
Asymptotic properties of the first principal component
and equality tests of covariance matrices in
high-dimension, low-sample-size context

Aki Ishiia, Kazuyoshi Yatab, Makoto Aoshimab,1

aGraduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki, Japan
bInstitute of Mathematics, University of Tsukuba, Ibaraki, Japan

Abstract

A common feature of high-dimensional data is that the data dimension is high,
however, the sample size is relatively low. We call such data HDLSS data. In
this paper, we study asymptotic properties of the first principal component in the
HDLSS context and apply them to equality tests of covariance matrices for high-
dimensional data sets. We consider HDLSS asymptotic theories as the dimension
grows for both the cases when the sample size is fixed and the sample size goes to
infinity. We introduce an eigenvalue estimator by the noise-reduction methodol-
ogy and provide asymptotic distributions of the largest eigenvalue in the HDLSS
context. We construct a confidence interval of the first contribution ratio and give
a one-sample test. We give asymptotic properties both for the first PC direction
and PC score as well. We apply the findings to equality tests of two covariance
matrices in the HDLSS context. We provide numerical results and discussions
about the performances both on the estimates of the first PC and the equality tests
of two covariance matrices.

Keywords: Contribution ratio, Equality test of covariance matrices, HDLSS,
Noise-reduction methodology, PCA
2000 MSC:primary 34L20, secondary 62H25

Email address:aoshima@math.tsukuba.ac.jp (Makoto Aoshima)
1Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan;
Fax: +81-298-53-6501

Preprint submitted to Journal of Statistical Planning and Inference October 12, 2015



1. Introduction

One of the features of modern data is the data dimensiond is high and the sam-
ple sizen is relatively low. We call such data HDLSS data. In HDLSS situations
such asd/n → ∞, new theories and methodologies are required to develop for
statistical inference. One of the approaches is to study geometric representations
of HDLSS data and investigate the possibilities to make use of them in HDLSS
statistical inference. Hall et al. (2005), Ahn et al. (2007), and Yata and Aoshima
(2012) found several conspicuous geometric descriptions of HDLSS data when
d → ∞ while n is fixed. The HDLSS asymptotic studies usually assume either
the normality as the population distribution or aρ-mixing condition as the de-
pendency of random variables in a sphered data matrix. See Jung and Marron
(2009) and Jung et al. (2012). However, Yata and Aoshima (2009) developed an
HDLSS asymptotic theory without assuming those assumptions and showed that
the conventional principal component analysis (PCA) cannot give consistent esti-
mation in the HDLSS context. In order to overcome this inconvenience, Yata and
Aoshima (2012) provided thenoise-reduction (NR) methodologythat can success-
fully give consistent estimators of both the eigenvalues and eigenvectors together
with the principal component (PC) scores. Furthermore, Yata and Aoshima (2010,
2013) created thecross-data-matrix (CDM) methodologythat is a nonparametric
method to ensure consistent estimation of those quantities. Given this background,
Aoshima and Yata (2011, 2015) developed a variety of inference for HDLSS data
such as given-bandwidth confidence regions, two-sample tests, tests of equality
of two covariance matrices, classification, variable selection, regression, pathway
analysis and so on along with the sample size determination to ensure prespecified
accuracy for each inference.

In this paper, suppose we have ad × n data matrix,X(d) = [x1(d), ..., xn(d)],
wherexj(d) = (x1j(d), ..., xdj(d))

T , j = 1, ..., n, are independent and identically
distributed (i.i.d.) as ad-dimensional distribution with a mean vectorµd and
covariance matrixΣd (≥ O). We assumen ≥ 3. The eigen-decomposition of
Σd is given byΣd = HdΛdH

T
d , whereΛd =diag(λ1(d), ..., λd(d)) is a diagonal

matrix of eigenvalues,λ1(d) ≥ · · · ≥ λd(d)(≥ 0), andHd = [h1(d), ..., hd(d)] is an
orthogonal matrix of the corresponding eigenvectors. LetX(d) − [µd, ..., µd] =

HdΛ
1/2
d Z(d). Then,Z(d) is ad × n sphered data matrix from a distribution with

the zero mean and the identity covariance matrix. LetZ(d) = [z1(d), ..., zd(d)]
T

andzi(d) = (zi1(d), ..., zin(d))
T , i = 1, ..., d. Note thatE(zij(d)zi′j(d)) = 0 (i ̸= i′)

and Var(zi(d)) = In, whereIn is then-dimensional identity matrix. Thei-th

true PC score ofxj(d) is given byhT
i(d)(xj(d) − µd) = λ

1/2
i(d)zij(d) (hereafter called
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sij(d)). Note that Var(sij(d)) = λi(d) for all i, j. Hereafter, the subscriptd will
be omitted for the sake of simplicity when it does not cause any confusion. Let
zoi = zi − (z̄i, ..., z̄i)

T , i = 1, ..., d, wherez̄i = n−1
∑n

k=1 zik. We assume that
λ1 has multiplicity one in the sense thatlim infd→∞ λ1/λ2 > 1. Also, we assume
that lim supd→∞ E(z4

ij) < ∞ for all i, j andP (limd→∞ ||zo1|| ≠ 0) = 1. Note
that if X is Gaussian,zijs are i.i.d. as the standard normal distribution,N(0, 1).
As necessary, we consider the following assumption for the normalized first PC
scores,z1j (= s1j/λ

1/2
1 ), j = 1, ..., n:

(A-i) z1j, j = 1, ..., n, are i.i.d. asN(0, 1).

Note thatP (limd→∞ ||zo1|| ̸= 0) = 1 under (A-i) from the fact that||zo1||2 is
distributed asχ2

n−1, whereχ2
ν denotes a random variable distributed asχ2 distri-

bution withν degrees of freedom. Let us write the sample covariance matrix as
S = (n− 1)−1(X −X)(X −X)T = (n− 1)−1

∑n
j=1(xj − x̄)(xj − x̄)T , where

X = [x̄, ..., x̄] and x̄ =
∑n

j=1 xj/n. Then, we define then × n dual sample

covariance matrix bySD = (n − 1)−1(X − X)T (X − X). Let λ̂1 ≥ · · · ≥
λ̂n−1 ≥ 0 be the eigenvalues ofSD. Let us write the eigen-decomposition ofSD

asSD =
∑n−1

j=1 λ̂jûjû
T
j , whereûj = (ûj1, ..., ûjn)T denotes a unit eigenvector

corresponding tôλj. Note thatS andSD share non-zero eigenvalues. Also, note
that tr(S) = tr(SD).

Here, we emphasize that the first principal component is quite important for
high-dimensional data becauseλ1 often becomes much larger than the other eigen-
values asd increases in the sense thatλj/λ1 → 0 asd → ∞ for all j ≥ 2. See
Figure 1 in Yata and Aoshima (2013) or Table 1 in Section 2 for example. In
other words, the first principal component contains much useful information about
high-dimensional data sets. In addition,λ1 andh1 can be accurately estimated for
high-dimensional data by using the NR methodology even whenn is fixed. It is
likely that the first principal component is applicable to high-dimensional statisti-
cal inferences such as tests of mean vectors and covariance matrices. That is the
reason why we focus on the first principal component in this paper.

In this paper, we study asymptotic properties of the first principal component
in the HDLSS context. We apply them to a one-sample test and equality tests of
covariance matrices for high-dimensional data sets. We consider HDLSS asymp-
totic theories asd → ∞ for both the cases whenn is fixed andn → ∞. In Sec-
tion 2, we introduce an eigenvalue estimator by the NR methodology and provide
asymptotic distributions of the largest eigenvalue in the HDLSS context. We con-
struct a confidence interval of the first contribution ratio and give a one-sample
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test. In Section 3, we give asymptotic properties both for the first PC direction
and PC score as well. In Section 4, we apply the findings to equality tests of two
covariance matrices in the HDLSS context. Finally, in Section 5, we provide nu-
merical results and discussions about the performances both on the estimates of
the first PC and the equality tests of two covariance matrices.

2. Largest eigenvalue estimation and its applications

In this section, we give asymptotic properties of the largest eigenvalue. We
construct a confidence interval of the first contribution ratio and give a one-sample
test.

2.1. Asymptotic distributions of the largest eigenvalue
Let δi = tr(Σ2)−

∑i
s=1 λ2

s =
∑d

s=i+1 λ2
s for i = 1, ..., d− 1. We consider the

following assumptions for the largest eigenvalue:

(A-ii)
δ1

λ2
1

= o(1) asd → ∞ whenn is fixed;
δi∗

λ2
1

= o(1) asd → ∞ for some

fixed i∗ (< d) whenn → ∞.

(A-iii)

∑d
r,s≥2 λrλsE{(z2

rk − 1)(z2
sk − 1)}

nλ2
1

= o(1) asd → ∞ either whenn

is fixed orn → ∞.

Note that (A-ii) implies the conditions thatλ2/λ1 → 0 asd → ∞ whenn is fixed
andλi∗+1/λ1 → 0 asd → ∞ for some fixedi∗ whenn → ∞. Also, note that
(A-iii) holds whenX is Gaussian and (A-ii) is met. See Remark 2.2.

Remark 2.1. For a spiked model such as

λj = ajd
αj (j = 1, ..., m) and λj = cj (j = m + 1, ..., d)

with positive (fixed) constants,ajs, cjs andαjs, and a positive (fixed) integerm,
(A-ii) holds under the condition thatα1 > 1/2 andα1 > α2 whenn is fixed.
Whenn → ∞, (A-ii) holds underα1 > 1/2 even if α1 = αm. See Yata and
Aoshima (2012) for the details.

Remark 2.2. For several statistical inferences of high-dimensional data, Bai and
Saranadasa (1996), Chen and Qin (2010) and Aoshima and Yata (2015) assumed
a general factor model as follows:

xj = Γwj + µ
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for j = 1, ..., n, whereΓ is ad×r matrix for somer > 0 such thatΓΓT = Σ, and
wj, j = 1, ..., n, are i.i.d. random vectors havingE(wj) = 0 and Var(wj) = Ir.
As forwj = (w1j, ..., wrj)

T , assume thatE(w2
qjw

2
sj) = 1 andE(wqjwsjwtjwuj) =

0 for all q ̸= s, t, u. From Lemma 1 in Yata and Aoshima (2013), one can claim
that (A-iii) holds under (A-ii) in the factor model. Also, we note that the factor
model naturally holds whenX is Gaussian.

Let κ = tr(Σ) − λ1 =
∑d

s=2 λs. Then, we have the following result.

Proposition 2.1. Under (A-ii) and (A-iii), it holds that

λ̂1

λ1

− ||zo1/
√

n − 1||2 − κ

λ1(n − 1)
= op(1)

asd → ∞ either whenn is fixed orn → ∞.

Remark 2.3. (A-ii) and (A-iii) are milder whenn → ∞ compared to when fixed.
Jung et al. (2012) gave a result similar to Proposition 2.1 whenX is Gaussian,
µ = 0 andn is fixed.

It holds thatE(||zo1/
√

n − 1||2) = 1 and ||zo1/
√

n − 1||2 = 1 + op(1) as
n → ∞. If κ/(nλ1) = o(1) asd → ∞ andn → ∞, λ̂1 is a consistent es-
timator of λ1. Whenn is fixed, the condition ‘κ/λ1 = o(1)’ is equivalent to
‘λ1/tr(Σ) = 1+o(1)’ in which the contribution ratio of the first principal compo-
nent is asymptotically1. In that sense, ‘κ/λ1 = o(1)’ is quite strict condition in
real high-dimensional data analyses.Hereafter, we assumelim infd→∞ κ/λ1 > 0.

Yata and Aoshima (2012) proposed a method for eigenvalue estimation called
thenoise-reduction (NR) methodologythat was brought by a geometric represen-
tation ofSD. If one applies the NR method to the present case,λis are estimated
by

λ̃i = λ̂i −
tr(SD) −

∑i
j=1 λ̂j

n − 1 − i
(i = 1, ..., n − 2). (2.1)

Note that̃λi ≥ 0 w.p.1 fori = 1, ..., n−2. Also, note that the second term in (2.1)
with i = 1 is an estimator ofκ/(n − 1). See Lemma 2.1 in Section 2.2 for the
details. Yata and Aoshima (2012, 2013) showed thatλ̃i has several consistency
properties whend → ∞ andn → ∞. On the other hand, Ishii et al. (2014) gave
asymptotic properties of̃λ1 whend → ∞ while n is fixed. The following theorem
summarizes their findings:
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Theorem 2.1(Yata and Aoshima (2013), Ishii et al. (2014)). Under (A-ii) and
(A-iii), it holds that asd → ∞

λ̃1

λ1

=

{
||zo1/

√
n − 1||2 + op(1) whenn is fixed,

1 + op(1) whenn → ∞.

Under (A-i) to (A-iii), it holds that asd → ∞

(n − 1)
λ̃1

λ1

⇒ χ2
n−1 whenn is fixed,√

n − 1

2

( λ̃1

λ1

− 1
)
⇒ N(0, 1) whenn → ∞.

Here,“ ⇒ ” denotes the convergence in distribution.

2.2. Confidence interval of the first contribution ratio
We consider a confidence interval for the contribution ratio of the first princi-

pal component. Leta andb be constants satisfyingP (a ≤ χ2
n−1 ≤ b) = 1 − α,

whereα ∈ (0, 1). Then, from Theorem 2.1, under (A-i) to (A-iii), it holds that

P
( λ1

tr(Σ)
∈

[ (n − 1)λ̃1

bκ + (n − 1)λ̃1

,
(n − 1)λ̃1

aκ + (n − 1)λ̃1

])
= P

(
a ≤ (n − 1)

λ̃1

λ1

≤ b
)

= 1 − α + o(1) (2.2)

asd → ∞ whenn is fixed. We need to estimateκ in (2.2). Here, we give a
consistent estimator ofκ by κ̃ = (n − 1)(tr(SD) − λ̂1)/(n − 2) = tr(SD) − λ̃1.
Then, we have the following results.

Lemma 2.1. Under (A-ii) and (A-iii), it holds that

κ̃

κ
= 1 + op(1) and

κ̃

λ1

=
κ

λ1

+ op(1)

asd → ∞ either whenn is fixed orn → ∞.

Theorem 2.2.Under (A-i) to (A-iii), it holds that

P
( λ1

tr(Σ)
∈

[ (n − 1)λ̃1

bκ̃ + (n − 1)λ̃1

,
(n − 1)λ̃1

aκ̃ + (n − 1)λ̃1

])
= 1 − α + o(1) (2.3)

asd → ∞ whenn is fixed.

6



Remark 2.4. From Theorem 2.1 and Lemma 2.1, under (A-ii) and (A-iii), it holds
that tr(SD)/tr(Σ) = (κ̃ + λ̃1)/tr(Σ) = 1 + op(1) asd → ∞ andn → ∞. We
have that

λ̃1

tr(SD)
=

λ1

tr(Σ)
{1 + op(1)}.

Remark 2.5. The constants(a, b) should be chosen for (2.3) to have the minimum
length. If λ1/κ = o(1), the length of the confidence interval becomes close to
{(n − 1)λ̃1/κ̃}(1/a − 1/b) under (A-ii) and (A-iii) whend → ∞ andn is fixed.
Thus, we recommend to choose constants(a, b) such that

argmin
a,b

(1/a − 1/b) subject toGn−1(b) − Gn−1(a) = 1 − α,

whereGn−1(·) denotes the c.d.f. ofχ2
n−1.

We used gene expression data sets and constructed a confidence interval for the
contribution ratio of the first principal component. The microarray data sets were
as follows: Lymphoma data with7129 (= d) genes consisting of diffuse large B-
cell (DLBC) lymphoma (58 samples) and follicular lymphoma (19 samples) given
by Shipp et al. (2002); and prostate cancer data with12625 (= d) genes consisting
of normal prostate (50 samples) and prostate tumor (52 samples) given by Singh
et al. (2002). The data sets are given in Jeffery et al. (2006). We standardized each
sample so as to have the unit variance. Then, it holds that tr(S) (= tr(SD)) = d,
so that̃λ1 + κ̃ = d. We gave estimates of the first five eigenvalues byλ̂js andλ̃js
in Table 1. We observed that the first eigenvalues are much larger than the others
especially for prostate cancer data. We also observed thatλ̂j was larger thañλj for
j = 1, ..., 5, as expected theoretically from the fact thatλ̂j/λ̃j ≥ 0 w.p.1 for allj.
We considered an estimator ofδ1 by δ̃1 = Wn − λ̃2

1 havingWn by (4) in Aoshima
and Yata (2015), whereWn is an unbiased and consistent estimator of tr(Σ2).
We calculated that̃δ1/λ̃

2
1 = 0.163 for DLBC lymphoma,δ̃1/λ̃

2
1 = −0.082 for

follicular lymphoma,δ̃1/λ̃
2
1 = −0.245 for normal prostate and̃δ1/λ̃

2
1 = −0.235

for prostate tumor. From these observations, we concluded that these data sets
satisfy (A-ii). In addition, from Remark 3.1 given in Section 3, by using Jarque-
Bera test, we could confirm that these data sets satisfy (A-i) with the level of
significance0.05. On the other hand, it is difficult to check whether (A-iii) holds
or not. However, from Remark 2.2, (A-iii) must be a natural condition under (A-
ii), so that we assume (A-iii) for these data sets. Hence, from Theorem 2.2, we
constructed a95% confidence interval of the first contribution rate for each data
set by choosing(a, b) as in Remark 2.5. The results are summarized in Table 2.
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Table 1. Estimates of the first five eigenvalues byλ̂js andλ̃js, for the microarray
data sets.

n λ̂1, λ̂2, λ̂3, λ̂4, λ̂5 λ̃1, λ̃2, λ̃3, λ̃4, λ̃5

Lymphoma data with7129 (= d) genes given by Shipp et al. (2002)

DLBC 58 1862, 564, 490, 398, 324 1768, 479, 412, 326, 257
Follicular 19 2476, 704, 614, 533, 369 2203, 457, 392, 333, 182

Prostate cancer data with12625 (= d) genes given by Singh et al (2002)

Normal 50 6760, 562, 426, 371, 304 6637, 450, 320, 271, 209
Prostate 52 6106, 687, 512, 462, 298 5976, 568, 401, 359, 199

Table 2. The95% confidence interval (CI) of the first contribution ratio, together
with λ̃1 andκ̃, for the microarray data sets.

(n, d) CI λ̃1 κ̃

DLBC lymphoma (58, 7129) [0.183, 0.322] 1768 5361
Follicular lymphoma (19, 7129) [0.178, 0.467] 2203 4926

Normal prostate (50, 12625) [0.422, 0.622] 6637 5988
Prostate tumor (52, 12625) [0.374, 0.569] 5976 6649

2.3. Test of mean vector

We consider the following one-sample test for the mean vector:

H0 : µ = µ0 vs. H1 : µ ̸= µ0, (2.4)

whereµ0 is a candidate mean vector such asµ0 = 0. Here, we have the following
result.

Lemma 2.2. Under (A-ii), it holds that

||x̄ − µ||2 − tr(SD)/n

λ1

= z̄2
1 −

||zo1/
√

n − 1||2

n
+ op(1)

asd → ∞ whenn is fixed.

Let

F0 =
n||x̄ − µ0||2 − tr(SD)

λ̃1

+ 1.
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Note thatE(λ̃1(F0 − 1)/n) = ||µ−µ0||2. Then, by combining Theorem 2.1 and
Lemma 2.2, we have the following result.

Theorem 2.3.Under (A-i) to (A-iii), it holds that

F0 ⇒ F1,n−1 underH0 in (2.4)

asd → ∞ whenn is fixed, whereFν1,ν2 denotes a random variable distributed as
F distribution with degrees of freedom,ν1 andν2.

For a givenα ∈ (0, 1/2) we test (2.4) by

acceptingH1 ⇐⇒ F0 > F1,n−1(α),

whereFν1,ν2(α) denotes the upperα% point of F distribution with degrees of
freedom,ν1 andν2. Then, under (A-i) to (A-iii), it holds that

size= α + o(1)

asd → ∞ whenn is fixed.
For the same gene expression data as in Section 2.2, we tested (2.4) withµ0 =

0 andα = 0.05. We observed thatH1 was accepted for all four data sets.

3. First PC direction and PC score

In this section, we give asymptotic properties of the first PC direction and PC
score in the HDLSS context.

3.1. Asymptotic properties of the first PC direction

Let Ĥ = [ĥ1, ..., ĥd], whereĤ is a d × d orthogonal matrix of the sample

eigenvectors such that̂H
T
SĤ = Λ̂ havingΛ̂ = diag(λ̂1, ..., λ̂d). We assume

hT
i ĥi ≥ 0 w.p.1 for alli without loss of generality. Note that̂hi can be calculated

by ĥi = {(n − 1)λ̂i}−1/2(X − X)ûi. First, we have the following result.

Lemma 3.1. Under (A-ii) and (A-iii), it holds that

ĥ
T

1 h1 −
(
1 +

κ

λ1||zo1||2
)−1/2

= op(1)

asd → ∞ either whenn is fixed orn → ∞.
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If κ/(nλ1) = o(1) asd → ∞ andn → ∞, ĥ1 is a consistent estimator of

h1 in the sense that̂h
T

1 h1 = 1 + op(1). Whenn is fixed, ĥ1 is not a consistent
estimator becauselim infd→∞ κ/λ1 > 0. In order to overcome this inconvenience,
we consider applying the NR methodology to the PC direction vector. Leth̃i =
{(n − 1)λ̃i}−1/2(X − X)ûi. From Lemma 3.1, we have the following result.

Theorem 3.1.Under (A-ii) and (A-iii), it holds that

h̃
T

1 h1 = 1 + op(1)

asd → ∞ either whenn is fixed orn → ∞.

Note that||h̃1||2 = λ̂1/λ̃1 ≥ 1 w.p.1. We emphasize that̃h1 is a consistent
estimator ofh1 in the sense of the inner product even whenn is fixed thoughh̃1

is not a unit vector. We give an application ofh̃1 in Section 4.

3.2. Asymptotic properties of the first PC score
Let zoij = zij − z̄i for all i, j. Note thatzoi = (zoi1, ..., zoin)T for all i. First,

we have the following result.

Lemma 3.2. Under (A-ii) and (A-iii), it holds that

û1j = zo1j/||zo1|| + op(1) for j = 1, ..., n

asd → ∞ whenn is fixed.

Remark 3.1. From Lemma 3.2, by usinĝu1js and the test of normality such as
Jarque-Bera test, one can check whether (A-i) holds or not.

By applying the NR methodology to the first PC score, we obtain an estimate

by s̃1j =
√

(n − 1)λ̃1û1j, j = 1, ..., n. A sample mean squared error of the first
PC score is given by MSE(s̃1) = n−1

∑n
j=1(s̃1j − s1j)

2. Then, from Theorem 2.1
and Lemma 3.2, we have the following result.

Theorem 3.2.Under (A-ii) and (A-iii), it holds that

1√
λ1

(s̃1j − s1j) = −z̄1 + op(1) for j = 1, ..., n

asd → ∞ whenn is fixed. Under (A-i) to (A-iii), it holds that√
n

λ1

(s̃1j − s1j) ⇒ N(0, 1) for j = 1, ..., n; and n
MSE(s̃1)

λ1

⇒ χ2
1

asd → ∞ whenn is fixed.
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Remark 3.2. The conventional estimator of the first PC score is given byŝ1j =√
(n − 1)λ̂1û1j, j = 1, ..., n. From Theorems 8.1 and 8.2 in Yata and Aoshima

(2013), under (A-ii) and (A-iii), it holds that asd → ∞ andn → ∞

MSE(ŝ1)

λ1

= op(1) if κ/(nλ1) = o(1), and
MSE(s̃1)

λ1

= op(1).

4. Equality tests of two covariance matrices

In this section, we consider the test of equality of two covariance matrices in
the HDLSS context. Even though there are a variety of tests to deal with covari-
ance matrices whend → ∞ andn → ∞, there seem to be no tests available in
the HDLSS context such asd → ∞ while n is fixed. Suppose we have two inde-
pendentd × ni data matrices,X i = [x1(i), ..., xni(i)], i = 1, 2, wherexj(i), j =
1, ..., ni, are i.i.d. as ad-dimensional distribution,πi, having a mean vectorµi

and covariance matrixΣi (≥ O). We assumeni ≥ 3, i = 1, 2. The eigen-
decomposition ofΣi is given byΣi = H iΛiH

T
i , whereΛi = diag(λ1(i), ..., λd(i))

havingλ1(i) ≥ · · · ≥ λd(i)(≥ 0) andH i = [h1(i), ..., hd(i)] is an orthogonal matrix
of the corresponding eigenvectors. We assume thatlim infd→∞ λ1(i)/λ2(i) > 0
for i = 1, 2. Also, we assume thatlim supd→∞ E(z4

sj) < ∞ for all s, j and
P (limd→∞ ||zo1|| ̸= 0) = 1, for eachπi.

4.1. Equality test using the largest eigenvalues
We consider the following test for the largest eigenvalues:

H0 : λ1(1) = λ1(2) vs. Ha : λ1(1) ̸= λ1(2) (or Hb : λ1(1) < λ1(2)). (4.1)

Let λ̃1(i) be the estimate ofλ1(i) by the NR methodology as in (2.1) forπi. Let
ν1 = n1 − 1 andν2 = n2 − 1. From Theorem 2.1, we have the following result.

Corollary 4.1. Under (A-i) to (A-iii) for eachπi, it holds that

λ̃1(1)/λ1(1)

λ̃1(2)/λ1(2)

⇒ Fν1,ν2

asd → ∞ whennis are fixed.

Let F1 = λ̃1(1)/λ̃1(2). For a givenα ∈ (0, 1/2) we test (4.1) by

acceptingHa ⇐⇒ F1 /∈ [{Fν2,ν1(α/2)}−1, Fν1,ν2(α/2)] (4.2)

or acceptingHb ⇐⇒ F1 < {Fν2,ν1(α)}−1. (4.3)
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Then, under (A-i) to (A-iii) for eachπi, it holds that

size= α + o(1)

asd → ∞ whennis are fixed.
Now, we consider a test by the conventional estimator,λ̂1(i). Letκi = tr(Σi)−

λ1(i) =
∑d

s=2 λs(i) for i = 1, 2. From Proposition 2.1, ifκi/λ1(i) = o(1), i = 1, 2,
under (A-i) for eachπi it holds that

λ̂1(1)/λ1(1)

λ̂1(2)/λ1(2)

⇒ Fν1,ν2

asd → ∞whennis are fixed. As mentioned in Section 2, the condition ‘κi/λ1(i) =
o(1) for i = 1, 2’ is quite strict in real high-dimensional data analyses. See Table
2 for example.Hereafter, we assumelim infd→∞ κi/λ1(i) > 0 for i = 1, 2.

4.2. Equality test using the largest eigenvalues and their PC directions

We consider the following test using the largest eigenvalues and their PC di-
rections:

H0 : (λ1(1), h1(1)) = (λ1(2), h1(2)) vs. Ha : (λ1(1), h1(1)) ̸= (λ1(2), h1(2)).
(4.4)

Let h̃1(i) be the estimator of the first PC direction forπi by the NR methodology
given in Section 3.1. We assumehT

1(i)h̃1(i) ≥ 0 w.p.1 fori = 1, 2, without loss of
generality. Here, we have the following result.

Lemma 4.1. Under (A-ii) and (A-iii) for eachπi, it holds that

h̃
T

1(1)h̃1(2) = hT
1(1)h1(2) + op(1)

asd → ∞ either whenni is fixed orni → ∞ for i = 1, 2.

We note that underH0 in (4.4)

(λ1(i)h1(i))
T (λ−1

1(j)h1(j)) = 1 for i = 1, 2; j ̸= i.

Hence, one may consider a test statistic such asF1|h̃
T

1(1)h̃1(2)| or F1|h̃
T

1(1)h̃1(2)|−1.

From Corollary 4.1 and Lemma 4.1,F1|h̃
T

1(1)h̃1(2)| andF1|h̃
T

1(1)h̃1(2)|−1 are asymp-

totically distributed asFν1,ν2. Let h̃ = max{|h̃T

1(1)h̃1(2)|, |h̃
T

1(1)h̃1(2)|−1}. Note

12



that h̃ ≥ 1 w.p.1. Then, in view of the power, we give a test statistic for (4.4) as
follows:

F2 =
λ̃1(1)

λ̃1(2)

h̃∗ (= F1h̃∗),

where

h̃∗ =

{
h̃ if λ̃1(1) ≥ λ̃1(2),

h̃−1 otherwise.

From Lemma 4.1, we have the following result.

Theorem 4.1.Under (A-i) to (A-iii) for eachπi, it holds that

F2 ⇒ Fν1,ν2 underH0 in (4.4)

asd → ∞ whennis are fixed.

From Theorem 4.1, we consider testing (4.4) by (4.2) withF2 instead ofF1.
Then, the size becomes close toα asd increases.

4.3. Equality test of the covariance matrices

We consider the following test for the covariance matrices:

H0 : Σ1 = Σ2 vs. Ha : Σ1 ̸= Σ2. (4.5)

Whend → ∞ andnis are fixed, one can estimateλ1(i)s andh1(i)s by the NR
methodology, however, one cannot estimateλj(i)s andhj(i)s for j = 2, ..., d. In-
stead, we consider estimatingκis. LetSD(i) be the dual sample covariance matrix
for πi. We estimateκi by κ̃i = tr(SD(i))− λ̃1(i) for i = 1, 2. From Lemma 2.1, un-
der (A-ii) and (A-iii) for eachπi, κ̃is are consistent estimators ofκis in the sense
thatκ̃i/κi = 1+op(1) asd → ∞whennis are fixed. Let̃γ = max{κ̃1/κ̃2, κ̃2/κ̃1}.
Similar toF2, we give a test statistic for (4.5) as follows:

F3 =
λ̃1(1)

λ̃1(2)

h̃∗γ̃∗ (= F2γ̃∗),

where

γ̃∗ =

{
γ̃ if λ̃1(1) ≥ λ̃1(2),

γ̃−1 otherwise.

Then, we have the following result.

13



Theorem 4.2.Under (A-i) to (A-iii) for eachπi, it holds that

F3 ⇒ Fν1,ν2 underH0 in (4.5)

asd → ∞ whennis are fixed.

From Theorem 4.2, we consider testing (4.5) by (4.2) withF3 instead ofF1.
Then, the size becomes close toα asd increases.

We analyzed lymphoma data given by Shipp et al. (2002) and prostate cancer
data given by Singh et al. (2002) which are the same gene expression data as in
Section 2.2. When each sample is standardized, we note thatκ̃1 ≈ κ̃2 if λ1(i)/κi =
o(1), i = 1, 2, since tr(SD(1)) = tr(SD(2)) = d, so that one loses information
about the difference betweenκ1 and κ2. Hence, we did not standardize each
sample. We setα = 0.05. We considered two cases: (I)π1 : DLBC lymphoma
(n1 = 58) andπ2 : follicular lymphoma (n2 = 19) and (II) π1 : normal prostate
(n1 = 50) andπ2 : prostate tumor (n2 = 52). We compared the performance of
F3 with two other test statistics,Q2

2 andT 2
2 , by Srivastava and Yanagihara (2010).

The results are summarized in Table 3. We observed thatF3 acceptedHa for
(I) and H0 for (II), namely, F3 rejectedH0 in (4.5) for (I). On the other hand,
Q2

2 andT 2
2 did not work for these data sets becauseQ2

2 andT 2
2 are established

under the severe conditions that0 < limd→∞ tr(Σi)/d < ∞ (i = 1, ..., 4) and
d1/2/n = o(1). As observed in Table 1, the conditions seem not to hold for these
data sets. Hence, there is no theoretical guarantee for the results byQ2

2 andT 2
2 .

Table 3. Tests ofH0 : Σ1 = Σ2 vs. Ha : Σ1 ̸= Σ2 with size0.05 for two
data sets: (I) lymphoma data withd = 7129 given by Shipp et al. (2002) and (II)
prostate cancer data withd = 12625 given by Singh et al. (2002).

Ha by F3 Ha by Q2
2 Ha by T 2

2

(I) π1: DLBC, π2: Follicular Accept Accept Reject
(II) π1: Normal,π2: Tumor Reject Reject Reject

5. Numerical results and discussions

5.1. Comparisons of the estimates on the first PC

In this section, we compared the performance ofλ̃1, h̃1 ands̃1j with their con-
ventional counterparts by Monte Carlo simulations. We setd = 2k, k = 3, ..., 11

14



andn = 10. We considered two cases forλis: (a)λi = d1/i, i = 1, ..., d and
(b) λi = d3/(2+2i), i = 1, ..., d. Note thatλ1 = d for (a) andλ1 = d3/4 for
(b). Also, note that (A-ii) holds both for (a) and (b). Letd∗ = ⌈d1/2⌉, where
⌈x⌉ denotes the smallest integer≥ x. We considered a non-Gaussian distribu-
tion as follows: (z1j, ..., zd−d∗j)

T , j = 1, ..., n, are i.i.d. asNd−d∗(0, Id−d∗)
and (zd−d∗+1j, ..., zdj)

T , j = 1, ..., n, are i.i.d. as thed∗-variatet-distribution,
td∗(0, Id∗ , 10) with mean zero, covariance matrixId∗ and degrees of freedom10,
where(z1j, ..., zd−d∗j)

T and(zd−d∗+1j, ..., zdj)
T are independent for eachj. Note

that (A-i) and (A-iii) hold both for (a) and (b) from the fact that
∑d

r,s≥2 λrλsE{(z2
rk−

1)(z2
sk − 1)} = 2

∑d−d∗
s=2 λ2

s + O(
∑d

r,s≥d−d∗+1 λrλs) = o(λ2
1).

The findings were obtained by averaging the outcomes from2000 (= R, say)
replications. Under a fixed scenario, suppose that ther-th replication ends with
estimates, (̂λ1r, ĥ1r, MSE(ŝ1)r) and (̃λ1r, h̃1r, MSE(s̃1)r) (r = 1, ..., R). Let us
simply write λ̂1 = R−1

∑R
r=1 λ̂1r and λ̃1 = R−1

∑R
r=1 λ̃1r. We also considered

the Monte Carlo variability by var(λ̂1/λ1) = (R− 1)−1
∑R

r=1(λ̂1r − λ̂1)
2/λ2

1 and
var(λ̃1/λ1) = (R − 1)−1

∑R
r=1(λ̃1r − λ̃1)

2/λ2
1. Figure 1 shows the behaviors of

(λ̂1/λ1, λ̃1/λ1) in the left panel and (var(λ̂1/λ1), var(λ̃1/λ1)) in the right panel
for (a) and (b). We gave the asymptotic variance ofλ̃1/λ1 by Var{χ2

n−1/(n −
1)} = 0.222 from Theorem 2.1 and showed it by the solid line in the right panel.
We observed that the sample mean and variance ofλ̃1/λ1 become close to those
asymptotic values asd increases.

Similarly, we plotted (̂h
T

1 h1, h̃
T

1 h1) and (var(ĥ
T

1 h1), var(h̃
T

1 h1)) in Figure
2 and (MSE(ŝ1)/λ1, MSE(s̃1)/λ1) and (var(MSE(ŝ1)/λ1), var(MSE(s̃1)/λ1)) in
Figure 3. From Theorem 3.2, we gave the asymptotic mean of MSE(s̃1)/λ1 by
E(χ2

1/n) = 0.1 and showed it by the solid line in the left panel of Figure 3. We
also gave the asymptotic variance of MSE(s̃1)/λ1 by Var(χ2

1/n) = 0.02 in the
right panel of Figure 3. Throughout, the estimators by the NR method gave good
performances both for (a) and (b) whend is large. However, the conventional
estimators gave poor performances especially for (b). This is probably because
the bias of the conventional estimators,κ/{(n − 1)λ1}, is large for (b) compared
to (a). See Proposition 2.1 for the details.

5.2. Equality tests of two covariance matrices

We used computer simulations to study the performance of the test procedures
by (4.2) withF1 for (4.1),F2 for (4.4) andF3 for (4.5). We setα = 0.05. Indepen-
dent pseudo-random normal observations were generated fromπi : Nd(0,Σi), i =
1, 2. We set(n1, n2) = (15, 25). We considered the cases:d = 2k, k = 4, ..., 12,
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A: λ̂1/λ1 and B:λ̃1/λ1 A: var(λ̂1/λ1) and B: var(λ̃1/λ1)

Figure 1. The values of A:̂λ1/λ1 and B:λ̃1/λ1 are denoted by the dashed lines for

(a) and by the dotted lines for (b) in the left panel. The values of A: var(λ̂1/λ1) and
B: var(λ̃1/λ1) are denoted by the dashed lines for (a) and by the dotted lines for (b)
in the left panel. The asymptotic variance ofλ̃1/λ1 was given by Var{χ2

n−1/(n −
1)} = 0.222 and denoted by the solid line in the left panel.

and

Σi =

(
Σi(1) O2,d−2

Od−2,2 Σi(2)

)
, i = 1, 2, (5.1)

whereOk,l is thek×l zero matrix,Σ1(1) = diag(d3/4, d1/2) andΣ1(2) = (0.3|s−t|).
When considered the alternative hypotheses, we set

Σ2(1) =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
diag(3d3/4, 1.5d1/2)

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
(5.2)

andΣ2(2) = 1.5(0.3|s−t|). Note thatλ1(2)/λ1(1) = 3, κ2/κ1 = 1.5 andhT
1(1)h1(2) =

1/
√

2. Also, note that (A-i) to (A-iii) hold for eachπi. Let h = max{|hT
1(1)h1(2)|,

|hT
1(1)h1(2)|−1} and γ = max{κ1/κ2, κ2/κ1}. From Lemmas 2.1 and 4.1, it

holds that̃h = h + op(1) and γ̃ = γ + op(1). Thus, from Corollary 4.1, The-
orems 4.1 and 4.2, we obtained the asymptotic powers ofF1, F2 and F3 with
(h̃∗, γ̃∗) = (h−1, γ−1) as follows:

Power(F1) = P
{
(λ1(1)/λ1(2))f /∈ [{Fν2,ν1(α/2)}−1, Fν1,ν2(α/2)]

}
= 0.577,

Power(F2) = P
{
h−1(λ1(1)/λ1(2))f /∈ [{Fν2,ν1(α/2)}−1, Fν1,ν2(α/2)]

}
= 0.823

and Power(F3) = P
{
γ−1h−1(λ1(1)/λ1(2))f /∈ [{Fν2,ν1(α/2)}−1, Fν1,ν2(α/2)]

}
= 0.963,
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A: ĥ
T

1 h1 and B:h̃
T
1 h1 A: var(ĥ

T

1 h1) and B: var(h̃
T
1 h1)

Figure 2. The values of A:̂h
T

1 h1 and B:h̃
T

1 h1 are denoted by the dashed lines for

(a) and by the dotted lines for (b) in the left panel. The values of A: var(ĥ
T

1 h1)

and B: var(h̃
T

1 h1) are denoted by the dashed lines for (a) and by the dotted lines
for (b) in the right panel.

A: MSE(ŝ1)/λ1 and B: MSE(s̃1)/λ1 A: var(MSE(ŝ1)/λ1) and B: var(MSE(s̃1)/λ1)

Figure 3. The values of A: MSE(ŝ1)/λ1 and B: MSE(s̃1)/λ1 are denoted by the
dashed lines for (a) and by the dotted lines for (b) in the left panel. The values
of A: var(MSE(ŝ1)/λ1) and B: var(MSE(s̃1)/λ1) are denoted by the dashed lines
for (a) and by the dotted lines for (b) in the right panel. The asymptotic mean and
variance of MSE(s̃1)/λ1 were given byE(χ2

1/n) = 0.1 and Var(χ2
1/n) = 0.02

and denoted by the solid lines in both panels.
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Sizes ofF1, F2 andF3 Powers ofF1, F2 andF3

Figure 4. The values ofα are denoted by the dashed lines in the left panel and the
values of1−β are denoted by the dashed lines in the right panel forF1, F2 andF3.
The asymptotic powers were given by Power(F1) = 0.577, Power(F2) = 0.823
and Power(F3) = 0.963 which were denoted by the solid lines in the right panel.

wheref denotes a random variable distributed asF distribution with degrees of
freedom,ν1 andν2. Note that Power(F2) and Power(F3) give lower bounds of the
asymptotic powers wheñh∗ = h−1 andγ̃∗ = γ−1.

In Figure 4, we summarized the findings obtained by averaging the outcomes
from 4000(= R, say) replications. Here, the first2000 replications were gen-
erated by settingΣ2 = Σ1 as in (5.1) and the last2000 replications were gen-
erated by settingΣ2 as in (5.2). LetFir (i = 1, 2, 3) be therth observation
of Fi for r = 1, ..., 4000. We definedPr = 1 (or 0) when H0 was falsely
rejected (or not) forr = 1, ..., 2000, andHa was falsely rejected (or not) for
r = 2001, ..., 4000. We definedα = (R/2)−1

∑R/2
r=1 Pr to estimate the size and

1 − β = 1 − (R/2)−1
∑R

r=R/2+1 Pr to estimate the power. Their standard devi-
ations are less than0.011. Whend is not sufficiently large, we observed that the
sizes ofF2 andF3 are quite higher thanα. This is probably becausẽh∗ (≥ 1)
andγ̃∗ (≥ 1) are much larger than 1. Actually, the sizes became close toα asd
increases. Whend is large,F3 gave excellent performances both for the size and
power.

Appendix A.

Throughout, letP n = In − 1n1
T
n/n, where1n = (1, ..., 1)T . Let en =

(e1, ..., en)T be an arbitrary (random)n-vector such that||en|| = 1 andeT
n1n = 0.
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Proof of Proposition 2.1.We assumeµ = 0 without loss of generality. We write
thatXT X =

∑i∗
s=1 λszsz

T
s +

∑d
s=i∗+1 λszsz

T
s for i∗ = 1 whenn is fixed, and

for some fixedi∗(≥ 1) whenn → ∞. Here, by using Markov’s inequality, for
anyτ > 0, under (A-ii) and (A-iii), we have that

P
{ n∑

j=1

( d∑
s=i∗+1

λs(z
2
sj − 1)

nλ1

)2

> τ
}
≤

∑d
r,s≥2 λrλsE{(z2

rk − 1)(z2
sk − 1)}

τnλ2
1

→ 0

and P
{ n∑

j ̸=j′

( d∑
s=i∗+1

λszsjzsj′

nλ1

)2

> τ
}
≤ δi∗

τλ2
1

→ 0 (A.1)

as d → ∞ either whenn is fixed or n → ∞. Note that
∑n

j=1 e4
j ≤ 1 and∑n

j ̸=j′ e
2
je

2
j′ ≤ 1. Then, under (A-ii) and (A-iii), we have that

∣∣∣ n∑
j=1

e2
j

d∑
s=i∗+1

λs(z
2
sj − 1)

nλ1

∣∣∣ ≤ { n∑
j=1

e4
j

}1/2{ n∑
j=1

( d∑
s=i∗+1

λs(z
2
sj − 1)

nλ1

)2}1/2

= op(1) and∣∣∣ n∑
j ̸=j′

ejej′

d∑
s=i∗+1

λszsjzsj′

nλ1

∣∣∣ ≤ { n∑
j ̸=j′

e2
je

2
j′

}1/2{ n∑
j ̸=j′

( d∑
s=i∗+1

λszsjzsj′

nλ1

)2}1/2

= op(1)

asd → ∞ either whenn is fixed orn → ∞. Thus, we claim that

eT
n

XT X

(n − 1)λ1

en = eT
n

∑i∗
s=1 λszsz

T
s

(n − 1)λ1

en +
κ

(n − 1)λ1

+ op(1) (A.2)

from the fact that
∑d

s=i∗+1 λs/{(n−1)λ1} = κ/{(n−1)λ1}+o(1) whenn → ∞.
Note thateT

nP n = eT
n andP nzs = zos for all s. Also, note thatzT

oszos′/n =
op(1) for s ̸= s′ asn → ∞ from the fact thatE{(zT

oszos′/n)2} = o(1) asn → ∞.
Then, by noting thatP (limd→∞ ||zo1|| ̸= 0) = 1, lim infd→∞ λ1/λ2 > 1 and
zT

o11n = 0, it holds that

max
en

{
eT

n

∑i∗
s=1 λszsz

T
s

(n − 1)λ1

en

}
= max

en

{
eT

n

∑i∗
s=1 λszosz

T
os

(n − 1)λ1

en

}
= ||zo1/

√
n − 1||2 + op(1) (A.3)
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asd → ∞ either whenn is fixed orn → ∞. Note that̂uT
1 1n = 0 andûT

1 P n = ûT
1

whenSD ̸= O. Then, from (A.2), (A.3) andP nXT XP n/(n − 1) = SD, under
(A-ii) and (A-iii), we have that

ûT
1

SD

λ1

û1 = ûT
1

XT X

(n − 1)λ1

û1 = ||zo1/
√

n − 1||2 +
κ

(n − 1)λ1

+ op(1) (A.4)

asd → ∞ either whenn is fixed orn → ∞. It concludes the result. 2

Proof of Lemma 2.1.By using Markov’s inequality, for anyτ > 0, under (A-ii)
and (A-iii), we have that

P
{( d∑

s=2

λs{||zos||2 − (n − 1)}
(n − 1)λ1

)2

> τ
}

= P
{( d∑

s=2

λs{(n − 1)
∑n

k=1(z
2
sk − 1)/n −

∑n
k ̸=k′ zskzsk′/n}

(n − 1)λ1

)2

> τ
}

= O
{∑d

r,s≥2 λrλsE{(z2
rk − 1)(z2

sk − 1)}
nλ2

1

}
+ O{δ1/(nλ1)

2} → 0

asd → ∞ either whenn is fixed orn → ∞. Thus it holds that tr(SD)/λ1 =
κ/λ1 + ||zo1/

√
n − 1||2 + op(1) from the fact that tr(SD) = λ1||zo1||2/(n− 1) +∑d

s=2 λs||zos||2/(n − 1). Then, from Proposition 2.1 andlim infd→∞ κ/λ1 > 0,
we can claim the results. 2

Proof of Theorem 2.1.Whenn → ∞, we can claim the results from Theorems
4.1, 4.2 and Corollary 4.1 in Yata and Aoshima (2013). Whenn is fixed, we can
claim the results from Theorem 3.1 and Corollary 3.1 in Ishii et al. (2014).2

Proof of Theorem 2.2.From Theorem 2.1 and Lemma 2.1, under (A-i) to (A-iii),
it holds that

P
( λ1

tr(Σ)
∈

[ (n − 1)λ̃1

bκ̃ + (n − 1)λ̃1

,
(n − 1)λ̃1

aκ̃ + (n − 1)λ̃1

])
= P

( (n − 1)λ̃1

bκ̃ + (n − 1)λ̃1

≤ λ1

tr(Σ)
≤ (n − 1)λ̃1

aκ̃ + (n − 1)λ̃1

)
= P

( aκ̃

(n − 1)λ̃1

≤ κ

λ1

≤ bκ̃

(n − 1)λ̃1

)
= P

(
a ≤ (n − 1)

λ̃1κ

λ1κ̃
≤ b

)
= 1 − α + o(1)
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asd → ∞ whenn is fixed. It concludes the result. 2

Proof of Lemma 2.2.We write that

n||x̄ − µ||2 − tr(SD) =
d∑

s=1

λs

(
nz̄2

s −
n∑

j=1

(zsj − z̄s)
2

n − 1

)
.

Then, from (A.1) andnz̄2
s −

∑n
j=1(zsj − z̄s)

2/(n − 1) =
∑n

j ̸=j′ zsjzsj′/(n − 1)
for all s, under (A-ii), we have that

{||x̄ − µ||2 − tr(SD)/n}/λ1 = z̄2
s − ||zo1/

√
n − 1||2/n + op(1)

asd → ∞ whenn is fixed. It concludes the result. 2

Proof of Theorem 2.3. Under (A-i), we note that̄z1 andzo1 are independent,
andnz̄2

1 is distributed asχ2
1. Then, from Theorem 2.1 and Lemma 2.2, we can

conclude the result. 2

Proofs of Lemmas 3.1 and 3.2.We note that||zo1||2/n = 1 + op(1) asn → ∞.
From (A.4), under (A-ii) and (A-iii), we have that

ûT
1 zo1/||zo1|| = 1 + op(1) (A.5)

asd → ∞ either whenn is fixed orn → ∞, so thatûT
1 zo1 = ||zo1|| + op(n

1/2).
Thus, we can claim the result of Lemma 3.2. On the other hand, with the help of
Proposition 2.1, under (A-ii) and (A-iii), it holds that from (A.5)

hT
1 ĥ1 =

hT
1 (X − X)û1

{(n − 1)λ̂1}1/2
=

λ
1/2
1 zT

o1û1

{(n − 1)λ̂1}1/2
=

||zo1|| + op(n
1/2)

{||zo1||2 + κ/λ1 + op(n)}1/2

=
1

{1 + κ/(λ1||zo1||2)}1/2
+ op(1)

asd → ∞ either whenn is fixed orn → ∞. It concludes the result of Lemma
3.1. 2

Proof of Theorem 3.1.With the help of Theorem 2.1, under (A-ii) and (A-iii), we
have that from (A.5)

hT
1 h̃1 =

hT
1 (X − X)û1

{(n − 1)λ̃1}1/2
=

||zo1|| + op(n
1/2)

{||zo1||2 + op(n)}1/2
= 1 + op(1)
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asd → ∞ either whenn is fixed orn → ∞. It concludes the result. 2

Proof of Theorem 3.2.By combing Theorem 2.1 with Lemma 3.2, under (A-ii)
and (A-iii), we have that

s̃1j/
√

λ1 = û1j

√
(n − 1)λ̃1/λ1 = û1j||zo1|| + op(1) = zo1j + op(1)

asd → ∞ whenn is fixed. By noting thatzo1j = z1j − z̄1 andz̄1 is distributed as
N(0, 1/n) under (A-i), we have the results. 2

Proof of Corollary 4.1. From Theorem 2.1, the result is obtained straightfor-
wardly. 2

Proof of Lemma 4.1.Let Zi = [z1(i), ..., zd(i)]
T be a sphered data matrix ofπi

for i = 1, 2, wherezj(i) = (zj1(i), ..., zjni(i))
T . We assumeµ1 = µ2 = 0 without

loss of generality. Letβst = (λs(1)λt(2))
1/2hT

s(1)ht(2) for all s, t. Let i⋆ be a fixed

constant such that
∑d

s=i⋆+1 λ2
s(j)/λ

2
1(j) = o(1) asd → ∞ for j = 1, 2. Note that

i⋆ exists under (A-ii) for eachπi. We write that

XT
1 X2 =

∑
s,t≤i⋆

βstzs(1)z
T
t(2) +

d∑
s,t≥i⋆+1

βstzs(1)z
T
t(2)

+
d∑

s=i⋆+1

i⋆∑
t=1

βstzs(1)z
T
t(2) +

i⋆∑
s=1

d∑
t=i⋆+1

βstzs(1)z
T
t(2).

Note that

E
{( d∑

s=i⋆+1

i⋆∑
t=1

βstzsj(1)ztj′(2)

)2}
= tr

( d∑
s=i⋆+1

λs(1)hs(1)h
T
s(1)

i⋆∑
t=1

λt(2)ht(2)h
T
t(2)

)
≤ i⋆λi⋆+1(1)λ1(2)

for all j, j′. Also, note that

E
{( d∑

s,t≥i⋆+1

βstzsj(1)ztj′(2)

)2}
= tr

( d∑
s=i⋆+1

λs(1)hs(1)h
T
s(1)

d∑
t=i⋆+1

λt(2)ht(2)h
T
t(2)

)
≤

( d∑
s=i⋆+1

λ2
s(1)

d∑
t=i⋆+1

λ2
t(2)

)1/2
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for all j, j′. Then, by using Markov’s inequality, for anyτ > 0, under (A-ii) for
eachπi, we have that

P
{ n1∑

j=1

n2∑
j′=1

( d∑
s=i⋆+1

i⋆∑
t=1

βstzsj(1)ztj′(2)

(n1n2λ1(1)λ1(2))1/2

)2

> τ
}
→ 0,

P
{ n1∑

j=1

n2∑
j′=1

( i⋆∑
s=1

d∑
t=i⋆+1

βstzsj(1)ztj′(2)

(n1n2λ1(1)λ1(2))1/2

)2

> τ
}
→ 0

andP
{ n1∑

j=1

n2∑
j′=1

( d∑
s,t≥i⋆+1

βstzsj(1)ztj′(2)

(n1n2λ1(1)λ1(2))1/2

)2

> τ
}
→ 0

asd → ∞ either whenni is fixed orni → ∞ for i = 1, 2. Hence, similar to (A.2),
it holds that

eT
n1

XT
1 X2en2

(ν1ν2λ1(1)λ1(2))1/2
=

eT
n1

∑
s,t≤i⋆

βstzs(1)z
T
t(2)en2

(ν1ν2λ1(1)λ1(2))1/2
+ op(1).

Note thateT
ni

P ni
= eT

ni
and P ni

z1(i) = zo1(i) for i = 1, 2, wherezo1(i) =
z1(i) − (z̄1(i), ..., z̄1(i))

T and z̄1(i) = n−1
i

∑ni

k=1 z1k(i). Also, note thatX iP ni
=

(X i − X i) for i = 1, 2, whereX i = [x̄i, ..., x̄i] andx̄i =
∑ni

j=1 xj(i)/ni. Let
û1(i) be the first (unit) eigenvector of(X i − X i)

T (X i − X i) for i = 1, 2. Note
thatûT

1(i)P ni
= ûT

1(i) when(X i−X i)
T (X i−X i) ̸= O for i = 1, 2. Then, under

(A-ii) for eachπi, we have that

ûT
1(1)(X1 − X1)

T (X2 − X2)û1(2)

(ν1ν2λ1(1)λ1(2))1/2
=

ûT
1(1)

∑
s,t≤i⋆

βstzos(1)z
T
ot(2)û1(2)

(ν1ν2λ1(1)λ1(2))1/2
+ op(1)

(A.6)
asd → ∞ either whenni is fixed orni → ∞ for i = 1, 2. Note thath̃1(i) =

{νiλ̃1(i)}−1/2(X i − X i)û1(i) for i = 1, 2. Also, note thatzT
os(i)zos′(i)/ni = op(1)

(s ̸= s′) whenni → ∞ for i = 1, 2. Then, by combining (A.6) with Theorem 2.1
and (A.5), we can claim the result. 2

Proofs of Theorems 4.1 and 4.2. By combining Theorem 2.1, Lemmas 2.1 and
4.1, we can claim the results. 2
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