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1. Introduction 

 

     Prostate cancer is the most prevalent type of malignancy and is the sixth major cause of death in 

males worldwide. Although survival rates are improving, there is always a risk of acquired chemo-

resistance, relapse, and metastasis. Prostate cancer initially develops as an androgen dependent 

malignancy, but it soon progresses to an androgen independent stage via androgen ablation therapy and 

tolerance to chemotherapy [1]. Therefore, alternative treatment strategies are required to effectively 

inhibit cell growth and induce cell death in hormone-resistant prostate cancer accompanied by no 

toxicity in normal tissues.  

     Curcumin is a phytochemical with versatile biological characteristics, which include anti-

inflammatory, anti-oxidant, and anti-tumor properties that induce cell death in various types of cancer 

cell lines [2] including androgen dependent and independent prostate cancer cell lines [3]. Although 

many molecular targets of curcumin have been extensively studied, identifying its targets in the chemo-

resistant prostate cancer PC-3 cell line is important, because proteins are differentially targeted based 

on the type of malignancy [4]. For example, acid ceramidase is an enzyme which catalyzes the 

hydrolysis of ceramides and has received much attention recently as a potential therapeutic target, 

because of its elevated expression, particularly in prostate cancer cells [5]. While few studies have 

demonstrated curcumin’s role in increasing ceramide levels in cancer cells, acid ceramidase has not yet 

been identified as a target of curcumin in prostate cancer and requires further investigation. Most of 

curcumin’s promising therapeutic effects have been observed in vitro, while its efficiency in vivo is 

usually inadequate and does not reflect the in vitro results. Many clinical trials involving curcumin have 

been carried out on small groups of patients, and limited success has been achieved, mainly because of 

its low bioavailability [6, 7]. One of the key factors causing low bioavailability may be the spontaneous 

oxidative degradation of curcumin in vivo [8]. Curcumin undergoes oxidation at physiological 

conditions [9] in which two oxygen molecules are included into the heptadienone chain connecting the 

curcumin phenolic rings resulting in the formation of dioxygenated bicyclopentadione product [8-10]. 

The oxidative degradation of curcumin is a consequence of its activity as an ROS scavenger; thus, its 

antioxidant activity precludes it from exerting its role as an anti-tumor drug. For this reason, mixing 

curcumin together with low molecular weight (LMW) antioxidants can slow curcumin oxidation and 

consequently, increase its anti-tumor efficacy in vitro [11]. However, if a LMW antioxidant and 

curcumin are administered simultaneously, curcumin might still rapidly degrade in vivo because both 

compounds would diffuse throughout the body and would not be in close vicinity. In addition, high 

concentrations of LMW antioxidants are known to be internalized into not only cancer cells but also 

normal cells, which can cause homeostatic disturbances in healthy cells and result in adverse effects 

[12, 13].                                                                                                     
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     Drug delivery systems (DDS) such as liposomes or polymer based nanoparticles are promising 

approaches for targeted drug delivery [14]. So far, various drug carriers have been reported to  

successfully encapsulate curcumin, improve its solubility, prevent its degradation by minimizing 

exposure to the aqueous medium, and deliver it to the tumor site by the enhanced permeability and 

retention (EPR) effect [15, 16]. Nonetheless, because conventional nanoparticles lack ROS-scavenging 

activity, they cannot protect curcumin from oxidative degradation caused by ROS and peroxidases, 

which are present at elevated levels in most tumor types, including prostate cancer [17]. 

      To prevent curcumin oxidative degradation, we designed a unique ROS-scavenging polymeric 

micelle, referred to as pH-sensitive redox nanoparticle (RNPN), that is prepared by self-assembling 

amphiphilic block copolymers with nitroxide radicals (see Figure 1A). The nitroxide radical compound 

used here is 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (abbreviated as “TEMPO”), which is one of the 

strongest antioxidants. In our previous study, we confirmed that pH-sensitive RNPN accumulates in 

tumor regions by the EPR effect [18] and disintegrates in tumor sites in response to low pH [19], thus 

increasing therapeutic efficiency.  

     In this paper, curcumin was encapsulated in the core of RNPN (curcumin@RNPN). We evaluated the 

stability of encapsulated curcumin in various oxidative conditions and investigated if curcumin@RNPN 

could induce apoptosis in the androgen independent PC-3 prostate cancer cell line. In addition, the 

therapeutic efficiency of intravenously administered curcumin@RNPN was explored in vivo in PC-3 

tumor-bearing mice. 

 

Figure 1: Synthesis and 

characterization of redox polymer  

(A) Synthesis schemed of MEO-

PEG-b-PCTEMPO and 

preparation of RNPN.  

(B) 1H NMR spectrum of MEO-

PEG-b-PCTEMPO in presence of 

phenylhydrazine.  

(C) SEC spectra of MEO-PEG-b-

PCMS. 
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2. Preparation of curcumin loaded redox nanoparticle 

     RNPN was prepared by a self-assembling MeO-PEG-b-PMNT block copolymer (Figure 1A). 

Briefly, methoxy-poly(ethylene glycol)-b-poly(chloromethylstyrene) (MeO-PEG-b-PCMS) was 

synthesized by the radical telomerization of chloromethylstyrene (CMS) using methoxy-poly(ethylene 

glycol)-suphanyl (MeO-PEG-SH; Mn = 5,000) as a telogen. Unit number of PCMS was 16. The 

chloromethyl groups on the PCMS segment of the block copolymer MeO-PEG-b-PCMS were 

converted to stable radical via amination of MeO-PEG-b-PCMS with 4-amino-TEMPO in 

dimethysulfoxide (DMSO). After the purification of the obtained PEG-b-PCTEMPO, the substitution 

ratio of the modified TEMPO moieties per repeating unit of PCMS was 80%, as determined by EPRR 

spectroscopy using the standard curve of free-amino-TEMPO in chloroform. The PEG-b-PCTEMPO 

was then dialyzed against water to obtain RNPN. The NMR and SEC characteristics are illustrated in 

Figures 1B and 1C. For curcumin encapsulation, PEG-b-PCTEMPO and curcumin were mixed in 

DMF and then dialyzed against water to obtain curcumin@RNPN. 

3. Curcumin oxidative degradation in suppressed by RNPN 

     One of the primary reasons for curcumin encapsulation was to minimize its oxidative degradation in 

physiological conditions. We compared the stability of curcumin@RNPN with that of free curcumin, a 

mixture of curcumin and LMW TEMPOL, and curcumin encapsulated in control, PEG-b-PLA micelles 

and PEG-b-PCHMS micelles. Figure 2A shows curcumin’s stability in culture medium with 10% fetal 

bovine serum (FBS). About 55% of free curcumin was degraded in 6 h in FBS containing medium. 

Curcumin in the control micelles exhibited higher stability than free curcumin due to its encapsulation 

in the hydrophobic core. However, curcumin degradation was still observed when it was rapidly 

released into aqueous solution at 37 °C (discussed in the next section) from control nanoparticles.      

          
Figure 2: (A) Stability of curcumin in culture medium with 10% FBS. (B) Stability of curcumin under 

superoxide generated by xanthine (0.5 mmol/L)-xanthine oxidase (0.5 U/mL) reaction. Free curcumin 

(closed rhombus), mixture of free curcumin and TEMPOL (closed square), curcumin@RNPN (open 

square), curcumin@PEG-b-PLA micelle (open triangle), and curcumin@PEG-b-PCHMS micelle (open 

circle). #p<0.05 compared with control, *p<0.001 compared with curcumin@RNPN to all other groups. 

The data are presented as mean ± SD (n = 3). 

     The addition of TEMPOL significantly suppressed degradation by scavenging free radicals formed 

during this experiment. Degradation of curcumin was significantly suppressed by encapsulating both 

TEMPO and curcumin in the core of RNPN probably because the local concentration of TEMPO was 

higher around curcumin due to encapsulation, which is a sharp contrast to mixing LMW TEMPOL with 

curcumin. Curcumin’s oxidative degradation was known to be accelerated in the presence of free 
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radicals, due to its activity as an antioxidant, due to which,  delivery of intact curcumin to target sites 

was decreased. Figure 2B shows the stability of curcumin in the presence of xanthine-xanthine oxidase 

reaction-generated superoxide [21]. About 80% of free curcumin degraded within 30 min, 

demonstrating that exogenous ROS accelerated curcumin’s degradation in aqueous buffer. The 

curcumin@PEG-b-PLA micelle and curcumin@PEG-b-PCHMS micelle groups did not offer any 

protection for curcumin because gaseous superoxide can penetrate through the nanoparticle core to 

induce curcumin oxidative degradation. In contrast, due to increased local concentration of TEMPO by 

encapsulation in RNPN with curcumin, we demonstrated remarkable suppression of curcumin oxidative 

degradation and about 70% of the curcumin remained intact even at higher xanthine concentrations. 

Therefore, RNPN offers a sophisticated solution for the prevention of curcumin oxidative degradation 

through its TEMPO moiety radical scavenging activity, which is absent in control micelles. 

 

4. In vitro drug release profile of curcumin@RNPN                                                                                                                   

       

     The PMNT segment of PEG-b-PMNT possesses both a hydrophobic phenyl group and an amino 

group in each repeating unit, RNPN disintegrates in response to acidic pH, owing to the protonation of 

the amino groups [20]. Therefore, the release profiles of curcumin from nanoparticles were evaluated at 

different pHs ranging from neutral to acidic conditions at 37 °C. The drug release from 

curcumin@RNPN at pH 7.4 was slower and 60% of the curcumin remained encapsulated even at 72 h 

(Figure 3A). Due to the protonation of amino groups in the hydrophobic core of RNPN, rapid drug 

release was observed at pH 6.0 and about 60% of the curcumin was released in 24 h. Under more acidic 

condition (pH 2.4), a burst release of about 70% of the curcumin was observed within 2 h. In contrast, 

both curcumin@PEG-b-PLA micelles and curcumin@PEG-b-PCHMS micelles exhibited a rapid initial 

burst release (> 50%) of the encapsulated curcumin within 2 h (see Figure 3B) at pH 7.4. It has been 

reported that a favorable interaction between the drug and the polymeric micelle decreases the rate of 

drug diffusion, and the drug release depends on the rate of diffusion [21]. This might explain the rapid 

release pattern of the control micelles. The release profile of curcumin from RNPN at pH 6.0 is more 

clinically relevant because it mimics the pH in the tumor microenvironment and curcumin is anticipated 

to be released in the extracellular region of the tumor. 

                 
Figure 3: (A) Time- and pH- dependent curcumin release profiles of curcumin@RNPN in phosphate 

buffered saline (PBS) (pH 7.4) (closed square), PBS (pH 6.0) (closed triangle) and acetate buffered 

saline (pH 2.4) (closed circle). (B) Time-dependent curcumin release profiles of curcumin@PEG-b-

PLA micelle (open square) and curcumin@PEG-b-PCHMS micelle (open triangle) in PBS (pH 7.4). 

The data are presented as mean ± SD (n = 3). 
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5. In vitro cytotoxicity and drug uptake of curcumin@RNPN in PC-3 cell lines 

 

     Since we established that curcumin stability could be enhanced by entrapment in RNPN, its 

cytotoxicity and internalization in prostate cancer cells were investigated. Its cytotoxicity in vitro was 

tested on PC-3 prostate cancer cell lines by MTT cell viability assay. As shown in Figure 4A, dose-

dependent cell viabilities were observed in PC-3 cells treated with curcumin, RNPN, and 

curcumin@RNPN. Cells treated with RNPN alone showed a non-significant cytotoxicity even at higher 

concentrations, which corresponds with our previous report [22]. 

                                   

Figure 4: (A) Concentration dependent cytotoxicity of curcumin (closed square), curcumin@RNPN 

(open square) and RNPN (closed triangle) in PC-3 cell line as measured by MTT assay at 48h. The 

data are presented as mean ± SD (n = 3). *p<0.05 compared with free curcumin. (B) Time-dependent 

cellular uptake in PC-3 cell line quantified by LC/MS. Curcumin (closed square) and 

curcumin@RNPN (open square). The data are presented as mean ± SD (n = 3). *p<0.001 compared 

with free curcumin. 

 

     Curcumin reduced cell survival by 60% at 100 µmol/L; therefore, the IC50 of both curcumin and void 

RNPN was above the concentrations tested in this study. Higher curcumin concentrations were required 

to induce cytotoxicity in cell lines because of its tendency to degrade in the culture medium. In contrast, 

curcumin@RNPN significantly enhanced cytotoxicity compared to free curcumin and RNPN. The IC50 

of curcumin@RNPN was 50 ± 5.5 µmol/L at 48 h, which was at least 2-fold less as compared to free 

curcumin. Since curcumin remained stably encapsulated in RNPN in culture medium, even at lower 

concentrations, a cytotoxic profile was observed, and IC50 values were significantly decreased. To 

further confirm the effect of curcumin encapsulation in RNPN on cellular uptake, we analyzed the 

percentage of curcumin uptake by LC/MS. PC-3 cells treated with free curcumin showed only about 

8% uptake at 6 h and uptake was gradually decreased to untraceable limits with increasing time. In 

contrast, cells treated with curcumin@RNPN exhibited about 10% of curcumin uptake at 6 h, which 

increased to 12% at 12 h. Even at the end of 48 h, about 7% of curcumin was still detected in the cells 

(Figure 4B). In our previous study, we reported that the pH-triggered release of entrapped drug from 

polymeric micelles is an important factor for increasing cellular uptake because it avoids drug efflux by 

P-glycoprotein located in the cellular membrane of cancer cells [23]. Possibly, the same mechanism 

might play a role in the enhanced cellular uptake observed in curcumin@RNPN-treated cells. In addition, 

as shown in Figure 2A, curcumin is rapidly degraded in culture medium which accounts for the low 

mailto:Curcumin@RNP
mailto:Curcumin@RNP


6 
 

cell uptake observed here. Since RNPN increased the stability of curcumin, even after 48 h, cellular 

uptake in those cells remained high. 

 

6. Inhibition of ROS and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

activation by curcumin@RNPN 

 

     RNPN contains TEMPO, a strong ROS scavenger and curcumin is also a natural antioxidant. 

Therefore, we investigated the effect of RNPN and curcumin on ROS-scavenging in the cells by double 

staining treated cells with the ROS-sensitive fluorescent dye 5-(and 6)-chloromethy-2,7-

dichlorodihydrofluorescein diacetate (CM-H2DCFDA; green) to examine ROS levels and mitotracker 

red chloromethyl-X-rosamine (CMXRos; red) to measure the change in mitochondrial membrane 

potential simultaneously.                   

                               

Figure 5: (A) Confocal fluorescence microscopy images of cells stained with 10 μmol/L ROS-sensitive 

dye CM-H2DCFDA and 20 nmol/L mitotracker CMXRos red to visualize ROS and mitochondrial 

membrane potential, respectively. The differential interference contrast image (DIC) is shown in Figure 

S3. (B) The percentage intensities of CM-H2DCFDA (black bar) and mitotracker CMXRos red (white 

bar) are normalized to cell number counted. The percentage intensities presented as mean ± SD (n = 3). 

*p<0.001 compared with control #p<0.05 compared with free curcumin. (C) Suppression of NF-κB 

expression in prostate cancer cell line PC-3 quantified by Western blot. *p<0.05 compared with control 

#p<0.05 compared with free curcumin. The normalized intensities presented as mean ± SD (n = 3). (The 

original western blots are shown in supporting data Figure S4). 
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     Non-treated cells exhibited high green fluorescence, and clear mitochondrial red localization 

indicating higher ROS levels and healthy viable mitochondria (Figure 5A). The quantitative 

fluorescence intensity data of CM-H2DCFDA and mitotracker CMXRos are shown in Figure 5B. 

RNPN-treated cells displayed significantly decreased ROS levels, but a marginal loss in mitochondrial 

membrane potential was also observed. These data indicate that RNPN and its disintegrated polymers 

do not cause any strong disturbance in mitochondrial function. In contrast, cells treated with curcumin 

showed reduced ROS levels and mitochondrial membrane potential, which is a typical effect of LMW 

antioxidants. Curcumin@RNPN treated cells showed significant decrease in ROS levels and increased 

mitochondrial damage compared to both RNPN and free curcumin. The significant mitochondrial 

membrane damage by curcumin@RNPN resulted from the enhanced uptake of intact curcumin due to 

its encapsulation in RNPN. Increased oxidative stress has been linked to NF-κB activation, which causes 

increased cancer cell resistance to apoptosis [24] and is often upregulated in prostate cancer cells [25]. 

Therefore, NF-κB is a potential target for prostate cancer. Quantification of nuclear protein expression 

levels by Western blot (see Figure 5C) revealed a modest suppression of NF-κB expression by 

curcumin and RNPN alone, while curcumin@RNPN significantly suppressed NF-κB expression. 

 

                
 Figure 6: (A) Effect of free curcumin and curcumin@RNPN in BALB/c nude mice bearing PC-3 

tumors. Animals were intravenously administered with PBS (open triangle), free curcumin (10 mg/kg) 

(closed triangle) RNPN (20 mg/kg) (closed square) and curcumin@RNPN (10 mg/kg of curcumin, 20 

mg/kg of RNPN) (open square). Tumor growth was significantly inhibited by curcumin@RNPN, in 

comparison to free curcumin and RNPN. *p<0.05 compared with control, #p<0.01 compared with free 

curcumin. Tumor volume is expressed as mean ± SD (n = 5). (B) Distribution profile of curcumin 

(closed square) and curcumin@RNPN (open square) in blood expressed as percentage injected 

dose, %ID/mL plasma. The mice was intravenously injected with 10 mg/kg equivalent curcumin. 

*p<0.001 compared with free curcumin. The data are presented as mean ± SD (n = 5). The 

chromatograms of curcumin detected in plasma are shown in supplementary Figure S8.  

7. Therapeutic efficiency of curcumin@RNPN in vivo 
     To confirm the anti-cancer potential of curcumin@RNPN in vivo, free curcumin, RNPN, and 

curcumin@RNPN were administered to tumor-bearing nude mice intravenously via the tail vein. Both 

curcumin and RNPN treated mice displayed reduced tumor volume compared to control mice, but no 

significant difference was observed between the two (see Figure 6A). In contrast, curcumin@RNPN-

treated mice exhibited a significant reduction in tumor volume growth rate. The enhanced stability of 

curcumin by RNPN resulted in an increased plasma curcumin concentration in curcumin@RNPN-treated 

mice. About 22% of the injected dose/mL plasma was detected 30 min after intravenous 
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curcumin@RNPN injection, and a significant amount of curcumin was detected even after 6 h. Mice 

treated with curcumin displayed only 1-2.5% of the injected dose/mL plasma after 30 min and no 

curcumin peaks were detected after 2 h (Figure 6B). Since the anti-cancer activity of curcumin@RNPN 

was directly proportional to the extent of ROS scavenging at target sites according to our in vitro 

results, we investigated whether curcumin@RNPN suppressed oxidative stress at the tumor site after 

intravenous administration. We also observed that curcumin@RNPN-treated mice significantly 

suppressed the superoxides and lipid peroxidation in tumor tissues compared to free curcumin- and 

RNPN-treated mice. From the in vitro results, we can comprehend that after intravenous administration 

of curcumin@RNPN, intact curcumin was delivered into tumor sites, leading to increase apoptosis and 

cell death.                

8. RNPN increase the bioavailability and suppress the side effects caused by pioglitazone 

     Pioglitazone is a member of the thiazolidinediones (TZD) class of drugs, generally used as insulin 

sensitizers has also been shown to exhibit potential anti-tumor properties, however, its exact molecular 

mechanisms  has not been clearly elucidated. In addition, pioglitazone association with liver toxicity, 

cardiac abnormalities, and increase in body weight, restricted its application for therapeutic purposes. 

In this study, we addressed these issues by encapsulating pioglitazone in a radical scavenging 

nanoparticle (RNPN). From in vitro experiments we elucidated that the molecular mechanisms leading 

to cell death was via both apoptosis and cell cycle arrest. Both in vivo and in vitro studies show 

pioglitazone metabolism in liver forms reactive oxidative intermediates[26] and leads to increased 

reactive oxygen species (ROS) generation, potentially causing damage in the hepatocytes, thus injuring 

the liver. In this study, mice administered with pioglitazone showed damage in liver sinusoids. This was 

significantly minimized by administration of Pioglitazone loaded RNPN. Therefore, RNPN in addition 

to increasing the bioavailability and therapeutic efficiency of drug, it adverted the toxic side effects of 

Pioglitazone. 

9. Discussion and conclusions  

     Many therapeutic drugs available of chemotherapy are also known to exhibit side effects, most of 

which is caused due to increased oxidative stress. Consecutively, use of antioxidant drugs as an anti-

tumor drug also proved to be in vain, due to their rapid oxidative degradation in presence of ROS which 

is found in high levels in tumor micro-environment. In this study, we explored and presented a suitable 

strategy to address both these issues. Curcumin is a highly unstable drug which undergoes spontaneous 

oxidative degradation even in physiological conditions. Curcumin loaded RNPN prevented oxidative 

degradation consequently increasing its therapeutic efficiency. 

     We also investigated the effect of encapsulating pioglitazone, a potent anti-cancer drug with side 

effects causing liver injury. RNPN combination treatment successfully repressed the liver injury. In 

addition, cellular drug uptake was increased in PC-3 prostate cancer cells in vitro and also in tumor 

areas in vivo. A detailed molecular mechanism of cell toxicity was investigated for both these drugs in 

PC-3 prostate cancer cell lines. Based on these results, RNPN is a promising therapeutic intervention, 

for drugs prone to oxidation and for drugs which induce oxidative stress related side effects. 
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