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ABSTRACT 

Debris flow is one of common and disastrous geo-hazards in mountainous area around the world. 

There are thousands of fatalities who were killed by debris flow every year. Due to its worldwide, 

destructive nature, complex material composition, wide occurrence area and long travel distance as 

well as uncertainty and unknown parameters, it’s still a critical problem both theoretically and 

practically. It urged us to quantitative evaluate debris flow hazard to provide adequate prevention 

and mitigation measures.  

In the present study, the mixing model based on two-step evaluation scheme was proposed to 

quantitatively evaluate the debris flow hazards in terms of affect areas, flow path, travel distance, 

critical slope of deposition, velocity, concentration and hydrograph in Zhouqu and Wenchuan 

earthquake-stricken areas using depth-integrated particle method and satellite images. The 

conclusions are summarized from the depth-integrated particle method, the mixing model, satellite 

image, parametric studies, and quantitative evaluation of debris flow hazards in Zhouqu and 

Wenchuan earthquake-stricken areas.  

The depth-integrated particle method is a very simple and efficient method with only two 

parameters to simulate debris flows. The modified depth-integrated particle method was verified by 

two simple flows in 1-D. It can be applied to quantitatively evaluate actual debris flow hazards based 

on detailed DEM. The mixing model based on two-step evaluation scheme can efficiently evaluate 

the debris flows according to the diffusion equation. In the present model, diffusion coefficient was 

assumed to a constant in the whole simulation process. And one fitting coefficient was assumed to 

build the relationship between the critical deposition slope and concentration. 

The satellite image of ALOS is characterized by wide coverage area and high spatial resolution. 

The images can be processed into detailed DEM with the resolution is less than 10m combined 

control points from the Google earth. The error of control points was evaluated in comparison with 

the topographic map, and it was acceptable in this study. The good quality images that were 

observed shortly after the earthquake are precious data for the sequence evaluation of disasters as 

well as reconstruction in the earthquake-stricken areas. It’s available to check the location of debris 

sources by satellite image, but it’s very hard to evaluate the volume of debris source only depending 

on satellite image. 

By parametric studies, it’s found that the accurate topographic data played a critical role in 

quantitative evaluating debris flow hazards in terms of affect area, travel distance, flow path. The 

discharge strongly governed the flow behavior on the deposition fan, while Manning coefficient 

influenced the velocity of debris flow. The critical slope of deposition and flow volume significant 

determined the travel distance and the extent of deposition. 

The debris sources in Zhouqu debris flows were evaluated in terms of location and thickness 
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combined the post-event satellite image and filed survey. It’s reasonable to evaluate debris sources in 

Zhouqu region by setting critical failure slope and repose of angle is 60º and 26º respectively. By 

assuming the initial particle height is 1.0m, the thickness of debris sources ranged 0-8m. 

Re-initiation model and mixing model were adopted to evaluate the Zhouqu debris flow hazard. It’s 

found that the re-initiation model is very efficient with small particles, while the mixing model is 

rather time-consuming because of more than 2 or 3 times of solid particles were increased as water 

particles to initiate debris flow. The re-initiation model is suitable to evaluate the extent of deposition 

area and flow path on the deposition fan. Although two more additional parameters (diffusion 

coefficient and fitting coefficient for the relationship between critical deposition slope and 

concentration) were taken into account in the mixing model, it’s reasonable to evaluate debris flow 

hazard to consider the physical properties of particles. Moreover, more local concentration-related 

phenomenon is also described in the mixing model. Affected area was evaluated using re-initiation 

model, the agreement is good on SYY and LJY deposition fan if the critical failure slope is set to 60º 

and 61.5º. The debris sources were initiated when the mean rainfall was 29.03mm at the upstream of 

valley and the diffusion coefficient was set to 0.1. A series of simulation results showed the 

difference of discharge on both valleys strongly influenced the debris flow hazard on deposition fan. 

Advantage topographic features, rich debris sources and rainstorm together triggered this debris flow 

event. The failure of some countermeasure structures and high population density enlarged the 

destructive nature to large extent. 

Quantitative evaluation of debris flow hazards in the Wenchuan earthquake-stricken areas, it’s 

found that almost every valley has potential high-risk to occur debris flow. The evaluation of 

earthquake-induced debris sources was focused on the Beichuan region, while the simulation 

concentrated on blocking river in the area from Yingxiu to Wenchuan along the Min River. It’s hard 

to evaluate debris sources by a single critical failure slope in a wide region, particularly, an active 

fault crosses the research area. The evaluation results of debris sources strongly influenced the 

evaluation of regional debris flow hazards. The topographic features determined the debris flows in 

the ranges along Min River are easy to flow the river and the watershed features demonstrated that 

the debris flows are extremely easy to block river and form barrier lake due to 60% cross-angles 

ranged 80°-100°. Two patterns of blocking river were simulated and the coupling effect of multiple 

debris flows and two opposite debris flows occurred simultaneously are also evaluated. The 

simulation results indicated that such phenomenon would increase the possibility of blocking river. It 

must take measures to avoid such disasters to occur.  

The parameters of quantitative evaluation of debris flow in terms of velocity, hydrograph, the 

extent of deposition, travel distance and flow path are favor to provide adequate protective measures 

to prevent and mitigate the disasters in practical engineering. 
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CHAPTER 1 INTRODUCTION 

1.1 Research background 

Debris flow is gravity-driven, highly concentrated mixtures of sediment and water commonly 

composed of poorly sorted rock, soil, organic matter, and sundry debris (Major, 1997). It usually 

occurred by rainfall, snowmelt, typhoon, earthquake, etc. in steep mountainous area around the 

world. It is often characterized by traveling hundreds of meters to tens of kilometers from initiation 

to final deposition, regarding occurrence process. Meanwhile, this process is a very important land 

shaping process in mountainous area because of frequent and intermittent erosion and deposition 

along the whole flow path. Considering its destructive nature, it usually destroyed humankind and 

fundamental infrastructures in mostly events. There are thousands of fatalities who were killed by 

debris flow every year. In particular, such as China (Zhouqu and Sichuan, 2010), Japan (Hiroshima, 

2014), Brazil (Rio de Janeiro, 2010, 2011), Venezuela (Vargas State, 1999), Nepal (Seti River, 2012), 

India (Kedarnath, 2013), as well as France and Switzerland, it behaved more seriously in such 

mountainous or/and rich rainstorm countries. Figure 1.1 showed the distribution map of landslide 

occurrence frequency around the world (http://www.preventionweb.net/english/). Here, landslides 

contain debris flow, mud flow, mud slide, rock fall, slide, lahar, rock slide and topple

legend

 

Note: Landslides EQ means the landslides frequency triggered by earthquake, while landslides PR 

means the landslides frequency triggered by precipitation. 

Fig.1.1 The distribution map of landslides around the world 

According to the occurrence factors of debris flow, where the overlapped areas by 

http://en.wikipedia.org/wiki/Venezuela
http://en.wikipedia.org/wiki/Vargas_State
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high-frequency occurrence of both earthquake and precipitation high are extremely dangerous places, 

such as the southwest China, Japan. Actually, these areas will still face the seriously destroys in the 

future. As illustrated in the figure 1.2, the event number of kinds of catastrophes is still increasing, 

according to the number of events of natural catastrophes worldwide among 1980-2012 

(http://www.preventionweb.net/english/). The geophysical events and hydrological events increased 

more rapidly than the other two types. However, the earthquake, tsunami and volcanic eruption are 

close relation to landslide, debris flows, etc. Such as, the 2008 Wenchuan Earthquake caused more 

than 30,000 landslides and rock falls, the 2011 Tohoku Earthquake triggered tsunami and further 

flooded very wide areas.  

 

Fig.1.2 The number of events of natural catastrophes worldwide among 1980-2012 

Due to its worldwide, destructive nature, complex material composition, wide occurrence area 

and long travel distance as well as uncertainty and unknown parameters, it’s still a critical problem 

both theoretically and practically. It urged us to quantitative evaluate debris flow hazard to provide 

adequately prevention and mitigation measures. Nowadays the detailed digital elevation model is 

gradually available even in the remote mountainous area, such as aerial photos and satellite image. 

However, the simulation cost becomes expensive with such data, and an efficient numerical tool 

suitable for such simulation is required.  

1.2 Current research of debris flow 

In last century 30s, Chinese scientists began to realize the debris flow hazard, until 60s’ they started 
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to wide study the essential physical properties of debris flow (Du, 1995). When the phenomenon of 

debris flows were recognized in Canada in the 1940s, however, most studies of the topic have been 

carried out since the early 1980s (Vandine & Bovis, 2002). In Japan, the scientific investigations of 

debris flow began in the1950s and full investigations were not undertaken until the 1970s (Takahashi, 

2009). With the increasing of enormous threaten of natural geological disasters, the research work of 

debris flow is widely operated and gradually improved in the worldwide. The most comprehensive 

and detailed observations and mathematical-physical studies firstly have been conducted in Japan 

and China (Huttcr, 1996), especially in field observing and experiment research work. 

1.2.1 Field survey and monitoring 

Field survey is an original and direct way to understand the phenomenon of debris flow. Field 

surveys had been executed after the disaster. However, the surveys had supplied only the data of the 

results of erosion, deposition and damages brought about by debris flows in many single points. 

There was no actual data of debris flow motion. Furthermore, it’s really a hard work because the 

observation place located in mountains and the ranges are wide Therefore monitoring of actual 

debris flows was required to obtain dynamic data for designing new effective countermeasure 

structures against the debris flows. 

Field monitoring is one more effective way to help humankind recognize the entire process of 

debris flow. Meanwhile, it’s a very important method to attain parameters of motion, deposition and 

destruction. Here I will briefly review on the development as well as outcomes of field monitoring 

by mainly introducing some contributions of two of famous field monitor stations for debris flow. 

One is the Yakedake monitoring station of Disaster Prevention Research Institute in Japan, and the 

other one is the Dongchuan debris flow observation and research station in China. 

(1) Yakedake monitoring station 

After a succession of serious debris-flow disasters in Japan in the late 60’s, the practical importance 

of further attempts to understand the mechanics of debris flows is forced researchers to promote 

studies on debris flow. In order to monitor the actual phenomena of debris flow, Disaster Prevention 

Research Institute (DPRI) was constructed at Kamikamihorizawa Creek on the eastern slope of 

Mount Yakedake by Kyoto University and Matsumoto Sabo Construction Office of Ministry of 

Construction in 1970 (Suwa et al., 2011). The Mount Yakedake is a high frequency occurrence area 

of debris flow and there were large amount of volcano debris. During the last 40 years, they mainly 

monitored several topics, such as rheological type, pulsation, mass and boulder focusing, ground 

tremor and sound, test of moderation of debris flow discharge, etc. from 91 debris flow events that 

contained more than 200 episodes of debris-flow surges. Studies from the data supplied a general 

concept of the debris-flows and their geomorphic effects at volcanic slopes as follows. Such as, 

debris flows are triggered by a large intensity of rainfall in a short duration as much as 10 minute; 

threshold of rainfall intensity for debris flows increases with time after the end of volcanic eruption, 
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while it drastically decreases with the eruption (Suwa et al., 2011). 

The DPRI also monitored other many areas cooperating with several countries. Such as with 

China (1991-1998), Indonesia (1991-1995), Pakistan (2000), etc. (Suwa et al., 2011). Large amount 

of monitoring works in wide and different zones provide much richer parameters and phenomenon 

characteristics to improve the research. 

(2) Dongchuan debris flow observation and research station 

The Dongchuan Debris Flow Observation and Research Station (DDFORS) is a facility of the 

institute of mountain hazards and environment, Chinese academy of science. The Jiangjia valley has 

provided an ideal site to explore debris flow formation and initiation in combination with a 

background of loose materials and rainfall. This is important for forecasting debris flow. The debris 

flows occurred more or less 11 times every year. Each debris flow event in the Jiangjia valley was 

consisted of tens of hundreds of surges, providing a wide variety of phenomenon that are rarely seen 

in other areas of the world. Observation data and videos of living debris flows in the Jiangjia valley 

are the most unique resource with contributing to future studies in the field. 

The primary contribution of Jiangjia valley debris flow behaved on the following respects: 

relationships between rainfall and debris flow; dynamic properties (velocity, impact forces, 

super-elevation in channel bends); static properties (density and concentration, composition); 

sediment transportation and influence on the main river; deposition etc. (Cui, 2005).  

In the last 40 years, two famous of monitoring stations provided much valuable videos which 

contribute us to analyze the motion of debris flow, and also obtained many important parameters, 

such as early cumulative rainfall, rainfall intensity, velocity, frontal velocity, peak velocity, peak 

flow depth, peak discharge and total discharge (Rickenmann, 2006), etc. The research results of flow 

behavior, characteristics, etc. were published in terms of papers, reports, books. The large amount of 

monitoring data improved the systematic research on debris flow. The existing researches illustrated 

that the observation results of both stations usually are used as a benchmark to validate the study 

results around the world. For the evaluation of debris flow hazards, many empirical equations were 

summarized or proposed to apply in practical engineering.  

However, the majority of these studies put their large efforts on understanding the general 

characters of debris-flow travel processes. A systematic monitoring of debris-flow initiation, motion, 

inundation and deposition in the fan needs to be improved. Most of observation results, such as data 

from the Dongchuan observation station, haven’t been analyzed deeply. Although it’s possible to 

install advanced equipment on everywhere and observe the process of debris flow, a delimited 

direction and only surface characteristic is observed. Even some devastating incidents usually 

occurred in the evening, nothing was observed. The existing observation works only recorded in 

small places where they occurred frequently, and vertical variables such as total flow depth, vertical 

velocity distribution, and vertical variation of material composition have not yet been measured in a 
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moving debris flow (Davis, 1990). 

Debris flow is a complex phenomenon, which strongly influenced by topographic characteristic, 

the amount and distribution features of debris sources and rainfall. It’s not enough to observe the 

limited individual event and/or valley to study the general characteristics of debris flows. In 

particular, it’s not possible to install monitoring equipment in every potential debris flow valley in 

developing countries at least nowadays. So far, the field observation only observe a limited section 

and instant phenomenon. It’s hard to apply the results of observation to a wide area or a different 

region. 

1.2.2 Experiment 

As one of traditional and essential methods in exploring the unsolved questions and phenomena, 

experiment plays a significant role in studying debris flow. The experiment is mainly divided into 

laboratory experiment and field experiment. 

Lots of different scale laboratory experiments and even field experiment were operated. As 

mentioned in the definition and characteristics of debris flow, it’s composed of water and 

sedimentation that wide range from clay to boulder. The existing research demonstrated that the 

debris flow behavior was significant controlled by larger grains (Davies, 1990). The scale of 

laboratory experiment usually is very small and used particles distribution is monotonous. It also 

usually initiated on the steep place of mountain and transported even dozens of kilometers along a 

various channel. However, a simple channel was often adopted on a very small experiment zone. 

Perhaps, these works contribute us to understand the local features of debris flow, but it ignored the 

scaling effect and topographic features. 

Field experiment scale is larger than laboratory experiments. One of famous field experiments is 

debris-flow flume experiment in U.S. The U.S. Geological Survey (USGS) debris-flow flume, a 

steep concrete channel 95 m long, 2 m wide, and 1.2 m deep (Iverson et al., 1992; Iverson and 

Lahusen, 1993a) (Fig.1.3). The channel slopes 31° along its upper 88m and gradually flattens over 

the lower 7 m to adjoin a concrete runout surface that slopes 3°. To create a debris flow, sediment 

was loaded behind a steel gate at the head of the flume, soaked with water, and abruptly released. 

In last dozens of years, they did large amounts of experiments about debris flow and dam breach, 

meanwhile, they obtained many valuable conclusions. Detailed references can see Richard M. 

Iverson. He and Matthew Logan summarized the output of experiment videos and opened a set of 

videos presents about 17 hours of footage documenting the 146 experiments conducted at the USGS 

debris-flow flume from 1992 to 2013. However, the flume size is rather small compared natural 

debris flow event. Moreover, the topographic characteristic is too simple and boundary condition is 

restriction due to the smaller width of flume. Deposition characteristics were detailed analyzed 

(Major, 1990; Major & Iverson, 1999; Major, 2000), and some empirical equations were concluded, 

such as the relation between hazardous area and flow volume. 
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Fig.1.3 Experimental debris flow descending U.S. Geological Survey debris-flow flume 

A high proportion of the studies designed to occur debris flow on a relatively small scale. Davis 

(1986) pointed that the degree of understanding involved is quite limited, and the small scale channel 

experiment can’t well describe the characteristics and mechanics of the larger and more destructive 

phenomenon during actual debris flow events. Furthermore, he agreed that the obvious 

characteristics (e.g. boulder transport, deep bed erosion, intermittent jamming) can be explained if 

debris flows are treated as a macro-viscous flow of large stones in a slurry of fine solids in water. 

From the field observation and experiment, lots of empirical equations were summarized, such as 

runout distance, depositional area (Iverson, 2014), etc. but there is still a gap between empirical 

equations and accurate predict and prevent actual debris flow. Over the past 50 years, studies of 

debris flows have matured into rigorous scientific investigations combining field measurements, 

controlled experiments, and mechanistic analyses (Iverson, 2014). The International Decade for 

Natural Disaster Reduction (IDNDR) (beginning on 1 January 1990, was launched by the United 

Nations) promoted the research of debris flow and landslide effectively. By statistics of current state 

of landslide and debris flow by SCIE papers included on Thomson Data Analyzer (TDA) and Ucinet 

from 1902-2010 (An et al., 2011), it’s demonstrated that GIS, tsunami, numerical simulation and 

submarine landslide are new topics in recent 10 years as well as modeling is always a main method 

to study geological disaster.  

Although some techniques make limited use of analytical and experimental results (Takahashi, 

1981), current methods for evaluation of debris flow hazards rely largely on empirical data and field 
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survey (Ikeya, 1981; Iverson, 2014). Davis (1990) proposed that the best prospect for eventual 

explanation and prediction of debris flow behavior is numerical simulation of individual grain 

dynamics, in combination with empirical models. What the purpose of study debris flow is to 

evaluate potential disaster and effectively prevent it. Considering complex and various topographic 

features, it’s rarely possible to survey and monitor every potential debris flow valley. The only way 

is numerical simulation, which can come true of evaluating every debris flow valley. 

1.2.3 Numerical simulation 

Numerical simulation provides an alternative tool of scientific investigation, instead of carrying out 

time-consuming and heavy work in both field survey and experiments. The numerical tools are often 

more useful than the traditional experimental methods in terms of providing insightful and complete 

information that cannot be directly measured or observed, or difficult to acquire via other means. 

Since 1990, numerical simulation began to widely been applied to study debris flow as a new 

method, with the improving of recognize to the physical and disaster mechanism of debris flow in 

the field of experiments and field survey. To furtherly explore the mechanism of debris flow and help 

humankind well recognize its natural phenomenon, a number of models are developed so far. 

Hakuno & Uchida (1991) developed a modification of distinct element method in which the effect of 

water present between particles is taken into account, and simulated the deposition process after the 

debris flow reached a levee area. The simulation of simplified models appears to be a reasonable first 

step towards a systematic application and evaluation of simulation models. Due to the complexity 

and constitute ranges clay to boulders, the models usually simplified to a single-phase model with a 

simplified topography, such as muddy flow, granular flow, and most of which can’t explain the 

natural debris flow and parts will get a rough result on the basis of empirical data. The application is 

very limited. 

With the development of numerical simulation, there emerged lots of mathematical and 

numerical modelling of studying the debris flow. Hutter (1996) reviewed on debris flow modeling 

from a survey of the existing literature and works on debris flows, and proposed that typical features 

of debris flow should be incorporated in general into any model, such as dilatancy, internal friction, 

cohesion, fluidization and particle segregation. Boulder is considered as one of the most important 

factors to cause disaster. However, what force supported it to move so long distance from the mouth 

of valley is always an obscure problem. Cohesive strength, buoyancy and dispersive stress of debris 

flow have ever been regarded as the main forces to transport it. But Davies (1986) concluded that 

both cohesive strength and buoyancy can’t support grain to move and only if the shearing of grains 

in the inter-granular slurry was viscous, dispersive stress would carry larger material. Kinds of 

factors (e.g., velocity, depth, concentration, clay content and coarse particles, discharge, friction 

angle, yield stress, etc.) are considered by different proposes due to uncertainty. The yield stress or 

the basal friction angle is considered to govern the depositional behavior to large extent 
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(Rickenmanm, 2006).  

The pre-existing simulation models almost based on a simple inclined slope or used the 

simplified topographic data, which rarely reflect the actual topographic characteristic and can’t be 

applied in practical engineering. Furthermore, oversimplified representation of the topographic 

features might modify forces acting on debris flow. The input topographic data should be accurate 

enough to obtain reasonable results, because the gravity and frictional forces are heavily dependent 

on the inclination of the sliding base (Chen & Lee, 2000). How to efficiently validate it and further 

reproduce the natural debris flows? 

Over more than 20 years, numerical simulation in debris flow experienced a series of exploring 

process, one phase to two phase, solid to flow, one-dimension to three-dimension, simplified model 

to actual model. One of main improvements is obtained, which is the accurate representation of 

natural topographic data played a critical role in flow behavior (Fannin et al., 2001; Rickenmann et 

al., 2006). Iverson (2014) emphasized the importance of natural events characteristics in simulation 

research work, such as the poorly constrained initial and boundary conditions and unmeasured 

material properties. Meanwhile, he also argued that it can fail to predict the behavior of a natural 

debris flow if adequate knowledge of the initial conditions, terrain or material properties is lacking, 

even if a model is entirely sound physically, mathematically and computationally (Iverson, 2014). 

Although kinds of novel models are continuously built and gradually applied into the practical 

engineering, empirical methods continue to play an important role in debris-flow hazard assessment 

(Iverson, 2014), because of the lack of accurate representation of topography. 

So far, there are three main models to consider realistic topography in numerical simulation of 

debris flow. They are numerical models based on geographic information system (GIS), the FLO-2D 

and depth-integrated particle method. Both GIS and FLO-2D are two commercial software. 

With the developing and widespread using of geographic information system (GIS), it has been 

recognized as a useful tool to process spatial data and display results for both hazard mapping and 

risk assessment. One dominant advantage of numerical simulation coupled with GIS is that the grid 

networks for simulation can be extracted from GIS raster data. All of calculated results can be 

directly displayed in GIS and used to the hazard mapping (Wu et al., 2013). Mergili et al. (2012) 

described a method for integrated modelling of debris flows (from triggering to deposition) based on 

the software GRASS GIS, in which 5-m digital elevation models (DEMs) for the study areas were 

created by aerial photographs (scale 1:20,000 and 1:60,000) and SPOT satellite imagery (cell size: 

2.5 m). Although infiltration and surface runoff, detachment and sediment transport, slope stability, 

debris flow mobilization, and travel distance and deposition were discussed, it’s demonstrated there 

are some limitations about parameters. Wu et al. (2013) developed a debris flow simulation program 

incorporating with GIS by deriving the computation networks from GIS raster data, following a 

derivation of the debris flow model considering both erosion and deposition processes. And verified 
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the model is rational and effective by simulating a well-documented Amamioshima debris flow in 

Japan. But it seems that the accuracy of simulation results is not high. Based on the GIS platform, 

it’s available to consider more factors about topographic features, vegetation, lithology, rainfall, etc. 

However, what need to do is how to combine an efficient numerical model into this advantage 

platform. 

The FLO-2D computer model was developed at the Colorado State University and is a quadratic 

friction law, which is a combination of yield, viscous, collision and turbulent stress components. 

Hübl (2001), Rickenmann et al. (2006), Stolz & Huggel (2008) and Matthias et al. (2013) simulated 

debris flows by FLO-2Dcomputer model on the base of topographic data. It’s found that FLO-2D 

computer model enables the simulation of velocities, depth and runout distance of debris flows even 

in catchments. The application of the FLO-2D mode1 requires high quality input data, especially a 

digital elevation mode1 and rheological parameters of the debris flow material. Noted that it will 

never be possible to calibrate even high sophisticated numerical models if lack the real-time 

documentation of debris flows. The inaccuracy of the model was summarized from both systematic 

topographic errors and simplification of the real multi-surge event by a single triangular hydrograph 

(Rickenmann et al., 2006). 

FLO-2D simulation code solves the equations using a finite difference method (FDM) on a fixed 

rectangular grid. Although it’s popular for practical application as a commercial software, it still 

exists some limitations. Determining the precise locations of the in homogeneities, free surfaces, 

deformable boundaries and moving interfaces within the frame of the fixed Eulerian grid is a 

formidable task (Liu & Liu, 2003). Furthermore, a laminar flow resistance coefficient was brought 

for smooth, wide rectangular channels. Its value is supposed to increase with roughness and irregular 

cross-section geometry (Rickenmann et al., 2006). Additionally, the mesh-based method is limited to 

the analysis of relatively small displacements due to mesh distortion, it’s hard to correctly evaluate 

the affect areas and travel distance. 

Although many models were concentrated on the simulation of natural debris flows based 

detailed topographic information from topographic map, aerial photographs, etc. It seems that the 

simulation results were not good enough, besides some researches are lack of validation among of 

experimental data, theoretical solutions, or the exact results from other established methods for 

benchmark problems or actual engineering problems. Because the generic type and spatial resolution 

of DEMs have a main influence on the results of debris flow modeling (Stolz & Huggel, 2008). 

Additionally, both Stevens (2002) and Huggel (2008) found that the generic DEM type was 

responsible for a larger difference in debris-flow modeling results than grid spacing.  

Depth-integrated method is a nice comprise between accuracy and computation time. In 2008, 

Pastor et al. proposed a depth-integrated SPH model to evaluate flow-like landslide basing on an 

actual topographic data. Hoang et al. (2009) also proposed a depth-integrated particle method that is 
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a simple and efficient model to simulate debris flow in a wide area based on detailed topographic 

data. Therefore, it’s available to evaluate debris flow in a wide area taking into account actual 

topographic characteristics using a mesh-free method. 

So far, the study of debris flows still rely on field survey and monitoring, experiments and 

numerical simulation, due to the complexity of the debris flow process (Rickenmann, 1999). The 

purpose of numerical simulation is to evaluate the actual debris flow event and apply in practical 

engineering. Debris flow is a gravity- driven, free surface and boundary flow. Its occurrence mainly 

contained three factors, advantage topography, rainfall and rich debris source. Therefore, it is 

necessary to build a reasonable and effective model based on a natural topographic data to 

quantitative evaluate the debris flow hazard.  

1.3 Research contents in this study 

1.3.1 Method 

To reproduce the natural debris flow, it must consider realistic topographic features. From the 

aforementioned literatures, it becomes available to obtain topographic data, such as from aerial 

photos, satellite image, topographic maps, etc. 

Recently, the development of computer capability enables us to carry out a wide range of debris 

flow simulation with taking account of the detailed topographic data (Pastor et al., 2009 and 2014; 

Safeland 2013), and still, an efficient numerical scheme is a key issue. A depth-integrated particle 

method is a powerful method for this purpose, and various versions have been proposed so far. 

Among them, Hoang et al. (2009) developed a simple and still efficient particle method, in which the 

pair-wise particle interaction is modeled basing on the hydraulic gradient. This simplification makes 

the simulation very efficient and stable as well. Another advantage of this method is the small 

number of parameters as described in the governing equations. Furthermore, it’s available to 

reproduce a natural debris flow based on detailed representation of topography (Nakata et al., 2014; 

Zhang et al., 2014a). Therefore, I also adopt this method in the present study. 

As illustrated in the figure 1.4, the evaluation of debris flow hazard adopted there models. Hoang 

et al. (2009) proposed the depth-integrated particle method and adopted the original model to 

evaluate debris flow hazard. In the original model, slope failure directly transformed into debris flow 

and moved down. The several case studies of slope failure triggered debris flows demonstrated that 

the initial volume of slope failure were insignificant in comparison with the whole volume of the 

events (Theule et al., 2012). Actually, debris sources located on the both sides of valley channel and 

sedimentation on the channel bed played an important role in occurring debris flow and increasing 

the magnitude of debris flow. The generation time of such debris source is not the same period with 

the debris flow. Therefore, two-step simulation scheme was proposed (Zhang et al., 2014b). In this 

scheme, the debris sources can be quantitative evaluated in step 1. Step 2 is simulation of debris flow. 
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In the step 2, two models are also proposed. It’s assumed that the debris flow was initiated at the 

valley by directly changing the parameters of debris sources that were generated in the step 1 in the 

re-initiation model. Actually, it’s hard to be initiated on the valley channel with none of external 

force. To more reasonable and realistic initiate the debris flow in step 2, the mixing model was 

proposed.  

 

Fig.1.4 The scheme of evaluation 

The detailed description of the depth-integrated particle method and the mixing model will be 

shown in Chapter 2. 

1.3.2 Satellite images 

The aforementioned that the generic type has large influence for simulation results. In this study, we 

choose satellite image from the ALOS satellite. The choosing debris flow events mainly occurred on 

2008 to 2011, and the ALOS satellite was just observed in this period. We will download the images 

for our research propose. Generally, the pre-disaster image is used to provide the detailed DEM for 

simulation after processing, while the post-disaster image is mainly used to evaluate the simulation 

results.  

From the pre-existing researches about numerical simulation based on DEM, it’s revealed that 

the accurate topographic data played a critical role in numerical simulation. Therefore, how to obtain 

an accurate DEM from the satellite image and how to evaluate the accuracy of processed DEM will 

be detailed described in Chapter 3.  
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1.3.3 Quantitative evaluation of debris flows 

China is a fast developing country since 1980. As a unique and typical mountainous geo-hazard, 

debris flow hazards are very seriously in China (Fig.1.1 and Fig.1.5) because the 2/3 areas belong to 

mountainous area. As illustrated in the figure 1.5, the occurrce density of debris flow is very high in 

southwest China. It mainly because the complex geological condition and special weather condition. 

Natural condition determines mostly zones of China belong to high frequency occurrence areas of 

debris flow. Furthermore, numerous of human-activities with the rapidly increasing of the population 

is also one of important factors to trigger the disaster of debris flow. The development of policy led 

to more and more people rushed into city, even though small city and town. Such as, the Zhouqu 

debris flow on 7 August 2010, led to a debris flow disaster killed more than 1700 lives due to large 

population density. 

The 2008 Wenchuan Earthquake seriously destroyed wide zones of the southwest China. After 

that, several more earthquakes occurred in the southwest China, such as Lushan Earthquake in 2013, 

earthquakes in Yunnan Province in last five years. Meanwhile, extremely rich geo-hazards were 

triggered in these regions. The existing researches demonstrate such geo-hazards (e.g., debris flows, 

landslides) will last more than dozens of years (Nakamura et al., 2000; Huang, 2011). 

Overall, the southwest China is one of best regions to study debris flow by considering many 

factors. Another advantage is there are kinds types of debris flows and where also have rich 

monitoring data. In last 5 years, there occurred many typical large-scale debris flows and led to 

seriously damages. Therefore, Zhouqu and Wenchuan earthquake-stricken region are chosen to 

quatitative evaluate the debris flows in this study. 

 

Fig.1.5 The distribution map of debris flow in China (Cui et al., 2005) 
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With the simplicity and efficient of the aforementioned method, the debris flow in Zhouqu and 

debris flows in the Wenchuan earthquake-stricken areas are evaluated as an individual debris flow 

hazard and regional debris flows hazards. The main evaluation works contain three section. 

Firstly, mesh size and the factors of both parameters in the model (Manning coefficient and 

critical slope of deposition) and flow properties (discharge and flow volume) were evaluated in 

terms of affected area, travel distance, velocity and spatial patterns of debris flow deposition. 

Then, quantitative evaluation of works focus on identification of debris source, analysis on 

initiation and transportation processes as well as deposition features for an individual debris flow 

hazard in Zhouqu. The mixing model was proposed to initiate debris flow by controlling volume 

concentration. The disaster mechanism of debris flow on 7 Aug. 2010 is also analyzed. The detailed 

information see Chapter 4. 

Finally, regional debris flows in the earthquake-stricken areas are quantitative evaluated in the 

chapter 5. The main works concentrate on the following parts: the surface damaged features of 

earthquake-stricken areas are estimated by satellite images; review on the post-earthquake debris 

flows; and two regions (Beichuan region and the region from Yingxiu to Wenchuan along the Min 

River) are selected to evaluate regional debris flow hazards. Beichuan debris flows focused on the 

identification of debris sources on the base of surface damaged features of image. Both 

concentration and velocity distribution features varied with the simulation process are also 

estimated. Regional debris flows in the region from Yingxiu to Wenchuan along the Min River focus 

on the evaluation of typical features of debris flows, such as blocking river by multiple debris flows 

occurrence simultaneously and two opposite debris flow occurrence. Simple countermeasure 

structures are evaluated on the topographic data of Hongchun valley as a case study. 

As illustrated in the figure 1.6, this study concentrates on the quantitative evaluation of debris 

flow hazards in Zhouqu region and Wenchuan earthquake-stricken areas using depth-integrated 

particle method and satellite images. 
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Fig.1.6 Flow chart of this study  
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CHAPTER 2 DEPTH-INTEGRATED PARTICLE METHOD 

2.1 Mesh-free particle method 

Facing many difficulties and limitations (large deformation, large inhomogeneities, moving material 

interfaces, deformable boundaries, and free surfaces. complex mesh generation, mesh adaptively, 

and multi-scale resolution) in grid-meshed method, a series of mesh-free methods have begun to be 

developed in recent years. The key idea of the mesh-free methods is to provide accurate and stable 

numerical solutions for integral equations or partial differential equations with all kinds of possible 

boundary conditions with a set of arbitrarily distributed nodes (or particles) without using any mesh 

that provides the connectivity of these nodes or particles. By different numerical discretization 

techniques (weak form, strong form, particle methods), there are basically three types of mesh-free 

methods: methods based on strong form formulations, methods based on weak form formulations, 

and particle methods. Here, I’ll focus on mesh-free particle method (MPM). 

A MPM in general refers to the class of mesh-free methods that employ a set of finite number of 

discrete particles to represent the state of a system and to record the movement of the system. Each 

particle can either be directly associated with one discrete physical object, or be generated to 

represent a part of the continuum problem domain. Initially, MPM was developed for systems with 

discrete particles. So far, there are also some applications in continuum media by generating the 

initial distribution of particles. As a MPM, mostly are inherently Lagrangian methods, in which the 

particles represent the physical system moving in the Lagrangian frame according to the internal 

interactions and external force, and thus evolve the system in time.  

In the MPMs, there is no need to prescribe the connectivity between the particles. All one needs 

is an initial distribution or generation of the particles that represent the problem domain, if the 

problem domain is not initially in discrete particle form. Different ways of generating particles for 

continuous domains can be employed. Since mesh generation algorithms (e.g. triangulation 

algorithm) are readily available for both the 2D and 3D space. The neighboring particles within the 

support domain of a particle provide all the necessary and sufficient information for the field 

variable approximations at the particle. 

There are several large advantages for MPM: treatment of large deformation is relatively much 

easier; discretization of complex geometry is simpler, and only an initial discretization is required; 

pressure is available to compute from the neighboring particles; identifying free surfaces, moving 

interfaces and deformable boundaries is very easy to obtain. 

Kinds of particle methods, such as DEM, SPH, which have large advance in applying to 

geotechnical engineering. Recently, the development of computer capability enables us to carry out a 

wide range of debris flow simulation with taking account of the detailed topographic data (Pastor et 
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al., 2014; Safeland 2013), and still, an efficient numerical scheme is a key issue. Considering on the 

special features of debris flow (wide area, long distance), a simpler and more efficient particle 

method, which was developed by Hoang et al. (2009), will be used to evaluate the debris flow 

hazards. 

2.2 Depth-integrated particle method 

The flow depth is small compared to the length of the channel, so it’s reasonable to consider debris 

flow as a kind of shallow water flow. Hoang et al. (2009) had developed an efficient numerical 

simulation method based on shallow water equation, which called the depth-integrated particle 

method. Such method is a mesh-free method, in which the governing equations are discretized over a 

set of arbitrary distributed particles or columns moving in a Lagrangian coordination. It’s suitable 

for the simulation of long-distance debris flow or the entire geo-hazard evaluation of very wide area 

with the detailed topographic information (Nakata et al., 2014, Zhang et al, 2014). 

2.2.1 Governing equation 

The equations are derived from depth-integrating the Navier-Stokes equations, in the case where the 

horizontal length scale is much greater than the vertical length scale. Under this condition, the 

horizontal velocity field is constant throughout the depth of the fluid, while vertically integrating 

allows the vertical velocity to be removed from the equations.  
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Fig.2.1 The schematic illustration of shallow water equation 

The shallow water equation is commonly described as follows: 
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                                         (1) 

where, v=(vx,vy) is a depth-integrated flow velocity vector, h is the surface height of debris flow, 

),( bybx bτ  is the bottom shear stress vector,   is the density of the debris flow, p is the 

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
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hydraulic pressure, and (gx,gy) is the component of gravitational acceleration parallel to the base 

slope. Note that the mass conservation equation is not necessary in Lagrangian particle methods. 

2.2.2 Hydraulic pressure 

The hydraulic pressure is calculated from the hydraulic gradient, which is discretized by the 

difference of the height between the neighboring particles (Fig.2.2). Here we assume only a 

pair-wise particle interaction, in which the height of each particle is computed from the inter-particle 

distance by assuming the constant particle volume. The hydraulic pressure is modeled by the 

following inter-particle force (Hoang et al., 2009): 
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where, h0 is the initial height of the debris flow layer, d0 is the bottom width of the debris ‘particle’ 

or ‘column’, d is the distance vector between two interacting particles. In this computed model, the 

effective influence distance was assumed to 2.0d0. That means there will have no interaction 

between two particles which the distance is larger than 2.0d0. The shape of eq.(2) is shown in figure 

2.3. This equation demonstrated that repulsive force played a major role in both particles when the 

two particles closer than the initial distance d0, while the attraction force acts on the pairwise particle 

if the distance is larger than d0.  

 

Fig.2.2 The calculation model of hydraulic pressure 
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Fig.2.3 Hydraulic pressure 

2.2.3 Bottom shear stress 

The bottom shear stress is expressed as follows: 
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where, n is Manning coefficient, Rh is hydraulic radius (assumed to be equal to d0) andicr is the 

critical slope of deposition. Additionally, a numerical parameter m is introduced for smoothing 

Bingham fluid model as shown in Fig.2.4. In the present study, m is set to 0.01. 
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Fig.2.4 Bottom shear stress varied with velocity 
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This simplified depth-integrated particle model enables us to carry out debris flow simulation 

with relatively small number of particles based on accurate topographic data. This feature leads to 

the drastic reduction of computational cost. It is also worth mentioning that there are only two major 

parameters to control the flow behavior, Manning coefficient and critical slope of deposition. They 

kept constant in computation time in the present study. 

The flowchart of depth-integrated particle method program used in present paper showed in the 

table 2.1. 

Table 2.1 Flowchart of depth-integrated particle method program used in present study 

(1) Start 

(2) Input data-file reading 

(3) Input topographic data 

(4) Calculation of the topographic slope 

(5) Step 1: generation of debris sources 

(6) Slope failure judgment and put particles on the slope failure position 

(7) fall down and deposit with the repose of angle 

(8) Step 2: simulation of debris flow 

(9) Use the position information of debris sources 

(10) Loop for calculation steps 

(11) Loop for each particle calculation steps 

(12) Loop for neighboring particles 

(13) Inter-particle distance judgment: if larger the maximum influence distance, go to (15) 

(14) Calculation of hydraulic pressure 

(15) Next neighboring particle: go to (12) 

(16) Next particle: go to (11) 

(17) Calculation of gravitational force and  

(18) Critical slope judgment and calculation of bottom shear stress 

(19) Sum up the total forces 

(20) Solve the equation of motion and obtain the next position of particles 

(21) Next calculation step: go to (10) 

(22) Repeat (10)-(21) 

(23) Output 

(24) End 

 

2.3 Verification of the modified method 

Two simple examples of flow under 1D, wave propagation on the flat surface and flow behavior in 
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the hollow place, have been simulated to verify and validate the accuracy of the proposed 

depth-integrated particle method. 

2.3.1 Wave propagation on a flat surface 

Under 1D and slope angle is 0°, the equation of motion is:  

x

h
g

x

p

x

p

t

v













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





                                                                    (4) 

18 flow particles were set on a flat surface in a line, and stable one particle on each side (particle 

1 and particle 18) (Fig.4). Firstly, we give a minor disturbance by giving a small velocity (v0
’) to the 

particle 2. Then we observe the wave propagation and record the location of every particle in each 

time step (nstep) under the whole process (Fig.2.5). Finally, calculate the simulated wave velocity by 

wavelength (L) and time (eq.(5)). 

dtnstep

L
c


                                                                   (5) 
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Fig.2.5 The model for wave propagation on a flat surface by the eq.(2) 
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Fig.2.6 Wave propagation on a flat surface with eq.(2) 

It seems that the effective influence distance limited in 2.0d0 is too large to get a good wave 

propagation result by figure 2.5 and figure 2.6. Therefore, we modified the eq.(2) to simulate the 

wave propagation by reducing the effective influence distance. Here, three cases of simulation 

results were shown under the effective influence distance with 1.7d0,1.5d0 and 1.3d0 (Fig.2.7 and 

Fig.2.8). 
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Fig.2.7 The model of hydraulic pressure under different effective influence distance 

It’s found that there is a good wave propagation result if the effective influence distance was 

assumed to 1.7d0, 1.5d0 and 1.3d0.However, the wave propagation becomes unstable gradually with 

the increase of effective influence distance. We must consider the stability of simulation, meanwhile, 

the effective influence distance is as large as possible. So, we assumed the effective influence 

distance is 1.5d0, and the hydraulic pressure is calculated by the following equation, 
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Fig.2.8 Wave propagation on a flat surface under different effective influence distance 
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Then, simulate a series of wave velocity with different flow depth, and validate the accuracy of 

the calculated model of hydraulic pressure. The simulated wave velocity is calculated by eq.(5), and 

compared the results with the theoretical value. 

In theory, wave velocity is expressed:  

00 ghvc                                                                    (7) 

where, c is wave velocity, v0 is the flow velocity and h0is the flow depth. 

In the simple model, the flow velocity is 0, and the flow depth equals particle height.  

Compared simulated wave velocity with theoretical value to verify the accuracy of the proposed 

method. It’s not good the calculated wave velocity had a good trends with the increasing the flow 

depth compared with theoretical curve, but its value is smaller than the theoretical value. It maybe 

the described hydraulic pressure is smaller than the actual value. Analysis of numerous simulations, 

it’s found that the simulation results matched well with the theoretical curve (Fig.2.10) if the 

hydraulic pressure increased to twice of eq.(6). So, the reasonable and correct hydraulic pressure is 

calculated by the eq.(8). And one wave propagation result was shown in figure 2.9, in which the 

wave propagation looks very good and fairly stable. 
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Fig.2.9 Wave propagation on a flat surface with modified hydraulic pressure (eq.(8)) 
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Fig.2.10 The relation between wave velocity and flow depth 

By simulating a series of flow behaviors, it found that the simulated wave velocity kept the 

consistence with theoretical value (Fig.2.10). Therefore, we think the eq.(8) is accurate and can be 

used to describe the flow behavior well. 

2.3.2 Flow behavior on a V-shape slope 

The equation of motion  

hx

p
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v b
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



                                                               (9) 
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The volume keeps constant,  

.00 consthddh                                                                (10) 

58 flow particles with 5.0m height were averagely distributed on a V-shape slope, which slope 

angle is 60° (Fig.2.11). Here, the hydraulic pressure is calculated by the eq.(8). Then the flow 

particles flowed down according to the equation of motion (eq.(9)). In the whole process, the particle 

volume keeps the constant (eq.(10)).  

(1) Critical slope of deposition is 0° 

The simulation results showed that particles flowed into V-shape hollow place and the deposition 

height tends to lever. Furthermore, the location and height of deposition had a good agreement with 

theory results (Fig.2.11). 
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Fig.2.11 The model for flow motion on a non-flat slope 

By simulating two simple flows, the accuracy of the modified hydraulic pressure model was 

verified, and we think it can be applied to simulate actual debris flow accurately. 

(2) Critical slope of deposition is not 0° 

The slope of V-shape is set to 30°. Three cases for critical slope of deposition are simulated on 30°, 

25° and 32°. As illustrated in the figure 2.12, the model can describe flow behavior well with 

different critical slope of deposition on a non-flat slope. 
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Fig.2.12 The simple flow behavior on a V-shape slope and the critical slope of deposition is not 0° 

2.4 Mixing model 

In the mixing model, it is assumed that a water particle initiated a solid particle by changing solid 

particle concentration according to the diffusion equation, if the distance of both particles is less than 

one initial distance. The mixing model showed in the figure 2.13.  

 

Fig.2.13 The initiation model of pair-wise particle 

The diffusion equation is 

x
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                                                                   (11) 

where, D is diffusion coefficient, which determined the initiate rate. Its value ranged 0 to 1. In the 

present study, the diffusion coefficient is set to a constant in the whole simulation process. At the 

initial state, assumed  
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By discretize the diffusion equation (11), the concentration increment is calculated by  
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So, the concentration of both particles varied with computation time by the following equations: 
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                                                           (14) 

The simulation results of concentration variation of pair-wise particle under different diffusion 

coefficient is showed in figure 2.14.The diffusion coefficient strongly influenced the initiation time. 
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Fig.2.14 The concentration of both particles varied with computation time under different diffusion 

coefficient 

(1) Critical slope of deposition 

In the mixing model, there are three types of particles, water particle, debris flow particle and solid 

particle. It’s no doubt that the critical deposition slopes of water particle and solid particle are 0° and 

repose angle of solid particles. However, what’s the critical deposition slope of debris flows? Three 

relationships between critical deposition slope and volume concentration are assumed as illustrated 

in the figure. In three assumed relations, icr_s is the critical deposition slope of solid particles, while 

icr_f is the critical deposition slope of debris flows. Two critical volume concentration (c_critical 

and c_max) are also assumed in the three relationships. It’s not hard to define the c_max value 

according to the existing research. Mostly researchers agreed that the maximum concentration 

ranged 0.6 to 0.64 if the uniform particles deposited. However, the data of filed observation 

demonstrates that the largest concentration can up to 0.83 (Fei & Shu, 2004). So far, there is not a 

clear definition for flood and debris flow. Therefore, in the present study, it’s assumed that the 

critical concentration for the solid particle is initiated and entrained to debris flow is not larger than 

0.83, while the critical concentration of water particle becomes debris flow is larger than 0.35. The 
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simulation results showed in the figure 2.16. 
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Fig.2.15 The simple mixing case study and the assumed relationship between critical deposition slope 

and volume concentration 

Due to the two critical values of deposition slope in the relation 1, it seems that the volume 

concentration is not stable in the present mixing model. It becomes better in the relation 2, but the 

volume concentration didn’t vary with computed time smoothly. The relation 3 showed the volume 

concentration varied with computed time smoothly and stable. However, the large volume 

concentration of debris flows are always observed on the very flat slopes with 1°-3° in the filed 

survey. Therefore, a relationship between critical deposition slope and volume concentration (eq.(15)) 

is proposed with avoiding several critical values. 
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Fig.2.16 The volume concentration varied with the computed time under three cases of icr-c 
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In the equation, α and β are two fitting parameters. α determines the inclination of relation curve. 

The relations showed in the figure under different β value. The simulation results (Fig.2.18) showed 

the volume concentration varied with computed time smoothly. In the present study, the β value 

varied with the topographic features. 
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Fig.2.17 The proposed relationship between critical deposition slope and volume concentration 
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Fig.2.18 The volume concentration varied with computed time (β=10) 

Such simple mixing model is not only used to initiate the solid particles, and also applied to 

reproduce some concentration-related phenomenon in the initiation and deposition processes.  

(2) Verification 

In the present model, diffusion coefficient was assumed to a constant in the whole computed time. 

Two cases (Fig.2.19) under three different diffusion coefficient are shown the effect of diffusion 

coefficient. In case 1, it is assumed that the water flow came from the upstream of valley. The water 

particles are assumed to distribute averagely in the whole research area in case 2.  
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Fig.2.19 Two cases for evaluating the effect of diffusion coefficient 

In the case 1 (Fig.2.20 and Fig.2.21), flow behavior clearly varied with the diffusion coefficient. 

As the diffusion coefficient is set to 0.001, the solid particles were mixed fast along the flow 

direction and debris flow washed out the landslide dam around 260s. Small solid particles with large 

concentration larger than 0.75 were moved to the downstream of valley together with debris flow (at 

320s). After 380s, there remained many solid particles on the both sides of flow path near landslide 

dam under the diffusion coefficient is 0.001. The flow particles mixed solid particles along the 

marginal of landslide dam and finally more than one half of landslide dam were entrained to debris 

flow and flowed down if the diffusion coefficient is set to 0.01. Due to the large diffusion coefficient, 

the entire landslide dam was entrained to debris flow and was moved down with the diffusion 

coefficient equals to 0.1. 

After 500s, the entrainment rate is 31.55%, 49.03% and 100% if the diffusion coefficient is set to 

0.001, 0.01 and 0.1 respectively. 

In the case 2 (Fig.2.22), water particles were averagely distributed in the whole research area and 

the direction of water flow was completely determined by the topographic feature. It means that 

there might be several different flows around the landslide dam, while the water flow only came 

from the upstream of valley in the case 1. The flow behavior also varied with the diffusion 

coefficient. Although the solid particles were mixed around the whole landslide dam at the initial 

state, the water flow coming from the upstream of valley channel played a primary role in mixing 

solid materials. Large diffusion coefficient inferred that flow had large entrain capability to move 

solid particles. 

The flow behavior varied with the diffusion coefficient and water flow (direction, volume) in 

comparison with simulation results of both cases under three different diffusion coefficient. It 

inferred that the initiation mechanism influenced the flow behavior, discharge, volume, 

concentration, etc.  
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Fig.2.20 Flow behavior under three different diffusion coefficient in case 1 
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Fig.2.21 Volume concentration varied with simulation time in case 1 
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Fig.2.22 Flow behavior under three different diffusion coefficient in case 2  



34 

 

CHAPTER 3 SATELLITE IMAGES 

Geographic Information System (GIS) is an efficient tool enabling to integrate information on 

environment, resources and human activities through digital base maps. It has been widely applied 

into kinds of fields, particularly, in geo-hazard assessment. Nowadays, kinds of images (such as 

aerial photos, topographic maps, and satellite images) are also be available to apply in assessing 

geo-hazards by processing to DEM. Satellite imagery has advantages in generating DEM because 

the measurement techniques are relatively established and elevation data are not likely to change so 

frequently. Combination of DEM and satellite imagery will contribute to the development of global 

spatial data infrastructure. We obtained satellite image from ALOS satellite in this study, I will make 

a detailed description in this chapter. 

3.1 The Advanced Land Observing Satellite 

The Advanced Land Observing Satellite (ALOS) "Daichi" was operated on 24 January 2006 to12 

May 2011. The ALOS was expected to contribute to society in numerous ways, such as cartography, 

regional observation, disaster monitoring and resource surveying, etc. The introduction of ALOS 

cited the user handbook of earth observation research center in Japan aerospace exploration agency. 

The ALOS has three remote-sensing instruments: the Panchromatic Remote-sensing Instrument 

for Stereo Mapping (PRISM) consists of three panchromatic radiometers and is used to derive a 

digital surface model (DSM) with high spatial resolution, which is an objective of the ALOS mission; 

Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) has four radiometric bands from 

blue to near infrared, which are used for precise land coverage observation, such as investigating 

regional environment issues such as land-use and land-cover classifications, and disaster monitoring; 

Phased Array type L-band Synthetic Aperture Radar (PALSAR) for day-and-night and all-weather 

land observation. 

Because PRISM extracted data will provide a highly accurate digital surface model (DSM), 

therefore, we downloaded satellite image from PRISM sensor in this study. The PRISM has three 

independent optical systems for viewing nadir, forward and backward producing a stereoscopic 

image along the track of satellite. Each telescope consists of three mirrors and several CCD detectors 

for push-broom scanning. The nadir-viewing telescope covers a width of 70km; forward and 

backward telescopes all cover 35km each. The telescopes are installed on the sides of the optical 

bench with precise temperature control. Forward and backward telescopes are inclined +24 and -24 

degrees from nadir to realize a base-to-height ratio of 1.0. The wide field of view of PRISM provides 

three fully overlapped stereo (triplet) images of a 35km width without mechanical scanning or yaw 

steering of the satellite. Without this wide field of view, forward, nadir, and backward images would 



35 

 

not overlap each other due to the rotation of Earth. (Figure 3.1, Figure 3.2, Table 3.1, Table 3.2) 

 

Fig.3.1 Overview of PRISM 

 

Fig.3.2 PRISM Observation Modes 

Table 3.1 PRISM characteristics 

Number of bands 1 (panchromatic) 

wavelength 0.52 to 0.77 micrometers 

Number of optics 3 (nadir, forward, backward) 

Base-to-height ratio 1.0 (between forward and backward view) 

Spatial resolution 2.5m (at nadir) 

Swath width 70km(nadir only) / 35km (triplet mode) 

S/N >70 

MTF >0.2 

Number of detectors 28000 /band (swath width 70km); 14000 /band (swath width 35km) 

Pointing angle -1.5 to +1.5 degrees (triplet mode, cross-track dirction) 

Bit length 8 bits 
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Table 3.2 Observation modes 

Mode 1 Triplet observation mode using forward, nadir and backward views (swath width is 35km) 

Mode 2 nadir (70km) +backward (35km) 

Mode 3 nadir (70km) 

Mode 4 nadir (35km) +forward (35km) 

Mode 5 nadir (35km) +backward (35km) 

Mode 6 forward (35km) +backward (35km) 

Mode 7 nadir (35km) 

Mode 8 forward (35km) 

Mode 9 backward (35km) 

 

3.2 Choosing satellite images 

In order to choose high-quality satellite image for special research area, it mainly ruled three 

criterions: observation time, cloud coverage and observation mode. Due to Zhouqu debris flow event 

and Wenchuan Earthquake occurred in 2010 and 2008 respectively, which all occurred during the 

ALOS work period. Therefore, it’s completely available to obtain pre- and post-event images in 

observation time. Secondly, the image quality depends on cloud and snow coverage to large extents. 

Actually, it’s very hard to control this factor, because there are large uncertainties about the location 

of cloud coverage and the type of cloud before obtaining the image. Generally, cloud coverage 

problem is more seriously in summer than in winter, while snow coverage mainly appeared on the 

images which observed in winter. In addition, in order to obtain DEM we must choose a pairs of 

images. Therefore, we have five choices from all of observation modes (Table 3.2). However, it’s 

better to choose observation mode 1 and 2 because there are more observation images and also that 

overlap area is largest. 

legend

pre-debris flow

coverage area

post-debris flow

coverage area

 

Fig.3.3 The location of pre- and post-debris flow satellite images 



37 

 

Table 3.3 The information of Satellite images for Zhouqu region 

Scene ID Obs. Date Pds_Product 

ID 

Img_Center coordinate Img_Cloud 

quantity 

Pdi_No of 

pixels 

note 

Lat. Lon. 

ALPSMB212982975 20100123 O1B1_B 33.774 104.526 1 4928 pre- 

disaster ALPSMW212982920 20100123 O1B1_W 33.787 104.364 0 4992 

ALPSMB273372975 20110313 O1B1_B 33.837 104.191 1 4928 post- 

disaster ALPSMW273372920 20110313 O1B1_W 33.790 104.337 2 4992 
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image coverage 

area

cloud coverage 

area

  

Post-earthquake

image coverage 

area

cloud coverage 

area

 

Fig.3.4 Pre- and post-earthquake satellite image in Wenchuan earthquake-stricken areas 

Considering various factors, 24 pairs of images in two zones were downloaded. And 22 pairs of 

images covered the Wenchuan, Pingwu, Qingchuan, Beichuan, Anxian, Maoxian, Dujiangyan, etc., 

where mainly along the main faults and were seriously damaged during the earthquake. Mostly 

images are derived from observation mode 2, there is one more uncertainty about overlap area. 



38 

 

Because of the uncertainty of cloud coverage, special weather and topographic conditions, the 

quality of many pairs of images are very bad and can’t be processed into DEM (Table 3.4 and Fig. 

3.4). Therefore, we only determined study areas according to the existing images which quality is 

good enough to be processed into DEM, particularly in Wenchuan earthquake zone.  

Table 3.4 The information of Satellite images for Wenchuan earthquake zone 

Scene ID Obs. date Pds_Product ID 
Img_Center coordinate Img_ 

Pixels 

Img_Cloud 

quantity 
note 

Lat. Lon. 

ALPSMB072073030 20070602 O1B2R_UB 31.082 103.635 16188 4 Yingxiu 

(×) ALPSMW072072975 20070602 O1B2R_UW 31.068 103.628 29310 5 

ALPSMB119043025 20080419 O1B2R_UB 31.362 103.538 16172 5 Yingxiu_ 

Wenchuan(×) ALPSMN119042970 20080419 O1B2R_UN 31.347 103.531 14646 5 

ALPSMB119043020 20080419 O1B2R_UB 31.609 103.603 16171 4 Wenchuan_ 

Maowen 

(×) 

ALPSMF119042910 20080419 O1B2R_UF 31.576 103.610 16283 3 

ALPSMN119042965 20080419 O1B2R_UN 31.595 103.596 14647 4 

ALPSMB062883020 20070331 O1B2R_UB 31.577 104.314 16188 1 
Xiaoyudong 

ALPSMW062882965 20070331 O1B2R_UW 31.562 104.306 29307 1 

ALPSMB062883015 20070331 O1B2R_UB 31.824 104.380 16186 1 
Beichuan_Leigu 

ALPSMW062882960 20070331 O1B2R_UW 31.810 104.373 29310 1 

ALPSMB062883010 20070331 O1B2R_UB 32.072 104.447 16187 1 Nanba_Magong 

Town ALPSMW062882955 20070331 O1B2R_UW 32.057 104.439 29313 1 

ALPSMB062883005 20070331 O1B2R_UB 32.319 104.513 16190 3 Pingwu 

(×) ALPSMW062882950 20070331 O1B2R_UW 32.304 104.505 29314 2 

ALPSMW219692975 20100310 O1B2R_UW 31.068 103.627 29309 1 
Yingxiu 

ALPSMB219693030 20100310 O1B2R_UB 31.111 103.485 16172 2 

ALPSMB219693025 20100310 O1B2R_UB 31.359 103.550 16172 2 Yingxiu_ 

Wenchuan ALPSMW219692970 20100310 O1B2R_UW 31.315 103.692 29310 2 

ALPSMB172723020 20090422 O1B2R_UB 31.604 103.635 16173 2 Wenchuan_ 

Maowen ALPSMW172722965 20090422 O1B2R_UW 31.560 103.778 29313 5 

ALPSMB125753020 20080604 O1B2R_UB 31.551 103.901 16212 4 
Maowen-Qingping 

(×) 
ALPSMF125752910 20080604 O1B2R_UF 31.520 103.907 16248 4 

ALPSMN125752965 20080604 O1B2R_UN 31.536 103.893 14635 4 

ALPSMB125753025 20080604 O1B2R_UB 31.304 103.834 16211 2 Xiaoyudong 

(×) ALPSMN125752970 20080604 O1B2R_UN 31.289 103.827 14635 2 

ALPSMB125753030 20080604 O1B2R_UB 31.056 103.769 16211 1 
Dujiangyan 

(×) 
ALPSMF125752920 20080604 O1B2R_UF 31.026 103.775 16245 1 

ALPSMN125752975 20080604 O1B2R_UN 31.042 103.761 14634 1 

ALPSMB257473025 20101124 O1B2R_UB 31.361 104.070 16170 5 Mianzhu 

(×) ALPSMW257472970 20101124 O1B2R_UW 31.316 104.213 29307 3 

ALPSMW123272960 20080518 O1B2R_UW 31.814 104.346 29306 2 Beichuan 

(×) ALPSMB123273015 20080518 O1B2R_UB 31.866 104.165 16171 1 

ALPSMB203793015 20091121 O1B2R_UB 31.795 104.529 16213 0 
Beichuan-Leigu 

ALPSMW203792960 20091121 O1B2R_UW 31.809 104.370 29312 1 

ALPSMB203793010 20091121 O1B2R_UB 32.043 104.596 16214 2 
Chenjiaba 

ALPSMW203792955 20091121 O1B2R_UW 32.056 104.437 29313 2 

ALPSMB203793005 20091121 O1B2R_UB 32.290 104.663 16213 2 
Pingwu 

ALPSMW203792950 20091121 O1B2R_UW 32.303 104.503 29314 2 

ALPSMB268413005 20110207 O1B2R_UB 32.352 104.864 16171 0 
Nanba, Magong 

ALPSMW268412950 20110207 O1B2R_UW 32.307 105.007 29309 2 

ALPSMB272643005 20110308 O1B2R_UB 32.352 105.397 16171 0 
Qingchuan 

ALPSMW272642950 20110308 O1B2R_UW 32.307 105.541 29311 0 

Note: (×)-the image quality is very bad, and can’t be processed into accurate DEM. 
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3.3 Image processing 

In this study, we process satellite image into DEM using a commercial software that is MapMatrix. 

MapMatrix is a new digital photogrammetry platform developed by Wuhan Visiontek Inc. It can be 

applied in the field of 4D products production, disaster evaluation, emergency survey, forestry, water 

and national defense. It is often used to process kinds of images (e.g. aerial photos, satellite images) 

and attain DEM and DOM product. One of main features is high efficient image matching and image 

correction function; support data customization and dxf, dgn, txt and other popular formats data and 

coordinate system conversion. 

The key procedure of processing image is selection of control points, which determined the 

absolute coordinate information. It’s rarely available to get control point by measuring the absolute 

coordinate on site, we get control point from the Google Earth. Although the accuracy of Google 

Earth in China is not very high, it’s an available and simple way to get control point. Generally, it 

needs five control points for a pair of images. Such control points should cover the whole overlap 

area, meanwhile, it’s better to distribute in different geomorphology, such as flat lower place, summit, 

etc. It’s noted that the cloud and snow coverage areas need to avoid. Even though the small coverage 

area has a strongly influence with the processed results. In the figure 3.5, it’s very clearly that cloud 

coverage areas can’t be processed correctly. It seems that the processed results are not bad beyond 

the cloud coverage area. 

satellite image processed result of  DEM

 

Fig.3.5 The effect of cloud coverage area to processed DEM 

The resolution of such image is 2.5m. Considering the compatible between computation time and 

accuracy of topographic data, the pre-event satellite images are processed to 10m resolution digital 

elevation models for the present simulation. 
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3.4 Analysis on the accuracy of DEM 

(1) Zhouqu 

Compared topographic data from Google Earth and topographic map (1969), it’s found that it’s not a 

good choice to select control points on transition zone between lower-elevation area and summit to 

process satellite images. The error is very large, particular for elevation. We mainly chose control 

points from flat area and summit where rarely change in long period to attain more accuracy DEM 

and avoid additional error. The last update of Google Earth didn’t cover the research area, but 

covered the vicinity area (point_03 and point_05). Therefore, five pairs of points were chosen from 

the topographic map and Google earth to check the accuracy of control points which obtained from 

the Google earth. The longitude and the latitude error is less than 3 seconds, and the error of 

elevation less than 50m except point_01. It’s mentioning that the elevation error on flat 

lower-elevation zone is smaller than in summit. The process mechanism is interpolation. Therefore, 

it’s better to choose control points both in lower elevation zone and high elevation zone, such as 

point_02 and point_04.  

 

Point_02

Point_03

Point_05

Point_04

Point_01

 

Fig.3.6 Choosing control points 
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Table 3.2 Comparison of the error of control points 

Point data source longitude      /error latitude      /error elev./m  /error 

Point_01 
Topographic map 104°22'39" 

2.36" 
33°48'17.7" 

0.87" 
1585 

-227 
Google earth 104°22'36.24" 33°48'16.83" 1812 

Point_02 
Topographic map 104°24' 32.22" 

-2.47" 
33°50'37.24" 

0.62" 
3820 

42 
Google earth 104°24'34.69" 33°50'36.62" 3778 

Point_03 
Topographic map 104°29'9" 

-0.34" 
33°41'45" 

-2.34" 
1240 

1 
Google earth 104°29'9.34" 33°41'47.34" 1239 

Point_04 
Topographic map 104°21'53.4" 

-1.07" 
33°47'5.67" 

2.26" 
1340 

3 
Google earth 104°21'54.47" 33°47'3.41" 1337 

Point_05 
Topographic map 104°26'11.33" 

-0.85" 
33°43'31.52" 

-1.28" 
1880 

38 
Google earth 104°26'12.18" 33°43'32.80" 1842 

 

It’s note that all of coordinate information is obtained by interpolation according to several 

control points. Therefore, the error is gradually decreased in the whole processed area. We check the 

processed results with topographic map (by China National Mapping Bureau, 1969), it’s indicated 

that it’s reasonable to use Google Earth to decide control points if ignore small error which occurred 

by different coordinate system.  

 

Fig.3.7 The overlap results between processed DEM and topographic map 
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(2) Wenchuan 

The images of the earthquake-stricken areas are adopted to analyze post-earthquake debris flows in a 

wide region. Therefore, the topographic data of Google map was used to roughly check the 

processed results of DEM. In the figure 3.8, the region from Wenchuan to Caopo was showen in 

terms of satellite image, processed results of DEM and Google map, respectively. The satellite image 

showed that snow covered on the higher-elevation zones, while there are rarely snow or cloud in the 

lower-elevation zones. Therefore, only lower-elevation zones were selected and processed. It’s rarely 

available to obtain an accurate point from Google map. Only main topographic features, such as 

valley channel, river, were roughly checked with the Google map. It’s seems that the valley channels 

and river matched well with each other. In addition, three small areas were selected to check the 

elevation. It’s found that the snow had a little influence for the elevation of lower-elevation zones. 

satellite image processed result of  DEM from Google map

2km

3500m3500m

3200m 3200m

1900m 1900m

 

Fig.3.8 Roughly check the accuracy of DEM by Google map in Wenchuan region 
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CHAPTER 4 A DEBRIS FLOW EVENT IN ZHOUQU 

COUNTY 

4.1 Geological setting 

Zhouqu, located in the southern of Gansu province, China. It belongs to the transitional mountainous 

region between the southeastern edge of the Tibetan Plateau and the Qinling-Longmen mountain 

ranges. Due to Indosinian, Yanshan and the Himalayan orogenic affected, the geology structure is 

rather complex and faults activity are very frequently (Fig.4.1). New tectonic is also very active, the 

topography of this region is characterized by rugged mountains with elevations between 1000m and 

4000m and deeply incised valleys (Hu et al., 2010). The region of Zhouqu, where situated in 

Zhouqu-Wudu earthquake zone, is an active earthquake region and the seismic intensity is Ⅶ. 

According to seismological monitoring of Zhouqu county, there were more than 200 times 

earthquake which intensity less than Ⅳ, and in particular the intensity ranged Ⅱ-Ⅳ up to 60 times 

from 1990-2008. Due to the Tibet plateau uplift, the earthquake occurred frequently in the western 

of China, and Zhouqu experienced several important earthquake in history (Table 4.1). By history 

records and literatures, the Wudu earthquake in 1879 caused large collapses in Zhouqu area, 

especially in Sanyanyu (SYY) and Luojiayu (LJY) catchments. And the 2008 Wenchuan earthquake 

had also some influence to Zhouqu, but there wasn’t any new collapse and landslide in both SYY 

and LJY catchments by field investigation and Tang et al. (2011) also indicated that no significant 

landslides were triggered by this earthquake. The geology lithology of this area consists of Silurian 

slates and phillites, Permian limestones, and Devonian limestones and slates. Quaternary deposits 

mainly distributed on river terraces and alluvial fans. The surface of the bedrock is deeply fractured 

and highly weathered (Tang et al., 2011). 

Table 4.1 Statistical results of main earthquakes in Zhouqu and its adjacent areas (Li et al. 2011) 

Time Epicenter intensity 

BC186 Wudu 6-7 

1634 Northern of Wenxian 6 

1677 Wudu 5.5 

29 June 1879 Southern of Wudu 5.7 

1 July 1879 Wudu 8 

3 February 1960 Zhouqu 5.2 

22/23 August 1976 Songpan 6.7/7.2 

8 January 1987 Diebu 5.9 

12 May 2008. Wenchuan 8 
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Fig.4.1 Geological map of Zhouqu region 

This area has a semi-arid to arid climate with an annual mean precipitation of 434mm. On 

average, 75% of the annual precipitation falls largely concentrated in the period from June to 

September. There geological disasters occur frequently due to complex geological setting, special 

climate condition and human activities. Landslide and debris flow are the most common patterns of 

geo-hazards in this zone. They always threat local resident and influence the traffic system seriously. 

4.2 Debris flow 

On midnight of 7 August 2010, two giant debris-flows developed by a rainstorm in the SYY and 

LJY catchments, in the northern direction of the Zhouqu City. They killed 1765 people living on the 

existing alluvial fan and caused huge economic losses. Furthermore, more than 5500 houses along 

their flow paths were damaged. In addition, the debris flows rushed into the Bailong River and 

formed a barrier lake about 550 m in length and 70 m in width (across the river) which flooded the 

1/3 of the city for several days.  

According to the existing literature (Wang et al., 2011), SYY valley is a frequently and active 

debris flow valley which occurred dozens of times (Table 4.2) since 1823 recorded and almost every 

event caused different damage to local resident, infrastructures, farmland, lifeline projects, etc., 

while LJY valley is a low-frequency and inactive debris flow valley.  

(1) Topographic features 

The topographic characteristics of both SYY and LJY catchments are rather complex. Both sides of 

valley channels are very steep and the valley channels are very narrow (Fig.4.2). It is noted that the 
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slope angle of both sides of valley channel ranged 55° to 74°. The shape of whole catchment area 

looks like a fan, of which the upstream is very wide and the mouth of valley is rather narrow (Fig.4.2, 

Table 4.3). Such topographic characteristics are very easy to confluence in short time if it rains. The 

discharge will be increased drastically at the mouth of valley due to the width of flow cross-section 

must decrease at the mouth of valley. The slope of valley channel in most parts is larger than 15°. 

Takahashi (1980) indicated that channel slope was greater than 15° and of which was favor for 

triggering debris flow. It means that the original topography is favor for generating debris flow under 

reasonable rain condition if there are sufficient debris sources in both catchments. 

Table 4.2 The history of SYY debris flow valley  

Time casualties buildings 
farmland 

(104m2) 

economic loss 

(104 RMB) 
Others 

1823, 1879, 

1904 
▲ ▲ ▲ ▲ ▲ 

1916 > 60 >90 20 ▲ ▲ 

Jul. 1943 46 140 32 ▲ damaged 8 bridges 

1961 28 160 36 43.4 

traffic interruption 45 

days, blocked the 

Bailong river 

Jul. 1978 58 98 43.33 42 
traffic interruption 12 

days 

May 1989 51 360 63.67 1000 
damaged 10 bridges and 

other infrastructures 

30 Apr. and 4 

Jun. 1992 
87 344 87.73 1260 damaged infrastructures 

13 Jul.1993 ▲ 40 20.66 ▲ ▲ 

Note: ▲ means not detailed recordings. 

Table 4.3 Main morphometric parameters of research area 

Valley catchment area length relative elevation width of valley mouth 

SYY 25.75km2 10.4km 2488m 50m 

LJY 16.14km2 9.5km 2460m 7-8m 
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Fig.4.2 Slope distribution features in the Zhouqu region 

(2) Debris sources 

By filed survey, it’s found that there are very rich debris sources in both valleys (Fig.4.3). It mainly 

originated from three kinds of sources, such as large landslide dams, weathering deposits on both 

sides of valley channel and sediment on the channel bed. The peak discharge of the debris flow 

increased at least 60% due to the breaching of the landslide dams in the SYY valley (Yu et al., 2010). 

The debris flow tracks widened from the original 2-4m to the present 5-9m in the upstream rills of 

the initiation area of the SYY valley and the incision depth of channel is 0.5-1.5m (Tang et al., 2011). 

Debris source was also significant in LJY valley. It is estimated that the erosion depth was up to 1-3 

m, and the erosion width and length was about 20-40m and 2-3km respectively. The mobilized 

channel-bed material continually scoured and entrained additional debris and progressively increased 

the solid concentration of the flow transforming it into a debris flow. Tang’s research showed that 

colluvium deposits were mainly present along and near torrents exposed by erosion triggered by 

channel incision. The basin behind check dams had been filled half or even totally before the event. 

All of check dams were destroyed during this catastrophic event and all materials stored behind 

check dams supplied 10-15% materials due to the dam failure. 

The large landslide dams were originated from the rock-fall due to the provious earthquake (Ma 

& Qi, 1997), therefore, there were many huge boulders on deposition fan near mouth of valley after 

debris flow disaster. It’s noted that the height of landslide dams up to 80-280m and the volume is 

about 2800×104m3, of which recharge rate is 68%. Due to the scale of landslide dam is large and 

boulders usually larger than 10cm and the largest can up to 12-14m, debris flow washed out and 

eroded the margin of landslide dam, and caused some part of margin would collapse and composed 
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main debris source for debris flow further. The recharge of solid loose material is about 

2693.84×104m3 and the recharge rate up to 65%. 

   

   

Fig.4.3 Debris sources in both valleys 

Table 4.4 Types of debris source for debris flow at SYY valley (Tang et al., 2011) 

type of debris source 
landslide 

dams 
landslide 

channel 

deposits 

slope 

debris 

unstable 

rock mass 
amount 

storage of solid loose 

material/104m3 
2829.4 94.9 840.12 315 64.1 4143.52 

recharge of solid loose 

material/104m3 
1926.4 52.6 523.8 141.5 49.3 2693.6 

 

The volume of sediment in debris flow was transported out of valley which was estimated at 

97.7×104m3, however, there are still large amount of loose debris materials remain in the valley. 

(3) Rainfall 

Rainfall plays a critical role in triggering debris flow. However, it was always mild rain in Zhouqu 

city from debris flow initiation to finally deposition on the deposition fan. The nearest rain gauge 

station (Zhao, 2010) in Zhouqu city monitored the rainfall was only 2.4mm and the early cumulative 

rainfall was less than 5mm at 0:00 on 8 August 2010. But the destructive debris flows had occurred 

at 23:20. According to the recordings of rainfall stations near Zhouqu (Fig.4.4), the existing research 

(Yu et al., 2010; Zhao et al., 2010; Tang et al., 2011) agreed that the event rainfall was 77.3mm 

during 45min from Dongshan rain station.  
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Fig.4.4 The rainfall features from rain gauge stations in the vicinity of Zhouqu City 

From the rainfall features for previous debris flow events in SYY valley (Table 4.5), it’s found 

that basically more than 30mm rainfall in one hour can trigger debris flow. Therefore, it seems 

reasonable to agree the disaster was an unexpected incident from Zhouqu rain gauge station. It’s 

revealed that rainstorm concentrated on upstream and middle part of SYY and LJY catchment before 

23:00. From the recordings of eight rain gauge stations near Zhouqu, it’s demonstrated that there had 

a large difference for local rainfall features in a wide catchment. Therefore, rainfall was a trigger 

factor and can’t be used to evaluate the disaster because of its uncertainty and diversity. It’s also 

inferred that the forecast of geo-hazards is not mature in the rural mountain areas, due to the shortage 

of equipment and technology.  

Table 4.5 The rainfall features for previous debris flow events in SYY valley 

date rainfall/mm duration 

15 July 1978 37.4 1h 

18 June 1982 46.8 1h 

10 May 1989 47.0 1h 

4 June 1992 38.4 45min 

7 August 1994 63.3 2h 

 

Advantage topographic features, rich debris sources and rainstorm played a fundamental role in 

generating debris flow. However, why the discharge and magnitude of the debris flow was increased 

suddenly compared the history events according to LIGC and TSIG in 1982 (Tang et al., 2011) with 

not clearly change on topography and debris sources? And what’s the rainfall intensity to trigger the 

disaster in that time? Therefore, it’s necessary to quantitative evaluate the disastrous mechanism to 

avoid sequence potential debris flow disasters. 
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4.3 Basic results 

4.3.1 Parametric studies 

In this section we discuss the effect of some parameters including mesh size, Manning coefficient, 

critical slope of deposition, flow volume and discharge on the overall debris flow behavior. A series 

of simulations were simulated to discuss about five factors in terms of the spatial pattern of 

deposition, travel distance and extent of deposition. By recording the location information of every 

particle in the whole simulation process, and then the affected areas were mapped to analyze the 

influence of kinds of factors. In the simulation process, debris flow particles were set to generate 

automatically near the valley mouth by a constant discharge except evaluation of mesh size. 

(1)Mesh size  

The input topographic data should be accurate enough to obtain reasonable results, because the 

gravity and frictional forces are heavily dependent on the inclination of the sliding base (Chen & Lee, 

2000). The existing study demonstrated that DEM quality and grid resolution were crucial for the 

resulting delineation of potentially affected areas and thus for hazard assessment and mapping (Stolz 

& Huggel, 2008). Accurate and more detailed spatial resolution of topography is especially 

important to reproduce the natural debris flows. Due to the dynamic characters of debris flows, the 

user must verify whether the DEM used for modeling applications actually represents the current 

surface and morphology in the investigation area, especially the high-resolution DEM is better. It is 

available to reproduce the actual events on the basis of accurate topographic data. However, facing 

the contradictions between topographic accuracy and computation capacity, it’s necessary to evaluate 

its effect before simulating actual debris flow.  

 

Fig.4.5 Simulated affected area under different mesh size 



50 

 

At the initial state before simulation of debris flows, the research area is discretized by the mesh 

size, it stands for the high resolution of topographic data to large extent. Figure 4.5 showed the 

resulting flow areas obtained by various mesh size with the same condition except mesh size. It is 

observed that the flow area increases with increasing mesh size. It is primarily because the loss of 

topographic details leads to less disturbance of the flow. Furthermore, the numerical particles 

themselves become larger and the number of particles becomes smaller by increasing mesh size, 

which may reduce the energy dissipation due to particle interaction. 

According to the comparison results of mesh size in terms of affected area, the affected area by 

the smaller mesh size is more close the reasonable results. The affected area by 50m mesh size and 

100m mesh size is 2.2 times and 4.6 times respectively of the smallest affected area. It seems that the 

travel distance is sensitive to the smaller mesh size. Because larger mesh size only roughly showed 

the topographic features and ignored the detailed local information. It demonstrated that larger mesh 

size is only adopted to give an approximate estimation of the potential affect zones for evaluation of 

regional debris flows, while the smallest mesh size is adopted to quantitative evaluation of individual 

debris flow. Therefore, the mesh size will be adopted 10m in the sequence simulation. The mesh size 

also influences the maximum velocity of the debris flow, and its effect will be discussed in the 

following sector in detail.  

(2) Manning coefficient 

Figure 4.6 shows the maximum velocity during the entire flow in the simulation in terms of mesh 

size and Manning coefficient. It was found that the maximum velocity of simulated debris flow is 

within the range of realistic value (15-5m/s) under the commonly-used Manning coefficient range 

(0.1-0.3) if the 10m mesh is adopted. The maximum velocity with 50m and 100m mesh size 

increased by 127% and 189% comparing with 10m mesh size, respectively, which may be not 

realistic range. Since the flow velocity is not only very sensitive to impact force acting on the 

structure in the flow, and its value also influenced the entrainment of solid materials in the initiation 

process, it is important to validate it by the parametric study. 
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Fig.4.6 Maximum velocity varies with Manning coefficient under different mesh size 

 

Fig.4.7 Simulation results under discharge and Manning coefficient 
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Manning coefficient not only influenced the velocity of debris flow, it also influenced the 

deposition features. The effect of Manning coefficient and discharge in figure 4.7. In this series of 

simulations, 10m mesh size was adopted and the critical slope of deposition was set to 1°. The 

simulation results under discharge and Manning coefficient showed that Manning coefficient has a 

little influence with deposition if the discharge is set larger than 200 m3/s. If the discharge is set to 50 

m3/s, it’s found that Manning coefficient influenced the spatial patterns of deposition and extent of 

deposition. 

(3) Critical slope of deposition, flow volume and discharge 

The effects of critical slope of deposition, flow volume and discharge are illustrated in figure 4.8. In 

this series of simulations, 10m mesh size was adopted and the Manning coefficient was set to 0.1. 

When critical slope of deposition was set to 3°, affected area and travel distance clearly became 

smaller than the case with critical slope of deposition was set to 1°. When the critical slope of 

deposition was set to 5°, the affected area and travel distance became much smaller. It’s 

demonstrated that the critical slope of deposition mainly governed the travel distance. The travel 

distance reduced rapidly with the increasing of critical slope of deposition. It’s also found that 

discharge strongly influenced the spatial patterns of debris flow deposition as well as the extent of 

deposition if critical slope of deposition is set to 1°. The extent of deposition is clearly decreased 

with decreasing the discharge. Such influence will be reduced with increasing the critical slope of 

deposition. It’s inferred that smaller critical slope of deposition played a significantly role in 

deposition features if the discharge is also small. It’s observed that the flow volume influenced the 

travel distance and extent of deposition. The travel distance and extent of deposition are all increased 

with increasing flow volume. 
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Fig.4.8 Simulation results under different factors 

From the above results, it’s found that discharge played a critical role in deposition features. All 

of results are obtained from the SYY area. In order to make the results have enough convince, one 

more simulation result about the effect of discharge is showed basing on the topography of LJY area 

(Fig.4.9). In the simulation, 10m mesh size was used and the critical slope was set to 1° as well as 

the flow volume kept the constant in three cases. It’s found that discharge has some influence with 

the spatial patterns of deposition and extent of deposition. Such influence is smaller than in SYY 

deposition fan. It’s inferred that topographic features governed the deposition features to large 

extent. 

The spatial patterns of debris flow deposition played a critical role in understanding the potential 

hazards associated with active debris flow processes on fans. Debris flow lateral spread shortly after 

flowed out of the valley mouth due to the hydraulic pressure between pair-wise particles. Meanwhile, 

different spatial patterns of deposition were generated on the deposition fan. It’s obviously that 

discharge not only governed the spatial pattern of deposition, and also significantly controlled the 

extent of deposition, especially in horizontal direction which vertical the flow direction. Both the 

critical slope of deposition and flow volume strongly influenced the travel distance and extent of 

deposition. However, there is little difference in spatial patterns of deposition when critical slope of 

deposition is larger than 3°. The present analysis inferred that flow behavior and topographic 

features played a critical role in deposition characteristics. The travel distance and extent of 

deposition varied with the spatial patterns of deposition to large extent. In general, this critical slope 
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of deposition can be observed in the deposition area of debris flow, which is around 5°. However, 

this material parameter changes drastically by the water content, it is quite difficult to predict the 

affected area very accurately. 

 

Fig.4.9 The effect of discharge on LJY deposition fan 

4.3.2 Step 1: simulation of debris source 

Evaluation of debris volume and location of debris sources are very important for the hazard 

assessment. In particular, loose deposits existing at the bottom of valley may cause the growth of 

debris flow. Such loose geo-materials are intermittently supplied by the slope failure and lateral 

erosion, and it is difficult to estimate its volume by 10m digital elevation models directly. 

In our simulation scheme, we assume that unstable debris source is generated from relatively 

steep slopes larger than 60°. First, we determine such unstable slope area from the topographic data, 

and put debris ‘particles’ on it. Then, according to the equation of motion, those particles fall down 

the slope and are heaped up at the bottom of the slope (Fig.4.10). In the present study, the repose 

angle of loose deposits was set to 26° based on the field observation of slope of loose deposit in 

valley channels (Fig.4.10), and the Manning coefficient was set to 0.1 based on the literature (Chen 

& Zhang, 2006). Eventually debris source of 4.296*105m3 in volume was generated in both SYY 

valley and LJY valley if the particle height was set to 1.0m (Fig.4.11). The simulated deposits are 

shown in black in the figure 4.11.  
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Fig.4.10 The repose angle of large-scale landslide-dams in SYY valley

 

Fig.4.11 Simulation the location and volume of debris sources 

Due to the most deposits were derived from the landslide-dams, which generated by the previous 

earthquake, it’s reasonable to check the simulated results of debris source by slope failure larger than 

60°. As illustrated in the figure 4.12, the simulated results of debris sources were showed in the red 

color with overlapping on the pre-event satellite image. It’s found that mostly debris sources 

concentrated on the downstream of valleys and distributed on both sides of valley channels or 

blocked the valley channel, while there were small particles on the upstream of valleys.  
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Fig.4.12 Simulation results of debris sources overlapped on the pre-event satellite image 

Although it’s hard to evaluate the simulation results of debris sources only by pre-event image, 

we have enough data from field survey. In the figure 4.13, pictures a-e showed the debris sources in 

the different places of both valleys. It’s demonstrated that large-scale landslide-dam and original 

deposits on the channel bed supplied large amount of debris sources in the last debris flows. The 

close-up of two landslide dams A and B on the post-event image, it’s clearly showed that the margin 

of landslide-dams were eroded and huge solid materials were entrained into the debris flow. 

Meanwhile, it showed that there are still enormous amounts of loose solid materials which are still 

easy to entrain to sequence debris flows. It looks that the agreement of simulation results of debris 

sources and actual deposits only in term of location of debris sources is good. 
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Fig.4.13 Debris sources in the actual events by field investigation 

Considering the evaluation of debris source volume,the existing evaluation of voume was 

9.29*105m3 by Yu et al. (2010), and about 60% of debris sources were derived from landslide-dams 

that generated from the slope failure and/or collapse due to the preceding earthquake (Ma & Qi, 

1997). In addition, rich deposits on channel beds also supplied enough solid materials in this event. 

By field investigation, the maximum thickness of such deposits on channel beds is higher than 20m. 

In this event, eroded depth is estimated as 0.5-1.5m and the original truck of 2-4m width was 

widened up to 5-9m in the upstream rills of the debris flow initiation area at SYY valley (Tang et al., 

2011). It is estimated that the erosion depth was up to 1-4m, and the erosion width and length was 

about 20-40m and 2-3km respectively in LJY valley. Tang et al. (2011) also provided the similar 

survey report. In the present method, the volume of debris source was determined by the number of 

unstable particles and the initial particle height.Four small zones were selected to evaluate the 

thickness of debris sources. The thickness of debris sources is in a realistic value ranging 0-8m in 

multiple zones (Fig.4.14). In the landslide dam B and LJY valley channels, the thickness of debris 

sources is larger than the thickness of debris sources near the landslide dam B and the mouth of 

Xiaoyanyu valley.  
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Fig.4.14 The thickness of simulated debris sources 

In our preliminary research, the distribution of debris source is in good agreement with the filed 

observation. Therefore, it’s reasonable to evaluate debris flows based on the current information of 

debris sources. 

4.3.3 Step 2: simulation of debris flow 

Here, two simple initiation models were used to simulate the initiation, transportation and deposition 

processes of debris flow. And then the differences between two models were discussed. 

(1) Re-initiation model 

In the re-initiation model, debris flow was initiated only by changing physical properties of particles 

that generated in the step 1. Using the debris source particles simulated in the step 1, debris flow 

simulation was carried out by setting Manning coefficient and critical slope of deposition to 0.1 and 

1° respectively. Then debris flows of both valleys flowed further down according to the equation of 

motion, and reached to the Bailong River after 1330s from initiation. Finally, most of the debris 

flows were accumulated on the deposition fans and the river. 

Detailed transport processes in the entire research area were composed of six stages (Fig.4.15). 

The SYY debris flow and the LJY debris flow flowed out of the valley mouth around 360s after the 

initiation. Then both debris flows diverged on the deposition fans following the given topography. 

After 820s from the initiation, the SYY debris flow was divided into two, and the main flow head 
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directed to the eastern part of the deposition fan; the LJY debris flow kept the entire and continually 

flowed along the topographic features. At 1150s later, two branches of SYY flow converged into one 

near the downstream of deposition fan. Meanwhile, the LJY flow has a clearly turning and the width 

of cross-section was up to maximum value. The SYY flow divided into two again after 1200s from 

initiation near the margins of deposition fan, while the eastern main flow still predominant until it 

flowed into the Bailong River in the front of deposition fan. Both debris flows flowed into the River 

after 1330s, and deposited in the river. After 30 min from the initiation, most of particles finished the 

transportation process and deposited on the downstream of deposition fan, while there were small 

particles deposited in the valley channels. In the whole transport processes, the SYY debris flow had 

a clearly lateral spread on the deposition fan, while the LJY debris flow always kept as the entire due 

to topographic feature. The local topographic features, such as bifurcation, depends on the used 

topographic data to large extent. Such detailed flow processes may help to design countermeasure 

facilities. 

 

Fig.4.15 Transportation process of both debris flows 

Deposition fan is common used for agriculture and/or human habitation because of the scarce 

low-gradient land in mountainous area. And hence mostly damage occurred on the deposition fan. 

We focused on the depositional characteristics on deposition fan, such as the spatial patterns of 
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deposition, the travel distance and the extent of deposition. In the figure 4.16, a-e are the overlapped 

figures of both simulated affected area and pre-event satellite image under different critical failure 

slopes if. The red lines stand for the maximum depositional boundary in the simulation results, and 

the smaller enclosed areas by red lines were the unaffected area where the debris flow crossed that 

zone and did not cause any damage. f is the post-event satellite image, and light gray-white area is 

actual damaged areas. Three cross-sections of Z03, Z04 and Z05 are selected to count the numbers 

of crossing particles. 

In the present simulation results of five cases, the number of particles is 5847, 4296, 2890, 2371 

and 1934 if the critical failure slope if is set to 59º, 60º,61º,61.5º, and 62º, respectively. In all of five 

cases, debris flows of both valleys flowed out the mouth of valleys and travelled different distances 

on the deposition fans (Fig.4.16). There generated more additional debris sources near the mouth of 

SYY valley and the affected areas were larger than the actual damage areas if if was set to 59º, while 

there were small particles reached to the deposition fans and the travel distance and affected areas 

were smaller than actual events if if was set to 62º. The agreement between simulation results and 

actual events is good in terms of spatial patterns of deposition and travel distance, when if was set to 

60º, 61º and 61.5º. Regarding the affected areas, it’s found that the simulation results of affected area 

was only 3% larger than the actual damaged area in SYY deposition fan, while the simulation results 

of affected area was 177% larger than the actual damaged area in LJY deposition fan, if the if was set 

to 60º. The affected areas on LJY deposition fan were close to actual damage areas with reducing the 

number of debris flows, while the affected areas on SYY deposition fan were smaller than the actual 

damage areas. 

 

Fig.4.16 Affected areas on deposition fans 
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Regarding the simulation results of deposition, the discharge played a critical role in influencing 

the spatial patterns of deposition, affect areas and distance (Zhang et al., 2014b). As illustrated in the 

figure 4.17, the hydrograph varied with different positions and simulation times. The peak value of 

particle number is 23, 9 and 14 for Z03, Z04 and Z05 respectively, if the if was set to 60º. Due to the 

special topographic features near the mouth of SYY valley, the discharge clearly reduced in Z04 

comparing Z03. When the affected areas of LJY debris flow is close to the actual damage areas, the 

peak value of particle number is less than 5 at Z05. It inferred that the discharge in SYY debris flow 

was larger than in the LJY valley. 

 

Fig.4.17 Hydrograph of both debris flows near the mouth of valleys using re-initiation model 
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In order to reproduce the actual debris flow, the discharge was set to different value for both 

debris flows. To efficient control the discharge of debris flows near the mouth of valley, the debris 

flow particles were set to generate automatically near both valley mouth. The simulation results 

showed in the figure 4.18, if the discharge was set to 1000m3/s and 50m3/s for SYY and LJY valleys, 

respectively. It agreed well with the actual damage areas. The discharge of actual events was 

estimated to 1358m3/s and 572m3/s for SYY and LJY valleys respectively (Yu et al., 2010). 

Therefore, it seems that the flow properties is one of important reasons to cause the whole simulation 

results had some differences with the actual debris flows. 

 

Fig.4.18 Simulation results of affected areas by setting different discharge for both debris flows 

In the present model, debris sources were estimated only by the critical failure slope and didn’t 

consider more factors, such as lithology. Therefore, it’s hard to generate reasonable debris sources in 

both valleys by the same critical failure slope. Moreover, all of particles were initiated 

simultaneously in the step 2. The location of debris sources also influenced the simulation results. 

The present used mesh size might be larger than some existence elements with characteristic size, 

which such as buildings, roads and drainage channels etc. Actually, the existing drainage channel of 

pre-disaster played an important role in transporting debris flow on LJY deposition fan, while the 

existing channel of SYY deposition fan was too narrow to transport debris flow (Fig.4.19). The 

width of pre-existing drainage channel on the upstream of SYY deposition fan was only 2.6m. Even 

though the overflowed debris flows on LJY deposition fan damaged both sides of drainage channel, 

the damage width was reduced to minimum due to the pre-existing drainage channel. 
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Fig.4.19 The pre-existing drainage channels on both deposition fans 

Since the flow velocity is very sensitive to impact force acting on the structure in the flow, it’s 

very important to accurately evaluate the velocity of debris flow to efficient prevent and mitigate the 

potential disasters. In the proposed method, the Manning coefficient as one of two important 

parameters, it not only reflects the roughness of topographic surface, and also influences the velocity 

of debris flow. Figure 4.20 shows the computed velocity varied with simulation time at three 

cross-sections. It was found that the velocity of simulated debris flow is within the range of realistic 

value (0-8m/s) under the Manning coefficient was set to 0.1. Due to the wide and flat topographic 

features near Z03 cross-section, the velocity ranged 3-4m/s, even if the discharge is rather large. The 

velocity increased to 6-8m/s when the debris flow flowed out the mouth of SYY valley, while the 

velocity ranged 3-5m/s near the mouth of LJY valley. This might be one of reasons to cause serious 

damage on the SYY deposition fan. However, Tang et al. (2011) estimated that the peak velocities 

were 9.7m/s and 11m/s near Z03 for the SYY and near debris source d and e for LJY valleys 

respectively according to empirical equations. 
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Fig.4.20 The velocity at three cross-sections (if is 60º) 
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(2) Mixing model 

In the mixing model, the distribution features of water particles influenced the simulation results of 

debris flow. First, the rainfall features were analyzed by averagely distributing water particles in the 

whole research area using 50m mesh. As illustrated in the figure 4.22, above 30s, water particles can 

flow to the valley channel under Manning coefficient is set to 0.033. It took 500s to transport the 

water flow from the summit to deposition fan. Noted that more than two flows flowed into the 

deposition fan around 30s. The water particles from the mountain areas with the elevation ranging 

2000m-3000m between SYY catchment and LJY catchment finally formed two water flows and 

flowed into the SYY and LJY deposition fan after 90s from the initiation. Five cross-sections 

(Z01-Z05) were selected to analyze the discharge in both valleys (Fig.4.21). Due to the larger 

catchment area of SYY valley, the peak value of hydrograph at Z03 is clearly larger than Z05. The 

hydrograph curve at Z04 is always lower than Z03, it inferred that water particles became dense in 

the range from Z03 to Z04. This special topographic feature can reduce the flow discharge for 

flowing outside of valley. Even though such special topographic feature near the SYY valley mouth, 

the peak valley at Z04 is still larger than peak value at Z05. 
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Fig.4.21 Hydrograph of rainfall for both SYY and LJY valleys 
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Fig.4.22 Rainfall features in the research area using 50m mesh 

As mentioned in the section of rainfall, the records of Zhouqu rain gage station showed it was 

mild rain from before the debris flow occurred at 23:20 on 7 Aug. 2010 to the next day. There was 

not any information about flood from the mountain and valley at that period. It inferred that the 

heavy rainstorm only limited on the high-elevation and upstream of valley. Therefore, to reproduce 

the actual debris flow, water particles were averagely distributed on the upstream of valley where the 

elevation is larger than 3000m. The number of water particles is 4679 if the interval distance is set to 

50m. It means that the mean rainfall amount is 29.03mm in the rainfall areas. 
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Fig.4.23 Transportation process of debris flow by mixing model 

Based on the information of debris source that generated in the step 1 if the critical slope of 

failure is set to 60º, evaluation of debris flows using mixing model. Manning coefficient, diffusion 

coefficient and fitting coefficient for critical deposition slope is set to 0.1, 0.1 and 80 respectively. 

The detailed simulation processes showed in the figure 4.23, it took 100s to reach to the valley 

channels for water particles if 10m mesh was adopted. After 500s from the initiation, water flow 

arrived at the zones of main debris sources and mixed with solid particles. Around 950s, one of main 

braches of SYY valley flowed to the vicinity of the mouth of SYY valley, while the other one 
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reached to the confluence area 270s later. After small time for initiating debris sources near the SYY 

valley mouth, the debris flow quickly flowed out the valley mouth. The LJY debris flow flowed out 

the valley mouth near 1490s. The SYY debris flow reached to the river was 200s earlier than LJY 

debris flow. After 2250s from the initiation, both debris flows reached to the river and began to 

deposit on the deposition fans. The debris flows lasted about 250s, and the sequence water flow also 

reached to the river. After 3200s, most of particles were moved to the deposition fan, while there 

were small particles on the valley. 

As illustrated in the figure 4.24, the debris flow from the left branch played a critical role in 

increasing the discharge of SYY debris flow. Due to two branches flowed into the main valley 

channel, the hydrograph at Z03 showed two peak values. But this characteristic didn’t behave at Z04. 

In comparison with the peak valley of Z01 and Z03, the peak value is smaller at Z04 and Z05. 

Actually, the debris flow disaster was determined by the peak value of Z04 and Z05 to large extent. 

The peak value at Z04 is larger than at Z05, and the arrived time of peak value at Z04 is also earlier 

than at Z05. It inferred that the disaster on SYY deposition fan occurred earlier than LJY deposition 

fan. 
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Fig.4.24 Hydrograph of debris flows in Zhouqu using mixing model 

From the concentration distribution features varied with simulation time, it’s easily observed the 

initiation features by concentration. Such information contributes to understand the physical 

properties of debris flow in different stage. The debris flow particles with large concentration in the 

front were pushed to flow down by the large amount of water flow. The first arrived debris flow 

behaved high concentration, and the sequence arrived particles behaved low concentration. This 
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result is very similar with the heavy rainstorm triggered debris flow.  

The velocity also varied with simulation time, topographic features, etc. It’s found that the 

velocity near the bend and both valley mouths was large (Fig.4.26). Therefore, whether is it 

reasonable to build check dams on the bend and valley mouth? This result is very useful to provide 

adequately protection measures in prevention and mitigation works. The velocity was smaller than 

4m/s on the deposition fan. 

 

Fig.4.25 1Concentration distribution varied with transportation process 
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Fig.4.26 Velocity distribution varied with transportation process 

After more than 50min, most of particles were transformed into debris flows and were 

transported on the deposition fan. The deposition thickness on the deposition fan ranged 0-6m at the 

final state (Fig.4.27). The extent of deposition is clearly larger than actual damage area, due to 10m 

mesh can’t accurately describe the more detailed topographic information, such as buildings. The 

strong debris flow mostly damaged and buried all of things along the flow path. The deposition 

thickness varied the previous topographic features. The thinnest thickness was 0.3m and most areas 

were larger than 1m. It looks that the density of debris flows were large, and belonged to viscous 

debris flow. Regarding deposits on deposition fan, one of large differences is there were more than 
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30 boulders on the SYY deposition fan, while no one was found on LJY deposition fan.  
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Fig.4.27 Deposition thickness on the deposition fan at t=3200s 

   

   

   

Fig.4.28 The damage and deposition on both deposition fans 
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By simulating a series of cases under different rainfall amount and diffusion coefficient, it’s 

found that rainfall amount and diffusion coefficient clearly influenced the entrainment rate. As 

shown in the figure 4.29, the entrainment rate up to 0.9 when the mean rainfall and the diffusion 

coefficient is set to 29mm and 0.1, while the entrainment rate reduced to 0.35 when the mean rainfall 

and the diffusion coefficient is set to 15mm and 0.001. According to the field observation (Fig.4.30), 

the entrainment rate was clearly smaller than 0.9, therefore, the diffusion coefficient should be 

smaller than 0.1 in this case. 

 

Fig.4.29 The entrainment rate varied with mean rainfall and diffusion coefficient 

 

Fig.4.30 The entrainment rate varied with mean rainfall and diffusion coefficient 

In the actual debris flow event, the SYY debris flow occurred lateral spread shortly after flowed 

out the mouth of valley and the previous artificial drainage channel was buried instantly. The width 

of pre-existing drainage channel on the upstream of SYY deposition fan was only 2.6m. The LJY 

debris flow also occurred lateral spread shortly after flowed out the valley because the width of 
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cross-section is only 7-8m at the mouth of valley. Wide farmlands were buried near the mouth of 

valley. It’s found that the debris flow quickly flowed into the drainage channel before reached the 

village. Although some debris flows overflowed the channel and caused damage on both sides of the 

channel, the destructive degree was clearly lower than in SYY deposition fan. It’s further 

demonstrated that the drainage channel played a critical role in transporting debris flow in LJY 

deposition fan. 

Analyzed the detailed depositional process, it found that there were many local and entire 

deposition characteristics agreed well with field observation and post-debris flow image. It inferred 

that this method can be used to reproduce the actual debris flow, and further contribute to understand 

the occurrence of disaster. Moreover, such information can supply advice to build countermeasure 

structures to prevent and mitigate the damage. 

The debris flow hazard was evaluated by re-initiation model and mixing model. It’s found that 

the simulation by re-initiation model is more efficient because of small particles. The mixing model 

is very time-consuming due to more than 2 or 3 times of particles were increased. The efficient 

re-initiation model evaluated debris flow only by the information of debris sources, furthermore, all 

of particles were initiated at the same time. Therefore, the distribution features of debris sources 

completely determined the debris flow features, particularly for hydrograph. Although the mixing 

model is not so efficient and two additional parameters (diffusion coefficient and fitting coefficient 

for the relationship between critical deposition slope and concentration) are taken into account, it 

seems that more realistic to reproduce the actual debris flow. The debris flow behavior not only 

determined by the debris source, and rainfall amount and intensity strongly influenced the flow 

behavior. Moreover, the critical slope of deposition, which value determined by the concentration, is 

not a constant for all of particles any more. Additionally, more concentration-related phenomenon 

can be described using the mixing model. Therefore, re-initiation model is suitable to evaluate the 

extent of deposition and flow path on deposition fan, while the mixing model is more suitable to 

evaluate the actual debris flows from the initiation, transportation and deposition. 

4.4 Analysis on the disaster mechanism 

Based on the deposition factors, it’s demonstrated that discharge played a critical role in the spatial 

patterns of deposition and extent of deposition. The simulation results also showed that the 

difference of extent of deposition on both deposition fans might be derived from the discharge. It’s 

found that the dam breach of check dam played an important role in increasing the discharge at the 

mouth of SYY valley according to field survey (Fig.4.31). It’s not very hard to infer that the check 

dam didn’t failure until the debris flow filled the room of inside of it. Large amount of debris flow 

rushed out the valley mouth instantly shortly after the dam breach. It’s no doubt that the discharge 

increased rapidly. The special deposition features near the mouth of SYY valley was the product of 
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large discharge (Zhang et al., 2014). Therefore, the seriously destructive damage on SYY deposition 

fan largely resulted from the extremely large discharge. 

 

Fig.4.31 The features of post-debris flow near the mouth of SYY valley 

As a matter of fact, there built 13 check dams after 1997 on SYY valley before this destructive 

debris flow, while there was none in LJY valley before 7 Aug. 2010. All of dams were damaged in 

this disaster. As a consequence, the magnitude of debris flow increased step by step with the dams 

breaching one by one. Cui (2011) analyzed the mechanism of dam breach and also agreed with the 

phenomenon increased destructive degree in this event. In addition, the previous drainage channel 

rarely played a role in transporting debris flow on the SYY deposition fan due to small size. By field 

observation, it’s also found that most debris flows transported along the existing channel on the LJY 

deposition fan, although some overflowed the channel. 

The high population density maybe another reason why there were large causalities. The city 

population increased to more than 40,000 in 2010 from 21,400 in 1996 (Liu et al. 2011). The city 

population increased by two times during 15 years. The rapidly increased population must lead to 

build more houses to use on the limitation room. This is also a basic situation in China. According to 

the damage rate on both deposition fans (Fig.4.32), it’s found that Yueyuan village and the 

downtown of Zhouqu located on the most seriously damage areas. That’s why the entire Yueyuan 

village was damaged and so many people were killed on the SYY deposition fan. 
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Fig.4.32 Relative damage frequency on both deposition fans 

Advantage topographic features, rich debris source and rainstorm together triggered this debris 

flow event. The failure of some countermeasure structures and high population density enlarged the 

destructive nature to large extent. 

There are still extremely rich debris sources in terms of landslide dams and sediment of previous 

debris flow on the valley channel in both valleys. Particularly, the landslide dam contained numerous 

of boulders, and the magnitude of the outflows can be significantly amplified due to the cascading 

failure effect. Therefore, it’s likely to occur debris flow in both valleys in the future. After this 

disaster, the whole valley channel was seriously disturbed because of building check dams. Many 

check dams have been built again in the SYY valley and even LJY valley. It’s necessary to evaluate 

the debris flows again in this region to avoid such disaster to occur again.  

4.5 Summary 

The depth-integrated particle method can be applied to simulate large-scale debris flows based on 

detailed DEM. By a series of simulations, it’s found that accurate topographic data played a critical 

role in simulating actual debris flow. The critical slope of deposition strongly governed the travel 

distance, while discharge significantly influenced the spatial patterns of debris flow deposition.  

Two-step evaluation scheme can be efficient evaluated debris sources and debris flows. It’s 

available to check the location of debris sources by satellite image, but it’s very hard to evaluate the 

volume of debris source only depending on satellite image. The debris sources in the research area 

were evaluated in terms of location and thickness combined the post-event satellite image and filed 

survey. It’s reasonable to evaluate debris sources in Zhouqu region by setting critical failure slope 

and repose of angle is 60º and 26º respectively. By assuming the initial particle height is 1.0m, the 

thickness of debris sources ranged 0-8m. Two models (re-initiation model and mixing model) were 



75 

 

adopted to evaluate the debris flow hazard. It’s found that the re-initiation model is very efficient 

with small particles (only solid particles), while the mixing model is rather time-consuming because 

of more than 2 or 3 times of solid particles were increased as water particles to initiate debris flow. 

However, all of solid particles were initiated simultaneously in the re-initiation model and debris 

flow behavior completely governed by the information of debris sources. The re-initiation model is 

suitable to evaluate the extent of deposition area and flow path on the deposition fan with only two 

parameters (Manning coefficient and critical deposition slope). Although two more additional 

parameters (diffusion coefficient and fitting coefficient for the relationship between critical 

deposition slope and concentration) were taken into account in the mixing model, it’s reasonable to 

evaluate debris flow hazard to consider the physical properties of particles. Moreover, 

concentration-related phenomenon is also described in the mixing model.  

Affected area was evaluated using re-initiation model, the agreement is good on SYY and LJY 

deposition fan if the critical failure slope is set to 60º and 61.5º. The debris sources were initiated 

when the mean rainfall was 29.03mm at the upstream of valley and the diffusion coefficient was set 

to 0.1. A series of simulation results showed the difference of discharge on both valleys strongly 

influenced the debris flow hazard on deposition fan. Advantage topographic features, rich debris 

sources and rainstorm together triggered this debris flow event. The failure of some countermeasure 

structures and high population density enlarged the destructive nature to large extent. 

It’s still hard to forecast the debris flow hazard only by rainfall in rural mountainous zones in 

China because of wide regions and limited technology. So far, more works should focus on the 

prevention and mitigation of disasters. The parameters of quantitative evaluation of debris flow in 

terms of velocity, hydrograph, the extent of deposition and flow path can contribute to provide 

adequately protective measures to prevent and mitigate the disasters.  
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CHAPTER 5 REGIONAL DEBRIS FLOWS IN THE 

WENCHUAN EARTHQUAKE-STRICKEN AREAS 

5.1 Introduction 

The Wenchuan earthquake occurred on 12 May 2008 in Sichuan province, China, and led to more 

than 80,000 fatalities and enormous economic losses. The quake originated in the Longmen 

mountain fault zone at the eastern margin of Tibetan Plateau. Consequently, it triggered more than 

60,000 destructive landslides (Table 5.1 and Fig.5.1) over an area of 35,000 km2 (Gorum et al., 

2011), and directly caused 109m3 loose materials (Huang, 2010). By the survey results (Yin et al., 

2009), more than one-third of the total number of fatalities was directly killed by secondary 

geo-hazards of the earthquake (Table 5.1). Furthermore, debris flows quickly instead of landslide 

and rockfall in the earthquake-stricken areas and continually threat the safety of more than 566595 

population(Lin et al., 2008) because of huge amounts of loose debris materials.  

Table 5.1 The list of main disastrous landslides 

landslide/ 

rockfall 

location volume 

/10
4

m
3

 

fatalities landslide/ 

rockfall 

location volume 

/10
4

m
3

 

fatalities 

Wangjiayan Beichuan 1000 1600 Maanshi Pingwu 400 34 

Yingtaogou Beichuan 188 906 Zhengjiashan Pingwu 1250 60 

Jingjiashan Beichuan 1000 700 Mayuanzi Pingwu 800 23 

Chenjiaba Beichuan 1200 400 Zhaojiafen Pingwu 1250 17 

Hongyancun Beichuan 480 141 Yaogoushen Pingwu 720 11 

Taihongcun Beichuan 500 150 Wenjiaba Pingwu 300 10 

Hanjiashan Beichuan 30 50 Linjiaba Pingwu 200 60 

Shaba Wenchuan 6.51 10 Beichuan middle school Beichuan 240 500 

Zhoujiaping Dujiangyan 120 62 Yanmengou Wenchuan 10 10 

Guihuashu Dujiangyan 11 11 Sanjiangcaoping Wenchuan 100 10 

Shazipo Dujiangyan 11 10 Niushidun Wenchuan 8 10 

Taian Dujiangyan 120 62 Niujuangou Wenchuan 100 18 

G213 Dujiangyan  1000 Niumiangou Wenchuan 750  

Limingcun Dujiangyan 20 120 Maerping Qingchuan 40 19 

Liangaiping Pengzhou 40 30 Dayanke Qingchuan 70 41 

Tonglonggou Pengzhou 100 20 Donghekou Qingchuan 1000 260 

Xiejiadianzi Pengzhou 40 30 Jiulongou Chongzhou 0.5 13 

Xiaolongtan Pengzhou 5.4 100 Guantan An county 144 100 

Dalongtan Pengzhou 10 100 Daguangbao An county 742000 38 

Xiejiadian Pengzhou 400 100 Yibadao-xiaoguanjian Mianzhu  50 
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Fig.5.1 Landslides were triggered by the Wenchuan earthquake 

(Note: a, b and c are all derived from the post-earthquake image which observed on 4 June 2008. a is 

the Daguangbao landslide. This was the largest landslide that occurred in the 2008 Wenchuan 

earthquake; b showed the landslides near Wenchuan along Min river; c showed the large-scale 

landslides in Mianzhu region) 

Due to the damaged area is very wide and such post-earthquake effect will last several years or 

even hundreds of years, it’s very essential to evaluate debris flow hazard in the earthquake-stricken 

areas. Furthermore, it’s important to predict their flow path, velocity and affect area in order to 

provide adequate prevention and mitigation measures in the post-earthquake reconstruction and 
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planning. Therefore, it will be more significance to assess regional debris flows in the 

earthquake-stricken areas. 

In this chapter, firstly, surface damage features are analyzed using high-resolution 

post-earthquake satellite image. Secondly, several post-earthquake debris flow events are shown and 

debris flow characteristics are summarized. Then, two regions are selected to evaluate regional 

debris flow hazards in the earthquake-stricken areas. Finally, a series of simple simulations for 

countermeasure structures are carried out and simple prevention and mitigation advice is proposed. 

5.2 Evaluation of earthquake-induced surface damage using satellite image 

The existing filed investigation and research showed the most serious damaged area by geo-hazards 

in Pingwu, Qingchuan, Beichuan, Anxian, Maoxian, Mianzhu, Lixian, Shifang, Pengzhou, 

Wenchuan, Dujiangyan, etc (Fig.5.2). Several satellite images in different regions were chosen to 

evaluate the surface damage features by the earthquake. 
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Fig.5.2 The distribution map of damaged area by geo-hazards in Sichuan earthquake zone (modified 

after Han et al., 2009) 
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Due to the spatial resolution of images is 2.5m at Nadir, it’s very clearly to recognize the detailed 

damage information. By analysis on several post-earthquake images that observed shortly after the 

earthquake, it’s found that the surface damage in the earthquake zone had several following features. 

(1) Distribution along the fault and focus on the hanging wall  

Figure 5.3 illustrated the surface damage information in Beichuan region by post-earthquake images 

(ALPSMW123272960). It’s very clearly that the landslides and rockfalls mainly distributed along 

the fault, and particularly behaved seriously in the valley and river. The width of affected zone in the 

center of fault is about 5km, and there were rarely damage beyond this range. Huang & Li (2009) 

agreed that 76% landslides distributed within 5km range from the earthquake fault. It’s interesting 

that most disasters distributed on the northwest side of fault (hanging wall) while that opposite zones 

(footwall) showed less disasters. Xu & Li (2010) argued that more than 70% damages occurred on 

the hanging wall, which was called the hanging-wall effect (Huang, 2010). It means that the 

hanging-wall of reverse fault led to more serious disasters in the earthquake. It also clearly showed 

several barrier lakes near Beichuan City in the figure 5.3. The most disastrous barrier lake was 

formed in this region. Such information contributed to take rescue measures in time. 

 

Fig.5.3 Surface damage information in Beichuan region 
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Fig.5.4 Surface damage information in An County 

The surface damage features in local region of An County (Fig.5.4) also behaved serious damage 

in the hanging wall by image of ALPSMB125753020. As illustrated in the figure 5.4, the largest 

landslide was clear identified on the upper right of image. It’s available to evaluate its size by clear 

boundary. 

(2) High density 

In order to evaluate the surface damage rate in different regions, the A, B and C three regions were 

selected from three images of ALPSMB125753030, ALPSMB125753025 and ALPSMB125753020 

respectively. As illustrated in the figure 5.5, figure 5.6 and figure 5.7, the scars of landslides and 

rockfall are very clear recognized in these three regions. It seems that the damage was rather serious, 

even the whole mountain was damaged. In the region C, it mainly showed both sides of a river were 

damaged in the earthquake. Moreover, the river was blocked at many sites. By rough statistics, the 

surface damage rate is 37%, 20% and 36% in the region A, B and C respectively.  
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Fig.5.5 The high density of geo-hazards in the region A 

 

Fig.5.6 The high density of geo-hazards in the region C 
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Fig.5.7 The relationship between damaged area and the slope angle in the region B 

According to the overlapped areas of both damaged areas and slope distribution map, it’s 

revealed that not all of steeper slope were very sensitive to the earthquake. Certainly, it has a large 

relation with lithology that is not taken into account in this study. As illustrated in the figure 5.7, the 

damaged areas distributed so complex that not a clear relationship between damaged area and the 

slope angle. The main reason is the damaged area coving failure zone and deposition zone. More 

than 80% damaged zones concentrated on the areas where slope angle ranges from 20° to 50° 

(Huang, 2009). Although mostly slope failure hadn’t reached to the bottom of valley, it’s noted that 

where damaged zones covered the valley channel (e.g. the upper right zones of region B) is very 

dangerous. Such phenomenon called landslide dam, which can enlarge the magnitude of debris flow 

once it failure. 

(3) Various damage patterns 

The earthquake seriously damaged more than 10,000km2 in terms of various damage patterns. 

Regarding different damaged objects and features, several damage patterns in the Sichuan 

earthquake-stricken areas were showed in the figure 5.8, in which image a and f are derived from 

ALPSMB125753025; image d is from ALPSMB125753020; image c, e and f are originated from 

ALPSMW123272960; image b and d are from ALPSMB125753030.  
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Fig.5.8 Various damage patterns by post-earthquake images 

Image a showed multiple landslides on both sides of valley together deposited on the valley 

channel and formed large-scale landslide dam. Multiple small landslides occurred in the same 

catchment (image b). The size of every damage zone is so small that it would be ignored in the 

sequence evaluation works. Actually, on Aug. 2010, the Zoumaling valley where the damaged 

features are similar with the image b occurred debris flow and caused damage. It’s inferred that such 

valley is the potential high-risk zone in the sequence rainy season to trigger debris flow. The 

Wanjiayan landslide and Beichuan new middle-school rockfall showed in the image c. Both are 

regarded as the most destructive landslides in the earthquake because they occurred in a high 

population density zone. The entire mountain collapsed and generated numerous debris materials. 

Such as Daguangbao landslide in image d. A large amount of solid materials filled into the reservoir 

would reduce the effective capacity of reservoir. Image e showed a series of collapse in the bank of 

reservoir near Dujiangyan. Image f also showed another type of landslide, its slide distance was 

rather long and finally buried road, buildings and river. Image g and h showed two single landslide, 

which located 10km away from the main active fault, buried village and blocked a river even formed 

a barrier lake. All of such disasters can be quantitative evaluated in term of size. 

The satellite image of ALOS is characterized by wide coverage area and high resolution. It 

clearly supplied damage information in the earthquake-stricken areas. If such images were used to 

evaluate the distribution features of damage, it would efficiently provide a guideline for disaster 

rescue operations and emergency response shortly after the earthquake. Furthermore, it is very 
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precious data for evaluation of geological disasters in an extremely wide area. It also can be used to 

determine the locations of landslides and landslide dams that are potential debris sources for the 

sequence debris flows. In this study, such images are used to analyze the features of the debris flow 

source areas and thus evaluate debris flows in the earthquake-stricken areas. 

5.3 Post-earthquake debris flow events in the earthquake-stricken areas 

Extremely rich loose solid materials, which are easy to trigger debris flow in rain-days, bring 

enormous threat to resident and properties in the earthquake-stricken areas. Debris flows will 

become the most significant geo-hazard type instead of landslide and rockfall after earthquake in the 

earthquake zone. It’s no doubt that there must be a debris flow frequent occurrence place in the near 

future after the earthquake because of advantage topography, enormous loose debris materials and 

rich rainfall. Therefore, it’s an urgent work to evaluate the potential high-risk debris flow hazards in 

earthquake zone.  

 

Fig.5.9 The distribution of debris flows in the earthquake-stricken areas (Ge et al., 2014) 

Although debris flows didn’t directly cause large damage during the earthquake, the sequence 
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debris flows had caused many causalities and properties losses since 12 May 2008 (Zou et al., 2014; 

Guo et al., 2014). There were more than 450 fatalities killed by debris flows for only six months in 

2008 after the Wenchuan earthquake (Xie et al., 2009). Review on the literatures of debris flows in 

Wenchuan earthquake zone (Zhang et al., 2013; Xu, 2010; Zou et al., 2014; Gan et al., 2010; Liu et 

al., 2012), it’s found that many debris flows occurred every year in last five years (Fig.5.9 and Table 

5.2). Due to more than 70% of the earthquake-induced landslides occurred in the areas between 

Yingxiu and Beichuan (Gorum et al., 2011), mostly debris flow disasters also concentrated on these 

regions. The occurrence frequency of debris flows is very high even in the same valley, such as 

Wenjia valley (Table 5.3), it occurred at least five times after the earthquake. The largest one almost 

damaged the whole of Qingping Town in 2010 (Fig.5.10). There are many debris flow valleys, which 

are similar with the Wenjia valley and characterized by high frequency and seriously destructive of 

debris flows.  

Table 5.2 The list of main post-earthquake debris flows in the earthquake-stricken areas 

Time place losses 

Jul. and Aug. 

2008 

Mozi valley, Wenchuan G213 highway was destroyed 

24 Sep. 2008 Gan valley, An County and 72 debris 

flows in Beichuan County 

42 fatalities, 16 debris-flows 

occurred  

27 Jun. and 17 

Jul. 2009 

Niumian valley, Yinxiu town destroyed G213 highway 

13-14 Aug.2010 21 valleys near Yinxiu town 31 fatalities, blocked Min River, 

destroyed G213 highway 

12-13 Aug.2010 Wenjia valley and Zoumaling valley, 

Qingping town 

12 fatalities, blocked Mianyuan 

River, destroyed large-scale regions  

13 and 18 

Aug.2010 

More than 50 valleys in Longchi Town, 

Dujiangyan city 

Road and houses were destroyed 

13-19 Aug.2010 Hongkong town, Dujiangyan city 4 casualties  

18-19 Aug.2010 Qingchuan county G212 and S105 highway were 

destroyed 

1-4 Jul.2011 Gaojia valley, Yinxingping valley and 

Chediguan valley 

G213 highway was destroyed 

9 Jul.2013 Daguangbao-Huangdongzi valley  

10 Jul.2013 Many valleys in the upstream of Min 

river 

G213、G317、S9，and dozens of 

bridges were damaged 

 



86 

 

Table 5.3 Typical debris flows developed in the Wenjia valley after the 2008 Wenchuan earthquake  

time rainfall/ 

day(mm) 

rainfall/h 

(mm) 

discharge 

(*104m3/s) 

(Xu) 

volume 

(*103m3) 

(Tang) 

affect area 

(*104m2) 

(Xu) 

24 Sep.2008 88 11.5mm/10min (Tang) 90 500 12.5 

31 Jul.2010 60.2 (Xu) 

92.6 (Tang) 

51.7(Xu) 

35.5(Tang) 

30 100  

13 Aug.2010 >200(Xu) 

82.6(Tang) 

70(Xu) 

37.4(Tang) 

450 3500 63.5 

19 Aug.2010 145.9(Xu) 

127.9(Tang) 

- 

31.9(Tang) 

30 300 12 

18 Sep.2010 52.0(Xu) 

51.9(Tang) 

- 

16.5mm/30min (Tang) 

17.6 170 8.5 

 

 

Fig.5.10 Debris flow in Wenjia valley on 13 Aug.2010 ( Xu et al., 2012) 

Summarized the characteristics of those post-earthquake debris flow events, it’s found that the 

debris flows are characterized by high occurrence frequency, multiple valleys occurred 

simultaneously (coupling effect), unpredictability (Xu et al., 2012). However, more works 

concentrated on the prediction of debris flow by monitoring the rainfall in the earthquake-stricken 

areas.  

Due to extremely rich loose solid materials distributed in the valley, it becomes much easier to 

initiate debris flows in theoretically under smaller critical rainfall and early cumulative rainfall 

compared pre-earthquake. By studying the Beichuan debris flows of 24 September 2008 (Tang and 

Liang, 2008), the early cumulative rainfall threshold for debris flows in the Beichuan was reduced 

by approximately 14.8%-22.1%, while the hourly rainfall intensity was reduced by 25.4%-31.6%. 
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The post-seismic critical hourly rainfall of the Beichuan debris flows recorded by rainfall 

observation stations was 37.4 mm (Cui et al. 2010). However, on 14 June 2008, it only triggered 

small debris flows in the northwestern of Beichuan city with the cumulative rainfall was 133mm 

(Tang, 2010). The cumulative rainfall with 192mm triggered large-scale debris flows in wide areas 

on 23 September 2008, while the cumulative rainfall with 182mm didn’t trigger any debris flows in 

Beichuan region on 17 July 2009. The rainfall intensity of 37.4 mm/h and 16.4 mm/h and antecedent 

rainfall of 82.6 mm and 162 mm were recorded in Qingping area and in the Yingxiu respectively 

between Aug. 12 and Aug. 14, 2010 (Tang, 2009). 

Regarding the rainfall features, the existing data showed complexity and behaved that: (1) not 

every rain event would trigger debris flow; (2) not potential high-risk large valley was easier than 

small valley to occur debris flow; (3) not all of valleys occur debris flow in the same region under 

the same rain event. Xu et al. (2012) argued that the variability in both rainfall duration and 

threshold for debris flow after the earthquake contributed to the unpredictability of debris flow.  

The rainfall is a very variable, uncertainty and heterogeneity factor in a wide region. No one 

realized that the limited rain gauge station can’t supply enough much and accurate rainfall 

information for predicting debris flows in the mountain areas. Another reason is researchers adopted 

the rainfall data might be from different rain gauge stations (Table 5.3). It led to there is not a unified 

conclusion. The occurrence of debris flow is an extreme complex process that has a close relation 

with many factors, such as the volume and location of debris source, early cumulative rainfall and 

rainfall intensity, lithology, physical properties of solid material, topography, etc. Therefore, it’s 

rarely likely to predict debris flow by a single factor, particularly in such wide earthquake-stricken 

areas. More quantitative evaluation works should be done to provide adequate prevention measures. 

Facing so large threat of debris flows, there still encountered the damage of debris flow. Why? 

Several reasons are summarized as followings. Firstly, the destructive of potential high-risk debris 

flow were underestimated (Huang & Fan, 2013). Secondly, there is not a completely correct 

recognize to post-earthquake debris flow. Many new debris flow valleys were generated and some 

small valleys became destructive debris flow valleys. Multiple valleys often occurred debris flows at 

the same time, however, the existing prevention measurements only focus on an individual valley 

according to traditional methods. As a consequence, unexpected disasters occurred, such as ‘8.13’ 

Qingping debris flows (Xu et al., 2012) and ‘7.10’ debris flows along G213 highway (Zou et al., 

2014). Then, reconstruction works were not hesitate to be carried out shortly after the earthquake 

before get a reasonable and available assessment. Finally, there is not a good prevention work. The 

failure of new built check dams were regarded to enlarge the magnitude of debris flow in Wenjia 

valley and Hongchun valley. 

Therefore, two regions (Beichuan city and areas from Yingxiu to Wenchuan along Min River) are 

selected to quantitative evaluate the regional debris flow hazards in terms of affect areas, flow path, 
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velocity, hydrography, concentration, deposition thickness, etc. to provide adequate mitigation and 

protection measures using mixing model based on the high-resolution satellite images. The study 

will focus on the evaluation of earthquake-induced debris sources and deposition features in the 

Beichuan region and the phenomenon of blocking river in the area from Yingxiu to Wenchuan along 

Min River. Furthermore, coupling effects by multiple debris flows and the effect of building 

countermeasure structures are also evaluated in the earthquake-stricken areas. 

5.4 Debris flows in Beichuan region 

The Beichuan city is about 125km away from the epicenter Yingxiu. It is situated in the transitional 

belt between the Sichuan Basin and the Western Sichuan Plateau, and is mainly composed of 

mountainous areas. The Yingxiu-Beichuan fault crosses the Beichuan city (Fig.5.11). In this region, 

the topography is characterized by medium elevations mountain ranging 600-2000m, and the slope 

concentrated on 10°-50° (Fig.5.12). The Jian River crosses the city, and local resident mainly lived 

on a narrow valley terrace of the Jian River, with an area less than 2km2. The research area has a 

sub-tropical humid monsoon climate with an annual mean precipitation is 1400 mm; the highest 

annual precipitation of 2340 mm was recorded in 1967. As seen in Table 5.4, the rainfall is mostly 

concentrated on the four months (June to September), which are about 83% of the annual 

precipitation. 

 

Fig.5.11 The pre- and post-earthquake images in the Beichuan region 

Table 5.4 Mean precipitation in the Beichuan County from 1971 to 2000 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Precipitation/mm 5.9 11.4 22.8 52.6 97.3 135.3 370.8 350.4 206.6 64.4 18.6 4.1 
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Fig.5.12 The slope distribution features in Beichuan region 

In the earthquake, more than 50% people (about 20,000) (Wang, 2009; Yin et al., 2009) died in 

the Beichuan city because of high-density landslide and collapse around the city (Fig.5.11 and 

Fig.5.22). The Wanjiayan landslide and Xinbei mid-school landslide are two of the most destructive 

landslides in the earthquake (Yin et al., 2009). Such landslides and collapse not only killed many 

people and also destroyed large infrastructures as well as generated several large barrier lakes in the 

vicinity of Beichuan city. The barrier lake of Tangjiashan landslide located on the upstream of 

Beichuan city. It led to local resident can’t keep normal daily life more than one month.  

The damage of the earthquake, slope failure and barrier lakes strongly hit the local resident. 

However, a rainfall caused more damage again in the September only four months after the 

earthquake. That rainfall triggered more than 70 debris flows in the Beichuan region (Tang et al., 

2010). Consequently, more than 40 people were killed again and three houses as well as one 

temporary settlement were destroyed. So far, three large-scale debris flows occurred on 24 

September 2008, 17 July and 10 September 2009 in the Beichuan region. These disasters have 

seriously endangered the lives and livelihood of local residents. More than 20,000 m2 farmland were 

buried and the majority of which rarely be recovered. Additionally, a considerable amount of debris 

flow was transported into river, resulting in the main channel being pushed to the other side (You et 

al., 2011). All of such disaster will influence the security of local resident and properties for a long 

period in the future. Therefore, it’s necessary to evaluate the debris flow hazard in Beichuan region. 

5.4.1 Evaluation of potential debris source 

The loose solid materials generating in the earthquake are potential debris sources for the sequence 

debris flows to large extent. As illustrated in the figure 5.11, geo-hazards not only generated along 

the active main fault, and also distributed along valley and river in comparison with the 
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pre-earthquake image. It’s easy to identify the damaged area by the high-resolution image. Due to 

the hanging-wall effect (Huang & Li, 2009), mostly damaged areas distributed in the northeastern 

and southwestern of Beichuan city while there were small damages in southeastern direction. To 

check the relationship of damaged areas with slope features, the main damage areas were traced and 

then overlapped it with the slope distribution map of the same region (Fig.5.13). There is not a clear 

relation between damaged area and slope. One of reasons is the surface of damage zone contained 

the failure zone and deposition zone. Another reason is the slope failure strongly governed by 

earthquake acceleration velocity as well as lithology, strata features, the distance from fault, etc. This 

is a very complex process. Meanwhile, it’s a rather difficult problem to judge the potential failure 

zone in both the simulation and practical engineering. 

 

Fig.5.13 The distribution features of earthquake-induced landslides based on the slope distribution 

map in Beichuan region 

It’s very essential to make sure the distribution information of debris source in the evaluation of 

debris flow hazard in a region. The distribution features of potential debris flow hazard in a wide 

region rely largely on the distribution features of debris source that significantly influence the flow 

behavior, discharge and affected area. Based on the current information, one of advantages is the 

location of exact damaged zones can be correctly determined. It might not suitable to define the 

critical slope of failure to a constant in a wide region of earthquake-stricken areas, particularly the 
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research area contained both hanging-wall and footwall zones. Due to the earthquake-induced 

landslides are mainly depended on the distance to the active faults and slope gradient (Qi et al., 

2010), it’s reasonable to evaluate the debris sources by the two step scheme in the depth-integrated 

particle method. The slope distribution characteristics were analyzed by roughly dividing the 

research area into three parts by the river and fault, which are western, northern and eastern part in 

the center of Beichuan city, respectively. It’s very clearly that the damaged slopes of western part are 

smaller than the other two parts. Hence, the information of debris sources can be generated by 

roughly setting different critical slope of failure in three different parts to ensure the relative accurate 

location information.  

Considering the relation between the location of damage area by the earthquake and the 

topographic characteristics, the critical failure slope was set to 38°, 42° and 46° for western, northern 

and eastern part respectively, basing on the pre-earthquake topography. The failure areas in western 

and northern zone are clearly more than in eastern zone. It also inferred that the critical failure slope 

is smaller in hanging wall than in footwall. Then, such slope failure particles moved down according 

to the equation of motion with the repose angle is 30°. The actual damaged area had a strong relation 

with earthquake acceleration velocity, lithology, strata features and the distance from fault, etc. 

About 64% of debris sources located in the Silurian slates and phyllites and small debris sources 

located in the sandstones, limestones, etc. in the Beichuan region (Tang et al., 2009). As illustrated in 

the figure 5.14, there are 47 debris sources in red in the whole research area. The largest enclosed 

area by a single curve in red is the whole affected areas by the simulation results, while the dense 

areas by red color are the final deposition areas of steep slopes with the repose of angle is 30º. The 

number of entire or partial overlap areas is 35, and the overlap areas are 70% of actual damaged 

areas. Mostly failure zones matched well with the actual damage zone in terms of location and 

coverage area by separately setting critical slope of failure in three zones, while there is a large 

failure zone in eastern part where didn’t be damaged in the earthquake.  

Noted that the loose solid materials that generated in the earthquake are not all of debris sources 

in sequence debris flows. The sequence rainstorm also triggered the slope failure and generated new 

deposits in the valley. Tang et al. (2011) agreed that the damaged areas increased by more than 24% 

in terms of landslide by rainstorm on 24 Sep. 2008 in the southern of Beichuan city. 

Assumed the initial height of failure particles is 1.0m, the thickness of debris sources ranged 

0-3m (Fig.5.15).  
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Fig.5.14 Simulation results of failure zones in Beichuan region 
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Fig.5.15 The thickness of debris sources 
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5.4.2 Rainfall 

Rainfall is the most important factor to trigger debris flows in the earthquake-stricken zones. So far, 

NASA and JAXA can supply database of the rain radar satellite, called TRMM (Tropical Rainfall 

Measuring Mission) in real-time. Although the monitoring cell is 0.1×0.1 degrees in JAXA smaller 

than 0.25×0.25 degrees in NASA, the accuracy is very low in real-time in JAXA TRMM and the 

data hasn’t been dealt with in the present research area. Fukuoka et al. (2008) provided the rainfall 

data by the NASA TRMM in the Beichuan region (Fig.5.16). It showed extra-ordinary intense 

rainstorm was recorded from September 22 until 24 and largest daily precipitation was 198 mm of 

September 23. They also verified this rainstorm was not localized but widely distributed intense 

rainstorm by analysis of adjacent cells from September 22-24. The records of rainfall by Tangjiashan 

station showed there was a heavy rain from the Sep.23-24 (Fig.5.17). However, the cumulative 

precipitation was 234mm for August 2008 from Beichuan station (Tang et al., 2009). It’s larger than 

the cumulative precipitation (120mm for August respectively) by the NASA TRMM in the figure 

5.16. It’s still hard to obtain the accurate rainfall recordings in the rural mountainous areas. 

 

Fig.5.16 Daily and cumulative precipitation for the cell covering the Beichuan city obtained by 

TRMM satellite rainfall monitoring system (Fukuoka et al., 2008) 

The eyewitness verified the debris flow occurred around 06:00 on 24 Sep.2008. Therefore, the 

antecedent cumulated rainfall and critical rainfall intensity were estimated to 272mm and 41mm by 

recordings of Tangjiashan station (Tang et al., 2009).The pre-earthquake critical cumulative rainfall 

and critical rainfall intensity were 320-350mm and 55-60mm/h respectively in Beichuan County 

(Tang et al., 2008). 
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Fig.5.17 The rainfall features in Beichuan region from 23-24 Sep. 2008 

5.4.3 Evaluation of the debris flow hazards in Beichuan region 

Based on the information of debris sources in section of 5.4.1, debris flow will be simulated from 

initiation, transportation and deposition using the mixing model. In order to efficient simulate 

regional debris flows, 20m by 20m mesh was adopted, and water particles were averagely distributed 

by 100m interval distance. Therefore, the number of water particles is 7921. It means that the mean 

rainfall amount is 39.12mm in the whole research areas. The Manning coefficient, diffusion 

coefficient and β are set to 0.1, 0.05 and 80 respectively. 

As illustrated in the figure 5.18, the 6 (D01-D06), 6 (D07-D12) and 3 (D13-D15) debris flows 

were generated in the western, northern and eastern part respectively. The four debris flows 

(D01-D03) in the western part finally reached to the city, while D04 flowed to the Leigu town and 

D05-D06 moved to Jian river. The 6 (D07-D12) debris flows in the northern of Beichuan city finally 

reached to the river. The D13 in the eastern part washed away the solid particles blocking the valley 

channel and finally flowed to river and deposited with D11 in the river. It’s very dangerous in this 

case. It’s very likely to completely block river and form barrier lake. Furthermore, the backwater will 

drainage the upstream and threat the safety of downstream. In the earthquake, the damage of D13 

valley had ever blocked river and formed barrier lake (Fig.5.11). Small solid particles were initiated 

by water particles in the D14 and D15. The filed survey (Tang et al., 2012) demonstrated that mostly 

valleys in this region occurred debris flows on 24 Sep. 2008, except D14 and D15. The main reason 

originated from the generating process of debris source. Where the debris source of triggering the 

D14 and D15 debris flows didn’t be damaged at all in the earthquake.  
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Fig.5.18 The simulation processes of debris flows in Beichuan region 

Due to large amount of solid materials blocked on the valley channels, one of typical features in 

the debris flows of earthquake stricken areas is water flow from the upstream of valley washed out 

the landslide dam and formed debris flow. Such effect was simulated well in the D13 debris flow 

(Fig.5.19). With the increasing of water particles from the upstream of valley, the concentration 

reduced gradually (Fig.5.20). After 300s from the initiation, the landslide dam was washed out and 

the debris flow flowed into river finally. 

 

Fig.5.19 The transportation processes of D13 debris flow 
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Fig.5.20 The concentration varied with simulation time for D13 debris flow 

Three debris flows (D01-D03) flowed to Beichuan city and resulted in disasters on 24 Sep.2008. 

The hydrograph in five flow cross-sections were obtained in the figure 5.21. The hydrograph of 

B01-B04 can well explain the hazard in the southern of Beichuan city. In this case, there only small 

solid particles in D01 were mixed with water particles and were transported on the deposition fan, 

while there were large particles in D02 and D03 were transported to the resident zone of southern of 

Beichuan city. Specially, the D02 and D03 together flowed to Beichuan city by confluence at the 

downstream of valley. The discharge would reach the maximum around 600s from the initiation 

(Fig.5.21). By the analysis of hydrograph features, it can be used to evaluate the damage time. 
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Fig.5.21 The hydrograph of five flow cross-sections in Beichuan region using 20m mesh size 

As illustrated in the figure 5.22, the southern of Beichuan city was damaged seriously by debris 

flows from the D01, D02 and D03 by the images of three different periods. It means that the rainfall 

intensity of 39mm in this region didn’t supply sufficient water to trigger large-scale debris flows. 
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Therefore, one more case with large amount of water particles were concentrated on the analysis of 

debris flows (D01-D03) in the southern of Beichuan city. 

Observed on 31 Mar. 2007 Observed on 18 May 2008 Observed on 21 Nov. 2009

damaged area by earthquakelegend damaged area by debris flows on 24 Sep. 2008, 17Jul. and 10 Sep., 2009  

Fig.5.22 The images of southern of Beichuan city in three different periods 

In the figure 5.23, 10m mesh size was adopted to evaluate the deposition features on the southern 

of Beichuan city. The number of water particles were averagely distributed by the 50m interval 

distance, and the mean rainfall amount is 60.14mm. Diffusion coefficient and fitting coefficient were 

set to 0.02 and 10 respectively. All of three debris flows were initiated around 100s, and mostly 

debris flows deposited on the Beichuan city after 1200s. The discharge of D01 and D02 reached to 

the peak value around 170s and 400s, while there were two peak values for D03 around 280s and 

400s. In this case, the discharge is completely different from the small rainfall case for D01, while 

the hydrograph curves are similar in both cases for B02, B03 and B04. It demonstrated that both D02 

and D03 debris flows watershed features significantly influenced the hydrograph of debris flows. 

After 1200s, some solid particles remained on the valleys because of large concentrations, 

although they were mixed with water particles. The concentration of deposits from D01 ranged 

0.4-0.8, and the concentration increased from the front marginal to the apex of deposition fan. The 

thickness of deposits on the deposition zones of D01 ranged 0-2m. The thickness increased from the 

marginal to the center of deposition fan in the lateral direction and increased from the front marginal 

to the apex of deposition fan in the longitude direction. Most of deposits from D02 and D03 flowed 

into river while almost deposits of the actual debris flows deposited on the old Beichuan city. It’s 

obviously that the thickness of deposits ranging 0-0.7m from D02 and D03 is smaller than the actual 

thickness of deposits with 7-12m (Konagai et al., 2008). 
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Fig.5.23 The transportation processes focus on the southern of Beichuan city 
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Fig.5.24 The hydrograph for the debris flows in the southern of Beichuan city using 10m mesh size 
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Fig.5.25 The concentration and thickness of debris flow in the southern of Beichuan city using 10m 

mesh size at t=1200s 

It’s always hard to know the velocity distribution features in the actual debris flow events. And 

the estimated velocity always obtained from the empirical equations by measuring discharge and 

flow depth. In the present method, the velocity distribution features are easy to obtain. As illustrated 

in the figure 5.26, the velocity distribution features varied with the topographic features, discharge, 

time, concentration, etc. The velocity ranged 0-11m/s at t=100s, and the velocity of particles that 

located the upstream of valley is larger due to the large gradient of valley channel. The velocity 

reduced with simulation time. The velocity in the valley is larger than on the deposition zones. The 

detailed velocity distribution features contribute to provide adequately protective measures in a 
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reasonable site. 

 

Fig.5.26 The velocity distribution features at 100s and 200s in the southern of Beichuan city 

5.4.4 Discussion 

The distribution features of debris sources strongly influenced the distribution of debris flow in a 

wide region. The debris sources were evaluated by dividing the research area into three parts and 

setting different critical failure slope, according to the distribution features of earthquake-induced 

landslides. The active fault and river system strongly influenced the critical failure slope in the 

earthquake. Critical failure slope was set to 38°, 42° and 46° for three parts and the repose angle was 

set to 30° to generate debris sources. The overlapped area is 70% of actual damage area. It’s hard to 

obtain the prefect agreement between simulation results and actual damage area, because the 

earthquake acceleration velocity, lithology and the distance from the fault strongly governed the 

damage zones. All of such information can’t be taken into account in the present model. The 

thickness of deposits ranged 0-3m if the initial particle height is set to 1.0m. 
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Based on the simulation information of debris sources, the regional debris flow hazards were 

evaluated using 20m mesh DEM. The 16 debris flows were initiated when the mean rainfall intensity 

and diffusion coefficient was set to 39mm and 0.1. The agreement is good between the number of 

actual debris flow and simulation results except two more debris flows that originated debris sources 

didn’t be generate in the earthquake. Therefore, the evaluation results of debris sources strongly 

influenced the evaluation of regional debris flows. Although many debris flows were initiated under 

mean rainfall amount was 39mm, the magnitude of debris flow in the southern of Beichuan city is 

smaller than the actual debris flow in term of damage area on 24 Sep. 2008. The large rainfall 

intensity with 60.14mm were used to evaluate the debris flow hazard in the southern of Beichuan 

city. The affect area of D01 had a good agreement with actual deposition zone. However, the affect 

areas of both D02 and D03 are clearly larger than the actual damage areas, due to smaller critical 

deposition slope or large mesh was adopted. The thickness of deposits on deposition fan is less than 

1m. It’s clearly smaller than the actual deposition thickness ranging 7-12m.   

The simulation results showed the southern of Beichuan city is the most dangerous zone under 

the threat of debris flow. The hydrograph and velocity distribution features are favor to analyze the 

damage. Although the catchment area of valleys is not large, heavy rainstorm can trigger large 

magnitude debris flow. It demonstrated such small valleys where were damaged seriously can’t be 

ignored in the evaluation of sequence debris flows in Beichuan region. Particularly, the coupling 

effect of multiple debris flows should be evaluated in detailed.  

5.5 Debris flows in the region from Yingxiu to Wenchuan along the Min River 

Yingxiu is the epicenter of the 2008 Wenchuan earthquake, it’s 10km away from the Dujiangyan and 

70km away from the Chengdu, where is the capital of Sichuan province. G213 and S9 highways 

were built as one of important roads to go to the most regions of northwestern of Sichuan Province 

crossing the Yingxiu along the Min River. Therefore, it brought huge challenge to enter the epicenter 

to rescue and survey shortly after the earthquake, because the highways were serious damaged as 

well as the Min River was blocked at many sites resulting from the earthquake and secondary 

geo-hazards. This area was not only the most seriously damaged area during the earthquake, and also 

is the potential high-risk zone of debris flow in the long period after the earthquake because 

extremely rich loose solid materials were generated by the earthquake. 

492km2 (13km by 44km) area (Fig.5.27) is selected to evaluate regional debris flows in the area 

from Yingxiu to Wenchuan along the Min River. As illustrated in the figure 5.27, two main faults 

(Yingxiu-Beichuan and Wenchuan-Maowen) cross this area and the Wenchuan-Maowen fault is 

nearly parallel with the Min River from Caopo to Wenchuan.  
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Fig.5.27 The post-earthquake image in the areas from Yingxiu to Wenchuan along the Min River 

The main lithology of this region is Granitic rocks, Sinian pyroclastic rocks, Carboniferous 

limestone and Triassic sandstones. The loose Quaternary deposits distributing in the form of terraces 

and alluvial fans. All bedrocks is deeply fractured and heavily weathered, covering with a layer of 

weathered material (Gan et al., 2010; Ge et al., 2014a). The vertical meteorology is clearly, the study 

area was divided into two different meteorology zones by the boundary of Yinxing. The annual 

precipitation is 1285mm in the southern of Yinxing, while the annual precipitation is only 526mm in 
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the northern of Yinxing. The rainstorm concentrates from June to September and account for 70-80% 

of the total. The annual mean discharge of the Min River is 168-268m3. 

The region from Yingxiu to Chediguan is a low-frequency zone of debris flow in last 100 years 

before the earthquake. The number of major debris flow valleys is only 8, and the previous debris 

flows often belonged to dilute debris flow due to scarcity of debris source. In addition, only several 

debris flows events (such as debris flows in Taiping valley and Luoquanwan valley) had ever 

blocked the Min River (Tu et al., 2013). In 1978, Banzi valley occurred debris flow and blocked Min 

river (Liu et al., 2004). However, 56 new geo-hazards were increased as well as 28 sites were 

activated during the earthquake in comparison with the geo-hazards situation in 2005. More than 0.2 

billion m3 deposits were generated along Min River in this region(Zhuang, et al. 2009).This region 

instantly became to a high-frequency and high-risk zone of debris flow shortly after the earthquake.  

The intermittently damages of debris flow were developed and damaged in this region (Fig.5.28). 

After 12 May 2008, four times catastrophic debris flows events were occurred in this region, on 17 

Jul. 2009, 14 Aug. 2010, 3 Jul. 2011 and 10 Jul. 2013. The 21 debris flows occurred on 14 Aug. 

2010 (Fig.5.28A) and more than 30 debris flows occurred on 10 Jul. 2013 (Fig.5.28 B and C). These 

debris flows led to many casualties and destruction among highways, bridges, villages and 

reconstructions as well as barrier lakes. It’s interesting found that most valleys with smaller 

catchment area occurred debris flow before 2013, while larger valleys occurred debris flow in 2013, 

such as Taoguan valley, Qipan valley, etc (Ge et al., 2014a). 

Luoquanwan valley

Taiping valley
Er valley

A C

B
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Tang, 2010

 

Fig.5.28 Post-earthquake debris flows in the region from Yingxiu to Wenchuan along Min River 

According to the existing reports and scientific papers, almost every valley in this region had 

occurred debris flow after the earthquake (Zhuang et al., 2009). Almost all of debris flows in this 
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region are characterized by large-discharge, large magnitude and high occurrence frequency. So far, 

dozens of valleys occurred debris flows more than 2 times and some valleys occurred up to 12 times 

after the earthquake. Meanwhile the Min River had been blocked and bridges, tunnels as well as 

roads had been damaged for many times (Tu et al., 2013). Therefore, it’s very essential to evaluate 

the debris flow in this region to provide an adequate prevention and reconstruction planning. 

5.5.1 Topographic features 

The topography is characterized by rugged mountain and incised valley in the region. And the 

elevation ranges 880-4500m. The valley density is so large that there are more than 70 valleys with 

the catchment area ranging 0.25-55km2 from the Yingxiu to Wenchuan along the Min River 

(Fig.5.27). From the satellite image, it’s easy to identify large valleys and measure theirs’ catchment 

area. By statistic 42 valleys (Table 5.5), it’s found that there are 16 valleys which catchment areas 

are larger than 10km2. Noted that the other valleys that weren’t be measured are less than 3km2 in 

catchment area. Therefore, Mostly valleys concentrate on small catchment areas within 3km2. Such 

valleys are characterized by short valley channel and large slope gradient. There is not enough buffer 

zone between the mouth of valley and river for debris flow deposition. It’s very likely to flow into 

the river if large-scale debris flow was generated. Due to the effect of the Wenchuan-Maowen fault, 

there are at least four pairs of opposite valleys, in which the distance both mouth of valleys is very 

near, from the Caopo to Wenchuan. There also exist such phenomenon from Yingxiu to Caopo range 

because many valleys developed on both sides of river.  

Table 5.5 The relationship between catchment area and the number of valleys 

catchment area/ km2 <3 3-5 5-10 10-20 20-30 30-40 >40 

the number of valleys 14 6 6 4 5 3 4 
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Fig.5.29 The slope frequency in the region from Yingxiu to Wenchuan along Min River 
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10m mesh size was used to calculate the slope of this area. The slope ranged 0° to 70°, and more 

than 80% slopes range from 20° to 50° (Fig.5.29). The existing survey showed that the 87.7% 

landslides distributed on 20°-50° zones (Huang, 2008). It’s inferred that mostly areas should have 

been damaged in this region. 

 

Fig.5.30 The topographic features in the region from Yingxiu to Wenchuan along the Min River 

5.5.2 Debris sources 

There generated numerous of landslides and rock-falls during the earthquake because of special 
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topography and near the epicenter. The existing research and field survey demonstrated that the 

coverage of damaged area varied with different valleys (Zhuang et al., 2009). By statistically 

analysis of 20 valleys that are primary larger catchment areas, the damage rate ranged 5%-50%. The 

damage rate of partial small valleys is nearly 100%. The downloaded post-earthquake images in this 

region were observed on 31 March 2011. Although high-elevation areas were covered by snow and 

cloud, and it’s not easy to recognize the damaged area. From the downstream of valleys and lower 

places of both sides of river (Fig.5.31), it’s still found that the damage was rather serious and rich 

loosely deposits located on the slope surface and at the bottom of valley. It’s noted that such 

lower-elevation damages are very sensitive to debris flows. The site survey showed 80% and 63% of 

highways were damaged from Yingxiu to Caopo for old and new G213 highway during the 

earthquake (Tang, 2008). Huang also argued that the damaged features were significant influenced 

by the fault, and which led to large differences for damage in different places (Fig.5.32). The 

mentioned destroyed ration in the figure 5.32 means the percentage of the length of the road blocked 

by landslides to the total length of the road. 

 

Fig.5.31 Damage in the lower-elevation valleys along the Min River by post-earthquake image 

More than 0.2 billion-m3 deposits were evaluated along the Min River in this region shortly after 

the earthquake (Zhuang et al., 2009). As illustrated in the figure 5.31, there still distribute large 

amount of loose solid materials overall region after three rainy-seasons. Moreover, such remained 

rich debris source must be entrained to debris flow if it rains in the near future. It’s an urgent work to 

evaluate the potential debris flow disaster to reduce the disaster in the earthquake zone. 
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Fig.5.32 Difference of the geo-hazards development in the hanging wall and the footwall along the 

G213 highway in Dujiangyan-Wenchuan section 

5.5.3 Evaluation of debris flow hazards 

It’s no doubt that every valley has a potential high-risk to occur debris flow in this region with 

advantage topography, extremely rich debris sources and rainstorm. Rainfall is a very various factor, 

it can’t be simply used to predict the debris flow, particularly in a wide earthquake-stricken region. 

But we can evaluate debris flow hazards in this region from watershed view by simulating rainfall. 

(1) Evaluation of watershed features 

In order to evaluate watershed features, rainfall simulation in the whole region was carried out. Due 

to the research area is very wide, it was divided into two parts to efficient simulate. Water particles 

were averagely distributed by the interval distance is 300m in the study area and then flowed down 

based on the given topography (Fig.5.33). It’s found that water flow rarely lateral spread after flowed 

out the mouth of valley and before flowing into river. This phenomenon demonstrated that there are 

not enough buffer zone for debris flows and the slope of deposition zone is rather large. It means that 

such topographic features are favor to debris flows flowing into river. Consequently, the riverbed 

will be increased and the efficient reservoir room will be reduced for the downstream reservoir with 

large solid materials entering the river. It’s also likely to block river by forming temporary dam 

instantly, if velocity, discharge and density of viscous debris flow is large enough in comparison with 

river’s. Furthermore, the backwater will inundate farmland, highway and railway, even as residence 

zone. The dam failure also threat the downstream resident and properties (Zhang et al., 2013). 

Except physical property parameters of debris flow and river, cross-angle is always proposed to 

evaluate its possibility of blocking river. Cross-angle is defined as the upstream angle of two 

intersecting flow lines between the debris flow and river flow. The angle is more closed to 90°, it’s 

much easier to block river (Guo, 2004). Xu et al. (2012) also found that the direction of debris flow 

valleys was more or less perpendicular to the direction of the main river and large amounts of source 

materials must be available to block the river by analyzing the existing debris flow events in the 
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earthquake-stricken region. 

2km

A BChediguan valley

Yingxiu

Wenchuan

Caopo

Taoguan valley

Mozi valley

Yinxing

Hongchun valley

Cutou valley

Qipan

valley

2km

Yingxiu

Wenchuan

Caopo

Cutou valley

Qipan

valley

Er valley

Yeniu valley

Luanquanwan valley

Futangba valley

Gaodianzi valley

Xinqiao valley

Banzi valley

Mnianping valley

Daxi valley

Banqiao valley

Taiping valley

Yiwanshui valley

Chediguan valley

Taoguan valley

Mozi valley

Yinxing

Cutou valley

Er valley

Yeniu valley

Gaodianzi valley

Xinqiao valley

Banzi valley

Mnianping valley

Taiping valley

Luanquanwan valley

Futangba valley

 

Fig.5.33 The watershed features by simulation rainfall 

The cross-angles of 78 flows, which directly flow into the Min River in the region (Fig.5.33 B), 
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are measured. When the cross-angle is larger than 90°, it’s demonstrated that the debris flow 

direction will be against the river flow direction. In such case, it will be much easier to block river in 

theoretically. The statistically results (Fig.5.34) showed that 48 cross-angles concentrated on 80°-90° 

and more than 80% of cross-angles are larger than 50°. Therefore, the potential debris flows in this 

region are very likely to block the Min River. 
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Fig.5.34 The cross-angles in the region from Yingxiu to Wenchuan along the Min River 

Actually, more than 20 debris flows had blocked the river since 12 May 2008 in this region 

(Fig.5.35). On 13 August 2010, all of five debris flows blocked the river on the upstream of Yingxiu 

town. Resulting in more than half of riverbed was blocked and the river was pushed to the opposite 

side, and furthermore the new Yingxiu town was flooded. Large-scale debris flows occurred on 10 

July 2013 also formed many dammed lakes in the Min River and certainly led to more seriously 

damage. 

 

Fig.5.35 Dams of debris flow in the region from Yingxiu to Wenchuan since 12 May 2008 (Ge et al., 

2014b) 
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In addition, the elevation is relatively lower at the valley mouth as well as the width of valley 

mouth is small and not enough buffer zone for debris flow deposition in this region. As illustrated in 

the figure 5.36, where the transportation infrastructures cross were often destroyed by debris flows in 

terms of scouring bridge, burying and washing out roads, blocking and destroying tunnel entrance 

(Zou et al., 2014). It is extremely important to make sure the safety of lifelines projects during kinds 

of disasters. Noted that many small valleys where the road crosses from the downstream are 

becoming new debris flow valleys. It will increase new disasters along the road if none of measures 

were taken. 

 

Fig.5.36 The transportation infrastructures cross the mouth of debris flow valley 

(2) Simulation of multiple debris flows occur simultaneously 

Multiple valleys simultaneously occurred debris flows is a typical characteristic of post-earthquake 

debris flows in the earthquake-stricken areas. It always caused more seriously damage because of 

coupling effect by multiple debris flows. On 13 August 2010, a rainstorm triggered more than 20 

valleys to occur debris flows from Yingxiu to Chediguan range (Xu et al., 2012). The destructive 

debris flows blocked the Min River and further damaged the Yingxiu new town (Fig.5.37). It’s a 

tragedy that the epicenter was hit again in 2 years. Here, small region (3.25*4km2) near Yingxiu was 

selected to analyze the coupling effect of multiple debris flows.  

The basic parameters of five valleys in this zone (Liu et al., 2012) showed in the table 5.6. The 

catchment area is only 0.5km2 or even less than 0.5km2 except 2 larger ones with 5km2. Although 

the catchment area is small, debris sources are extremely rich because of a little distance from the 
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epicenter. The area of deposition fan is also rather small. It’s rarely inevitable to flow into river if 

larger debris flow was triggered. The cross-angles of five flows equal to 90° or close to 90°. It means 

that these debris flows are very easy to block river once they flow into river. 

 

Fig.5.37 Multiple debris flows blocked the Min River in 2010 (Xu et al., 2012) 

Table 5.6 The basic parameters of five valleys near Yingxiu  

valley catchment area deposition fan area cross-angle 

Hongchun 5.2 km2 0.064 km2 90° 

Shaofang 0.53 km2 0.018 km2 101° 

Xiaojia 0.45 km2 0.012 km2 99° 

Wangyimiao 0.4 km2 0.013 km2 90° 

Mozi 5.08 km2 0.01 km2 90° 

 

In order to generate debris sources, the critical slope of failure and the repose of angle were set to 

38° and 30° respectively in the whole research area. As illustrated in the figure 5.38, several large 

damaged areas agreed well with the actual damage areas in the Hongchun valley. The Mozi valley 

was damaged seriously in the earthquake. The simulation results only generated large amount of 

debris source in the upstream of valley, while the large debris sources in the downstream were 

neglected in the simulation. There also generated some debris sources among three small valleys. 

Finally, 17% of catchment area was damaged by simulation results in the whole research areas. 
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Fig.5.38 The simulation results of debris source 

Based on the simulation results of debris source, the water particles were average distributed by 

50m interval distance. Then the simulation of debris flows were carried out in this zone. The Main 

parameters for multiple valleys near Yingxiu showed in the table 5.7. 

Table 5.7 Main parameters for multiple valleys near Yingxiu 

parameters value 

critical failure slope 38° 

repose of angle for solid material 30° 

Manning coefficient  0.1 

diffusion coefficient 0.05 

Mean rainfall amount 38.5mm 

 

The detailed simulation processes showed in the figure 5.39. After 50s from simulation start, the 

water particles mainly flowed to the valley channel and mixed with solid particles. Around 150s, the 

three small debris flows were originated and flowed to river, while two large debris flows hadn’t 

been originated yet. After 250s, two of three small debris flows had finished the transportation 

processes and the other one significantly reached to the river. At the same time, debris flows from 

small braches flowed to the main valley channel in Hongchun valley, while large amount of solid 

particles that blocked the valley channel were initiated by the water particles from the upstream of 

Mozi valley. Aound 500s, three small debris flows completely deposited on the riverbed, while the 

Hongchun debris flow was flowing into river and debris flows in Mozi valley had finished all of 

initiation processes. After 15min from the initiation, all of debris flows primary flowed into river and 

formed five deposition fans on the riverbed. 
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As the simulation results showed, five debris flows were generated and further five dams of 

debris flow were formed in the river. It’s observed that five dams of debris flows pushed the water to 

the opposite sides of river and didn’t completely block the riverbed with small water particles 

crossing the marginal of dams of debris flow and flowing down. According to the entire deposition 

features, the agreement is fairly well between simulation results and actual disasters.  

 

Fig.5.39 Simulation processes of multiple debris flows 

The concentration distribution features varied with the distribution features of debris sources and 

the catchment characteristics. Therefore, the concentration behaved differently in the different stage 

in the different valleys with the increasing of debris flow volume in the main channel from different 

branches. Due to the travel distance of three small valleys is short, the debris flows with the 

extremely heterogeneity concentration already flowed into the river before sufficiently mixed with 

the water. At the initial deposition time, the concentration on the deposition formed like a series of 

ring, particularly on both larger deposition fan. However, such phenomenon gradually disappeared 

with the concentration of debris flows in the river trends to homogeneous because the diffusion 

effects between the previous reached water and debris flows. 
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Fig.5.40 Concentration distribution features varied with simulation time 

In the actual debris flows, the diffusion effect between debris flow and river water is weak. 

Therefore, debris flows always blocked river and formed barrier lake. In the present study, the 

diffusion coefficient was set to the constant in the whole simulation process. To simulate the realistic 

concentration on the deposition fan, the distribution of water particles can be changed to avoid large 

amount of water particles in the river. In this case, it’s assumed that the diffusion coefficient is 

extremely small between debris flow and river water. The entire distribution features of 

concentration are favor for analyzing the composition of sedimentation and further evaluate the time 

of be flooded away or the dam breach. 

The hydrograph is often inputted to some models to evaluate the effects of surges in the damage 
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process of debris flows. In this areas, six cross-sections were measured the number of particles in 

both Hongchun and Mozi valleys (Fig.5.41). This work didn’t separate debris flow particles and 

water particles to count. Actually, the mostly water particles were not pure water particles any more. 

They had mixed with the solid particles by the concentration distribution features in the figure 5.40. 

Four cross-sections were selected in the Hongchun valley while S05 and S06 located in the Mozi 

valley. Both S04 and S05 are situated near the mouth of valley, where weren’t small braches to flow 

into the main flow channel. Combined the detailed simulation processes in the figure 5.39, the 

number of particles in S02 increased suddenly due to one of braches flowed into the main flow 

channel. Because many braches flowed into the main flow channel, the hydrograph in four 

cross-sections in Hongchun valley behaved complex with two peaks at least. The hydrograph 

reached to peak value in 200s and 600s in S04. And the maximum peak value arrived at 600s near 

the mouth of Hongchun valley. The braches in the Mozi valley are less than in the Hongchun valley, 

and the hydrograph is simpler. And both hydrographs have similar trends with 200s delay. The peak 

value of hydrograph generated in 600s from the initiation near the mouth of Mozi valley. 

Additionally, the peak value of hydrograph in Mozi valley is larger than in Hongchun valley. 
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Fig.5.41 Hydrograph in six flow cross-sections of two valleys 

As illustrated in the figure 5.42, the velocity distribution features along the width of flow 

cross-section varied with the simulation time. The velocity in S04 cross-section had small fluctuation 

with simulation time and the width of cross-section, and its value closed to 3.7m/s. However, the 

velocity in S05 cross-section ranged 3-6m/s and behaved complex along the width of cross-section. 

The discharge up to the peak value from 500s to 600s. The velocity also up to the maximum value at 
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t=500s and t=600s. It inferred that the discharge had some influence for the velocity. The simulation 

results of velocity in both cross-sections are in a realistic range. 

The velocity usually determined the destructive power or impact force. Such simulation results 

are very useful to take reasonable measures in the prevention works to avoid large debris flows 

together to arrive at the main channel simultaneously.  
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Fig.5.42 Velocity distribution features varied with the simulation time along the width of flow 

cross-section 

 

Fig.5.43 The comparison simulation results with actual damage in term of affected areas 
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Due to the debris-dam generated by the Hongchun debris flow pushed the river water to the 

opposite side, the Yingxiu new town was flooded. As illustrated in the figure 5.43, the affected area 

extended to the resident zones and covered the whole riverbed. The agreement is good between 

simulation results and actual damage features. 

Regarding simulation results, it’s found that every flow path can generate debris flow even the 

catchment area is very small. This is a new phenomenon of debris flows in the earthquake-stricken 

zone. It’s inferred that small valleys can’t be ignored or underestimated in the evaluation works of 

debris flows, particularly in the seriously damaged zone. Furthermore, the upstream of smaller debris 

flows that are characterized by short channel length and large gradient, were earlier than larger 

debris flows to arrive and block the river. In such case, the discharge of river water for the 

downstream must be reduced rapidly. The discharge and velocity of river water are important factors 

to determine whether debris flow blocked the river or not. Therefore, it increased the possibility of 

blocking river for the downstream debris flows. It must be concerned before taking any measures to 

prevent. It’s a very common phenomena that a single dam of debris flow might not cause any 

damage. However, multiple debris flow occurred simultaneously might further cause large damage 

due to kinds of coupling effects. It seems that the volume of three smaller dams of debris flows is 

smaller than the actual debris flows. It’s demonstrated that there were not sufficient debris sources 

were generated if the critical failure slope was set to 38°. It’s likely that the actual failure slope was 

smaller than 38° in so small catchment or the thickness of deposits was much larger than 1m. It’s 

also revealed that it’s not a good choice to simulate regional debris flows by setting a constant for 

critical failure slope to generate debris sources in different catchments.  

(3) Simulation of two opposite debris flows  

Noted that there is a special topographic feature that the distance of valley mouths of two opposite 

valleys is rather small. Several pairs of such valleys that behaved this special feature in this region. 

Here, one of pair-wise valley (Manianping and Daxi valley) was selected to evaluate such special 

debris flows. Both valleys are 40km away from the epicenter. They were caused differently damage 

in the earthquake. The basic parameters of both valleys showed in the table 5.8. A simulation was 

carried out to show two debris flows how to block river in the same rain event. 

Table 5.8 Basic parameters of both Manianping valley and Daxi valley (modified by Liu et al. (2012) 

and Liu et al. (2004)) 

valley catchment area/km2 relative elevation/m damaged area/km2 cross-angle 

Manianping 46.3 3257 12.82 78° 

Daxi 15.76 3762 1.45 91° 
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Assumed the critical failure slope of both valleys is 38° and repose of angle is 30°, according to 

the existing research that the critical failure slope ranged 35°-45° in this region (Gan et al., 2010). 

Hence, the debris source particles were generated. It seems that the generated debris sources in 

Manianping valley are more than Daxi valley (Fig.5.44. Such distribution of debris source roughly 

matched well with the damaged area from the perspective of the amount. Therefore, averagely 

distributed water particles and simulated both debris flows. Manning coefficient and diffusion 

coefficient is set to 0.1 and 0.1 respectively. 

The whole simulation processes showed in the figure 5.44 Solid particles were initiated by water 

particles which mostly confluence to the main channel after 100s. Due to the valley channel of Daxi 

valley is relatively straight, the first surge reached to the river after 280s from the initiation. At that 

time, solid particles blocking the valley channel in Manianping valley hadn’t been initiated yet. 

Around 600s, the second surge flowed to river again in Daxi valley, while the large amount of solid 

particles were mixing with the sequence water particles from the upstream of Manianping valley. 

After 900s, the debris flow in Daxi valley finished the transportation process, while the debris flow 

was initiated completely in Manianping valley. Before the Manianping debris flow flowed into 

valley, the previous arrived debris flow particles from Daxi valley was flowing down along the 

riverbed with a small velocity. The concentration was larger than 0.4, and the largest concentration 

located in the center of deposits. At 900s, the concentration of front debris flow in Manianping was 

larger than 0.7. It’s likely to completely block the river if the Manianping debris flow flowed into 

river with a fast velocity. At 1500s, large amount of debris flow from Manianping valley had flowed 

into river. The width of blocking river clearly increased, it’s hard to cross for the water flow. 

This simulation showed that river was not completely blocked by the Daxi debris flows. The 

debris flows narrowed the width of riverbed and pushed river to the opposite. This phenomenon is 

very common in post-earthquake debris flow events. This case often didn’t further cause large 

damage, the sediments were washed away in short period. Certainly, a single large-scale debris flow 

usually completely blocked river and formed the barrier lake. Once the barrier lake was formed, the 

backwater would flood road, village, etc.  
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Fig.5.44 Simulation process of blocking river by both debris flows 

 

Fig.5.45 The concentration distribution features 

Although both valleys haven’t occurred such damage yet, both debris flow valleys had high-risk 

to block river by evaluating topographic features and debris sources (Liu et al., 2012). So far, none 

of the similar phenomenon was reported, but such phenomenon exists in this region (Fig.5.46). 

Considering the special topographic features in this region as well as extremely rich debris sources, 

it should be concerned on the prevention work. 
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Fig.5.46 The phenomenon of two opposite debris flows together block river by post-earthquake image 

5.5.4 Countermeasure structures 

To prevent and mitigate the disaster of debris flow, it’s a very common way to build check dams in 

the valley channel as well as some drainage channels on the deposition fan. However, the designers 

rarely considered the failure effect if it can’t bear enough strongly debris flow. With the development 

of expanding new city and building more roads, many kinds of check dams were built in the 

potential high-risk debris flow valley to prevent and mitigate the disasters since 90s’ last century in 

China. Certainly, many kinds of check dams were also built in the valleys where were damaged 

seriously during the earthquake. However, a series of check dams were damaged one by one under 

strong debris flows, and finally the last dam failure clearly enlarged the disaster, such as Wenjia 

valley and Hongchun valley. This phenomenon urged us to consider all of effects of building dam 

before build it. Drainage channel also played a significant role in transporting debris flow on the 

deposition fan. It’s important that what size of channels and where be adjust to build it. Therefore, 

some simulations about check dam and drainage channel were showed with the Hongchun valley as 

a case study.  

Hongchun valley, located on the opposite of Yingxiu town. The Yingxiu-Beichuan fault crosses 

this valley along valley channel. The catchment area is 5.35km2, the main channel length is 3.62km, 

and the relative height between valley mouth and summit is 1288m. The earthquake caused serious 

damage in this valley. On 13 Aug. 2010, the Hongchun valley occurred debris flow and formed a 

100m wide and 350-400m length blocked dam, resulting from the Min river moved to the opposite 

of Hongchun valley and further led to flood flowed into the Yingxiu new town. Five days later, the 

Hongchun valley occurred debris flow again. Resulting in the Yingxiu new town was flooded again. 
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(1) Check dam 

To show the effect of check dam in prevention debris flow, three cases were simulated. In case one 

(no dam), simulate debris flow on the original topography. Simulate debris flow on the topography 

with a dam which is about 500m far away from the river, the simulation was carried out keeping the 

dam well from the initial to finally in case three (keep dam well), while the dam was eliminated at 

some time in case two (dam breach). 

The detailed simulation processes showed in the figure. At the initial state, case 1 is no dam, 

while case 2 and case 3 are the same and have dam near mouth of valley. From the simulation time 

at 200s, it’s found that the flow behavior was changed by the dam in case 2 and case 3, while small 

debris flow had flowed out the mouth of valley. After 400s from initiation, the main debris flow 

began to flow out the mouth of valley, while debris flow continuously flowed down and stopped 

inside of the dam in the case 2 and case 3. After 400s, the dam was eliminated in the case 2, while 

the dam was kept in the case 3. After 450s from the initiation, the main debris flow flowed into river 

in case 1, large debris flow lateral spread and further flowed down in case 2, and small debris flow 

overflowed the dam in case 3. After 100s from the dam breach in case 2, debris flow reached river. 

The cross-section of flow in case 2 is clearly wider than case 1 before flowed into river. Finally, all 

of debris flow flowed out the valley in case 1 and case 2, while small debris flow overflowed the 

dam and flowed into river as well as most debris flow stopped inside of dam. It’s clearly that check 

dam changed flow behavior in different time and also influenced the affected area.  

The close-up of the affect area (Fig.5.48) on the downstream of valley and deposition fan 

showed that the dam breach increased the affect area by wider lateral damage (Fig.5.49). Although 

the dam kept well from initial state to final state, large debris flow overflowed out the dam and a 

small flow also overflowed from one sides of dam. Therefore, unexpected area is also possible to 

damage by overflowed debris flows under dam keeps well. Three sections were chosen and the 

width of affect areas were measured (table 5.9). The width of affect area gradually increased from 

the upstream to the downstream. Because the dam breach, the width averagely increased by 34.4% in 

comparison with the result of no dam. The main overflowed flow led to small damage along the flow 

path, and the width of affect area averagely reduced 18.3%. However, the small overflowed flow 

additionally caused 10% damage in comparison with the case of no dam. 
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Fig.5.47 Simulation processes of three cases about check dam 
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Fig.5.48 Affect areas under three cases of check dam 

Table 5.9 The width of cross-section varied in three cases 

cross-section increase rate of damage width in comparison with the case of no dam 

dam breach main overflowed flow in case 3 small overflowed flow in case 3 

A-A’ 0.25594 -0.28419 0.07988 

B-B’ 0.4204 -0.15723 0.10568 

C-C’ 0.35785 -0.10684 0.11795 

Mean value 0.34373 -0.18275 0.10117 

 

According to the simulation results of velocity, it’s found that the check dam also played an 

important role in changing the value of maximum velocity and mean velocity (Fig.5.48). After the 

dam breach, the maximum and mean velocity suddenly increased instantly. Due to the dam increased 

the height, the maximum velocity clearly increased for overflowed debris flows. Velocity has a 

closely relation with impact force which determined the destructive power. Therefore, the velocity 

suddenly increased would cause damage that is more serious. 

Simple simulation showed that check dam played an important role in changing flow behavior 

and some parameters, such as occurrence time, affected area and velocity. The dam breach by strong 

debris flow can increase the affected area and velocity. Even though dam kept well during debris 

flow, large debris flow would fill the dam and overflow the dam. In that case, the velocity also 

increased due to higher elevation. Therefore, it must evaluate the effect of check dam before 

constructing it. 
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Fig.5.49 Simulation velocity under three cases of check dam 

(2) Drainage channel 

Drainage channels are also common built on the deposition fan to control the debris flow behavior. 

However, what size of channel to build and where are adjust to build, and what effects will be 

brought? A simple channel is built and four cases are simulated. In case 1, keep original topography 

in the whole simulation process and not add channel. In case 2, add a channel from valley mouth to 

river with the width of channel is 4 mesh size, while the width of channel is10 mesh size in case 3. 

In case 4, add a different channel with case 2 and case 3, with the width of channel is 9 mesh size 

(Fig.5.50). From the detailed simulation processes (Fig.5.50), the drainage channel not only changed 

the flow path and also influenced affect area and flow behavior. The debris flow had flowed into 

river in case 1, while only small debris flow just reached the river in both case 2 and case 3 and 

debris flow was transported to another place along drainage channel in case 4. After 400s from the 

initiation, small debris flow overflowed from the narrower channel in case 2 while all of debris flows 

moved along the channel in case 3. Finally, the debris flows were transported to the different place 

by two channels in different directions. The series of simulations showed that what size of channel to 

be built and where is adjust to build are very important to prevent debris flow. Design a reasonable 

drainage channel is also important to rebuild a new city in the earthquake-stricken zone. 
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Fig.5.50 Simulation processes of four cases about drainage channel 

5.6 Summary 

The satellite image of ALOS is characterized by wide coverage area and high spatial resolution. The 

high quality images that are observed shortly after the earthquake can be used to efficient analyze the 

damaged features and further provide adequately and available rescue planning in time in the 

earthquake-stricken areas. Considering main damaged features, it showed mostly damages occurred 

along the Yingxiu-Beichuan fault, and more damages concentrated on the hanging-wall. The surface 

damage rate ranged 20% to 37% by analysis of three regions from Dujiangyan to An County. Various 

damage patterns are also observed by high quality images. However, it’s hard to attain the 

relationship between damaged areas and slope only by satellite image. The high spatial resolution 

images that are observed shortly after the earthquake are precious data for the sequence evaluation of 

disasters and reconstruction in the earthquake-stricken areas. 

The earthquake resulted in more than 10,000 km2 were seriously damaged in the Longmen 
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mountainous zones. Advantage topographic conditions and extremely rich loose solid materials 

under rainy season is the most serious threaten for the earthquake-stricken areas in a long period. 

Actually, the earthquake-stricken areas have been heavy hit again in the last five years. The existing 

research demonstrated that more researchers concentrated on the prediction of rainfall. It’s no doubt 

that the rainfall-related parameters will reduce because the new generated debris sources with the 

loose structures are more easier to initiate. However, the rainfall features varied with the different 

places and it’s very hard to apply in a wide areas. Additionally, it’s not enough to provide accurate 

rainfall parameters by the present distribution of rain gauge stations in the earthquake-stricken areas. 

The imperative work is the effective evaluation of debris flow hazards and further prevention. 

The mixing model based on two-step evaluation scheme can well evaluate the post-earthquake 

debris flow hazards in the Wenchuan earthquake-stricken areas. 

The distribution features of debris sources strongly influenced the distribution of debris flow. It’s 

very hard to judge the location of debris sources by a constant for critical failure slope, due to the 

special features of earthquake-induced landslides. The simulation results showed the agreement is 

good between simulation results and actual debris flows in term of the number of debris flows in a 

wide region. The southern of Beichuan city is the most dangerous zone facing the threat of debris 

flows. The hydrograph, concentration and velocity are favor for providing useful parameters to 

prevent debris flow hazards. The deposition thickness is clearly smaller than the actual deposition 

thickness if the initial particle height is set to 1.0m.   

Regarding the evaluation of blocking river by debris flow hazards in the region from Yingxiu to 

Wenchuan along the Min River, watershed features and special coupling effect of multiple debris 

flows are analyzed combining the satellite image and processed DEM. The topography is 

characterized by high density of valley and small or even no buffer zone between mouth of valley 

and river. The simulation results of rainwater showed there are more than 70 flow paths, and less 

than 20 for large valleys. The cross-angle concentrated on 80°-100° by measuring 78 flow paths. It 

inferred that it’s extremely likely to block river by the debris flows in this region. By simulating 

multiple debris flows occur simultaneously near Yingxiu, the agreement is fairly well between 

simulation results and actual debris flow event on 13 Aug. 2010. It demonstrated that every flow 

path can transport debris flow even very short flow path. It means that the small valleys must be 

concerned in the evaluation work, particularly the catchment was seriously damaged in the 

earthquake. Detailed transportation processes, velocity and concentration distribution features varied 

simulation time can be used to analyze the actual disaster process. One more pattern of blocking 

river was carried out to show the coupling effect of two opposite debris flows. The simulation results 

indicated that two opposite debris flows occur at the same rain event would increase the possibility 

of blocking river. It need to take measures to avoid such disasters occur. The site survey 

demonstrated that there are landslide dams particularly in the large valleys, such as Fotangba, 
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Taoguan, Qipan valley, etc. The failure of landslide dams was considered an important cause for 

debris flow initiation. It must concern the valleys with large scale landslide dams and do a long 

period prevention work to avoid the disasters like Zhouqu.  

A series of simple simulations about check dam and drainage channel showed theirs’ effect in 

prevention and mitigation of debris flow. The effect of countermeasure structures must be 

comprehensive evaluated before building them. This region is and will be a high frequency 

occurrence zone of debris flows in a long period. Considering the limited deposition areas and 

security of infrastructures, it’s better to keep the extremely rich debris sources in the valley. How to 

effective keep debris sources in the valley need to make a further evaluation.  
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CHAPTER 6 CONCLUSION 

In the present study, the mixing model based on two-step evaluation scheme was proposed to 

quantitatively evaluate the debris flow hazards in Zhouqu and Wenchuan earthquake-stricken areas 

using depth-integrated particle method and satellite images. The conclusions are summarized from 

the depth-integrated particle method, the mixing model, satellite image, parametric studies, and 

quantitative evaluation of debris flow hazards in Zhouqu and Wenchuan earthquake-stricken areas.  

The depth-integrated particle method is a very simple and efficient method with only two 

parameters (Manning coefficient and critical deposition slope) to simulate debris flows. The 

modified depth-integrated particle method was verified by two simple flows in 1-D. It can be applied 

to quantitatively evaluate debris flow hazards based on detailed DEM. The mixing model based on 

two-step evaluation scheme can efficiently evaluate the debris flows according to the diffusion 

equation. In the present model, diffusion coefficient was assumed to a constant in the whole 

simulation process. And one fitting coefficient was assumed to build the relationship between the 

critical deposition slope and concentration. 

The satellite image of ALOS is characterized by wide coverage area and high spatial resolution. 

The images can be processed into detailed DEM with the resolution is less than 10m combined 

control points from the Google earth. The error of control points was evaluated in comparison with 

the topographic map, and it was assumed acceptable in this study. The high quality images that are 

observed shortly after the earthquake can be used to efficient analyze the damaged features and 

further provide adequately and available rescue planning in time in the earthquake-stricken areas. 

Considering main damaged features, it showed mostly damages occurred along the 

Yingxiu-Beichuan fault, and more damages concentrated on the hanging-wall. The surface damage 

rate ranged 20% to 37% by analysis of three regions from Dujiangyan to An County. Various damage 

patterns are also observed by high quality images. However, it’s hard to attain the relationship 

between damaged areas and slope only by satellite image. The good quality images that were 

observed shortly after the earthquake are precious data for the sequence evaluation of disasters as 

well as reconstruction in the earthquake-stricken areas. It’s available to check the location of debris 

sources by satellite image, but it’s very hard to evaluate the volume of debris source only depending 

on satellite image. 

By parametric studies, it’s found that the accurate topographic data played a critical role in 

quantitative evaluating debris flow hazards in terms of affect area, travel distance, flow path. The 

discharge strongly governed the flow behavior on the deposition fan, while Manning coefficient 

determined the velocity of debris flow. The critical slope of deposition and flow volume significant 

influenced the travel distance and the extent of deposition. 

The debris sources in Zhouqu debris flows were evaluated in terms of location and thickness 
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combined the post-event satellite image and filed survey. It’s reasonable to evaluate debris sources in 

Zhouqu region by setting critical failure slope and repose of angle is 60º and 26º respectively. By 

assuming the initial particle height is 1.0m, the thickness of debris sources ranged 0-8m. Two models 

(re-initiation model and mixing model) were adopted to evaluate the debris flow hazard. It’s found 

that the re-initiation model is very efficient with small particles (only solid particles), while the 

mixing model is rather time-consuming because of more than 2 or 3 times of solid particles were 

increased as water particles to initiate debris flow. The re-initiation model is suitable to evaluate the 

extent of deposition area and flow path on the deposition fan with only two parameters (Manning 

coefficient and critical deposition slope). Although two more additional parameters (diffusion 

coefficient and fitting coefficient for the relationship between critical deposition slope and 

concentration) were taken into account in the mixing model, it’s reasonable to evaluate debris flow 

hazard to consider the physical properties of particles. Moreover, more local concentration-related 

phenomenon is also described in the mixing model. Affected area was evaluated using re-initiation 

model, the agreement is good on SYY and LJY deposition fan if the critical failure slope is set to 60º 

and 61.5º. The debris sources were initiated when the mean rainfall was 29.03mm at the upstream of 

valley and the diffusion coefficient was set to 0.1. A series of simulation results showed the 

difference of discharge on both valleys strongly influenced the debris flow hazard on deposition fan. 

Advantage topographic features, rich debris sources and rainstorm together triggered this debris flow 

event. The failure of some countermeasure structures and high population density enlarged the 

destructive nature to large extent. 

Quantitative evaluation of debris flow hazards in the Wenchuan earthquake-stricken areas, it’s 

found that almost every valley has potential high-risk to occur debris flow. The evaluation of 

earthquake-induced debris sources was focused on the Beichuan region. It’s hard to evaluate debris 

sources by a single critical failure slope in a wide region, particularly, an active fault crosses the 

research area. The evaluation results of debris sources strongly influenced the evaluation of regional 

debris flow hazards. The simulation concentrated on blocking river in the area from Yingxiu to 

Wenchuan along the Min river. The topographic features determined the debris flows in this region 

are easy to flow the river and the watershed features demonstrated that the debris flows are 

extremely easy to block river to form barrier lake due to 60% cross-angles of all of flows ranged 

80°-100°. Many small valleys together with larger valleys occurred debris flow simultaneously 

increased the destructive degree. Two patterns of blocking river were simulated and the coupling 

effect of multiple debris flows and two opposite debris flows occurred simultaneously are also 

evaluated. The simulation results indicated that such phenomenon would increase the possibility of 

blocking river. It must take measures to avoid such disasters to occur. Detailed transportation 

processes, velocity and concentration distribution features varied simulation time can be used to 

analyze the actual disaster process. 
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Simple simulation results of both check dam and drainage channel can be used to evaluate the 

effect of countermeasure structures in the prevention and mitigation works. The forecast work of 

debris flow by monitoring rainfall is now developing in the mostly rural mountainous areas in China 

because of wide regions and limited technology. It’s very essential to do prevention and mitigation 

works by building necessary countermeasure structures in the potential debris flow valley and 

deposition fan. The parameters of quantitative evaluation of debris flow in terms of velocity, 

hydrograph, the extent of deposition and flow path can contribute to provide adequately protective 

measures to prevent and mitigate the disasters in practical engineering. 
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