and ecological success. This type of 

vision is achieved with paired camera eyes and topographic projection of the optic nerve. 

Topographic projection is established by an orthogonal gradient of axon guidance molecules, such 

as Ephs. To explore the evolution of image-forming vision in vertebrates, lampreys, which belong 

to the basal lineage of vertebrates, are key animals because they show unique “dual visual 

development.” In the embryonic and pre-ammocoete larval stage (the “primary” phase), 

photoreceptive “ocellus-like” eyes develop, but there is no retinotectal optic nerve projection. In the 

late ammocoete larval stage (the “secondary” phase), the eyes grow and form into camera eyes, and 

retinotectal projection is newly formed. After metamorphosis, this retinotectal projection in adult 

lampreys is topographic, similar to that of gnathostomes. In this study, I explored the involvement 

of Ephs in lamprey “dual visual development” and establishment of the image-form vision. I found 

that gnathostome-like orthogonal gradient expression was present in the retina during the 

“secondary” phase; i.e., EphB showed a gradient of expression along the dorsoventral axis, while 

EphC was expressed along the anteroposterior axis. However, no orthogonal gradient expression 

was observed during the “primary” phase. These results suggest that the “secondary” phase of the 

lamprey “dual visual development” represents a gnathostomes-like derivative state, and “primary” 



 6 

phase represents a primitive or lamprey-specific state.
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2.2 Introduction  

The majority of gnathostomes, the main group of vertebrates, achieve image-forming vision with 

paired camera eyes and topographic projection of the optic nerve from the retina into the 

mesencephalic tectum. This topography is established by the orthogonal gradient of axon guidance 

molecules, such as Ephs, and their ligands, the ephrins (Triplett and Feldheim 2012). 

 To understand the evolutionary history of the vertebrate visual system and the intermediate 

stages, lampreys, which belong to an ancestral group of vertebrates (cyclostomes), are key animals 

because they show unique “dual visual development” (Fig. 2.1).  

 During the embryonic and pre-ammocoete larval stage (the “primary” phase), only a 

simple photoreceptive “ocellus-like” eye is formed (Meléndez-Ferro et al. 2002; Villar-Cerviño et 

al. 2006; Villar-Cheda et al. 2008). The eye of the larval lamprey is under thick and nontransparent 

skin and has only an immature lens, suggesting that it is not an image-forming eye (Kleerekoper 

1972). In addition, the retina of this ocellus-like eye lacks mature amacrine and horizontal cells, but 

contains photoreceptor, ganglion, and bipolar cells (Villar-Cerviño et al. 2006). Therefore, the 

ocellus-like eyes are thought to function as nondirectional or broadly directional photoreceptive 

organs (Villar- Cerviño et al. 2006). 

 On the other hand, the “secondary” phase corresponds to stages from late ammocoete 

larvae to adult. During the growth of larvae, the peripheral retinal cells proliferate actively until the 

metamorphic stage (Villar-Cheda et al. 2008), but most cells remain neuroblastic (de Miguel et al. 

1989; Villar-Cerviño et al. 2006). During metamorphosis, these neuroblasts differentiate into 

photoreceptor, amacrine, and horizontal cells, and the lamprey eye becomes a “truly functional,” 
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“camera-type eye” in adults (Villar-Cerviño et al. 2006; Villar-Cheda et al. 2008). This camera eye 

of adult lampreys can process well-focused color vision (Gustafsson et al. 2008). 

 Furthermore, “dual visual development” is also observed as the development of the optic 

nerve projection (Fig. 2.1). During the “primary” phase, the optic nerve projects not to the 

mesencephalic tectum but to the prosencephalic pretectum (described in Chapter 3 in detail). The 

retinotectal projection develops in older, larger larvae just prior to metamorphosis (de Miguel et al. 

1990). Similar to gnathostomes, the retinotectal projection of adult lampreys occurs in a 

topographic manner (Jones et al. 2009). 

 In this chapter, I explored the involvement of Ephs in lamprey “dual visual development” 

and establishment of the image-form vision. I first examined whether Ephs are involved in the 

secondary phase to build topographic projections based on their gradient expression. I also 

examined Eph expression during the primary phase to determine whether I can observe any 

intermediate commitment of Ephs during development of the visual system.  
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2.3 Materials and Methods  

Animals 

I used Lethenteron camtschaticum specimens for embryos and pre-ammocoete larvae. Adult 

lampreys were collected in the Shiribeshi-Toshibetsu River, Hokkaido, Japan. Mature eggs were 

squeezed from females and fertilized in vitro with sperm. The eggs of some of the females were 

anesthetized in ethyl 3-aminobenzoate methanesulfonate (MS-222). Embryos were cultured at 16°C. 

Developmental stages were determined according to Tahara (1988). 

Since ammocoete larvae were not readily available for L. camtschaticum, I used Lethenteron sp. N, 

the cryptic species of L. reissneri (Yamazaki and Goto 1998; Yamazaki et al. 2006), for late stage 

ammocoete larvae. Ammocoete larvae were collected in the Kamo River, upper Shougawa River, 

Toyama, Japan, in September.  

 

Isolation of cDNA clones of Eph genes  

Eph lamprey homologs were isolated by polymerase chain reaction (PCR) using L. camtschaticum 

stage 24–26 embryo cDNA as template. Primers for PCR were designed based on the Eph gene 

sequences of L. reissneri (LrEphB: AB025542, LrEphC: AB025543), which were previously cloned 

(Suga et al. 1999). The following primers were used: LcEphB-F: 5'-

GAGATGGCGGTCGCCATCAAGACGCTAAA-3', LcEphB-R: 5'-

TTCTTCTGGTGTCCAGCCAGGGTAACTCC-3', LcEphC-F: 5'-

AAGACTCTGAAGGCCGGGTACAGCGAGAA-3',LcEphC-R: 5'-

TGCAGGTCTTCCGGTGTCATCTGTGCGAC-3'. 
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The amino acid sequences of the isolated clones were almost identical to LrEphB and LrEphC, 

respectively, and therefore were named LcEphB and LcEphC (Lethenteron camtschaticum EphB 

and EphC; Acc. Nos: AB697185 and AB710343, respectively). 

 

Phylogenetic analysis  

The sequences were aligned using MAFFT (Katoh and Toh 2008) and trimmed using trimAL (gap 

threshold of 50%; Capella-Gutiérrez et al., 2009). Maximum likelihood (ML) trees were inferred 

using RAxML 7.2.7 and the best-fitting amino acid substitution model, as determined using the 

RAxML amino acid substitution model selection Perl script (Stamatakis 2006; Stamatakis et al., 

2008). Confidence values of the branches were calculated by 1,000 times bootstrappings. 

 

Whole-mount and sectioning for in situ hybridization  

Whole-mount in situ hybridization was performed according to Ogasawara et al. (2000) with minor 

modifications. Cryosectioning was performed on specimens embedded in Optimal Cutting 

Temperature (O.C.T.) compound using a CM3050 III (Leica). After washing out the compounds, in 

situ hybridization for cryosectioned materials was performed following the protocol for whole-

mount in situ hybridization, except that Tween 20 detergent was not used in any step and proteinase 

treatment was omitted before hybridization. Densitometric scans were performed using ImageJ 

software. As the retinas were not straight on the sectioned image, densitometry was performed after 

gray-scale conversion and after splitting the retina into four regions using a computational graphics 

editor (Photoshop CS6).  
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2.4 Results  

Eph genes in lampreys 

Previously, two lamprey Eph genes were isolated by Suga et al. (1999), and one was annotated as 

an orthologue of EphB, because it showed a clear affinity to gnathostome EphB. The orthology of 

the second gene was not clear, because it did not show obvious affinity with EphA and thus was 

designated as EphC.  

 In a search of the Petromyzon marinus genome (see also Smith et al. 2013), I retrieved 

eight gene models. However, these gene models should be used with caution, because the lamprey 

genome is degenerated somatically (Smith et al. 2009, 2012). Thus, this does not necessarily 

indicate that Petromyzon possesses eight Eph genes. Phylogenetic analysis showed that three Eph 

genes showed affinities to EphC, two to Hagfish EphA, and three to cyclostome EphB (Fig. 2.2). 

Among those related to EphA, two gene models shared a highly conserved region (approximately 

600 bp), including a 100% matching region (200 bp). This region also displayed the same exon 

structure. Thus, it remains possible that they represent alleles of a single gene. Similarly, three gene 

models of EphC shared three highly conserved regions (approximately 330 bp, 180 bp, and 500 bp, 

respectively), with the same exon-intron structure. Thus, they may represent alleles or products of 

alternative splicing or products of genome rearrangement during early embryogenesis (Smith et al. 

2009, 2012). Among the EphB gene models, two (PmEphB1 and PmEphB2) contain partial 

sequences with no overlap. Thus, they may originate from a single gene.  

 Although Suga et al. (1999) annotated Hagfish EphA as cognates of gnathostome EphAs, 

the orthology among cyclostome EphA, EphC and gnathostome EphAs remains unclear (Fig. 2.2). It 
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should be noted that common expression patterns were observed between lamprey EphC and 

gnathostomes EphAs, specifically in rhombomeres 3 and 5 (r3 and r5, respectively), suggestive of 

their evolutionary affinity (Murakami et al. 2004, 2005). 

 From the transcripts of embryos (stages 25 and 26) and ammocoete larvae (10 cm long), I 

isolated two Eph genes (EphB and EphC) from L. camtschaticum. However, EphA transcripts could 

not be isolated from either stage, suggesting that EphA genes were not expressed, or that its 

expression was low during the stages examined. Thus, I analyzed the expression patterns of EphB 

and EphC.  

 

Expression patterns of Eph genes in late ammocoete larvae: the “secondary” phase 

In gnathostomes, EphB genes show a gradient of expression along the dorsoventral axis with higher 

expression ventrally in the retina. However, EphB does not show an obvious gradient in the 

mediolateral axis of the tectum (Triplett and Feldheim 2012). EphA genes also showed gradient 

expression, but along the anteroposterior axis with higher levels in the temporal/posterior regions of 

the retina and in the anterior of the tectum (Triplett and Feldheim 2012).  

 I examined the expression of Eph genes in late ammocoete larvae of approximately 90–130 

mm long. At this size, larvae are in the “secondary” phase when the retinotectal optic projection is 

established. de Miguel et al. (1990) reported that ammocoete larvae longer than 70–80 mm already 

show retinotectal projection in Petromyzon marinus and Lampetra fluviatilis.  

 In the retina of late ammocoete larvae, EphB expression was detected in a gradient manner 

along the dorsoventral axis with higher expression ventrally (Fig. 2.3A), and confirmed it by 
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densitometric analysis (Fig. 2.4A). On the other hand, I did not detect reproducible gradient patterns 

along the anteroposterior axis (Fig. 2.3C, 2.4C). I also detected gradient expression of EphC, but 

along the anteroposterior axis with higher expression posteriorly (Fig. 2.3D, 2.4D). However, I did 

not observe gradient expression along the dorsoventral axis for EphC (Fig. 2.3B, 2.4B).  

 The tectum of lampreys can be divided into the superficial and deeper layers. The optic 

nerve axons terminate in this superficial layer (Kosareva 1980). Based on expression analysis, both 

EphB and EphC showed wide and strong expression in the inner layer of the brain. However, 

expression in the superficial layer was restricted to the tectum and was not observed in the 

surrounding brain region (Fig. 2.5, A–D). These expression patterns suggested that Ephs functions 

as axon guidance molecules. However, my observations did not reveal any expression gradients in 

the tectum, possibly because of technical limitations in detecting subtle differences in expression 

levels in sectioned materials. 

 

Expression patterns of Eph genes in embryos and pre-ammocoete larvae: the “primary” 

phase 

My analyses in the “secondary phase” revealed an orthogonal gradient of Ephs, at least in the retina. 

Based on these results, I next explored whether a similar pattern was observed during the “primary” 

phase, when the optic nerve does not project to the mesencephalic tectum but prosencephalic 

pretectum.  

 The expression of EphB was observed as early as stage 24 in the presumptive 

diencephalic–rhombencephalic brain, as well as in the upper and lower lips (Fig. 2.6A). The 
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expression levels in the brain increased at stage 25, especially in the anterodorsal thalamus (Fig. 

2.6B). At stage 26, EphB expression was detected widely in the brain throughout the diencephalon 

(thalamus, pineal organ, pretectum, and diencephalic tegmentum), mesencephalon, and 

rhombencephalon (Fig. 2.6C), but no gradient expression was observed in the tectum or pretectum, 

the presumptive target for the “primary” optic nerve at this stage (white broken line). In addition, no 

signal was observed in the eyeball (eb) (Fig. 2.6D). After stage 27 (Fig. 2.6E), EphB expression 

decreased, but was still detected in the anterodorsal thalamus, mesencephalon, and 

rhombencephalon, as well as in the upper and lower lips and branchial arches.  

 The expression of EphC was detected slightly earlier than EphB from stage 23 in the 

forebrain (fb), r3 and r5, and the trigeminal ganglion (gV; Fig. 2.7A). At stage 24, expression in the 

forebrain was restricted to the dorsalmost telencephalon, dorsalmost thalamus, and ventral 

diencephalic tegmentum (tg). It was also expressed in the facial ganglion (gVII) and weakly in 

rhombomere 6 (r6), as well as the upper and lower lips, somites (sm), and branchial arches (ba; Fig. 

7B, B’). At stage 25, expression in the dorsal telencephalon and the anterodorsal thalamus increased. 

In addition, expression was detected in the eyeball (Fig. 2.7C). During this stage, EphC expression 

was still observed in the rhombomeres (r3 and r5), as reported previously (Murakami et al. 2004). 

At stage 26, I detected EphC expression in the optic stalk, eyeball, and the otic vesicle (otv). Note 

that in the eyeball, the expression was stronger in the marginal zone (Fig. 2.7D, E). Expression was 

also detected in the pretectum, which contained the presumptive “primary” optic nerve (Fig. 2.7D’, 

white broken line), but no gradient was observed and instead was present in a uniform manner. The 

expression of EphC clearly decreased after stage 27 (Fig. 2.7F, G).  
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2.5 Discussion  

Establishment of image-forming vision in lampreys 

Topography of the retinotectal projection is formed by the orthogonal gradient of axon guidance 

molecules such as Ephs and ephrins, which forms the basis for image-forming vision in 

gnathostomes (Triplett and Feldheim 2012).  

 I found that during the “secondary” phase of lamprey dual visual development, the 

expression patterns of Eph genes showed a gnathostome-like orthogonal gradient in the retina. 

These gradient patterns were similar to those in gnathostomes; EphB showed a gradient of 

expression along the dorsoventral axis with higher expression ventrally. In addition, EphC showed a 

gradient of expression along the anteroposterior axis with higher expression posteriorly, which was 

similar to the pattern of gnathostome EphA. These results indicate that the topography of the 

“secondary” phase optic nerve in lampreys is formed by an axon guidance system similar to that of 

gnathostomes. However, the expression gradients of these genes in the tectum remains unclear, 

possibly due to technical difficulties in detecting fine quantitative differences in expression levels in 

sectioned materials. Alternatively, the Eph gradient in the retina and ephrin gradient in the tectum 

may be sufficient for the development of the lamprey topographic visual system, although it was 

difficult to detect the expression of ephrin genes due to their short transcript lengths. In addition, I 

could not isolate any EphA transcripts in embryos or ammocoete larvae, indicating that EphA genes 

are expressed at low levels during these stages. However, the common expression patterns between 

Lamprey EphC and gnathostomes EphAs, not only in rhombomeres 3 and 5 but also in the gradient 

manner in retina observed in this study, suggests that they are evolutionary favored compared with 
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cyclostome EphAs. 

 Despite these issues, the clear gradients of Eph gene expression in the retina were 

consistent with previous observations that the retinotectal optic nerve projection forms during the 

late larval stage just prior to metamorphosis (de Miguel et al. 1990) and that the retinotectal optic 

nerve projection in adults is topographic (Jones et al. 2009). Therefore, my results support the 

hypothesis that the “secondary” optic nerve topography may be mediated by the orthogonal gradient 

of axon guidance molecules, such as Ephs. 

 

Eph expression in the “primary” phase 

My results showed that the expression patterns of Eph genes differed during the “primary” phase 

from those in gnathostomes or during the “secondary” phase of the lamprey. EphB expression was 

not detected in the eyeball. Although both EphB and EphC expression was detected in the target 

brain regions of the “primary” optic nerve, the expression was observed widely in the diencephalon 

and not confined to the specific target region. Furthermore, in the tectum, EphB expression did not 

show gradient expression but instead was observed in a uniform manner. EphC was not expressed 

in the tectum. Thus, neither EphB nor EphC show gnathostome-like orthogonal gradients in the 

eyeball, the “primary” visual center or the tectum. These results suggest that the “primary” phase of 

the lamprey represents evolutionarily primitive state. However, strong expression was observed for 

EphC in the margin of the eyeball of stage 26 larvae (Fig. 4D, E), which may suggest that lamprey 

EphC is involved in the development of the eyeball in a lamprey-specific manner. To examine 

whether “primary” phase represents primitive or lamprey-specific state, I next analyze “primary” 
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visual center of the lamprey in the next chapter.  
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3. A comparative examination of neural circuit and brain patterning between 

the lamprey and amphioxus reveals the evolutionary origin of the vertebrate 

visual center 

 

3.1 Abstract  

Evolutionary changes in the neural circuits, particularly the visual center, were central for the 

acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-

less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, 

I present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture 

in amphioxus, and the brain patterning in these animals. Both the lateral eye in larval lamprey and 

the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic 

region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. 

My results indicate that the visual system of the larval lamprey represents an evolutionarily 

primitive state, forming a link from protochordates to vertebrates and providing a new perspective 

of brain evolution based on developmental mechanisms and neural functions.
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3.2 Introduction  

As discussed in Chapter 2, “primary” phase in the lamprey “dual visual development” represents 

unique state, which may be primitive or lamprey-specific. To validate these two possibilities, I 

focus on the evolution of the visual center. de Miguel et al. (1990) showed that the “primary” optic 

nerve do not projects to the mecencephalic tectum, but the retino-tectal projection develops in older, 

larger larvae just prior to metamorphosis. However, the early development of the optic nerve and its 

projection pattern remain unknown. 

Basal chordates amphioxus, on the other hand, have an ocellus-like “frontal eye”, but this 

appears to function only in photoreception and not in image-forming vision. Though amphioxus has 

multiple photoreceptors, not only the frontal eye but also Hesse ocelli, Joseph cells and lamella 

body and this indicates that multiple photoreceptors are probably appeared in chordate ancestors, it 

is considered homologous to the vertebrate paired eyes due to its topology, Pax6 expression and 

photoreceptor type (Lacalli 2004). Recent molecular analysis gave further support for homology 

through the molecular fingerprinting of Rx, Gi and c-opsin in photoreceptor cells and Mitf and 

Pax2/5/8 in pigment cells (Vopalensky et al. 2012). Lacalli (1996) found the visual center by 

tracing innervation through electron microscopy and named it “tectum” as a homologous region to 

the vertebrate mesencephalon. However, the mesencephalon-specific marker gene Dmbx is not 

expressed in the nerve chord of amphioxus, suggesting that amphioxus lacks a mesencephalic 

region (Takahashi and Holland 2004). Therefore, there is some disagreement on amphioxus 

neuroarchitecture and brain patterning, making the evolution of vision obscure. 

Here I performed comparative examinations on the development of retinofugal projections 
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in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in these animals. And 

based on the results, propose an evolutionary scenario for the visual system in the chordate lineage.  
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3.3 Materials and Methods 

Animals 

Adult lampreys (Lethenteron camtschaticum) were collected from the Shiribeshi-Toshibetsu River, 

Hokkaido, Japan. Mature eggs were expelled from females and fertilized in vitro by sperm. Adults 

were anesthetized in ethyl 3-aminobenzoate methanesulfonate (MS-222). Embryos were cultured at 

16°C. Developmental stages were determined as described by Tahara (1988). 

Collection of larvae of Branchiostoma japonicum was done as described by Yasui et al. 

(1998) and of B. lanceolatum as described by Fuentes et al. (2007) 

Medaka (Oryzias latipes) eggs were incubated at 28°C and then used for neurolabeling 

experiments. 

 

Whole-mount immunostaining 

Whole-mount immunostaining of lampreys (L. camtschaticum) with anti-acetylated tubulin 

monoclonal antibody (Sigma, T6793, RRID: AB477585) was performed according to Kuratani et al. 

(1997) with some minor modifications. Fixed embryos stored in methanol were washed in TBST 

containing 5% dimethylsulfoxide (TSTd). The embryos were then blocked with 5% nonfat dry milk 

in TSTd (TSTM). They were incubated with the primary antibody (diluted 1:1,000 in TSTM) for 2-

4 days at room temperature (RT). After washing with TSTd, samples were incubated with 

secondary antibody (horseradish peroxidase (HRP)-conjugated antibody (Sigma, A2554, RRID: 

AB258008)) or fluorescence antibody (Invitrogen, Alexa fluor 555, A21424, RRID: AB10566287) 

diluted 1:200 in TSTM. After a final wash in TSTd, embryos treated with HRP-conjugated antibody 
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were incubated with the peroxidase substrate in TBST for 1 hour, reacted in TBST with the same 

concentration of DAB with 0.01% hydrogen peroxide, and examined through an optical microscope. 

The embryos treated with fluorescent secondary antibody were dehydrated and clarified in a 1:2 

mixture of benzyl alcohol and benzyl benzoate (BABB) and then examined using a confocal laser 

microscope (LSM 510, Zeiss). 

Whole-mount immunostaining of amphioxus with anti-acetylated tubulin (Sigma, T6793, 

RRID: AB477585), synaptotagmin (Sigma, S2177, RRID: AB261464), anti-vesicular acetylcholine 

transporter (VAChT) (Sigma, V5387, RRID: AB_261875) and anti-serotonin (Sigma, S5545, 

RRID: AB477522) antibodies was performed according to Kaji et al. (2001) with minor 

modifications. The primary and secondary antibodies were added together for the double 

immunostaining with anti-synaptotagmin and anti-acetylated tubulin. Stained specimens were 

examined using a confocal laser microscope (LSM510, Zeiss). 

 

Neurolabeling 

To label the neurons, dextran conjugates (tetramethylrhodamine, 3,000 m. w., Invitrogen, D3308; 

Alexa Fluor 488, 10,000 m. w., Invitrogen, D22910) were injected into the right eyecup or the 

caudal rhombencephalon of lamprey embryos or larvae (L. camtschaticum) and medaka larvae 

according to the method described by Glover (1995). The one-color triple labeling was performed 

by the tetramethylrhodamine-dextran conjugates injection to right eyecup, right forebrain surface, 

and rhombencephalon at the same time. The two-color double labeling was performed by the 

sequential labeling of Alexa Fluor 488-dextran conjugates to the rhombencephalon and 
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tetramethylrhodamine-dextran to the right eyecup with 30 minuites interval. The injected embryos 

were incubated at RT for 30 minutes to allow anterograde labeling of neuronal projections with 

dextran. Embryos were then washed with distilled water and fixed in 4% PFA/PBS. The fixed 

specimens were dehydrated and clarified with BABB. Labeled neurons were examined using a 

confocal laser microscope. 

 

Isolation of cDNA clones of lamprey and amphioxus genes 

Pax6 lamprey homologs were isolated as described by Murakami et al. (2001). 

Pax6 amphioxus homologs were isolated by PCR using adult B. japonicum cDNA as a template. 

Primers for PCR were designed on the Pax6 sequences of B. floridae (AJ223440), which have been 

cloned previously (Glardon et al., 1998). These primer sequences are F: 5’-

ATTTCCCGCCTTCTGCAGGTCTCGAATGG-3’ and R: 5’-

GCCATATTGCCGGGTACGGAAAAGCTTGG-3’. 

I isolated a cloned sequence that was orthologous to BfPax6 (100% match by amino acid sequence), 

and it was submitted and assigned the DDBJ/EMBL/GenBank accession number AB915169. 

 

Whole-mount and section in situ hybridization 

Whole-mount in situ hybridization for lamprey larvae (L. camtschaticum) was performed according 

to Ogasawara et al. (2000) with minor modifications. Whole-mount in situ hybridization for 

amphioxus larvae was performed as described previously (Wada et al. 1999). 

Double staining by in situ hybridization and anti-acetylated tubulin immunostaining was 
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performed following serial treatments. After post-fixation by the NBT/BCIP reaction of in situ 

hybridization, the samples were incubated at RT with 0.1 M glycine-HCl (pH 2.0) for 30 minutes to 

inactivate alkaline phosphatase. The specimens were then post-fixed with 4% PFA/PBS for 1 hour, 

washed with PBS and immunostained. The embryos were dehydrated and clarified with BABB and 

then examined using a confocal microscope. The in situ hybridization signals were examined by 

transmitted light microscopy and the immunostaining signal by specific laser microscopy. 
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3.4 Results 

Early development of the lamprey optic nerve 

Immunostaining of anti-acetylated tubulin was performed to examine the temporal profile of 

lamprey optic nerve development (see also Barreiro-Iglesias et al. 2008; Kuratani et al. 1997, 1998). 

In stage 24 and stage 25 embryos, some neural fibers (for example, fasciculus retroflexus [FR], 

medial longitudinal fascicle [MLF], supraoptic tract [SOT], tract of the posterior commissure [TPC]. 

tract of the postoptic commissure [TPOC]) were observed, but there were no optic fibers (Fig. 3.1A, 

B). The eyecup (asterisk) and optic fibers (arrow) were first identified during late stage 25 (stage 

25.5; 14–15 days post-fertilization; Fig. 3.1C). The eyecups are located just on the ventral region of 

the ophthalmicus profundus ganglion (gV1), and the optic fibers are coursed anteriorly toward the 

chiasm (Ch). In stage 26, the eyecup and optic fibers were present, although it was difficult to 

distinguish them from the inner brain fibers (Fig. 3.1D). In stage 27, the optic nerve was formed of 

thin fibers, as noted using confocal microscopy (Fig. 3.1E). In stage 28, the relative position of the 

eyecup was shifted slightly. It was just ventral to gV1 at stage 27, but between gV1 and the 

trigeminal ganglion (gV2,3) at stage 28 (Fig. 3.1F). The opticnerve is thicker compared with the 

previous stage. It is also notable that the dorsal region of the mesencephalon (Mes) has relatively 

low immunoreactivity to anti-acetylated tubulin, indicating that there are only a few fibers in this 

region.  

 

Neurolabeling of lamprey optic nerve projections 

I next examined the projection target of the optic nerve by rhodamine-dextran conjugate injection 
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into lamprey embryos and larvae. The reagent was injected into the right eyecup, and the right optic 

nerve axons were traced anterogradely (Fig. 3.2A). The optic fibers could be labeled in embryos 

older than stage 25.5 (Fig. 3.2B). This result is consistent with that of the anti-acetylated tubulin 

immunostaining. As larvae grew, more fibers were labeled (Fig. 3.2C–F). The tract of posterior 

commissure (TPC) was also observed as an artifact (Fig. 3.2B, C), because some tracer was taken 

directly by the brain surface. The optic nerve terminated contralaterally in the left dorsal region 

forebrain at all stages, and this region was rostral to the tectum, which is located just anterior to the 

midbrain-hindbrain boundary (MHB). Moreover, ipsilateral retinofugal fibers were not observed at 

any stage. 

I triple labeled the optic nerve, the MLF and the TPC to clarify the target position of the 

optic nerve projection in the brain. The TPC was situated along the dorsocaudal border of the 

diencephalon, and the nucleus of the MLF in the ventral region of the posterior commissure. The 

optic nerve projected to the region ventral to the TPC or nucleus of the MLF (Fig. 3.3A). This 

region corresponds to the ventral part of the pretectum. Furthermore, I performed two-color double 

labeling of the optic nerve and the MLF (Fig. 3.3B) and found optic nerve axons with varicosity 

(see inset of Fig. 3.3B) projecting to dendrites of MLF neurons, suggesting that at least a part of the 

optic fibers directly connects to MLF neurons. 

To verify the brain region receiving the optic projection, I compared nerve tract locations 

with the expression pattern of Pax6, a dorsal prosencephalon marker (Murakami et al., 2001). The 

Pax6 expression domain covered the TPC and the nucleus of the MLF situated in its ventral region 

(Fig. 3.3C). This result is highly consistent with a previous observation (Murakami et al. 2001). 
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Because the region of the optic nerve projection overlapped with the ventral TPC and nucleus of the 

MLF, the optic nerve likely projects to a Pax6-positive prosencephalic region (P1; pretectum) , but 

not to the mesencephalic region. 

For comparison, I examined optic nerve innervation pattern in medaka as a representative 

species of gnathostomes by two-color double labeling of optic fibers (magenta) and medial 

longitudinal fascicle (green). (Fig. 3.3D). In medaka 10 dpf (days post fertilization) larvae, most of 

the optic fibers (ON) projected to the tectum, and any nMLF-projecting fibers (green) could not be 

observed in this experiment. These results are consistent with the previous research, which studied 

retinotectal pathfinding in medaka (Yoda et al. 2004). 

 

Brain patterning and visual center in amphioxus larvae 

 I next examined brain patterning in amphioxus. Vopalensky et al. (2012) showed the 

homology between the amphioxus frontal eye and the vertebrate lateral eye by molecular 

fingerprintings. In addition, they showed innervation by the serotonergic neuron from the frontal 

eye to the tegmental neuropile, which they suggested is comparable to the vertebrate hypothalamus, 

although no clear evidence was provided for this homology. Thus, I traced the position of the visual 

center and examined its homology with the vertebrate neuroanatomical domain by comparing gene 

expression in this developmental stage. I performed immunostaining using several neural system-

related proteins to determine the position of the visual center in amphioxus larvae.  

 In four gill slit (4gs) larvae, I found anti-serotonin (5-HT)-immunopositive cells located 

just on the ventral side of the frontal eye pigment (Fig. 3.4A). These cells were identified as R2 
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cells, as described previously (Holland and Holland 1993; Lacalli 1996; Vopalensky et al. 2012). 

Furthermore, there were anti-VAChT-immunoreactive neurons (Fig. 3.4B) in 4gs larvae. These 

cholinergic cells are located in the ventral neural nerve chord; thus, they are ventral component 

(VC) motor neurons (Bone 1960; Lacalli 2001; Lacalli and Kelly 1999; Candiani et al. 2012). Most 

rostral cells had relatively large cell bodies. Based on position and cell morphology, these large 

neurons were likely those identified by Lacalli (1996) as giant cells of the primary motor center in 

the caudal cerebral vesicle. Between these two types of neurons, I found an anti-synaptotagmin 

(syt) highly-immunoreactive region (Fig. 3.4C1). Topologically, this region is just rostral to the n2 

nerve root (rN2, Fig. 3.4C2) and thought to correspond to the ‘tectum’ (Lacalli 1996) and its ventral 

neuropile, containing many synaptic connections. These results suggest that this region may process 

light information and control movements as a visual center (as at least one of the function of this 

region), receiving input from rostral sensory neurons and sending output to caudal motor neurons 

(Fig. 3.4E).  

 I then performed double staining of Pax6 in situ hybridization with acetylated-tubulin 

immunostaining in one-gill slit (1gs) larvae. At this stage, Pax6 was expressed in the posterior 

cerebral vesicle (Fig. 3.4D1, see also Glardon et al. 1998). I found that this region coincides 

topologically with the rostral region of the n2 nerve root (rN2, Fig. 3.4D2). This indicates that the 

presumptive visual center in amphioxus larvae is located in the Pax6 positive region, which may be 

homologous to the vertebrate prosencephalon as discussed below.  
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3.5 Discussion 

The “primary” optic nerve of lampreys 

Lampreys show “dual visual development” of the eye and optic nerve. In embryonic or 

pre-ammocoete larvae (the “primary” phase), the retina has an ocellus-like form (Melendez-Ferro et 

al. 2002). In this period, a small number of the optic nerve fibers are formed. In late ammocoete 

larvae (the “secondary” phase), new optic fibers are formed again. After metamorphosis, adult 

lampreys have well-developed camera eyes. Thus, I can term the optic nerve formed in the 

embryonic period as the “primary” optic tract and the one in the newly formed in late larvae as the 

“secondary” optic tract. 

My experiments showed that the “primary” optic tract projects into the Pax6-positive 

neural region (Fig. 3.3). By comparing the expression of Pax6, Otx, Dlx1/6, Pax2/5/8 and neural 

tracts marked by anti-acetylated tubulin antibodies, Murakami et al. (2001) indicated that the 

lamprey prosencephalon can also be identified as a Pax6 and Otx-positive region and the 

mesencephalon as a Pax6-negative and Otx-positive region. Therefore, I concluded that the lamprey 

“primary” optic tract projects into the prosencephalic region but not the mesencephalic region. In 

the embryonic period, there are opsin-immunoreactive photoreceptor cells in the retina, which may 

process light information at this stage (Melendez-Ferro et al. 2002). As I found no other retinofugal 

fibers, I surmised that this neural tract is the only pathway transferring light information from the 

retina in early larvae (see also De Miguel et al. 1990). This retino-pretectal projection remains as a 

retinofugal pathway in adult lampreys (Jones et al. 2009). It is thought to function in escape 

swimming in response to sudden visual stimuli and in dorsal light response (Ullén et al. 1993, 1997; 
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Deliagina and Fagerstedt 2000). Furthermore, retino-pretectal projection is conserved among 

gnathostomes. For example, the light reflex of the rat pupil is controlled by the contralateral 

pretectum (Trejo and Cicerone 1984). And the retino-pretectal projection is also found in hagfish 

(Kusunoki and Amemiya 1983; Wicht and Northcutt 1990) and blind cave fish (Voneida and Sligar 

1976), whose retino-tectal projection is mostly degenerate. Although no diencephalic projection 

was observed in the stage studied in my experiments (Fig. 3.3D), the adult medaka actually has a 

number of diencephalic visual centers, such as the pretectum (Deguchi et al. 2005). Also in the 

zebrafish (Burrill and Easter 1994), the presumptive retio-pretectal projection is observed shortly 

after the retino-tectal projection (52–54 hpf). 

Therefore, the retino-pretectal projection is evolutionarily conserved and probably an 

ancestral feature of vertebrates. There are fibers of the TPC and nucleus of the MLF in the 

pretectum region (Fig. 3.3). The TPC fibers integrate left-right information, and the MLF fibers 

send the signal into the spinal cord. This neuroarchitecture may represent the ancestral visual 

system.  

 

Visual center similarity in lampreys and amphioxus 

I showed the input/output architecture in the visual system of the amphioxus frontal eye, 

and that the presumptive visual center in amphioxus is located in the Pax6 expression domain (Fig. 

3.4). Therefore, this visual center occupies the same prosencephalic region to that of the region 

receiving the “primary” optic projections in lamprey, though the segmental neural organization in 

amphioxus is unclear and detailed synaptic connections between row cells of the amphioxus frontal 
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eye remains to be studied. Both regions are Pax6-positive, receiving visual input and sending output 

to the trunk, suggesting that this region functions as an integrative visual center (see also Fig. 3.5A). 

Thus, these regions share close morphological/functional similarity. In addition, Lacalli (2002) 

showed that the overall structure of the anterior cerebral vesicle change little during metamorphosis 

in amphioxus. This suggests that the visual center does not change during metamorphosis.  

Moreover, in the ascidian Ciona intestinalis, putative photoreceptor cells project their axon 

to other neurons in the posterior sensory vesicle (Imai and Meinertzhagen 2007). Some cholinergic 

neural cell bodies are located in this region (Yoshida et al. 2004), which is CiPax6-positive at the 

mid-tailbud stage (Mazet et al. 2003). Therefore, the visual center of this species is also located in a 

Pax6-positive region.  

On the other hand, there are some differences in the visual neuroarchitecture between 

lampreys and amphioxus. Serotonergic R2 cells in amphioxus are thought to be homologous to the 

retinal ganglion cells (RGCs) in vertebrates. But there is no 5-HT immunoreactive RGCs in 

lamprey before metamorphosis (Abalo e al. 2008). There is another 5-HT immuonoreactive cells in 

the photoreceptor organ in early lampreys, the pineal organ. Although this organ develops from 

Pax6-positive region, the relationship with R2 cells is also unclear. Moreover, the R2 cells projects 

ipsilateral (Vopalensky et al. 2012), though the retinal projection in early lamprey is contralateral, 

as is the often case in vertebrates. However, there are other types of neurons corresponding to the 

vertebrate retinal neurons, R3 and R4 cells, and especially, R4 cells are thought as possible 

homologues of RGCs (Lacalli 1996). R4 cells are not serotonergic, and have contralateral 

projections. They locate just caudal to the R2 cells and have backward-projecting axon like R2 cells. 
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Therefore I do not dismiss a possibility that other cell types such as R4 cells also act as sensory 

neurons in the amphioxus frontal eye visual system, and RGCs are homologous to some of these 

cells rather than R2 cells.  

 

Evolution of vision in the chordate lineage 

 Based on my findings, I propose an evolutionary scenario for the visual system in 

chordates (Fig. 6A). The common ancestor of chordates had an ocellus-like eye(s), and the visual 

center was in the Pax6-positive region, where directional vision was processed. These characters 

are also conserved in tunicates. Moreover, they can be traced back to more ancestral lineages, 

because the serotonergic neurons found in the amphioxus frontal eye are thought to be homologous 

to the serotonergic apical organ neurons found in larval echinoderms (Lacalli et al. 1994).  

Larval hemichordates also have these serotonergic neurons in the apical organ (Miyamoto et al. 

2010; Nakajima et al. 2004; Nielsen and Hay-Schmidt 2007). Furthermore, recent research (Marlow 

et al. 2014) revealed that the origin of the apical organ can be traced back to the common ancestor 

of cnidarians and bilaterians. 

In the common ancestor of vertebrates, the Pax6-positive (i.e., prosencephalic) visual 

center remains one of the main visual center as larval lampreys. Larval lampreys also show some 

other ancestral states, such as the endostyle (Wright et al. 1980) and the absence of arcualia (Potter 

and Welsch 1992; Richardson et al. 2010). In addition, the mesencephalic retino-tectal projection 

was a newly formed “secondary” optic tract in the mesencephalic region. This projection developed 

a topographical arrangement that enabled the ancestor to establish image-forming vision (Jones et al. 
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2009).  

 This scenario also inspires an idea that the evolution of image-forming vision is associated 

with the evolution of the mesencephalon. However, the emergence of the mesencephalon remains 

enigmatic. Figure 6B shows the gene regulatory network establishing the mesencephalic region in a 

vertebrate neural tube. Pani et al. (2012) proposed that the IsO organizer is conserved in the acorn 

worm. However, Holland et al. (2013) noted that the arrangement of IsO-related genes is reversed 

and that the organizer activity might not be directly related to the effects on A/P patterning. The 

Otx/Gbx boundary and Pax6 expression is present in amphioxus (underlined), suggesting the 

existence of the IsO and conserved A/P patterning in the amphioxus neural tube. As neither 

Pax2/5/8 nor En1/2 is expressed in the neural tube just anterior to the Otx/Gbx boundary, in 

addition to a lack of Dmbx expression, the amphioxus appears to lack a mesencephalic region. 

Rather, the expression profile of the patterning gene in the anterior neural tube is strikingly similar 

to that of the vertebrate prosencephalon. My observations in this study are consistent with this idea 

because the amphioxus visual center, located in the posterior cerebral vesicle, is comparable to the 

prosencephalic “primary” visual center found in larval lampreys.  
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4. Morphology and development of extra-ocular muscles in the lamprey reveal 

the ancestral head structure and its developmental mechanism of vertebrates 

 

4.1 Abstract 

The ancestral feature of the vertebrate head has always been one of the intriguing issues in 

comparative morphology and evolutionary biology. One of the peculiar components of the 

vertebrate head is extra-ocular muscles (EOMs), whose developmental mechanism and evolution 

still remain enigmatic: the head mesoderm of elasmobranchs is subdivided and epithelialized as 

three head cavities, the precursor of EOMs, whereas in avians, they develop from mesenchymal 

head mesoderm. Importantly, in the basal vertebrate lamprey, the head mesoderm does not show 

overt head cavities or sign of segmental boundaries, and the development of the EOMs has not been 

well described. Furthermore, the disposition of differentiated EOMs of the lamprey is different from 

those of all the other vertebrates, in which the anatomical pattern of EOMs is strongly conserved. 

To understand the evolution and its developmental origins of the vertebrate EOMs, I explored 

development of the head mesoderm and EOMs of this animal in detail.  

 I found that the disposition of EOMs of the lamprey differ from those of gnathostomes, 

even in the earliest period of development, raising a possibility that the ancestral pattern of EOMs 

was lamprey-like. I also found that three subpopulations of the head mesoderm could be genetically 

distinguished (the premandibular mesoderm; Gsc+/TbxA-, mandibular mesoderm; Gsc-/TbxA-, 

hyoid mesoderm; Gsc-/TbxA+), even if there is no morphological segmentation or epithelialization, 

indicating that developmental mechanisms of EOMs are basically conserved in the entire 
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vertebrates.  

 I argue that the tripartite origins of EOMs were already established in the common ancestor 

of vertebrates. This ancestor had lamprey-type EOMs, and the disposition of the crown 

gnathostome EOMs is likely to have secondarily been modified in the lineage of gnathostomes. 
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4.2 Introduction 

The morphological nature or the ancestral feature of the vertebrate head has always been one of the 

intriguing issues in comparative morphology and evolutionary biology. One of the peculiar 

components of the vertebrate head is extra-ocular muscles (EOM), which control the visual field by 

moving paired eyes. They are derived from the head mesoderm and their development has attracted 

a great deal of morphologists’ attention in the controversy of ancestral head structure, whether the 

head mesoderm is segmented or not. 

 Those who believe the segmentation of the head mesoderm, insisted that the segmentation 

is typically observed in the shark cranial development (Neal and Rand 1946). In the traditional 

scheme, the head mesoderm of elasmobranch embryos forms three pairs of head cavities, the 

premandibular (pmc), mandibular (mc), and hyoid cavities (hc), which later differentiate into six 

extra-ocular muscles (EOMs) innervated by three cranial nerves; the oculomotor (III), the trochlear 

(IV), and the abducens nerve (VI) (see also Fig. 1C, Fig. 10). Though these head cavities are often 

degenerated in other gnathostomes, vestigial head cavities are occasionally found in bony fishes and 

amniotes (Brachet 1935; Fraser 1915; Wedin 1953; Jacob et al. 1984; Kuratani et al. 2000), 

implying that possession of these cavities is a shared, derived characteristic of gnathostomes, 

though it is secondarily diminished in the majority of members.  

 In avian, the head cavities are degenerated except the premandibular cavity (Adelmann 

1926), but presence of pseudosegmental blocks in the head mesoderm, so-called “somitomeres”, is 

detected by using scanning electron microscopy (reviewed by Jacobson 1993). Though the 

existence of these somitomeres are doubted (reviewed by Kuratani 2003), the EOMs develop from 
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the part of the head mesoderm (both premandibular and paraxial) located in positions similar to 

shark head cavities (Couly et al. 1993; Jacob et al. 1984; Noden 1983, 1988; Noden and Francis-

West 2006; Wachtler et al. 1984; Wachtler and Jacob 1986). 

 Classically, the head mesoderm of lampreys was also thought to be segmented along the 

anteroposterior axis like head cavities in elasmobranch embryos (Koltzoff 1901; Neal 1918; Damas 

1944), and EOMs differentiate from three head cavities innervated from respective motor nerves 

(Koltzoff 1901; Neal 1918). However, Kuratani et al. (1999) reported, by scanning electron 

microscopy-based observation of Japanese marine lamprey, Lethenteron camtschaticum, that there 

are no cavities, or sign of segmental boundaries in the head mesoderm, and insisted that the 

ancestral head mesoderm of the vertebrates is likely to have been unsegmented and uniform (Fig. 

1D), raising a question as to how the EOMs develop from this unsegmented, uniform head 

mesoderm. 

 In addition, anatomical disposition and the innervation pattern of EOMs are highly 

conserved among gnathostomes so much so that Neal (1918) once noted that “[t]heir ‘evolutionary 

potential’ appears to be approximately zero”. However, those of lampreys are far different from that 

of gnathostomes (Nishi 1938; Shimazaki 1965; Fritzsh et al. 1990; Fig. 1). In gnathostomes, the 

oculomotor nerve innervates four of the EOMs (medial rectus, mr; superior rectus, sr; inferior 

rectus, ir; inferior oblique, io), whereas the trochlear and abducens innervate only single EOMs, 

superior oblique (so) and lateral rectus (lr), respectively. On the other hand, the lamprey oculomotor 

nerve innervates only three EOMs (anterior rectus, ar; dorsal rectus, dr; anterior oblique, ao), the 

abducens innervates two (ventral rectus, vr; caudal rectus, cr). Also, the caudal oblique (co) muscles, 
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which is innervated by the trochlear nerve, attaches to the orbit far more caudally than that of 

gnathostomes does. Since EOMs have completely degenerated in the other group of cyclostomes 

hagfishes (Nishi 1938), the lamprey is the key extant animal to estimate ancestral state of the EOMs 

and its developmental mechanisms in the context of “the head problem”.   

 To understand evolutionary origin of the vertebrate EOMs and to speculate a possible 

ancestral state of the vertebrate head, I examined the detailed development of the embryonic head 

mesoderm and EOMs in lampreys. I found that the developmental mapping of EOMs is conserved 

also in the lamprey since the muscle originated from three distinct domains within the head 

mesoderm, but their disposition was different already by the differentiation into muscles. This 

indicates that the developmental patterning of EOMs from the three subdivisions of the head 

mesoderm was already established in the common ancestor of vertebrates. Based on these findings, 

I discussed about the ancestral state of the vertebrate head mesoderm and its differentiation. 
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4.3 Materials and Methods 

Animals 

Adult lampreys (Lethenteron camtschaticum, synonym L. japonicum) were collected from the 

Shiribeshi-Toshibetsu River, Hokkaido, Japan. Adults were anesthetized in ethyl 3-aminobenzoate 

methanesulfonate (MS-222). Mature eggs were expelled from females and fertilized in vitro by 

sperm. Embryos were cultured at 16°C, fixed by three days in 4% paraformaldehyde in 0.1 M 

phosphate-buffered saline (PBS) and dehydrated in a graded methanol series, and stored in 100% 

methanol at −20 °C. Developmental stages were determined as described by Tahara (1988). 

As ammocoete larvae were not readily available for L. camtschaticum, we used 

Lethenteron sp. N, the cryptic species of Lethenteron reissneri (Yamazaki and Goto 1998; 

Yamazaki et al. 2006), for ammocoete larvae. These larvae were collected in the Kamo River, 

Upper Shougawa River, Toyama, Japan, in September. 

 

Histological analyses 

Lethenteron sp. N were fixed in Bouin’s or Serra’s fixative, dehydrated, and embedded in paraffin. 

Sections were cut at a thickness of 6 µm and stained with hematoxylin and eosin, according to a 

standard technique. 

 

Whole-mount immunofluorescence 

Whole-mount immunofluorescence with anti-acetylated tubulin (Sigma, T6793, RRID: AB477585) 

and anti-CH1 (Hybridoma bank) antibodies was performed according to Kuratani et al. (1997) with 
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some minor modifications. Fixed embryos stored in methanol were washed in TBST containing 5% 

dimethylsulfoxide (TSTd). The embryos were then blocked with 5% nonfat dry milk in TSTd 

(TSTM). They were incubated with the primary antibody (diluted 1:1,000 in TSTM) for 2-4 days at 

room temperature (RT). After washing with TSTd, samples were incubated with fluorescence 

secondary antibody (Invitrogen, Alexa fluor 555, A21424, RRID: AB_10566287) diluted 1:200 in 

TSTM. After a final wash in TSTd, embryos were dehydrated and clarified in a 1:2 mixture of 

benzyl alcohol and benzyl benzoate (BABB) and then examined using a confocal laser microscope 

(LSM 510, Zeiss). 

 

Whole-mount and section in situ hybridization 

RNA probes were synthesized from cDNA clones. PitxA, MrfA and MA2 are already isolated 

(PitxA: Uchida et al. 2003; MrfA, MA2: Kusakabe et al. 2011). A plasmid of TbxA is provided by Dr. 

M. Tanaka (isolated by Onimaru et al. 2011). Gsc were isolated from L. camtschaticum by RT-PCR 

from stage 25 specimens using the following primers designed for Petromyzon genes (PmGsc, 

HQ248103;) (Cerny et al. 2010). Whole-mount in situ hybridization was performed according to 

Ogasawara et al. (2000) with minor modifications. For section in situ hybridization, larval lampreys 

(Lethenteron sp. N) were fixed for three days in 4% paraformaldehyde in 0.1 M phosphate-buffered 

saline (PBS), dehydrated, and embedded in paraffin. Sections were cut at a thickness of 8 µm. After 

washing out the paraffin, in situ hybridization for cryosectioned materials was performed following 

the protocol for whole-mount in situ hybridization, except that Tween 20 detergent was not used in 

any step and proteinase treatment was omitted before hybridization. 
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Cell labeling 

Stage 21 embryos were injected with 1mM DiI, DiD DiO solutions (Vybrant Multicolor Cell-

labeling kit, Molecular Probes). The embryos were excised from the egg membranes and placed in 

wells made in a solidified agar in a plastic dish. Injections were performed with a fine glass pipet. 

The embryos were incubated for 10 days until they reached approximately stage 27 and were fixed 

in 4% paraformaldehyde in PBS. Observation was performed with fuorescence microscope or 

confocal microscope (LSM510, Zeiss).  
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4.4 Results 

Development of EOMs and their innervations 

In order to see whether the disposition of the lampre EOMs changed during their development from 

a small leave to an adult, I performed a histological analysis by the hematoxylin-eosin (HE) staining 

on the extraocular muscles in the small larva (3.5 cm, about a half year old, Fig.4.2A), large larva 

(10 cm, Fig. 4.2B), metamorphic (Fig. 4.2C), and adult lamprey (Fig. 4.2D). In small larva, EOMs 

were found as fibrous, discriminable six cell clusters (Fig. 4.2A). From its disposition, each EOM 

could be identified. In large larva, EOMs become compartmented and much discriminable (Fig. 

4.2B). In the metamorphic stage, the external part of the EOMs became thinner and wider (Fig. 

4.2C1), suggesting that they attached to eyeball rigidly to move it functionally. These changes seem 

to represent their unique life style that the lampreys spend about four or five years as ammocoetes 

larvae, which do not possess image-forming vision (Kleerekoper 1972; Villar-Cerviño et al. 2006, 

see also Chapter 2 and Chapter 3), and after the metamorphosis, they stick to their prey using well-

developed image-forming vision (Gustafsson et al. 2008). Finally in the adult (Fig. 4.2D), I 

confirmed that there are six EOMs deposited as same as that was observed by gross anatomy 

(Fig.4.1E). Through all stages examined, the whole disposition of the EOMs was almost same, so, it 

is likely to be already arranged before metamorphosis. But it is notable that there is a little change 

with the relationship between the anterior rectus (ar) and anterior oblique (ao). While in the larval 

period, these muscles are situated side by side in its muscle origins (Fig 4.2B4), they crosses over 

themselves in adults (Fig. 4.2D4, see also Fig. 4.1E).  
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Developmental mechanism of EOMs and patterning of head mesoderm 

For a further trace back on the developmental origin of the lamprey EOMs, immunfluorescense of 

anti-CH1 (tropomyosin) antibody was performed to examine early development of larval EOMs in 

lampreys (Fig.4.3A–C). Either in stage 28 and 30 pro-ammocoete larvae, I did not detect EOM by 

anti-CH1, and only detect somatic/branchial muscles; supraoclularis (supraoc), subocuralis (suboc), 

elevator labialis ventralis (elv), velocranialis (vc), and constrictor buccalis (cb) (Fig. 4.3A,B, see 

also Hardisty and Rovainen 1982).  

 Thus, I tried to trace developmental origin by using more upstream regulatory genes for 

EOMs. In the gnathostomes, genetic cascade in the development of EOMs were already reported; 

muscle-related factors (MRFs) act as determination and differentiation genes, and Pitx2 acts 

upstream of MRFs in cranial muscle progenitor cells and Pitx2 null embryos lack EOMs 

(Sambasivan et al. 1999). This pattern is also conserved in sharks, where Pitx2 and Myf5 (a member 

of the MRF family) are expressed in developing head mesoderms/cavities (Adachi et al. 2012).  

 In st. 26 lamprey larvae, though expressions of MrfA (a member of the MRF family) or 

MA2 (muscle differentiation marker) were not detected (Kusakabe et al. 2011), I detected Pitx2 

expression in the head mesoderm (Fig. 4.4A). On the other hand, in 9 cm ammocoete larvae, MrfA 

and MA2 were expressed in EOMs, while Pitx2 expression was almost decreased (Fig. 4.5). 

 Furthermore, I found that there was distinct genetic patterning between subpopulations of 

the head mesoderm and this is conserved among vertebrates. Gsc is expressed in the prechordal 

plate in gnathostomes (de Robertis et al. 1994) and premandibular mesoderm is come from it 

(lampreys: Kuratani et al. 1999; sharks: Adachi and Kuratani 2012). I found that Gsc is expressed in 
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the anterior head mesoderm in st. 26 lamprey (Fig. 4.4B), and this expression corresponded to the 

premandibular mesoderm (pm) on overlap with the anterior expression of Pitx. At the same stage, 

TbxA was expressed in the anterior region of otic vesicle (otv) (Fig. 4.4C). In sharks, corresponding 

expression is also observed and it is thought as the expression in the hyoid cavity (Adachi et al. 

2012), so this expression could also regarded as the expression in the hyoid mesoderm (hm). These 

results indicates that the head mesoderm of lamprey, which is marked by PitxA, is actually 

subdivided by gene expressions of Gsc and TbxA; the premandibular mesoderm is Gsc+ and TbxA-, 

the mandibular mesoderm is Gsc- and TbxA- and the hyoid mesoderm is Gsc- and TbxA+ (Fig. 

4.4D). 

 

Developmental lineage of the head mesoderm; from its origin to the differentiated EOMs 

By examining expressions of Pitx, Gsc and Tbx, I found that head mesoderm were subdivided into 

three populations similar to those of gnathostomes that differentiate into EOMs. I thus examined the 

three populations of lamprey head mesoderm would differentiate to EOMs innervated respective 

motor nerves like the shark head cavities, by the immunofluorescence of anti-acetylated tubulin. In 

st. 28, though the head mesoderm was not differentiated to the EOMs yet (Fig. 4.3A), PitxA was 

expressed in the three head mesodermal subpopulations (Fig. 4.6A). In this stage, the innervation 

nerves of EOMs were already extending their fibers in this stage, and their distribution pattern was 

corresponded to the each subpopulations of the head mesoderm; the oculomotor nerve (III) to the 

premandibular mesoderm, the trochlear nerve (IV) to the mandibular mesoderm, and the abducens 

nerve (VI) to the hyoid mesoderm (Fig. 4.6B, C, see also Fig. 4.8). These fivers were prolonged to 
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the orbit by 15mm larvae (Fig. 4.6D), and their distribution pattern is maintained in the larval 

period, when the EOMs were already formed (35mm; Fig. 4.6E, see also Fig. 4.3C). These results 

indicated that the three populations of the head mesoderm attracted their respective innervation 

nerves and differentiate to the EOMs with their respective innervation nerves, supporting that the 

head mesoderm populations differentiate into EOMs. 

 It is thought that the premandibular head mesoderm is derived from the prechordal plate, 

and the mandibular and hyloid mesoderm is regionized by the first phalyngeal pouch rostrocaudally 

(Kuratani et al. 1999). Based on my results (Fig. 4.4), each population is likely to be genetically 

patterned by Gsc and TbxA. But there is another possibility that the mesenchyme cells are mixed 

and re-regionalized by these genes. Thus, I performed cell-labeling experiments to test whether 

each population of the head mesoderm retain their cohesion from its origin or become mixed. 

Firstly, only DiO was injected to the prechordal plate region in st. 21 embryos (Fig. 4.7A) and 

incubated to st. 27. In the st. 27 larvae, DiO signal was observed around eyeball, though eyeball 

itself was also labeled as an artifact (Fig. 4.7B, C). Subsequently, three-color labeling was 

performed; DiO was injected to the prechordal plate region, DiI was to the mandibular mesoderm, 

and DiD was to the hyoid mesoderm (Fig. 4.7D). As a result, almost all larvae (N= 43/48, there was 

no fluorescent signal observed in the rest 5 samples), these mesodermal population retained their 

cohesion and do not become mixed (Fig. 4.7E). The positions of these populations also 

corresponded to the expression patterns of Gsc and TbxA as described above (Fig. 4.4D, E). These 

results showed that the three populations of the head mesoderm were specified by the patterning 

genes such as Gsc and TbxA, and retained their cohesion. 
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4.5 Discussion 

Developmental mechanism of the EOMs and the head mesoderm 

In the present study, in order to infer the evolutionary history of vertebrate EOMs, I traced 

developmental process of EOMs in lampreys, because the morphological distributions of EOMs 

were distinct from those of gnathostomes. I found that the overall distribution of the lamprey EOMs 

are established as early as 32mm larvae (approximately a half year old, Fig. 4.3C). Thus, lampreys 

and gnathostomes show distinct distribution of EOMs when they are recognized as differentiated 

muscles (lamprey: Fig. 5C; chick: reviewed in Noden and Francis-West 2006). 

 In contrast, the genetic cascade concerning the development of head mesoderm is 

conserved in the lamprey. Furthermore, the expression pattern of Gsc and TbxA (Fig. 4.4) suggested 

that three populations of the head mesoderm (the premandibular, mandibular, and hyoid mesoderm) 

underlie distinct genetic identities and this is conserved among vertebrates. In addition, these 

populations retained their cohesion and attract their respective innervation nerves (Fig. 4.6, 4.7), 

like the shark head cavities, even if there is no morphological segmentation in the lamprey 

(Kuratani et al. 1999).  

 However, because I did not detect the muscle differentiation marker such as the MA2 gene 

or the CH1 antibody at the developmental stage when Pitx, Gbx and Tbx were detected, it was not 

clear whether the Pitx positive head mesoderm indeed differentiate into EOMs in the lampreys. I 

overcame this issue by examining the innervation of motor neurons to head mesoderm. I presented 

evidences that, although at this stage mosucle marker was not detected, motor neuron innervation 

was observed when Pitx expression was detected. As the result, the oculomotor nerve (III) 
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innervated to the premandibular mesoderm, the trochlear nerve (IV) to the mandibular mesoderm, 

and the abducens nerve (VI) to the hyoid mesoderm (Fig. 4.6B, C, see also Fig. 4.8). This 

innervation pattern supported that the lamprey EOMs differentiate from the three head mesoderm 

populations.  

Figure 4.8 shows the comparison of EOM development between the lamprey and shark. In 

both species, primarily the head mesoderm is uniform (Fig. 4.8A, D). But the coherence of each 

subpopulation is retained and they attract their respective innervation nerve (Fig. 4.8B, E). In this 

stage, the head mesoderm in the shark is epithelized to the head cavities (Adachi and Kuratani 

2012). Finally, EOMs are differentiated from each mesodermal population in respective disposition 

in each species (Fig. 4.8C, F). This comparison indicates that the developmental mechanisms of 

EOMs from three populations of the head mesoderm were already established in the common 

ancestor of vertebrates (Fig. 4.9). 

 

Ancestral state of EOMs, their developmental mechanism and what caused the difference 

between the lamprey and gnathostomes 

The above comparison of development of EOMs between lampreys and gnathostomes indicates that 

evolutionary modification of EOMs must have occurred during the developmental stage after three 

head mesoderm populations established, but before muscle differentiation commences 

(corresponding to the stage between stage 28 and 3.5 cm early larva of lampreys). But it is not clear 

from this study, which type of EOM distribution is ancestral for the vertebrates. Previous studies on 

fossil records (Young 1986, 2008; Janvier 1985, 1996) revealed that the disposition of EOMs in 
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osteoderms and placoderms is more similar to that of lampreys than of the crown gnathostomes 

(osteichthyans and chondrichthyans). Therefore, the ancestral disposition of EOMs is more likely to 

be the lamprey-type, and the extant-gnathostome-type disposition likely to represent derived pattern 

only specific in the crown gnathostomes (Fig. 4.9). The modification might be functionally linked 

with the postorbital connection between the palatoquadrate and neurocranium, which is a 

synapomorphy of the crown gnathostomes (Young 1986). As the caudal oblique muscle could 

interfere the postorbital connection between the palatoquadrate and neurocranium, the position of 

the caudal oblique muscle might have changed to anterior in the orbit. 

 

The evolutionary of the vertebrate head  

My findings indicated that the common ancestors of the vertebrates possessed three populations of 

the head mesoderm, although clear morphological segmentation may not be visible. These head 

mesoderm eventually differentiate into EOMs, which are likely to be distributed as in the present-

day lampreys. However, it remains enigmatic how these head structure and its developmental 

mechanism was evolved, or the origin of the vertebrate head. There are two major hypothesis; 

vertebrate head was newly appeared (the “new head” theory: Gans and Northcutt 1983), or acquired 

by losing the epithelial segmentation of the most anterior paraxial mesoderm of the amphioxus-like 

ancestor (Bertrand et al. 2011).  

 Protochordate amphioxus also possess anterior mesoderm cells which express Pitx. In the 

amphioxus, though Pitx genes is expressed in the anterior somite and mesodermal Hatschek’s 

diverticulum (Boorman and Shimeld 2002). Although these Pitx positive cells of amphioxus may 
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possess evolutionary link with the vertebrate EOMs and pituitary, expressions of Gsc or Tbx1 was 

not observed in these Pitx positive cells (Neidert et al. 2000:Mahadevan et al. 2004). Therefore, 

even if the amphioxus anterior mesoderm cells are evolutionary origin of head mesoderm, they 

must be in more immature status. Subdivision of the head mesoderm into three populations must 

have occurred in the common ancestors of the vertebrates. Further characterization of the anterior 

mesoderm of amphioxus would be required to solve the issue of the origin of the vertebrate head.  

 



 

 51 

5. General Discussion 

The vertebrate visual system is a complex system consisted of several components, for example, a 

camera-type eye, a visual center and the optic nerve projection to it, and extra-ocular muscles for 

moving the eyeball. It is long time issue is how this complex system evolved, as Darwin (1859) 

noted,  

To suppose that the eye, with all its inimitable contrivances for adjusting the focus to different 

distances, for admitting different amounts of light, and for the correction of spherical and 

chromatic aberration, could have been formed by natural selection, seems,  

I freely confess, absurd in the highest possible degree. 

 The evolutionary origin of the photoreceptor cells is also enigmatic. There are two types of 

the photoreceptor cell in animal; rhabdomeric and ciliary photoreceptrors. The protostomes usually 

has rhabdomeric photoreceptor, and the deuterostomes uses ciliary photoreceptor. The common 

ancestor of these two lineages, the urbilateria, seems to have had both type and rhabdomeric cells 

evolved to other retinal cells (horizontal, amacrine, and retinal ganglion cells) in vertebrate lineage 

(Arendt 2003).  

 Vertebrates are one of the animal groups that evolved the image-forming vision, 

independently from other groups that evolved the image forming vision; arthropods and 

cephalopods. To clarify the evolutionary origin of the vertebrate visual system, I focused on the 

visual development in the basal vertebrate lamprey in this study, because the lamprey shows unique 

“dual visual development”; in the “primary” phase, the lamprey has only ocellus-like eyes, and in 

the “secondary” phase, the eyes develops into well-focused mature camera eyes. 



 

 52 

 Firstly, I explored the expression pattern of the Eph gene in Chapter 2. The axon guidance 

molecule Eph is required for the development of the topographical retinotectal optic nerve 

projection in the gnathostomes, showing orthogonal gradient expression in retina and tectum. But in 

the lamprey’s “dual retinal development”, the gradient expression was observed only in the 

“secondary phase”; i.e., EphB showed a gradient of expression along the dorsoventral axis, while 

EphC was expressed along the anteroposterior axis. However, no orthogonal gradient expression 

was observed during the “primary” phase. These results suggest that the “secondary” phase of the 

lamprey “dual visual development” represents a gnathostomes-like derivative state, and “primary” 

phase represents a primitive or lamprey-specific state.  

 Secondary, I investigated detailed development of retinofugal projections in the lamprey, 

the neuroarchitecture in amphioxus, and the brain patterning in these animals in Chapter 3. Both the 

lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual 

center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral 

state of the chordate visual system. My results indicate that the visual system of the larval 

(“primary” phase) lamprey represents an evolutionarily primitive state, forming a link from 

protochordates to vertebrates and providing a new perspective of brain evolution based on 

developmental mechanisms and neural functions. 

 And finally, I studied the development of the extra-ocular muscles in lamprey in chapter 4. 

I found that the disposition of EOMs of the lamprey differ from those of gnathostomes, even in the 

earliest period of development, raising a possibility that the ancestral pattern of EOMs was lamprey 

type-like. I also found that three subpopulations of the head mesoderm could be genetically 
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distinguished (the premandibular mesoderm; Gsc+/TbxA-, mandibular mesoderm; Gsc-/TbxA-, 

hyoid mesoderm; Gsc-/TbxA+), even if there is no morphological segmentation or epithelialization, 

indicating that developmental mechanisms of EOMs are basically conserved in the entire 

vertebrates. In addition, the development of EOMs of the lamprey showed a prolonged process in 

the larval period and the EOMs seemed to become functional in the metamorphosis, cooperating 

with the “dual visual development”. 

 Similar to their “dual visual development”, lampreys show remarkable transformation 

during metamorphosis from a protochordate-type character status to a vertebrate-type status. For 

example, the endostyle (without follicle) in the larval stage transforms into the thyroid gland (with 

follicle) during metamorphosis (Wright et al. 1980). In addition, no arcualia (vertebral rudiments) 

are observed in the larval stage, but they appear after metamorphosis (Potter and Welsch 1992; 

Richardson et al. 2010). From an evolutionary perspective, these transformations may represent 

“recapitulation” from a protochordate-like ancestor to a gnathostome-like vertebrate ancestor. 

Youson (2004) proposed that ancestral lampreys were marine and capable of reproduction in a 

larval-like form. Invasion of iodine-poor fresh water caused evolution of follicle for storage of the 

iodine that is required for thyroid hormone (TH) synthesis, which is a factor in the evolution of 

metamorphosis. The “secondary” phase seems to co-evolved de novo with the evolution of 

metamorphosis and this is applicable to “princible of terminal addition” in the typical recapitulation 

(Gould 1977). 

 However, the hagfishes, the other group of cyclostomes, are a direct-developer. Thus it 

remains still enigmatic whether the common ancestor of the vertebrates represented direct-
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development like the hagfishes, or indirect-development like the lampreys. It is need to be studied 

that the conservation of the metamorphosis mechanism in the vertebrates for estimating the 

metamorphosis is derived from the common ancestor or not. 
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Fig. 2.1. Schematic diagram of “dual visual development,” adapted from de Miguel et al. (1990), 

Jones et al. (2009), Meléndez-Ferro et al. (2002) and Villar-Cheda et al. (2008). By the pre-

ammocoete larval stage, the eyeball (eb) and optic stalk (os) are formed by evagination of the brain. 

The lens (ls) is flattened and the retina (R) is small. The “primary” optic nerve (ON1) projects into 

the pretectum, and not to the tectum (tc). According to larval growth, the eyes grow again by 

proliferation of the peripheral (lateral) retina. During the late ammocoete stage, the newly 

developed “secondary” optic nerve (ON2) projects to the tectum. In the lateral retina, neuroblastic 

cells (NbCs) remain undifferentiated, except retinal ganglion cells and their optic nerve fibers. In 

the central retina (CR), photoreceptor cells are already differentiated. After metamorphosis, in the 

adult, the retinotectal optic nerve projection is topographic, and NbCs are differentiated. 

Abbreviations: eb, eyeball; ls, lens; NbCs, neuroblastic cells; ON1, “primary” optic nerve; ON2, 

“secondary” optic nerve; os, optic stalk; R, retina; tc, tectum. 
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Fig. 2.2. Molecular phylogenetic tree for Eph genes. The tree was constructed using the ML method. 

The numbers at the nodes represent bootstrap values. Lc: L. camtschaticum, Lr: L. reissneri, Pm:P. 

marinus. 
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Fig. 2.3. Sections of in situ hybridization in late ammocoete larvae of lampreys (L. sp. N) in the 

retina. A, B: In transverse sections of the retina, a gradient of EphB expression was observed along 

the dorsoventral axis with strong expression ventrally (arrow). In contrast, EphC showed uniform 

expression. C, D: In horizontal sections, while EphB showed uniform expression, a gradient of 

EphC expression was observed along the anteroposterior axis with stronger expression posteriorly 

(arrow). Abbreviations: di, diencephalon; tc, tectum; tg tegmentum. Scale bar: 200 µm. 
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Fig. 2.4. Densitometric scan on the EphB and EphC expression patterns in the retina of the late 

ammocoete larvae shown in Fig. 3. The scan is performed after gray-scale conversion, cutting 

region by region along the retina (boxes in A1, B1, C1 and D1) and linearization. The results of the 

scan are shown in A2, B2, C2 and D2, respectively. A, B: Transverse sections. A: EphB. B: EphC. 

C, D: Horizontal sections. C: EphB. D: EphC. 
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Fig. 2.5. Sections of in situ hybridization in late ammocoete larvae of lampreys (L sp. N) in the 

tectum. A, B: In transverse sections of the tectum, both EphB and EphC showed uniform expression 

in the inner layer of the tectum and tegmentum. In the superficial layer, the expression was 

restricted to the tectum, but no clear gradient of expression was observed. C, D: In horizontal 

sections, EphB and EphC expression was observed in the inner layer of the tectum and 

diencephalon. However, expression in the superficial layer was restricted to the tectum. Broken 

lines indicate the border of the tectum in the superficial layer and asterisks indicate the border of the 

tectum in the deep layer. Abbreviations: di, diencephalon; tc, tectum; tg tegmentum. Scale bar: 200 

µm. 
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Fig. 2.6. Whole-mount in situ hybridization of EphB in lamprey embryos and pre-ammocoete 

larvae (L. camtschaticum). White broken lines indicate the dorsocaudal thalamus and pretectum 

region, which is the presumptive target region of “primary” optic nerves. At stages A: 24, B: 25, 

and C: 26. D: In a transverse section at the level of the eyeball (eb) at stage 26 and E: stage 27. 

Abbreviations: ba, branchial arches; eb, eyeball; es, endostyle; ll, lower lip; mes, mesencephalon; 

MHB, mid–hindbrain boundary; po, pineal organ; rho, rhombencephalon; th, thalamus. Scale bar: 

200 µm. 
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Fig. 2.7. Whole-mount in situ hybridization of EphC in lamprey embryos and pre-ammocoete 

larvae (L. camtschaticum). White broken lines indicate the presumptive dorsocaudal thalamus and 

pretectum region, the location of the “primary” optic nerve projecting region. A: At stage 23, the 

craniofacial region. B: At stage 24, the whole embryo. At stages C: 25 and D: 26. D’: The same 

specimen as D focused on the brain. E: Transverse section at the eb level of larvae at stages 26, F: 

27, and G: 28. Abbreviations: ba, branchial arches; eb, eyeball; es, endostyle; fb, forebrain; gV, 

trigeminal ganglion; gVII, facial ganglion; ll, lower lip; mes, mesencephalon; MHB, mid–hindbrain 

boundary; os, optic stalk; otv, otic vesicle; rho, rhombencephalon; r3/5/6, rhombomeres 3/5/6, 

respectively; sm, somites; tel, telencephalon; tg, tegmentum; th, thalamus. Scale bars: 200 µm in A, 

B, C–G applied in A and B’. 
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Fig. 3.1. Whole-mount immunostaining with anti-acetylated tublin antibody in L. camtschaticum 

embryos and early larvae. Asterisks indicate the eyecup and arrows the optic nerve. A–D: Optical 

microphotographs of specimens stained by DAB in the craniofacial region. A: Stage 24. Axonal 

tracts, including the fasciculus retroflexus, medial longitudinal fascicle, supraoptic tract and the 

tract of the postoptic commissure. B: Stage 25. The tract of the posterior commissure is newly 

formed. C: Stage 25.5. The eyecup (asterisk) and optic nerve (arrow) have appeared. The eyecup 

region is magnified in the inset. D: Stage 26. The eyecup and optic nerve are still distinct. The 

magnified eyecup region is shown in the inset. E, F: Confocal microphotographs of specimens 

marked by fluorescent secondary antibodies in the head region. E: Stage 27. The optic nerve 

extends to the optic chiasm. The dorsal region of the mesencephalon was less immunoreactive. F: 

Stage 28. The relative position of the eyecup has changed slightly. Abbreviations: Ch, chiasm; FR, 

fasciculus retroflexus; Mes, mesencephalon; MLF, medial longitudinal fascicle; SOT, supraoptic 

tract; TPC, tract of the posterior commissure; TPOC, tract of the postoptic commissure. Scale bars: 

100 µm. 
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Fig. 3.2. Neurolabeling of lamprey (L. camtschaticum) optic nerve fibers. Asterisks indicate the left 

eyecup. A: Overview of the labeled specimen at stage 27. Dextran was injected into the right 

eyecup (arrowhead), and it travelled through the chiasm, terminating in the left side of the brain. B–

F: Neurolabeling in serial stages showing target regions. Arrows indicate optic fibers. B: Confocal 

microphotographs of the optic nerve projection region at stage 25.5. Some optic fibers are labeled 

(arrow). The tract of the posterior commissure is also labeled. C: Stage 26. More optic fibers are 

labeled than at stage 25.5. The tract of posterior commissure is also labeled. D–F: Stages 28–30. 

The number of optic nerves increases but terminates in the same region at all stages (dorsal region 

of the left eye). Abbreviations: Ch, chiasm; MHB, midbrain-hindbrain boundary; TPC, tract of the 

posterior commissure. Scale bars: 100 µm. 
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Fig. 3.3 Analysis of the optic nerve projection region in L. camtschaticum embryos and early larvae. 

A: Triple labeling of optic fibers, medial longitudinal fascicle and the tract of the posterior 

commissure in stage 27. B: Two-color double labeling of optic fibers (magenta) and medial 

longitudinal fascicle (green). The optic nerve projects to the dendrites of neurons of the nucleus of 

the medial longitudinal fascicle neurons. A magnified picture of optic fibers with varicosities 

(arrowheads) is shown in the inset. This picture was reconstructed from raw data before making the 

projection picture B1. C: Double staining of anti-acetylated tubulin antibody immunostaining and 

Pax6 in situ hybridization. C1 shows anti-acetylated tubulin, C2 shows Pax6 expression by 

transmitted light and C3 shows the merged microphotographs. The TPC is located in the caudal-

most Pax6-positive region (arrow), and the nucleus of the medial longitudinal fascicle is located in 

its ventral region. D: Two-color double labeling of optic fibers (magenta) and medial longitudinal 

fascicle (green) in medaka. D1 shows dorsal view of the brain region at 10dpf (days post 

fertilization). D2 shows magnified left tectal region. Abbreviations: MHB, midbrain-hindbrain 

boundary; (n)MLF, (nucleus of) medial longitudinal fascicle; TPC, tract of the posterior 

commissure; tel, telencephalon; ON, optic nerve fibers. Scale bars: 100 µm in A, C1, D1, and D2, 

50 µm in B1. 
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Fig. 3.4. Neuroarchitecture and brain patterning of amphioxus larvae. A–C: Immunohistochemistry 

in B. lanceolatum four-gill slit (4gs) larvae. A: Immunostaining with anti-serotonin (5-HT) 

antibody. There are immunoreactive R2 photoreceptor cells just ventral to the frontal eye pigment 

observed by transmitted light (TR). B: Immunostaining with anti-VAChT antibody. Motor neurons 

in the ventral neural tube were immunoreactive (arrows), and most rostral cells were thought to be 

giant cells. C: Double staining with anti-synaptotagmin (syt, magenta) and anti-acetylated tubulin 

(ac-tub, green). C1 shows synaptotagmin immunoreactivity and C2 shows the merged 

microphotographs. The presumptive visual center (arrows) is relatively highly anti-synaptotagmin-

immunoreactive, and this region is located just rostral to the root of the n2 nerve. D: Double 

staining with anti-acetylated tubulin antibody immunostaining and Pax6 in situ hybridization in B. 

japonicum one-gill slit (1gs) larvae. D1 shows Pax6 expression and D2 shows the merged 

microphotographs. The caudal part of the cerebral vesicle is Pax6-positive (arrows), and this region 

corresponds to the presumptive visual center, located just rostral to the root of the n2 nerve. The 

arrow indicates the second nerve root. E: Schematic illustration of the neuroarchitecture and brain 

patterning of amphioxus larvae. Abbreviations: FEP, frontal eye pigment; GCs: giant cells; (r)N2, 

(root of) n2 nerve; NP, neuropore; POP, preoral pit; R2Cs, row 2 cells. Scale bars: 50 µm. 
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Fig. 3.5. Schematic illustration of the evolution of vertebrate image-forming vision. A: 

Hypothetical evolutionary scenario. The common ancestor of chordates had an ocellus-like eye(s), 

and the visual center was in the Pax6-positive region, which processes directional vision. In the 

common ancestor of vertebrates, the Pax6-positive (i.e. prosencephalic; Pros) visual center 

remained the main visual center, since larval lampreys had the same type of visual system as 

protochordates. The mesencephalic (Mes) retino-tectal projection was newly formed as a 

‘secondary’ optic tract. B: The gene regulatory network that establishes the mesencephalic region in 

the vertebrate neural tube. Genes with conserved expression in chordates are underlined (the Gbx 

gene is lost in tunicates and is dashed-underlined). Genes with conserved expression in tunicates 

and vertebrates are in bold. 
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Fig. 4.1. The phylogenetic tree and extra-ocular muscles of the vertebrates. Abbreviations: ao, 

anterior oblique; ar, anterior rectus; co, caudal oblique; cr, caudal rectus; dr, dorsal rectus; hc, hyoid 

cavity; hm, hyoid mesoderm; io, inferior oblique; ir, inferior rectus; lr, lateral rectus; m, mouse; mc, 

mandibular cavity; mm, mandibular mesoderm; mr, medial rectus; ot, otic vesicle; pc, 

premandibular cavity; pm, premandibular mesoderm; s, somite; vr, ventral rectus; III, oculomotor 

nerve; IV, trochlear nerve; VI, abducens nerve. 
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Fig. 4.2. Histological analysis by the hematoxylin-eosin (HE) staining on the extraocular muscles. 

A: Small larva (3.5 cm, about a half year old). B: Large larva (10 cm). C: Metamorphic lamprey. 

D: Adult lamprey. A-D1: External, raw; A-D2: External, colored; A-D3: Internal, raw; A-D4: 

Internal, colored. Abbreviations: ao, anterior oblique; ar, anterior rectus; co, caudal oblique; cr, 

caudal rectus; dr, dorsal rectus; vr, ventral rectus. Scale bars: 50 µm in A1, 200 µm in B1, C1, 500 

µm in D1. 
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Fig. 4.3. Whole-mount immunofluorescence with CH1 (tropomyosin) antibody. A: st. 28 prolarva. 

B: st. 30 prolarva (B1: Overview; B2: Internal). C: 32mm larva (C1: Raw; C2: Colored). 

Abbreviations: ao, anterior oblique; ar, anterior rectus; cb, constrictor buccalis; co, caudal oblique; 

cr, caudal rectus; dr, dorsal rectus; elv, elevator labialis ventralis; suboc, subocuralis; supraoc, 

supraoclularis; vc, velocranialis; vr, ventral rectus. Scale bar: 100 µm. 
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Fig. 4.4. Whole-mount in situ hybridization in st. 26 lamprey prolarvae. A: PitxA (A1: Lateral 

view; A2, 3: Sections). B: Gsc (B1: Lateral view; B2: Section). C: TbxA (C1: Lateral view; C2: 

Section). D: Schematic illustration of the PitxA, Gsc, and TbxA expression patterns. Abbreviations: 

hm, hyoid mesoderm; ll, lower lip; m, mouse; mm, mandibular mesoderm; oe, oral epithelium; ot, 

otic vesicle; pm, premandibular mesoderm; pp; phalangeal pouch, s, somite; vl, velum; vr, ventral 

rectus. Scale bar: 200 µm. 
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Fig. 4.5. Sections in situ hybridization in 9cm ammocoete larvae. A: PitxA . B: MrfA. C: MA2. 

Arrows; the expression in the EOMs. Scale bar: 200 µm. 
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Fig. 4.6. Nerves innervating head mesoderm subpopulations and EOMs. A: PitxA expression in st. 

28. B: Double staining of PitxA in situ hybridization (bright field) and acetylated tubulin antibody 

immunofluorescence (red). C-D: Single immunofluorescence with acetylated tubulin antibody. C: 

st. 28 (C1: Overview; C2: magnified dashed box region in C1). C: 15mm larva. D: 35mm larva. 

Abbreviations: gV1, ophthalmicus profundus nerve ganglion; gV2,3, maxillomandibular nerve 

ganglion; gVII, facial nerve ganglion; mm, mandibular mesoderm; ot, otic vesicley; pm, 

premandibular mesoderm; II, optic nerve; III, oculomotor nerve; IV, trochlear nerve; VI, abducens 

nerve. Scale bars: 200µm in A, 100 µm in D, E. 
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Fig. 4.7. Dye injections on the head mesoderm. A: DiO injection into the premandibular mesoderm 

of the st. 21 embryo. B: DiO injected sample in st. 27 (B1: DiO fluorescence; B2: DiO fluorescence 

and bright field). DiO fluorescence is observed in the periocular region. C: Section in the dashed 

line plane in B1 (C1: DiO fluorescence; C2: DAPI fluorescence). D: Three color dye injections on 

the three mesodermal subpopulations (premandibular; DiO, mandibular; DiI, hyoid; DiD, 

respectively). E: Dye injected sample in st. 27. Three mesodermal subpopulations retained their 

cohesion. Scale bars: 200µm in A, 400 µm in D. 
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Fig. 4.8. Schematic illustration of the comparison of the EOMs development between the lamprey 

(A-C) and shark (D-F). A, D: Pharyngeal stage. B, E: Three head mesodermal subpopulations 

innervated by respective motor nerves. C, F: Differentiated state. Abbreviations: ao, anterior 

oblique; ar, anterior rectus; co, caudal oblique; cr, caudal rectus; dr, dorsal rectus; hc, hyoid cavity; 

hm, hyoid mesoderm; io, inferior oblique; ir, inferior rectus; lr, lateral rectus; m, mouse; mc, 

mandibular cavity; mm, mandibular mesoderm; mr, medial rectus; pc, premandibular cavity; pm, 

premandibular mesoderm; vr, ventral rectus; III, oculomotor nerve; IV, trochlear nerve; VI, 

abducens nerve. 
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Fig. 4.9. Hypothetical scenario for the evolution of the EOMs. In the common ancestor of the 

vertebrates had unsegmented head mesoderm but there were three subpopulations with distinct 

genetic patterning and motor nerve innervation. They had lamprey-type EOMs and it was conserved 

in Osteostracans and Placoderms (in hagfishes, EOMs are completely degenerated). In the common 

ancestor of the crown gnathostomes, the disposition of the EOMs was changed to extant-

gnathostomes-type. 
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