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要  約 

1. Introduction 

Pressures over water environment have escalated due to water resource overexploitation 

and water pollution, which have become the global water environmental problems and 

brought negative impacts to human health and sustainable socio-economic development. 

Source Region of Liao River (SRLR) faces water scarcity due to the multi-stresses of 

decreasing water availability, increasing water demand driven by rapid economic 

development, accelerated urbanization and population growth. The exploration rate of 

surface water resources exceeds 80%, much larger than the international exploration 

cordon of river water resources (40%), and the groundwater has been overexploited for 

irrigation and manufacturing industry.  

SRLR also has been suffering heavy water pollution continuously. The water quality of 

the whole basin is seriously deteriorating not meeting the requirements of surface water 

function zoning and water pollution is mainly characterized by organic pollution. 

Industrial sectors discharge the most total nitrogen (TN), total phosphorus (TP) and 

chemical oxygen demand (COD) in 2010 compared with that discharged from household 
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and land use. Few wastewater treatment measures and management instruments have been 

put into practice in 2010. Only 67.4% of COD generated by urban household and 12.1% 

by manufacturing have been treated by municipal sewage treatment plants. In this sense, 

there is a space for further proper treatment of wastewater. The severe status in terms of 

water pollution and scarcity makes it significant to exploit eligible water environment 

management instruments for the prevention of water environmental degradation and 

promotion of socio-economic development.  

Some instruments proposed separately against water pollution are insufficient without 

taking water environment and socio-economic development into consideration as a whole. 

Sustainable water environment management needs the combination of engineering and 

socio-economic instruments under the uniform objective framework. Thus the solution for 

both water pollution control and balance of supply and demand of water resources 

necessitates full consideration of the socioeconomic and environmental settings. 

What kinds of strategies and instruments are appropriate to put into practice in SRLR? 

How policy system, water environmental system and socio-economic system could 

influence each other? How to obtain an optimal solution to accomplish total control of water 

pollutants discharge and balance of water supply and demand, with the minimum negative 

influence on socio-economic development? Implementation of any watershed management 

activities cause “costs” in any sense. Thus, who shall pay for the cost and how much the cost 

is for the society to improve the water environment is important for all the stakeholders 

including government. How the government should provide subsidy for adoption of new 

technologies or policies? The complexity of relationships between environment and 

socio-economy calls for solutions related to above questions.  

In the face of challenges of water pollution and water resources crisis in SRLR, the 

main objective of the study is to explore a simulation model based on input-output (IO) 

approach to mitigate water pollution and water scarcity through embedding environmental 

economic policies and applicable technologies into complex environ-economic system to 

obtain an optimal set of policies and technologies which promotes maximization of 

regional economy under constraints of water pollutant discharge and water availability. 
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Specifically, this study is designed to: 

1) Explore an optimization simulation model based on extended IO model (2011~2020, 

2010 as base year), including socio-economic, water environmental, water resources, 

energy and greenhouse gases (GHG) systems. 

2) Identify an optimal set of technologies and policies most effective and realize total 

control of water pollutant discharge, balance of water supply and water demand with 

the least economic sacrifice through the simulation work. 

3) Specify the extent of mitigation of water pollution and water scarcity via applied 

policies and technologies promoted by the subsidies provided by government, and 

explain the mechanism of policy application and subsidization distribution. 

4) Manifest the best trade-off between regional socio-economic development, water 

environmental conservation and water resources utilization as well as effectiveness of 

policies and technologies adopted. 

 

2. Methodology  

This study develops and illustrates an integrated dynamic optimization simulation model 

based on input-output approach to mitigate water pollution and water scarcity through 

embedding environmental economic policies and applicable technologies into complex 

environ-economic system. This model is used to obtain an optimal set of policies and 

technologies that promotes maximization of regional economy under constraints of water 

pollutant discharge (WPD) and water availability. The model consists of social-economic 

sub-model, water pollution control sub-model, water supply and demand sub-model, energy 

sub-model and GHG emission sub-model. The optimization will be solved via application 

of LINGO programming, a non-linear optimization software package released by LINDO 

Systems Incorporated. 

The model framework contains three major economic entities (usual industries, energy 

industries and final demand sectors) and the proposed polices and technologies, which are 

integrated into a holistic energy-environmental-socioeconomic system through the 
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embedded material flow, value flow and energy flow. Five subsystems within the whole 

system were determined. The socio-economic subsystem is elaborated as the production 

activities of industrial sectors, private and government consumption, gross capital 

formation and net exports. Subsidies for promotion of policy application are sourced from 

government savings. Reclaimed water production and multistep water price system are 

introduced into the water resource subsystem which depicts the balance of the water 

demand and supply. The water pollution control subsystem is utilized to calculate the 

amount of water pollutants generated from the production and consumption activities and 

that are discharged into water bodies after introducing pollution abatement technologies. 

The energy subsystem additionally involves the production of renewable energy. The 

GHG emission subsystem clarifies the variation in GHG emissions resulting from the 

constraints of water pollutant discharge and water availability. 

Scenario simulation is used to compare the impacts of part and the whole policies 

proposed on economy and water pollution situation initially. Then it is used to analyze the 

impacts on the economy and water environment within a single constraint on water 

pollution or water availability and both constraints of them, as well as the corresponding 

policies and technologies introduced into these conditions.  

 

3. Proposed policies 

Data analysis, analytical approaches (like footprint and linkage) are used, considering 

governmental regulations, to formulate some decision rules for proposing policies for 

mitigating water pollution and scarcity. The following environmental policies and 

corresponding technologies will be introduced: for water pollution control, Improvement 

of sewage and wastewater treatment rate, Resource-oriented policy for livestock breeding 

industry, Promotion of forestation and grassland restoration, Promotion of new fertilizer 

utilization; for water supply and demand, Promotion of reclaimed water production and 

utilization, Implementation of multistep water price system. In order to select appropriate 

technologies, additional factors, such as applicability, advancement and the popularization 

potential of technologies are also considered. 
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4. Main results and conclusion 

An integrated optimization simulation model has been developed to mitigate water 

pollution and water scarcity simultaneously through embedding environmental economic 

policies and applicable technologies into a complex environ-economic system to obtain an 

optimal set of policies and technologies that promotes the maximization of the regional 

economy.  

The contrasts of four scenarios indicate that the formed optimal policy combination 

with industrial restructuring collectively achieves the targets of the WPD constraints and 

the water availability constraint. S54 is selected as the optimal scenario due to the 

relatively higher average Gross Regional Product (GRP) growth rate (9.55%), achieving 

the targets of water pollution control (30% COD reduction, 30% TN reduction and 25% 

TP reduction by 2020 compared with 2010) and water supply and demand balance. In the 

optimal scenario, the trends in economic development, pollutant discharge and water 

consumption for each sector within the simulation time horizon (2011-2020) are depicted 

dynamically. The production of breeding industries with relatively higher WPD 

coefficients decreases obviously in the simulation time horizon. Manufacturing, 

construction, transportation and service industries are in the opposite situation. Pollutants 

discharged from breeding industries and households reduce drastically in S54. Due to the 

rapid development of manufacturing, the WPD increases once. Water demand of 

construction, mining, electricity production and service industries increases more than 

once. Water demand of fishery, planting and breeding industries deceases continuously 

due to the decrease in sectoral production in the optimal scenario. 

In the optimal scenario, the discharge amount of TN, TP and COD reduces 30.01%, 

29.62% and 31.17% by 2020 compared with 2010, respectively. The total WPD reduction 

amount in the simulation time horizon 2011-2020 in S54 is facilitated jointly by sectoral 

production change and the optimal set of policies. The optimal set of policies contributes 

92.19% and 78.03% reduction of TN and TP respectively among the total reduction 

amount, the rest is contributed by industrial production changes including production 

increase and decrease. Sectoral production changes induce a 26.28 thousand ton increase 
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in COD discharge; the policies contribute a 85.17 thousand ton reduction in COD 

discharge; finally, a 58.83 thousand ton reduction in COD discharge is achieved. For water 

supply, reclaimed water production is introduced to mitigate the scarcity of water 

resources and the amount of reclaimed water supply is 80.26 million m3, accounting for 

5.56% in the total water supply in 2020 in S54. For water demand, a multistep water price 

system specifying a three-order water price system is introduced for urban households. 

The multistep water price system contributes to a decrease of 10.04 million m3 in urban 

water demand compared with when no policy is introduced in 2020. 

The extent of the mitigation of water pollution and water scarcity contributed by the 

proposed policies or technologies and the subsidies granted to promote policy or 

technology implementation are specified, from which the mechanisms of the policy 

application and the subsidization allocation are systematically clarified. Among the WPD 

amount reduced by the optimal set of policies in S54, biogas power generation technology 

(for cattle breeding industries) removes the most TN (30.00%) and TP (28.74%) with the 

most subsidies. Promotion of organic-inorganic compound fertilizer utilization is the 

second main contributor for the reduction of TN and TP accounting for 19.55% and 14.16% 

respectively. Wastewater treatment technologies remove the most COD discharged from 

manufacturing industry compared with other policies or technologies accounting for 34.38% 

followed by biogas power generation technology.  

The simulation model predicts the biomass energy production and GHG emission. The 

share of electricity production by biomass energy plants increases gradually up to 1.11% 

by 2020 in S54. The average GHG emission growth rate in S54 is 8.95% which is smaller 

than the average GRP growth rate (9.55%). GHG emission intensity decrease from 331.61t 

CO2-e/million CNY in 2011 to 315.81 t CO2-e/million CNY in 2020 in the optimal 

scenario. Regional analysis has been conducted to detect the economic development, 

water pollutant discharge intensity, and water consumption intensity in each sub-region as 

well as the subsidy distribution.  

The formed optimal set of policies and technologies is affected by water pollutants 

joint-removal efficiency, limitation of technology application potential, subsidy source and 
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allocation mechanism, and specific constraints like ecological conservation, promotion of 

new and renewable energy, sewage rate. The optimal set of policies and technologies not 

only contributes to mitigating water pollution and scarcity, but also has an effect on the 

extent of industrial restructuring. The industrial restructuring is conducted in the form of 

production decrease in some sectors following an order determined by the WPD 

coefficients, freshwater consumption (FC) coefficient and value added rate of each 

industry jointly with industries having higher WPD coefficients, FC coefficients and lower 

value added rates as priority. Thus, the efficiency of the optimal set of policies and 

technologies is significant for the integrated system. Some parameters of technologies (the 

discharge coefficients, the coefficients of induced production by investment and the 

depreciation rate of technologies) and the proportion of subsidies from provincial and 

central government, that affect the efficiency of the optimal set of policies should be well 

calculated and organized when performing the economic and environmental policies.  

The model is robust in the case that once the parameters and necessary data have been 

input, the model will obtain an optimal solution as a result of the comprehensive and 

overall evaluation of all of the possible policies and technologies, which can contribute to 

better informed policy-making and development of specific plans. This model has 

applicability for other regions in terms of giving an optimal solution via comprehensive 

assessment of all of the proposed sustainability-related policies with sufficient data 

accessibility to achieve regional sustainable development. 

 

References 
Alcamo, J., Florke, M., Marker, M., 2007. Future long-term changes in global water resources driven by 

socio-economic and climatic changes. Hydrological Science Journal 52(3), 247-275. 

Alcantara, V., Roca, J., 1995. Energy and CO2 emissions in Spain: methodology of analysis and some results 

for 1980-1990. Energy Economics 17(3), 221-230. 

Arnell, N.W., 2004. Climate change and global water resources: SRES emissions and socio-economic 

scenarios. Global Environmental Change-Human and Policy Dimensions 14(3-4), 31-52. 

Aroca, P., 2001. Impacts and development in local economies based on mining: the case of the Chilean II 

region. Resources Policy 27(2), 119-134.  

Aviso, K.B., Tan, R.R., Culaba, A.B., Cruz, J.B., 2011. Fuzzy input-output model for optimizing 

eco-industrial supply chains under water footprint constraints. Journal of Cleaner Production 19(2-3), 

187-196.  



8 

Beall, A., Fiedler, F., Boll, J., Cosens, B., 2011. Sustainable water resource management and participatory 

system dynamics. Case study: developing the Palouse basin participatory model. Sustainability 3(5), 

720-742. 

Calzadilla, A., Rehdanz, K., Tol, R.S.J., 2010. The economic impact of more sustainable water use in 

agriculture: A computable general equilibrium analysis. Journal of Hydrology 384(3-4), 292-305. 

Cazcarro, I., Duarte, R., Choliz, J.S., 2013. Multiregional input-output model for the evaluation of Spanish 

water flows. Environmental Science & Technology 47(21), 12275-12283. 

Cellura, M., Longo, S., Mistretta, M., 2011. The energy and environmental impacts of Italian household 

consumptions: An input–output approach. Renewable& Sustainable Energy Reviews 15(8), 3897-3908. 

Chang, N., 2014. Changing industrial structure to reduce carbon dioxide emissions: a Chinese application. 

Journal of Cleaner Production 103, 40-48. 

Chen, H., Chang, Y.C., Chen, K.C., 2014. Integrated wetland management: An analysis with group model 

building based on system dynamics model. Journal of Environmental Management 146, 309-319. 

Chen, Y.F., Qi, J., Zhou, J.X., Li, Y.P., Xiao, J., 2004. Dynamic modeling of a man-land system in response 

to environmental catastrophe. Human and Ecological Risk Assessment 10(3), 579-593. 

Chenery, H.B., Watanable, T., 1958. International comparisons of the structure of production. Econometrica 

26(4), 487-521. 

Cheng, H., Hu, Y., Zhao, J., 2009. Meeting China's water shortage crisis: current practices and challenges. 

Environmental Science and Technology 43(2), 240-244. 

Choi, H.L., Sudiarto, S.I.A., Renggaman, A., 2014. Prediction of livestock manure and mixture higher 

heating value based on fundamental analysis. Fuel 116, 772-780. 

Cruz, J.B., Tan, R.R., Culaba, A.B., Ballacillo, J.A., 2009. A dynamic input–output model for nascent 

bioenergy supply chains. Applied Energy 86(S1):S86-S94.  

Cui, J., Ma, Y.H., Zhao, Y.P., et al., 2006. Characteristic and countermeasures for control and prevention of 

multiple area-pollution in agriculture. Chinese Agricultural Science Bulletin 22(1), 335-240. (In Chinese) 

Deng, X.Z., Zhang, F., Wang, Z., Li, X., Zhang, T., 2014. An extended input output table compiled for 

analyzing water demand and consumption at county level in China. Sustainability 6(6), 3301-3320. 

Dehnhardt, A., 2014. The influence of interests and beliefs on the use of environmental cost-benefit analysis 

in water policy: the case of German policy-makers. Environmental Policy and Governance 24(6), 

391-404. 

Diao, X., Roe, T., Doukkai, R., 2005. Economy-wide gains from decentralized water allocation in a spatially 

heterogeneous agricultural economy. Environmental and Development Economics 10, 249-269. 

Dias, A.C., Lemos, D., Gabarrell, X., Arroja, L., 2014. Environmentally extended input-output analysis on a 

city scale-application to Aveiro (Portugal). Journal of Cleaner Production 75, 118-129. 

Dong, D.M., Liang, D.M., Ma, J.L., et al., 2013a. Research of non-point source pollution quantity 

discharged into the Source Area of Liao River. In the Progress in Environmental Protection and 

Processing of Resource, PTS 1-4, Tang, X., Zhong, W., Zhuang, D., et al., Eds. Trans Tech Publications 

Ltd: Zurich. 295-298, pp. 1643-1646.   

Dong, H.J., Geng, Y., Sarkis, J., et al., 2013b. Regional water footprint evaluation in China: A case of 

Liaoning. Science of the Total Environment 442, 215-224. 

Duarte, R., Sánchez-Chóliz, J., Bielsa, J., 2002. Water use in the Spanish economy: an input-output approach. 

Ecological Economics 43(1), 71-85. 

Ebiefung, A., Kostreva, M., 1993. The generalized Leontief input–output model and its application to the 

choice of new technology. Annals of Operations Research 44(2), 161-172. 

Feng, K.S., Hubacek, K., Minx, J., et al., 2011. Spatially explicit analysis of water footprints in the UK. 



9 

Water 3(1), 47-63. 

Fishelson, G., 1994. The allocation of marginal value product of water in Israeli agriculture. In Water and 

peace in the Middle East, Isaac, J., Shuval, H., Eds. Elsevier Science B.V., Amsterdam, pp. 427-440. 

Fu, Y., He, J., Mu, D., et al., 2011. Available water resources calculation in Liao River Basin. Journal of Arid 

Land Resources and Environment 25(1), 107-110. 

Gao, X.Y., Gao, W.J., 2011. Reasonable determination of parameters in model of ladder water price. 

Territory & Natural Resources Study 25, 51-53. (In Chinese)  

Geng, Y., Mitchell, B., Fujita, T., Nakayama, T., 2010. Perspective on small watershed management: a case 

of Biliu. International Journal of Sustainable Development and World Ecology 17(2), 172-179. 

Ge, L., Xie, G., Zhang, C., et al., 2011. An evaluation of China's water footprint. Water Resources 

Management 25(10), 2633-2647. 

Guan, D., Hubacek, K., 2007. Assessment of regional trade and virtual water flows in China. Ecological 

Economics 61(1), 159-170. 

Guan, D., Hubacek, K., 2008. A new and integrated hydro-economic accounting and analytical framework 

for water resources: A case study for North China. Journal of Environmental Management 88, 1300-1313. 

Ghosh, A., 1958. Input-output approach in an allocation system. Economica XXV, 58-64. 

Hawdon, D., Pearson, P., 1995. Input–output simulations of energy, environment, economy interactions in 

the UK. Energy Economics 17(1), 73-86. 

Hahn, R.W., 2000. The impact of economics on environmental policy. Journal of Environmental Economics 

and Management 39(3), 375-399. 

Herath, I., Deurer, M., Horne, D., 2011. The water footprint of hydroelectricity: a methodological 

comparison from a case study in New Zealand. Journal of Cleaner Production 19(14), 1582-1589. 

Higano, Y., Sawada, T., 1995. The dynamic policy to improve the water quality of lake Kasumigaura. 

Studies in Regional Science 26(1), 75-86. 

Hirschman, A.O., 1958. The Strategy of Economic Development. Yale University Press: New Haven, CT, 

USA. 

Hoekstra, A.Y., Hung, P.Q., 2003. Virtual Water Trade: A quantification of virtual water flows between 

nations in relation to international crop trade. UNESCO-IHE, Delft, the Netherlands, pp. 12-13. 

Hoekstra, A.Y., CHapagain, A.K., 2007. Water footprints of nations: Water use by people as a function of 

their consumption pattern. Water Resources Management 21(1), 35-48. 

Hubacek, K., Sun, L.X., 2005. Economic and societal changes in China and their effects on water use-A 

scenario analysis. Journal of Industrial Ecology 9(1-2), 187-200. 

Hutton, G., Haller, L., Bartram, J., 2007. Global cost-benefit analysis of water supply and sanitation 

interventions. Journal of Water Health 5(4), 481-502. 

IPCC, 2006. Agriculture, Forestry and Other Land Use. In 2006 IPCC Guidelines for National Greenhouse 

Gas Inventories; IGES: Kanagawa, Japan, Volume 4. 

Ji P.C., 2009. The status quo of the urban water price reformation with some suggestion in China. 

Macroeconomic Management 4, 48-50. (In Chinese) 

Jia, G.N., Huang, P., 2013. Staged water price and the water-saving effect calculation model for domestic 

water. Journal of Natural Resource 28(10), 1788-1796. (In Chinese) 

Jiang, Y., 2009. China's water scarcity. Journal of Environmental Management 90(11), 3185-3196. 

Johnes, P.J., 1996. Evaluation and management of the impact of land use change on the nitrogen and 

phosphorus load delivered to surface waters: The export coefficient modeling approach. Journal of 

Hydrology 183(3-4), 323-349. 

Jones, L.P., 1976. The measurement of Hirschmanian linkages. The Quarterly Journal of Economics 90(2), 



10 

323-333. 

Jorgenson, D.W., Wilcoxon, P.J., 1990. Environmental regulation and US economic growth. RAND Journal 

of Economics 21(2), 314-340. 

Kagawa, S., Inamura, H., 2001. A structural decomposition of energy consumption based on a hybrid 

rectangular input-output framework: Japan’s case. Economic Systems Research 13(4), 339-363. 

Kampas, A., Edwards, A.C., Ferrier, R.C., 2002. Joint pollution control at a catchment scale: compliance 

costs and policy implications. Journal of Environmental Management 66(3), 281-291. 

Leistritz, L., Leitch, F., Bangsund. D., 2002. Regional economic impacts of water management alternatives: 

the case of Devils Lake, North Dakota, USA. Journal of Environmental Management 66(4), 465-473. 

Lenzen, M., 2003. Environmentally important paths, linkages and key sectors in the Australian economy. 

Structural Change and Economic Dynamics 14(1), 1-34. 

Lenzen, M., Pade, L.L., Munksgaard, J., 2004. CO2 multipliers in multi-region input-output models. 

Economic Systems Research 16(4), 391-412. 

Leontief, W., 1970. Environmental repercussions and the economic structure: An input-output approach. 

Review of Economics and Statistics 52(3), 262-271. 

Leontief, W., Ford, D., 1972. Air pollution and the economic structure: empirical results of input-output 

computations. In the Input-Output Techniques, Brody, A.P., Eds. North-Holland: Amsterdam, pp. 9-30. 

Levine, A.D., Asano, T., 2004. Recovering sustainable water from wastewater. Environmental Science and 

Technology. 38, 201A-208A. 

Liang, S., Wang, C., Zhang, T.Z., 2010. An improved input–output model for energy analysis: A case study 

of Suzhou. Ecological Economics 69(9), 1805-1813. 

Liang, S., Xu, M., Suh, S., Tan, R.R., 2013. Unintended Environmental Consequences and Co-benefits of 

Economic Restructuring. Environmental Science & Technology 47(22) 12894-12902. 

Li, Z.N., 2002. Econometrics-Method and Application. Tsinghua University Press: Beijing, China. (In 

Chinese) 

Lin, C., 2011. Identifying lowest-emission choices and environmental pareto frontiers for wastewater 

treatment input-output model based linear programming. Journal of Industrial Ecology 15(3), 367-380. 

Liu, C., 2013. The study on temporal and spatial variation characters of ecological environmental factors and 

evaluation of ecological environment in Liao River Basin of Jilin province. Jilin University Press, 

Changchun, pp. 21-22. 

Liu, J., Yang, W., 2012. Water sustainability for China and beyond. Science 337(6095), 649-650. 

Llop, M., 2007. Economic structure and pollution intensity within the environmental input-output 

framework. Energy Policy 35(6), 3410-3417. 

Llop, M., Pie, L., 2008. Input–output analysis of alternative policies implemented on the energy activities: 

An application for Catalonia. Energy Policy 36(5), 1642-1648. 

Loisel, R., 2009. Environmental Climate instruments in Romania: A comparative approach using dynamic 

CGE modelling. Energy Policy 37(6), 2190-2204. 

Ma, X.W., 2008. Study on pricing strategy of increasing block tariffs. Science Technology and Engineering 

8(24), 6545-6552. (In Chinese) 

Macleod, C.J.A., Scholefield, D., Haygarth, P.M., 2007. Integration for sustainable catchment management. 

Science of the total Environment 373(2-3), 591-602. 

Madlener, R., Koller, M., 2007. Economic and CO2 mitigation impacts of promoting biomass heating 

systems: An input-output study for Vorarlberg, Austria. Energy Policy 35(12), 6021-6035. 

Massarutto, A., 2007. Water pricing and full cost recovery of water services: economic incentive or 

instrument of public finance? Water policy 9(6), 591-613. 



11 

Mcgonigle, D.F., Harris, R.C., Mccamphill, C., et al., 2012. Towards a more strategic approach to research 

to support catchment-based policy approaches to mitigate agricultural water pollution: A UK case-study. 

Environmental Science & policy 24(SI), 4-14. 

Messner, F., Zwirner, O., Karkuschke, M., 2006. Participation in multi-criteria decision support for the 

resolution of a water allocation problem in the Spree River Basin. Land Use Policy 23(1), 63–75. 

Miller, R.E., Blair, P.D., 1985. Input–Output Analysis: Foundations and Extensions. Prentice-Hall, Inc, New 

Jersey. 

MEPPRC (Ministry of Environmental Protection of Peoples Republic of China), 2002. PRC’s National 

Environmental Quality Standards for Surface Water (GB3838-2002), Beijing, China. 

Mizunoya, T., Sakurai, K., Kobayashi, S., 2007. Simulation analysis for an optimal environmental policy 

including the introduction of new technologies. Studies in Regional Science 37 (1), 199-227. 

Moffatt, I., Hanley, N., 2001. Modelling sustainable development: systems dynamic and input-output 

approaches. Environmental Modelling & Software 16(6), 545-557. 

MWR (Ministry of Water Resources), 2001. China Water Resources Bulletin 2000. China Water Resources 

and Hydropower Press: Beijing. (In Chinese) 

MWR (Ministry of Water Resources), 2014. China Water Resources Bulletin 2013. China Water Resources 

and Hydropower Press: Beijing. (In Chinese) 

Nahm, K.H., 2002. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. 

Critical Reviews in Environmental Science and Technology 32(1) 1-16. 

Nansai, K., Moriguchi, Y., Tohno, S., 2003. Compilation and application of Japanese inventories for energy 

consumption and air pollutant emissions using input-output tables. Environmental Science and 

Technology 37 (9) 2005-2015.  

Ni, J.R., Zhong, D.S., Huang, Y.F., Wang, H., 2001. Total waste-load control and allocation based on the 

input-output analysis for Shenzhen, South China. Journal of Environmental Management 61(1), 37-49. 

Nijkamp, P., Wang, S., Kremers, J., 2005. Modelling the impacts of international climate change policies in a 

CGE context: The use of the GTAP-model. Economic Modelling 22(6), 955-974. 

Nozari, H., Liaghat, A., 2014. Simulation of Drainage water quantity and quality using system dynamics. 

Journal of Irrigation and Drainage Engineering 140(11), 05014007. 

Okadera, T., Watanabe, M., Xu, K., 2006. Analysis of water demand and water pollutant discharge using a 

regional input-output table: An application to the City of Chongqing, upstream of the Three Gorges Dam 

in China. Ecological Economics 58(2), 221-237. 

Oki T., Agata, Y., Kanae, S., et al., 2001. Global assessment of current water resources using total runoff 

integrating pathways. Hydrological Sciences Journal 46(6), 983-995. 

Oliveira, C., Antunes, C.H., 2011a. A multiple objective model to deal with economy- energy-environment 

interactions. European Journal of Operational Research 153(2), 370-385. 

Oliveira, C., Antunes, C.H., 2011b. A multi-objective multi-sectoral economy-energy- environment model: 

Application to Portugal. Energy 36(5), 2856-2866. 

Oliveira, C., Coelho, D., Antunes, C.H., 2014. Coupling input–output analysis with multi-objective linear 

programming models for the study of economy-energy- environment-social (E3S) trade-offs: a review. 

Annals of Operations Research, 1-32. doi:10.1007/s10479-014-1773-5. 

Pac, R. D., Sanchez-Choliz, J., 1998. Analysis of water pollution with input-output models. In Applied 

Sciences and the Environment, Almorza, D., Ramos, H.M., Eds. WIT Press: Southampton, pp. 311-329. 

Park, S., Jeon, D.H., Jung, S.Y., 2014. Developing efficient management strategies for a water supply system 

using system dynamics modeling. Civil Engineering and Environmental Systems 31(3), 189-208.  

Piao, M., Teng, H., Song, S., 2014. Present situation and evaluation results for water quality in Liaohe 



12 

Source Area. Environmental Science and Management 39(10), 164-169. 

Pietroforte, R., Gregori, T., 2003. The role of the construction sector in highly developed economics. 

Construction innovation and global competitiveness, VOLS 1 and 2: The Organization and management 

of Construction 510-522.  

Qin, C.B., Jia, Q.W., Su, Z., et al., 2014. An analysis of water consumption and pollution with the 

input-output model in the Haihe river basin, China. In the Environmental Engineering, PTS 1-4, Li, H., 

Xu, Q., Ge, H., Eds. Trans Tech Publications Ltd: Zurich, 864-897, pp. 1059-1069. 

Qin, C.B., 2011a. Mitigation China’s water scarcity and pollution: environmental and Economic accounting, 

modeling and policy analysis. University of Twente: Enschede, Netherlands, pp.2-44.  

Qin, C.B., Bressers, H.T.A., Su, Z., Jia, Y.W., Wang, H., 2011b. Assessing economic impacts of China's 

water pollution mitigation measures through a dynamic computable general equilibrium analysis. 

Environmental Research Letters 6(4), 1-15. 

Qin, H.P., Su, Q., Khu, S.T., 2013. Assessment of environmental improvement measures using a novel 

integrated model: A case study of Shenzhen River catchment, China. Journal of Environmental 

Management 114, 486-495. 

Qiu, Z.Y., 2003. A VSA-based strategy for placing conservation buffers in agricultural watersheds. 

Environmental Management 32(3), 299-311. 

Qi, Z., Lu, X., 2007. Synthesis basis database construction research for the water supply project in the 

middle cities of Jilin Province. Jilin Water Resources 297, 1-3. 

Regli, S., Odom, R., Cromwell, J., et al., 1999. Benefits and costs of the IESWTR. Journal of the American 

Water Works Association 91(4), 148-158. 

Reidsma, P., Feng, S.Y., Van loon, M., et al., 2012. Integrated assessment of agricultural land use policies on 

nutrient pollution and sustainable development in Taihu Basin, China. Environmental Science & Policy 18, 

66-76. 

Resosudarmo, B.P., 2003. River water pollution in Indonesia: an input-output analysis. International Journal 

of Environment and Sustainable Development 2, 62-77. 

Rose, A., Casler, S., 1996. Input-output structural decomposition analysis: a critical appraisal. Economic 

Systems Research 8(1), 451-467. 

Sanchez-Choliz, J., Duarte, R., 2005. Water pollution in the Spanish economy: analysis of sensitivity to 

production and environmental constraints. Ecologic Economics 53(3), 325-338. 

Sanchez-Choliz, J., Duarte, R., 2003. Analysing pollution by way of vertically integrated coefficients, with 

an application to the water sector in Aragon. Cambridge Journal of Economics 27(3), 433-448. 

Schewe, J., Heinke, J., Gerten, D., et al., 2014. Multimodel assessment of water scarcity under climate 

change. Proceedings the National Academy of Sciences of the United States of America 111(9), 

3245-3250. 

Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., et al., 2010. Global water pollution and human health. In the 

Annual Review of Environment and Resources, Gadgil, A., Leverman, D.M., Eds. Annual Reviews: Palo 

Alto; 35, pp. 109-136. 

SCIES (South China Institute of Environmental Sciences), 2010. Domestic Emission Coefficients in China. 

SCIES press: Guangzhou, China. (In Chinese)  

Serrano, J.M., 2011. Is prevention of water pollution and eutrophication the best option to ensure axolotl 

survival in its natural environment? Salamandra 47(1), 45-49. 

Shevah Y., 2014. Water scarcity, water reuse, and environmental safety. Pure and Applied Chemistry 86(7), 

1205-1214. 

Simonovic, S.P., 2002. World water dynamics: global modeling of water resources. Journal of 



13 

Environmental Management 66(3), 249-267. 

Stanko, S., 2009. Reuse of waste waters in Slovakia, water supply sustainability. In the Risk Management of 

Water Supply and Sanitation Systems, Hlavinek, P., et al., Eds. Springer: Netherlands, pp. 233-240. 

SCCG (State Council of the Chinese Government), 2011. The Twelfth Five-year Plan for National Social 

and Economic Development. People’s Publishing House: Beijing.  

Tan, R.R., Aviso, K.B., Barilea, I.U., Culaba, A.B., Cruz, J.B., 2012. A fuzzy multi-regional input-output 

optimization model for biomass production and trade under resource and footprint constraints. Applied 

Energy 90(1), 154-160. 

Tarancon-Angel, M., Del-Rio, P., 2007. Combined input-output and sensitivity analysis approach to analyse 

sector linkages and CO2 emissions. Energy Economics 29, 578-597. 

Tsuzuki, Y., 2014. Evaluation of the soft measures' effects on ambient water quality improvement and 

household and industry economies. Journal of Cleaner Production 66, 577-587. 

Turner, R.K., 2007. Limits to CBA in UK and European environmental policy: retrospects and future 

prospects. Environmental and Resource Economics 37(1), 253-269. 

Varis, O., Vakkilainen, P., 2001. China's 8 challenges to water resources management in the first quarter of 

the 21st Century. Geomorphology 41(2-3), 93-104. 

Velazquez, E., 2006. An input-output model of water consumption: Analyzing intersectoral water 

relationships in Andalusia. Ecological Economics 56(2), 226-240. 

Voeroesmarty, C.J., McIntyre, P.B., Gessner, M.O., et al., 2010. Global threats to human water security and 

river biodiversity. Nature 467 (7315), 555-561. 

Vorosmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: Vulnerability from 

climate change and population growth. Science 289(5477), 284-288. 

Wang, H.Z., Du, S.Y., Zeng, X.F., 2013b. Estimation on China’s social discount rate based on SRTP 

approach. Statistics and Decision 393, 18-21. (In Chinese)  

Wang, L., Maclean, H.L., Adams, B.J., 2005. Water resources management in Beijing using economic 

input-output modeling. Canadian Journal of Civil Engineering 32(4), 753-764. 

Wang, W.Y., Zeng, W.H., Yao, B., 2014a. An energy-economy-environment model for simulating the 

impacts of socioeconomic development on energy and environment. Scientific World Journal, 1-14. 

Wang, X.Y., Song, Y.L., Sun, P., Shi, J.P., 2014b. The study on compensation mechanism of ladder pricing 

with logistic applied into demand in households. Economy and Management 28, 74-78. (In Chinese) 

Wang, Y.C., Lin, Y.P., Huang, C.W., et al., 2012. A system dynamic model and sensitivity analysis for 

simulating domestic pollution removal in a free-water surface constructed wetland. Water Air and Soil 

Pollution. 223(5), 2719-2742. 

Wang, Z.Y., Huang, K., Yang, S.S., Yu, Y.J., 2013a. An input-output approach to evaluate the water footprint 

and virtual water trade of Beijing, China. Journal of Cleaner Production 42, 172-179. 

Ward, F.A., 2009. Economics in integrated water management. Environmental Modelling & Software 24(8), 

948-958. 

Wiedmann, T., Lenzen, M., Turner, K., Barrett, J., 2007. Examining the global environmental impact of 

regional consumption activities - Part 2: Review of input-output models for the assessment of 

environmental impacts embodied in trade. Ecological Economics 61(1), 15-26. 

WRBL (Water Resources Bureau of Liaoyuan), 2011. Liaoyuan Water Resources Bulletin 2010; Water 

Resources Bureau of Liaoyuan Press: Liaoyuan, China. (In Chinese)  

WRBS (Water Resources Bureau of Siping), 2011. Siping Water Resources Bulletin 2010; Water Resources 

Bureau of Siping Press: Siping, China. (In Chinese) 

WWAP (World Water Assessment Programme), 2009. The United Nations World Water Development Report 



14 

3: Water in a Changing World. UNESCO: Paris, and Earthscan: London, pp. 29-39, 135-146. 

WWAP (World Water Assessment Programme), 2014. The United Nations World Water Development Report 

2014: Water and Energy. UNESCO: Paris, pp. 2-8. 

Xiang, N., 2013. Comprehensive evaluation of socio-economic and environmental policies emphasizing 

reclaimed water utilization to effectively achieve sustainable development in Tianjin, China, pp.85-90. 

University of Tsukuba, Tsukuba, Japan. 

Xu, F., Zhao, Y.W., Yang, Z.F., Zhang, Y., 2011a. Multi-scale evaluation of river health in Liao River Basin, 

China. Frontiers of Environmental Science & Engineering in China 5(2), 227-235. 

Xu, X.M., Tang, J., Li, Z.Y., Liu, C., Han, W.Z., 2011b. Global warming potential of emissions from rice 

paddies in Northeastern China. Mitigation and Adaption Strategies for Global Chang. 16(6), 721–731. 

Xu, Z.X., Ishidaira, K.T., Zhang, X.W., 2002. Sustainability analysis for Yellow River water resources using 

the system dynamics approach. Water Recourses Management 16, 239-261. 

Yadav, S.N., Wall, D.B., 1998. Benefit-cost analysis of best management practices implemented to control 

nitrate contamination of groundwater. Water Resources Research 34(3), 497-504. 

Yang, H., Pfister, S., Bhaduri, A., 2013. Accounting for a scarce resource: virtual water and water footprint 

in the global water system. Current Opinion in Environmental Sustainability 5(6), 599-606. 

Yang, W., 2012. Simulation on agricultural non-point sources pollution in Dahuofang reservoir catchment of 

Liaoning Provence. Jilin University Press, Changchun, China. (In Chinese) 

Yang, W., Song, J.N., Higano, Y., Tang, J., 2015. An Integrated Simulation Model for Dynamically 

Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution. Sustainability 7(2), 

1774-1797. 

Yang, W., Song, J.N., Higano, Y., Tang, J., 2015. Exploration and Assessment of Optimal Policy 

Combination for Total Water Pollution Control with a Dynamic Simulation Model. Journal of Cleaner 

Production 102, 342-352. 

Yu, Y., Hubacek, K., Feng, K.S., Guan, D.B., 2010. Assessing regional and global water footprints for the 

UK. Ecological Economics 69(5), 1140-1147. 

Yue, F.J., Li, S.L., Liu, C.Q., et al., 2013. Using dual isotopes to evaluate sources and transformation of 

nitrogen in the Liao River, northeast China. Applied Geochemistry 36, 1-9. 

Zhang, C., Anadon, L.D., 2014. A multi-regional input-output analysis of domestic virtual water trade and 

provincial water footprint in China. Ecological Economics 100, 159-172. 

Zhang, G.F., 2014. Comprehensive evaluation of the environmental and socio-economic impacts of adopting 

advanced technologies for treatment of sewage sludge in Beijing, pp. 110-120. University of Tsukuba, 

Tsukuba, Japan. 

Zhang, Z., Shi, M., Yang, H., Chapagan, A., 2011. An input-output analysis of trends in virtual water trade 

and impact on water resources and used in China, Economic Systems Research 23(4), 431-446. 

Zhao, X., Chen, B., Yang, Z., 2009. National water footprint in an input-output framework: a case study of 

China 2002. Ecological Modelling 220(2): 245-253. 

Zhao, X., Yang, H., Yang, Z.F., et al., 2010. Applying the input-output method to account for water footprint 

and virtual water trade in the Haihe River Basin in China. Environmental Science & Technology 44(23), 

9150-9156. 


