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1 Introduction

Generation of electromagnetic (EM) waves is considered as one of the most highly developed scientific and
technological fields and their applications are ubiquitous in our daily life, for example one uses microwaves
for long-distance communication and employs x-rays for medical imaging. In this thesis we focus on the EM
waves in the terahertz (THz) band, which lie between the microwaves and visible lights and have many unique
applications ranging from safety checks, imaging to radar [1,2]. But until the time of writing, the EM waves in
THz band still lack an efficient and compact generator.

The Josephson effect in Josephson junctions consisted of a blocking layer sandwiched by two superconducting
electrodes provides us a unique method to excite EM waves with high frequencies [3–9]. In the presence of
a biased voltage, the super-current oscillates at a frequency proportional to the voltage according to the ac
Josephson relation, for example 1mV corresponds to 0.48THz. Collective excitations of cooper pairs and EM
waves known as Josephson plasma are excited. At the edges of the junction, part of the Josephson plasma
radiates into free space. Nevertheless the power radiated from a single junction is in range of picowatts which
is too small for practical applications. Artificial array of Josephson junctions were tried first, but the frequency
cannot reach the THz region due to the small superconducting gap in the conventional superconductors and the
radiation power remains limited as the non-uniformities among artificial junctions [10–16]. Intrinsic Josephson
effects were observed in cuprate high-Tc superconductor Bi2Sr2CaCu2O8+δ (BSCCO) [17]. Compared with
conventional low-temperature Josephson junctions the intrinsic Josephson junctions (IJJs) have the following
advantages. First, the superconducting energy gap is large (60meV) which in principle can cover the whole
THz range. Second, the junctions are homogeneous in atomic scale which favors coherent THz radiation.
These merits make IJJs fantastic candidates as sources for powerful EM radiation in THz band. As a matter
of fact, many experimental attempts for excitation of THz radiation from IJJs were made, for example by
quasiparticle injection along the in-plane direction of BSCCO sample [18, 19] and by biasing a voltage on a
BSCCO sample with step-like geometry [20]. There were theoretical studies focusing on possible THz radiation
from IJJs by driving Josephson vortices [21–24]. It is also proposed that the THz EM radiation can be excited
by sandwiching a narrow BSCCO mesa with gold electrodes under bias voltage [25].

An experimental breakthrough was achieved in 2007. By applying c-axis bias voltage, experimentalists suc-
cessfully excited coherent THz radiation from a rectangular mesa mounted on the top of a substrate of a single
crystal of BSCCO [26]. The radiation frequency and bias voltage obey the ac Josephson relation, and the
strong radiation happens at cavity frequencies determined by the lateral size of the mesa [26]. The significant
experimental discovery showed the potential to pave a practical way for strong radiation sources of THz band
in a compact and solid device based on superconductivity. The breakthrough raises many interesting questions,
such as why injected dc energy can be transformed into intense EM radiation without applying magnetic fields,
and how can a large number of junctions ∼ 600 be synchronized.

The experimental breakthrough inspired intensive discussion from both experimental and theoretical sides [27,
33, 37–46, 48–50]. Lin and Hu investigated the phase dynamics of IJJs under bias current in terms of sine-
Gordon equations with strong inductive coupling [8, 27]. They proposed a novel π phase kink state, which
explains successfully experimental results mentioned above. In the π kink state, ±π kinks in gauge-invariant
phase difference in IJJs are developed in in-plane directions and arrange themselves alternatingly along the
c direction. The uniform bias current and cavity modes are coupled by the π phase kink, which allows a
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large supercurrent flow into the system at the cavity resonances, and a part of dc energy is converted to EM
radiation from the mesa edge [8, 27]. Experimentally, THz radiations were observed from IJJs with cylindrical
geometry [42] as discussed theoretically [37, 41] and in the high bias region [43]. It is also found that the
radiation power from IJJs can be enhanced by controlling the temperature distribution of the mesa sample [45].

From application perspective, the radiation power (∼ 10 nW) in the present experimental design is still too
weak to be practically useful. There are several possible reasons, first the system may not be synchronized to
a uniform state efficiently and secondly the radiation power may be limited by the small radiation area of the
system.

In this thesis, we mainly discuss three aspects of THz radiation from IIJs [48–50]. First we propose to syn-
chronize the system to the π phase kink state by preparing its initial phase, which can be done by applying
non-uniform bias voltage or making use of thermal fluctuations. It is found that the system can be driven into
the π phase kink state efficiently from several initial phase configurations. The time before entering the π phase
kink state is shorter when the starting phase is further away from the uniform configuration. Secondly we derive
a general solution especially valid for high cavity modes and weak or moderate inductive couplings, which can
enhance injection of dc energy and convert it to EM radiation. This state evolves into the π phase kink state
at large inductive couplings. Thirdly we study a long BSCCO cylinder embedded in a dielectric material. A
maximal radiation power is reached when the dielectric constant of wrapping material is tuned. The maximal
condition is met where the radiation power equals the dissipation caused by Josephson plasma, which yields
the optimal dielectric constant of wrapping material in terms of properties of BSCCO single crystal.

Chapter 2 starts with a brief review of the history on superconductivity. We derive the dc and ac Josephson
relations by solving Schrodinger equations when two superconductors are weakly coupled. The phase dynamic
of a short junction is investigated by the RCSJ (resistively and capacitively shunted junction) model then. At
the end of this chapter the sine-Gordon equation for a single Josephson junction is given and the artificial array
of Josephson junctions is also discussed.

In Chapter 3 the discovery of IJJs based on a layered high Tc cuprate superconductor BSCCO is introduced.
The experimental efforts devoted to exciting THz radiation based on BSCCO single crystals are discussed
include the experimental breakthrough in 2007. At the end of this chapter a summary of current situation of
THz radiation based on BSCCO mesa is given.

In Chapter 4, the inductively coupled sine-Gordon equations are derived based on the Larangian of IJJs first,
which composes a good model for the phase dynamics of IJJs. Then we discuss the proper boundary condi-
tion for the coupled sine-Gordon equations depend on the experimental setup. At last the π phase kink state
discovered by Lin and Hu is introduced and its related phase dynamics are discussed. The far-field radiation
patterns for a cylindrical mesa associated with π phase kink state are calculated based equivalence principle.
These patterns are believed to be useful for understanding the resonant modes of the system and thus has a
direct relevance to application.

In Chapter 5, we propose an efficient way to synchronize the system to the π phase kink state by preparing
the initial phase configuration. Two kinds of initial phase configurations are investigated like random ones and
several typical ordered one. The relation between the initial phase configurations and final states is investigated.
The system with nonuniform distribution of conductance and critical current is also discussed.

We propose a general solution valid for small and medium inductive couplings in chapter 6. It is characterized
by a structure in phase difference varying in lateral directions around ±π/2 in form of cavity mode and an
alternating configuration along the c direction similar to the π phase kink state. Compared with the π kink, the
static term in phase difference of the present solution does not saturate to π and 0 at the sample edges. The
present solution can enhance injection of dc energy into IJJs and covert it to THz EM radiation. This solution
evolves smoothly into the π phase kink state at large inductive coupling and low cavity modes.

In Chapter 7, we propose to use a long BSCCO cylinder wrapped by a dielectric material to increase the
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radiation power from IJJs. First we investigate the cavity and the quality factor of the system according to
Maxwells equations. Then we analyze the phase dynamics associated with π kink state in this system. At
last, we give the optimal dielectric constant for radiation power in terms of the property of the superconductive
single crystal and also the optimal radiation power.

Finally the summary is given in Chapter 8.
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2 Josephson Junctions

2.1 Superconductivity

Figure 2.1: Resistivity of mercury suddenly dropped to zero at 4.2K [After H. K. Onnes, Commun. Phys. Lab.
12, 120 (1911)]

Superconductivity is a fantastic phenomenon observed in several metals and ceramic materials. When these
materials are cooled below a characteristic critical temperature Tc, exactly zero electrical resistance and expul-
sion of magnetic fields occur in these materials. The phenomena of the disappearance of resistivity in metals
below the critical temperature were first discovered by Kamerlingh Onnes [51] in 1911 at Leiden laboratory,
just 3 years after he had liquified helium first, which gave him the refrigeration technique required to reach tem-
perature of a few degrees Kelvin. The next great milestone in understanding superconductor occurred in 1933.
Meissner and Ochsenfeld discovered that an expulsion of a magnetic field from a superconductor during its
transition to the superconducting state, which indicates that the superconductivity cannot be simply understood
as perfect conductivity [52]. Perfect conductivity and perfect diamagnetism are most two important character-
istics in superconductors, which are also the principles to identify the superconducting states in experiments.
One mainstream in the field of superconductivity is seeking superconductors that have higher Tc [53]. The first
metal shown to be superconductor is mercury with Tc = 4.2K. In subsequent decades after the great discovery
other superconducting metals, alloys and compounds were discovered. In 1941, niobium-nitride was found to
be a superconductor at 16K. In 1953 vanadium-silicon displayed superconductive properties at 17.5K. In 1973,
Nb3Ge with Tc = 23.1K was added to the list. This alloy keeps the record of highest Tc until 1986 when
cuprate superconductors were found. In 1986, a remarkable breakthrough discovery was made in the field of
superconductivity. Bednorz and Müller, researchers at the IBM Research Laboratory in Rüschlikon, Switzer-
land, created a brittle ceramic compound that superconducts at the highest temperature then known: 30K [54].
The parent material for this superconductor is an insulator that had not been considered as a possible high Tc

superconductor candidate before, however upon doping carriers the superconductivity set in. This breakthrough
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Figure 2.2: Schematic diagram of exclusion of magnetic flux from interior of superconductor.

triggered a blossom of cuprate superconductors, and the Tc is boosted to above 100K. The first superconductor
working in liquid nitrogen is YBCO [55] and later BSCCO [56]. The world record of Tc of 164K for the time of
writing is HgBaCaCuO [57,58] under 30GPa pressure. These cuprate superconductors all have the profoundly
layered structure with superconductivity in the CuO layers.

MgB2 is found to be superconductor by Akimistus’s group with Tc = 39K in 2001 [59]. Later it was confirmed
that two bands contribute to the superconductivity. After that, the research on multi-band superconductors
thrived and new phenomena unique to multi-band superconductors are discovered.

In 2008, it was found surprisingly that iron pnictide becomes superconductor below 26K by doping by Hosono’s
group [60] as usually one believes that superconductivity competes with magnetic order and thus magnetic
element like Fe would destroy the superconductivity. The iron based superconductors are also found to be
multi-bands superconductors.

The endeavor towards understand the origin of superconductivity started just after the discovery of supercon-
ductivity. In 1993, F. Londo and H. London proposed two equations which describe the microscopic electric and
magnetic fields of superconductors [61, 62]. These two equations can explain the perfect diamagnetism. And
then Ginzburg and Landau proposed that the superconductivity can be described by a macroscopic complex
wave function |Φ|eiϕ [63]. The Ginzburg-Landau theory examines the macroscopic properties a superconductor
with the aid of the general thermodynamic arguments.
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Figure 2.3: Timeline of superconductor and their critical temperature. Image courtesy of Department of Energy-
Basic Energy Sciences (https://www.sc.doe.gov/bes/BES.html).

The first widely-accepted theoretical understanding of the microscopic origin of superconductivity was ad-
vanced by Bardeen, Copper and Schrieffer and their theory is later know as the BCS theory [64,65]. The theory
describes the superconductivity as a microscopic effect caused by a condensation of pairs of electrons into a
boson-like state. It was also demonstrated that the GL theory can be derived from BCS theory near Tc and the
complex wave functions correspond to the superconductivity energy gap [66].

Another significant theoretical milestone came in 1962 when Josephson, a graduate student at Cambridge U-
niversity, figured out that electrical current would flow between two superconductors - even when they are
divided by a non-superconducting material or insulator [3–5]. This tunneling phenomenon is today known as
the ”Josephson effect” and has been applied to electronic devices such as the SQUID, electronic oscillators and
so on.

2.2 Josephson junction

The Josephson effect is the phenomenon of electric current across two weakly coupled superconductors that are
separated by a very thin insulating barrier associated with coherent quantum tunneling of Cooper pairs (Figure
2.4). This setup, two superconductors coupled by a weak link that can be an insulating region, a normal metal,
or a short, narrow constriction, is named as Josephson junction. The spontaneous (at zero bias voltage) dc
current across the junction is the Josephson current.

The Josephson effect is related to many interesting and nonlinear phenomena. For example, when a Josephson
junction is irradiated by a microwave, plateaus of constant voltage called Shapiro steps occur in the IV charac-
teristics when the voltage is an integral multiple of ω~/2e with ω the angular frequency of the microwave, ~
Planck’s constant and e the charge of one electron [67]. The Shapiro steps can be used as voltage standard as
the separations of plateaus of constant voltage are equal [68]. In the reverse process, the Josephson effect pro-
vides a unique way to excite high-frequency electromagnetic wave by applying a bias voltage to the Josephson
junctions.

There are two kinds of Josephson effect i.e. dc Josephson effect and ac Josephson effect. Let us see the dc
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Figure 2.4: Schematic view of a Josephson junction. The cooper pair tunnels through the barrier without a bias
voltage.

Josephson effect first. A macroscopic system in a superconducting state can be expressed by a single wave
function Ψ = Ae−iφ with A a positive real number. When the two superconductors get close enough, Cooper
pairs tunnels through the barrier between them, which makes the bilateral superconductors couple with each
other weakly. The effective wave functions of two subsystems should satisfy the following wave equations

i
∂Ψ1

∂t
= H1Ψ1 + kΨ2, (2.1)

i
∂Ψ2

∂t
= H1Ψ2 + kΨ1, (2.2)

Where k is the coupling coefficient and Ψ1 =
√

ns1e−iγ1 and Ψ2 =
√

ns2e−iγ2 and ns is the number of Cooper
pair. Suppose that the two subsystems are identical and both at zero potential (ns1 = ns2,H1 = H2 = 0) and
take Ψ1 and Ψ2 into the wave Eqs.(2.1) and (2.2) we can obtain

∂ns1

∂t
=

2k
~

sin(φ2 − φ1), (2.3)

∂ns2

∂t
=

2k
~

sin(φ1 − φ2), (2.4)

∂φ1

∂t
= −k

√
ns2

ns1
cos(φ2 − φ1), (2.5)

∂φ2

∂t
= −k

√
ns1

ns2
cos(φ1 − φ2), (2.6)

Considering the charges of Copper pair are 2q the current density J can be expressed as

J = 2q
∂ns1

∂t
= Jc sinφ, (2.7)

where Jc = 4qkns/~ and φ = φ2 − φ1. Eq. (2.7) is the dc Josephson effect which means without a bias voltage
a super current valued from −Jc to Jc tunnels through the barrier between the superconductor electrodes. Then
let us see the ac Josephson effect. If we apply a bias voltage V to a Josephson junction, the potential change is
−2qV when a Cooper pair tunnels from one superconductor to the other one. Then the Eqs.(2.1) and (2.2) can
be written as

i
∂Ψ1

∂t
= qV + kΨ2, (2.8)

i
∂Ψ2

∂t
= −qV + kΨ1. (2.9)
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Take Ψ1 and Ψ2 into this equation, we obtain

i
∂(φ1 − φ2)
∂t

=
2qV
~
. (2.10)

Eq. (2.10) is the ac Josephson relation which means the phase difference between two superconductor electrodes
can be tuned by a bias voltage. For example, 1mV dc bias voltage can generate the oscillation of phase with
0.48THz. A more tractable derivation based on microscopic theory was given by Ambegaokar and Baratoff [69],
and later by Larkin and Ovchinnikov [70].

2.3 RCSJ model

Figure 2.5: Equivalent circuit of RCSJ model, which consists three parts the resistor, the shunted junctions and
the capacitor.

Although Eq. (2.7) suffices to characterize the zero voltage dc properties of a weak link, for finite voltage
situations involving the ac Josephson effect, a more complete description is required. The RCSJ (resistive
and capacitively shunted junction) model provides a simple picture for the phase dynamics in a short Josephson
junction under bias voltage V when the penetration depth of magnetic field can be neglected. In the RCSJ model
the Josephson junction is described approximately by an ideal one following Eq. (2.7), shunted by a resistance R
for the dissipation in the finite voltage regime and a capacitance C reflecting the geometric shunting capacitance
between the two electrodes, as schematically shown in Figure 2.5. Within the RSCJ model, the time dependence
of the phase difference φ between two superconducting electrodes can obtained by equating the bias current to
the total junction current as follows

Jext = Jc sinφ + V/R +C
dV
dt
. (2.11)
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Eliminating V from Eq. (2.10), we obtain phase dynamic equation in form of a second-order differential equa-
tion

d2φ

dτ2
+
β′

ωJ

dφ
dτ
+ sinφ =

Jext

Jc
, (2.12)

where the dimensionless time variable τ = ωJt is used with ωJ =
√

2qJc/~C and β′ = 1/RC. Eq. (2.12) can be
understood as the equation of motion of a classical particle in a washboard potential cosφ tilted by the external
current with mass (~/2q)2C and the viscous drag represented by the conductivity β′. The I-V characteristic
of a Josephson junction under bias voltage can be obtained by solving Eq. (2.12) numerically. With applied a
current below Ic, the system shows zero voltages. For the small C, the inertia is dominated by the viscous drag
which means that the voltages increases continually with current beyond the critical current and approaches the
linear current-voltage line given by the conductivity. For the large C, the I-V characteristic becomes hysteretic
due to the inertial effect. When the applying current exceeds critical current, the voltage jumps discontinuously
from zero to a finite value. In the process of decreasing current the voltage remains limited even below the
critical current and becomes zero at a retrapping current.The I-V characteristic for different ratios of ω j and β′

obtained by the numerical simulation of Eq. (2.12) is shown in Figure 2.6.

Figure 2.6: I-V characteristic for different values of β′ obtained by numerical simulation, arrows indicate the
direction of current sweeping.

2.4 Sine-Gordon equation

When a Josephson junction that has one or more dimensions longer than the penetration depth of the magnetic
field produced by Josephson current, the Josephson currents in the EM fields should be taken into account
which leads to the sine-Gordon equation. First we should introduce the gauge-invariant phase difference that
takes the effect of the coupling of the change to the vector potential, whose definition is given by

γ = φ1 − φ2 −
2e
~

∫
A · ds (2.13)

with A the vector potential and integration over the insulating barrier. The derivation of sine-Gordon equation
for a long Josephson junction is given as follows. Let us consider a Josephson junction with two dimensions
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(along y direction is uniform). The coordinate system is set as that the electrode surfaces are parallel to the
x direction and the tunnel current is along z direction. The thickness of the insulator barrier between two
superconducting electrodes is d and the penetration depth of the magnetic field is λ. From the Maxwell’s
equation that

▽ × E = −1
c
∂B
∂t
, (2.14)

and integrate this equation along the direction z we obtain

∂Ez

∂x
=

2λ + d
d

1
c
∂By

∂t
, (2.15)

where the magnetic field extends into the superconductor with penetration depth λ on the both sides and electric
field is negligible except in the barrier. Then from the Maxwell’s equation for the displacement current we have

∂By

∂x
=

4π
c

Jz +
εc

c
∂Ez

∂t
, (2.16)

where Jz is the tunneling current and εc is the dielectric constant of the insulator barrier. Then combining the
time derivative of Eq. (2.15) with Eq. (2.16) we arrive at(

∂2

∂x2 −
1
c̄2

∂2

∂t2

)
V =

4π
c2 (2λ + d)

∂Jz

∂t
, (2.17)

where V = Ezd is the voltage across the barrier, and

c̄2 =
c2

ε(1 + 2λ/d)
. (2.18)

As λ ≫ d the asymmetry between E and B make the Josephson junction a ”slow-wave” structure [71].

More generally we can rewrite Eq. (2.17) in terms of the phase difference γ with applying the dc and ac
Josephson relation as (

∂2

∂x2 −
1
c̄2

∂2

∂2
t

)
γ =

sin γ
λ2

J

, (2.19)

where λJ is the Josephson penetration depth given by

λJ =

[
cΦ0

8π2Jc(2λ + d)

]1/2

(2.20)

with typical value ∼ 1mm for Josephson junctions made of conventional low-temperature superconductors.
Eq. (2.19) is usually referred as the sine-Gordon equation.

Besides the tunneling current, normal ohmic current and external current can also be included which leads to
the perturbed sine-Gordon equation(

∂2

∂x2 −
1
c̄2

∂2

∂2
t

)
γ =

1
λ2

J

(sin γ − σΦ0∂tγ

Jc
− Jext

Jc
). (2.21)

There are several important solutions to the sine-Gordon equations such as the small amplitude plasma solution

γ(x, t) = Aexp(i(kx − ωt)) (2.22)
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and the soliton solution [72–74]

γ = 4 arctan exp
(

x − ut
√

1 − u2

)
, (2.23)

corresponding to a rotating of γ from 0 to 2π. The derivation of soliton solution is given as follows [72–74].
We focus on the solution towards the positive direction of x axis

γ = γ(x − ut), (2.24)

where u is a constant propagation velocity. Then the equation can be simplified into

d2γ

dξ2
=

sin γ
1 − u2 . (2.25)

Integrating Eq. (2.25) one obtains
dγ
dξ
=

√
2(E − cos γ)

1 − u2 , (2.26)

where E is the integration constant. For E = 1 we have the soliton solution.

2.5 Electromagnetic radiation based on Josephson junctions

Figure 2.7: (a) Sketch of a typical sample (top). The quare array, to the left, is capacitively coupled to a detector
circuit, on the right. A ground plane underlies the entire structure. Picture of a 3×36 array (bottom). The length
of the array is about 470µm. (b) Detected ac power PAC as a function of the dc input power PDC for a 3 × 36
array (open squares). If all the non-zero voltage junctions are on the same dynamical state (resonant step, in
this case), the input dc power is proportional to the number of these junctions. No output power is measured
below 14 active rows. The solid line the best quadratic fit f or the data above 14 rows. For the units used in the
plot, Pac = 0.007 − 0.07Pdc + 0.7P2

dc. [After P. Barbara et al, Physical Review Letters 82, 1963-1966 (1999).]

It has been noticed that the Josephson effect can be used for exciting EM wave especially at high frequencies
since its discovery [3–6]. The first observation of EM radiation from single junctions was confirmed in 1960s.
In 1965, a resonant radiation at the Fiske steps [75] was detected by Yanson el al [76] and Langenberg el al [77].
Later then, it is reported that the radiation can also be caused by the motions of solitons [78]. The radiation
power in these experiments is in a range of pW that is too small for useful applications.

It is natural to integrate many Josephson junctions into an array, and intense radiation can be expected when
the synchronization of junctions array is achieved (Figure 2.7). One tried to align the junctions on a plane and
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connect to each other to form a two-dimensional network of junctions [10–15] or simply stack up junctions [16].
Due to the small superconductive gap of the conventional superconductor and the non-uniformities among
junctions, the observed frequency is below THz range and radiation power is also limited.

Synchronization is hard to be achieved in these kinds of an artificial array of Josephson junctions. One proposed
that the junctions can be synchronized to a uniform state by making using of electromagnetic coupling with
attaching all the junctions to a common resonator. As demonstrated by Barbara el al [15], the observed radiation
energy is about 0.1µW at the frequency 150 GHz (Figure 2.7).
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3 Intrinsic Josephson junctions

3.1 Intrinsic Josephson effects in cuprate high Tc superconductors

Figure 3.1: Crystal structure of BSCCO. Blue part indicate the superconducting layers and between them are
the insulating ones (http://physicsworld.com/).

In 1992, the intrinsic Josephson effects were discovered in cuprate high Tc superconductor BSCCO by Kleiner
et al [17] which gives new possibilities to the development of electromagnetic devices using cuprate supercon-
ductors. Due to the big asymmetry of coherence length of superconducting state between the direction parallel
to the CuO2 layers (∼ 15Å) and the direction perpendicular to the layers(∼ 1Å), the amplitude of order pa-
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rameter of superconducting state is large in the CuO2 double layers but very small in the BiO and SrO layers,
which renders BSCCO a stack of Josephson junctions intrinsically. The superconductivity mainly takes place
on CuO layer, while other components seem to provide carriers. The crystal structure of BSCCO is shown in
Figure 3.1. A BSCCO single crystal of, say, 1 µm in thickness has about 600 Josephson junctions each having
a thickness of 15Å. As each of the junctions can be either in the superconducting state or normal resistive state
depending on the bias current, there are many branches in the I-V characteristics [17].

The IJJs in cuprate high-Tc superconductor BSCCO provides a nice candidate to achieve strong, coherent
THz radiation. Compared with conventional superconductors the BSCCO has large superconductivity gap that
can cover the whole range of THz band in principle. Furthermore, the IJJs in BSCCO are homogeneous at
atomic scale guaranteed by the high quality of the crystal that make the coherent radiation possible. Once the
synchronization among junctions is established, the radiation power is proportional to the square number of
junctions, for example a typical 1.5-µm-thick BSCCO mesa contains about 1000 junctions, and thus enabling
power to be theoretically enhanced by a factor ∼ 106 relative to a single junction.

3.2 Experimental efforts towards THz radiation from IJJs

The EM radiation from IJJs was first observed experimentally by Kleiner et al(1992, 1994) [17, 79] based on
BSCCO single crystal with a sample of 30 µm in lateral dimensions and 3 µm in the stack direction under a
bias voltage perpendicular to stack direction. The ac Josephson relation is confirmed in IJJs in this experiment.
The EM radiation in THz band from IJJs based on BSCCO single crystal was first reported by Batov el al in
2006 [20] with the step-like geometry. The observed radiation frequency is 0.5 THz, and the power is in an
order of pW. The radiation is weak here due to the radiation only takes place from a single junction.

3.2.1 Breakthrough in exciting THz radiation

Figure 3.2: (a) Schematic of the BSCCO mesa. (b) I-V characteristics and radiation power of the 80 µm mesa.
The voltage dependence of the current (right vertical axis) and the radiation power (left vertical axis) at 25 K
for parallel and perpendicular settings of the filter with 0.452THz cut-off frequency are shown for decreasing
bias in zero applied magnetic field. Polarized Josephson emission occurs near 0.71 and 0.73 V, and unpolarized
thermal radiation occurs at higher bias. The black solid line is a simulation of the thermal radiation. [After L.
Ozyuzer el al, Science 318, 1291-12936(2007).]
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In 2007, an experimental breakthrough was achieved by an international team from Argonne National Lab of
US and University of Tsukuba of Japan where a coherent THz EM waves were observed successfully from the
IJJs based on a BSCCO single crystal mesa under a dc bias voltage, see Figure 3.2. The maximum radiation
power detected is about 20 nW, and the radiation frequency is about 0.6 THz. The bias voltage and frequency
follow the ac Josephson relation and the frequency where intense radiation happens equals one of the cavity
modes determined by the lateral size of the mesa

f0 = c/2W
√
ε (3.1)

with W the width of the mesa.

3.2.2 Progress after the breakthrough

Figure 3.3: (a) I-V curve of a 50-µm-wide mesa at 40 K. Emission is observed at two working points for the
same voltage (that is, resonance frequency): one at a high current bias, H, the other at a low current bias, L
(ref. [44]). (b), Emission line from a 50-µ-wide mesa at 44 K operated in the high-bias regime at a current of
16.3 mA (ref. [44]). The spectrum was obtained using heterodyne mixing with a local oscillator frequency of
605.75 GHz. The green dashed line represents a fit to a Lorentzian line profile. (c) Temperature dependence
of the linewidth in the high-bias (solid symbols, see a) and low-bias regimes (open symbols). The red line
indicates a fit ∆ f ≈ T−4

b , where Tb is the cryostat temperature. The linewidth in the high-bias regime is about a
factor of ten smaller than that in the low-bias regime. (d), Voltage tunability of the emission from a resonator
in the shape of an acute isosceles triangle (shown schematically in e) in the high-bias regime at a cryostat
temperature of 30 K (ref. [81]). [after U. Welp et at, Nature Photonics, 7, 702 (2013).]

This breakthrough is just the beginning of the exciting field. There are still many challenges, and questions
remained. For example, it is still not clear for that how a large number of junctions about 600 can be syn-
chronized to a uniform and how a uniform dc current can transfer energy into a spatially non-uniform cavity
mode efficiently. Koshelev and Bulaevskii proposed that a modulated critical current breaks the symmetry that
enables efficient coupling into the cavity modes [33]. Lin and Hu found a naturally formed π phase kink state,
which can explain the important experimental result mentioned above [8, 27]. The π phase kink state has been
confirmed by innumerous simulations then. Besides the theoretical studies, the THz radiations from BSCCO
mesa have been observed from various geometries like cylindrical ones [42] and triangular ones [80, 81]. In
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the present experimental setup, the Joul heating due to ohmic dissipation is severe, because the dissipation is
proportional to the volume of BSCCO mesa while the heat removal only occurs at the interface between the
mesa and the substrate. Although the sample is immersed in the liquid helium, the temperature of the sample
is still much higher than the ambient temperature, and almost reaches Tc due to the strong self-heating effect
when the current is large. The heating modifies the IV curves into an s-shape and even drives part of the mesa
into the normal state. Wang et al observed the THz radiation from BSCCO mesa in the high bias region which
has the same resonance condition as low bias one [43,44]. The effect of Joule heating is not always detrimental
as one would expect, but experiments suggest that the thermal effect may play a decisive role. It is found that
the radiation power may be enhanced if one controls the temperature distribution of the sample [45, 46]. The
observed radiation power remains limited in these experiments which is about 30 nW and not enough for prac-
tical applications. The possible reasons are as follows, first the system may be not driven into a uniform state
efficiently where only partial junctions are in resonant states and secondly the radiation area is too small in the
present experimental setup which restraints the radiation power.
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4 Inductively coupled sine-Gordon equations

Figure 4.1: Schematic view of a stack of IJJs. The blue/yellow area denotes superconducting/insulating layers.

The theory on mechanism of superconductivity in the strongly correlated electron system like BSCCO has
not been established well up to date. One convenient phenomenological model of layered superconductor is
proposed by Lawrence and Doniach which assumes a Josephson coupling between different layers [82]. The
geometry we consider is plot in Figure 4.1. According to the Lawrence-Doniach model, the energy density
stored in the superconductive layer is given as [39]

Hsl =
1

8π

∫ (l+1)(s+D)

l(s+D)+D
[λ2

s(∇ × By2
sl )2

x + By2
sl ]dz, (4.1)

where the first term is the supercurrent energy, second term is the magnetic energy, λs is the penetration depth
and By

sl is the magnetic field in the lth superconductive layer. The energy stored in the insulating layer is given
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by the sum of EM energy and Josephson coupling as

Hbl =
1

8π

∫ l(s+D)+D

l(s+D)

(
By2

l + εcEz2
l

)
dz +

Φ0

2πc
Jc(1 − cos γl), (4.2)

where Ez
l (By

l ) is the electric (magnetic) field in the l-th insulating layer and their variation along z direction
will be neglected in following discussion, Jc is the critical current, εc is the dielectric constant of the insulating
layer, Φ0 is the quantum flux given as Φ0 = hc/2e and γl is the gauge-invariant phase difference in the l-th layer
defined as

γl = ϕl+1 − ϕl −
2π
ϕ0

∫ l(s+D)+D

l(s+D)
Az

l dz (4.3)

with Az
l the vector potential. As in high Tc superconductor the penetration depth λs is much larger than the

thickness of insulating layer D and superconducting layer s, the magnetic field in the superconductive layer can
be written approximately as [39]

By
sl(z) ≈

[(s − z)By
l + zBy

l+1]

s
. (4.4)

Then the total energy of the system can be obtained as

H =
∑

l

(Hsl + Hbl)

=
∑

l

D
8π

[
(2ζ + 1)By2

l − ζ(B
y
l+1By

l + By
l By

l−1) + εcEz2
l

]
+
Φ0

2πc
Jc(1 − cos γl)

(4.5)

with ζ ≡ λ2
s/sD the inductive coupling constant. If one takes the derivative of Eq. (4.3) one obtains the relation

between the gauge-invariant phase difference and the magnetic field in y direction as

Φ0

2πD
∂xγl =MBy, (4.6)

where the relation Jl = cΦ0∂xγl/2λ2
s and the Maxwell equation ∂zBy

l = 4πJx
l /c are used, γ = (γ1, γ2, ..., γN)T ,

By = (By
1, B

y
2, ..., B

y
N)T with N the number of junctions and M is inductive coupling matrix given as

2ζ + 1 −ζ 0 · · · 0 −ζ
−ζ 2ζ + 1 −ζ 0 · · · 0

0
. . .

. . .
. . . 0 · · ·

· · · 0 −ζ 2ζ + 1 −ζ 0 · · ·
· · · 0

. . .
. . .

. . . 0
0 · · · 0 −ζ 2ζ + 1 −ζ
−ζ 0 · · · 0 −ζ 2ζ + 1


, (4.7)

with the periodic boundary condition along c direction adopted here as we are interested in uniform state as
discussed later. Rewriting Eq. (4.5) in terms of Eq. (4.6) and the ac Josephson relation ∂tγ = 2eEzD/h̄, one
obtains the energy density in the following compact form as

H =
1
2

(M−1∂xγ
T∂xγ + ∂tγ

T∂tγ) +
∑

l

(1 − cos γl), (4.8)

where the dimensionless units are used which are summarized in Table 4.1, the first term is the total magnetic
energy, the second term is the total electric energy and the last term is the total Josephson coupling energy. The
corresponding Lagrangian to Eq. (4.8) is given as

L =
1
2

(M−1∂xγ
T∂xγ + ∂tγ

T∂tγ) −
∑

l

(1 − cos γl). (4.9)
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Quantities Dimensionless Units Gaussian Units SI Units

Lentgth x λcx λcx
Time t t/ωp t/ωp

Conductance β c
√
εcβ/4πλc c

√
εcε0β/λc

Electric field E Φ0ωpE/2πcd Φ0ωpE/2πd
Voltage V Φ0ωpV/2πc Φ0ωpV/2π
Magnetic field B Φ0B/2πλcd Φ0B/2πλcd
Poynting Vector E × B Φ2

0ωpEB/16π3d2dλc Φ2
0ωpEB/4π2µ0d2λc

Current J JcΦ0/8π2λ2
cd Φ0/2πλ2

cdµ0
Impedance Z Z/

√
εc Z/

√
4πεcε0

Table 4.1: Conversion of quantities among dimensionless, Gaussian and SI unit. Here λc and λab are the
penetration depth along the ab plane and c axis; εc is the dielectric constant along c direction; c is the light
velocity in vacuum; ε0 is the dielectric constant of vacuum; ωp = c/λc

√
εc is the Josephson plasma frequency.

Jc = cΦ0/8π2λ2
c D is the critical current density. For BSCCO single crystal, λc = 200µm, λab = 0.4µm, εc = 10,

s = 0.3nm, D = 1.2nm. Then λs =
√

sd/(s + d)2λab = 0.16µm. The the dimensionless parameter is then
β = 0.02.

If one takes the energy coming from external current into account, the Lagrangian takes the form

L =
1
2

(M−1∂xγ
T∂xγ + ∂tγ

T∂tγ) −
∑

l

(1 − cos γl) + Jext

∑
l

γl, (4.10)

with Jext the external current in unit of Jc. Resorting to the Euler-Lagrangian formula ∂Ll/∂γl = d∂Ll/dt∂(∂tγl),
one obtains the following equation

M−1∂2
xγ = ∂

2
t γ + sinγ − JextI. (4.11)

If one adds the ohmic current as perturbation, the inductively coupled sine-Gordon equations are arrived

∂2
xγ =M(∂2

t γ + β∂tγ + sinγ − JextI) (4.12)

with β the dimensionless conductance. For three dimensional case, the inductively coupled sine-Gordon equa-
tions are written as

∆γ =M(∂2
t γ + β∂tγ + sinγ − JextI) (4.13)

where ∆ is the Laplace operator in lateral directions and I = (+1,+1,+1,+1, ...)T the unit vector; the coupling
matrix (M)l,l−1 = (M)l,l+1 = −ζ, (M)l,l = 1 + 2ζ and zero otherwise with ζ ≡ (λab/s)2 the inductive coupling
(λab the penetration depth in the c direction and s the period of IJJs lattice in c-direction); the lateral length
and time are scaled by the penetration depth in the ab-plane λc and the inverse of intrinsic plasma frequency
ωc = c/λc

√
εc (εc the dielectric constant of BSCCO) respectively; β ≡ 4πσcλc/c

√
εc is the normalized c-axis

conductivity of BSCCO sample and Jext is the external current normalized by the critical current Jc

4.1 Boundary conditions

Now we have obtained the inductively coupled sine-Gordon equations which composes a good model for the
phase dynamics of IJJs, to obtain a complete solution of phase state we also need the boundary conditions
supplemented to the coupled equations which gives the connection between the IJJs and the external world.

For the boundary condition along c direction, we adopt the periodic one as we are interested in the uniform
state and the external current has already been taken into account in the present phase gauge.
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Figure 4.2: Schematic view of a stack of IJJs sandwiched by two gold electrodes.

For the boundary condition along x direction, as discussed by R. Kleiner a stack of IJJs forms a cavity mode in
most cases [83]. There are two kinds of boundary conditions for a cavity system generally, namely the perfect-
electric-conductor (PEC) boundary condition and the perfect-magnetic-conductor (PMC) boundary condition.
For the PEC (PMC) boundary condition, the electric (magnetic) fields perpendicular to the edges of mesa
reaches zero at the boundaries. The question here we need to answer is which boundary condition matches the
situation of experimental setup. The schematic figure of experimental setup is shown in Figure 4.2, where a
thin mesa about 1µm is sandwiched by two gold electrodes. As the thickness of BSCCO mesa is much smaller
than the wavelength of EM field inside the mesa, the impedance at the edges is very large Z ∼ λ/Lz [33], thus
the magnetic field along y direction is almost zero compared with electric field in z direction, which leads to
the PMC boundary condition.

The detailed derivation is given as follows [33]. We have electric field and magnetic field of the whole space in
Fourier form as

E(r) =
∫

d3k
(2π)3 E(k)e−ik·r, B(r) =

∫
d3k

(2π)3 B(k)e−ik·r. (4.14)

Then based on the Maxwell equations ∇ · E(r) = 0 and ∇ × E(r) = ikωB(r), we obtain the relation between the
electric field in z direction and the magnetic field in y direction as

kxEx + kzEz = 0 (4.15)

ikωBy = −ikxEz + ikzEx, (4.16)

which just gives the following expression

By(k) = − εdkω√
εdk2
ω − k2

z

Ez(k) (4.17)

with applying the relation kx =

√
εdk2
ω − k2

z , εd the dielectric constant in unit of εc and kω = ω = 2π/λ. Then
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we apply inverse Fourier transformation to Eq. (4.17) with the help of convolution theorem, we have

By(r) = −
∫ ∞

−∞
dz′U(z − z′)Ez(L, z′), (4.18)

where U(z) = εdkωJ0(εdkωz)/2 is the inversed Fourier transformation of εdkω/
√
εdk2
ω − k2

z . As Lz ≪ λ and the
screen effect of gold electrodes, the electric field in z direction is zero outside mesa and Ez(L, z′) ≈ Ez(L, 0)
inside the meas. In this situation, one has the magnetic field in y direction in terms of electric field in z direction
as

By(L, 0) =
Lzkω

2
Ez(L, 0) ∼ Lz

λ
Ez(L, 0), (4.19)

which just gives the almost infinitely large impedance at the edges of mesa Z = Ez/By ∼ λ/Lz. Thus one can
take the PMC boundary condition as a good approximation for the present experimental setup.

4.2 McCumber state

Eq. (4.12) has a trivial running solution, which is given as [8, 27]

γ = ωt + A0 sin (ωt + φ) (4.20)

with A0 ∼ 1/ω2. For this so called McCumber state, most current runs from the ohmic channel and only a very
small partial of current runs from superconductive channel. For the typical applied frequency in THz range,
ω ∼ 10, only 1% current is the superconducting one. For this solution, most external energy becomes Joule
heating and no strong radiation and cavity resonance phenomenon can be expected.

4.3 π phase kink state

In 2008, a new solution to the coupled sine-Gordon equations has been found [8, 27] which can explain the
important features in the previous experimental observation for THz radiation from IJJs based on BSCCO
mesa [26]. Considering the cavity relation of radiation frequency and the plasma oscillation should be uniform
in c axis [26], the general form of π phase kink solution [8, 27] for the coupled sine-Gordon equations is given
by

γl(r, t) = ωt + Ag(r)eiωt + (−1)lγs(r), (4.21)

where the first term is the rotating phase accounting for the finite dc bias voltage; the second term stands for the
cavity term of plasma oscillation, where A is the complex amplitude, g(r) is the cavity mode of electric field in
the c direction which is complex for the open system, and the frequency ω is given by the bias voltage based
on the ac Josephson relation; the third term is the π phase kink which carries the strong interjunction coupling
via the l dependence.

Inserting Eq. (4.21) into Eq. (4.13) and omitting higher harmonics for |A| ≪ 1 we arrive at the following
equation

−k2Ageiωt + fl△γs =
1
2

(Ag − ieiωt) cos γs − 2ζ fl(eiωt − iAg) sin γs + βω + iβωAeiωt − ω2Aeiωt − Jext. (4.22)

By separately balancing those terms which are constant, proportional to eiωt, and proportional to fl, the E-
q. (4.22) is reduced to three coupled equations at a given frequency

Jext = βω +

∫
Re(Ag) cos γsdΩ

2
∫

dΩ
, (4.23)
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Figure 4.3: Simulated IV characteristics under the perfect magnetic conductor boundary condition for rect-
angular mesa with Lx = 80µm and β = 0.02. The vertical dashed lines correspond to the voltage at cavity
resonances. [After Shizeng Lin and Xiao Hu, Physical Review Letter 100, 247006(2008).]

Figure 4.4: Typical configurations of the static term in the phase difference: (a) period of 2 layers and (b)
period of 4 layers, corresponding to the first current step, and (c) corresponding to the second current step.
[After Shizeng Lin and Xiao Hu, Physical Review Letter 100, 247006(2008).]
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A =

∫
g∗ cos γsdΩ

2i(ω2 − k2 − iωβ)
∫
|g|2dΩ

, (4.24)

△γs = 2ζIm(Ag) sin γs, (4.25)

with the integration over the lateral area of BSCCO mesa. From Eq. (4.25) it is clear that the π phase kink
arises at the node of cavity electric field [8, 27].

The I-V characteristic obtained by simulation for rectangular mesa with lateral size 80µm under perfect mag-
netic conductor boundary condition is shown in Figure 4.3, and the corresponding π phase kink is displayed
in Figure 4.4. As seen by Figure 4.3, there are current steps at the cavity frequencies, which indicates that
large energy has been pumped into the cavity modes beside the ohmic dissipation and strong radiation can be
excepted for this π phase kink state.

The proposal of the π phase kink state arises intense discussions. The stability of the π phase kink solution
was studied and it is found that the π phase kink state is stable against various distortions, such as small
perturbations both in the lateral direction and stack direction, weak external magnetic field and modulation
of critical current [28, 29]. The π phase kink state was also observed numerically in a more realistic model
where the effects of normal electrodes and the nearby vacuum environment are taken into consideration with
using a multi-scale simulation method [30, 31]. The role of surface impedance for the π phase kink state was
investigated, it was found the π phase kink state is even stable for a large impedance Z = 1 [32].

4.3.1 Radiation pattern associated with π phase kink state

Figure 4.5: Coordinate system for the calculation of radiation pattern.

We calculate the far-field radiation pattern of cylindrical mesa in this subsection, which is useful for applications
[37].

To calculate the radiation pattern, we resort to the Huygens principle where the pattern is given by the oscillation
of the electromagnetic field at the edges of the samples, which can be calculated equivalently by the edge
electric current and magnetic current [89]. The equivalent magnetic current Me in the dimensionless units is
given by

Me = Ee × n, (4.26)
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where Ee is the oscillating electric field at the edges of BSCCO cylinder and the vector n is perpendicular to
the edges. The coordinates system is plotted in Figure 4.5. As we are focusing on uniform state, kω = ω/c. In
this situation, the Poynting vector in the dimensionless unit is

S=
ω2L2

z

32π2ρ2ε3/2 |G|
2er (4.27)

with
G =

∮
edges

Me(r′) exp(−i
ω
√
εr′er

)(er × el′)dl′ (4.28)

where the integral is taken over the circumference of the BSCCO cylinder.

For a cylindrical geometry, the oscillation of the electric field in the z direction can be given as

Ez = AωJmn(kmnρ) cos(mϕ). (4.29)

Based on Eqs. (4.27) to (4.29) the far-field radiation patterns of cylindrical cavity can be calculated which are
displayed in Figure 4.6. For PMC-like (1,1) mode, the radiation power is maximal at the top the cylinder θ = 0,
and it has a maximum at y direction while a minimum at the x direction. For the PMC-like (2,1) the radiation
power has a minimum at the top of cylinder and maximums at the directions of x and y.

Figure 4.6: Radiation patterns for (a) PMC-like (1,1) mode, (b) PMC-like (2,1) mode, (c)PMC-like (0,1) mode
and (d) PMC-like (1,2) mode of cylindrical BSCCO single crystal at the respective resonance frequency. The
radius of the cylinder is 100µm .

4.4 Strong radiation with spatial modulations of critical current

Beside the π phase kink state, Koshelev and Bulaevskii [33] proposed that the strong radiation at resonance
frequencies can be achieved by introducing spatial modulations of Josephson critical current in IJJs. Decades
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ago it was first discussed that the inhomogeneity can cause resonance in conventional Josephson junctions
[34, 35]. For a uniform state like McCumber state given in Eq. (4.20), the coupled sine-Gordon equations are
decoupled and can be written as

∂2
t γ + β∂tγ + g(x) sin γ − Jext = ∂

2
xγ, (4.30)

where g(x) is the spatial modulation of Josephson critical current. If we consider the uniform state near the
cavity mode cos(mπx/Lx) like

γ = ωt + A0θ(x)e−iωt (4.31)

with θ(x) = cos(mπx/Lx), the expression for the amplitude A0 can be obtained as

A0 =
igm

ω2 − k2 + iβω
, (4.32)

where

gm =
2
Lx

∫ Lx

0
dx cos

(
mπx
Lx

)
g(x). (4.33)

As seen from Eqs. (4.32) and (4.33), the cavity amplitude A0 is zero for a uniform critical current, and the
spatial modulation of critical current plays a similar role to the π phase kink for pumping energy in this scheme.
Similar to the π phase kink state, the dc current with spatial modulation of critical current for McCumber state
is given by

Jext = βω +
1
4

g2
mβω

(ω2 − k2)2 + β2ω2 . (4.34)

Figure 4.7 shows several realizations of spatial modulation of the critical current. To realize the modulation of
critical current, one may apply a weak external magnetic field as discussed in Ref. [36].

However, compared with the naturally formed π phase kink state, it is difficult to realize the same spatial
modulations of critical current in all the junctions and this mechanism cannot explain the radiation from high
cavity modes as the integration in Eq. (4.33) gives zero for high cavity modes. Furthermore, as the equations
are decoupled for the solution given by Eq. (4.31), the superconducting phases in different junctions are hard
to be synchronized and out-phase state without radiations may develop in this situation.

Figure 4.7: Mesas with various modulations of the Josephson critical current density: (a) linear modulation,
(b)parabolic modulation, and (c) steplike suppression of the critical current near the edge. the lower plots
illustrate the shapes of lowest excited Fiske-resonance modes. [After A. E Koshelev and L. N. Bulaevskii, Phy.
Rev. B 77, 014530 (2008)]
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5 Synchronization of IJJs

Figure 5.1: Snapshots of simulated phase dynamics starting from initial phase configurations: (a) random
distribution with σ = 0.5; (b) γl(x, t = 0) = 0.3π cos(πx/L) and (c) γl(x, t = 0) = 0.28π(x/L − 1/2). Starting
from these three types of phase configurations the system can be driven into the π phase kink state. The blue and
the black (the green and the red) colors represent the odd (even) junction indices in c direction. The temporal
linear part in phase determined by the bias voltage has been removed for clarity. The bias voltage is set as
1.2mV corresponding to the (1,0) mode. The time is in units of 1/ωp.

The π phase kink state offers us a possible picture for the synchronization of IJJs. However how to drive the
system into the π phase kink state efficiently still remains unclear. The observed radiation power in present
experiments is not large enough for practical applications, one possible reason is that the system is not driven
into a uniform state fully. We propose to synchronize the system to the π phase kink state by preparing initial
phases, which can be done by applying non-uniform voltages or making use of thermal fluctuations. Several
initial phase configurations are studied, such as random and some typical regular distributions. It is found that
the system can be driven into the π phase kink states in several cases. The time before entering the π phase
kink states is shorter when the initial phase configuration is further away from uniform phase configuration. The
effects of non-uniform distributions of conductance along c direction and critical current on the synchronization
of the system are also discussed.
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5.1 Random initial phase configurations

Figure 5.2: Standard deviation σ or amplitude of ordered initial phase configuration A’ dependence of time that
the system spends before entering the π phase kink state for various initial configurations. For random initial
distribution the time is evaluated by averaging on 600 samples and the error bar is about 5%. For distributions
of ordered initial phase configuration please refer to the text.

To reveal the phase dynamics of IJJs We resort to computer simulation first and it is performed by integrating
Eq. (4.12) with the leapfrog algorithm [8, 27]. Here we focus on the (1,0) cavity mode. A bias current is taken
during the simulation. Parameters are taken as: ζ = 7 × 104, β = 0.02, λc = 200µm, Lx = 80µm, εc = 16
and Jext = 0.157 which corresponds 1.2mV near the eigen frequency of (1,0) cavity mode. The initial phase
configuration is given randomly between −π and π as

f (γl, σ) =
1

σ
√

2π
e−(γl/

√
2σ)2

(5.1)

with σ the standard derivation. The simulation snapshots of phase dynamics from random configuration of
initial phase is shown in Figure 5.1(a), where one sees that the system can be synchronized into the π phase
kink state under the driving of a bias current.

There is another typical state that the system can be driven into, the McCumber state, which is almost a uniform
state and no cavity resonance phenomena can be expected as discussed above. To understand the relation
between the initial phase configuration and the final stable state, we investigate 600 independent samples and
then count the time that the system spends before entering the π phase kink state. The criterion for formation of
the π phase kink state is that there should be (2n+ 1)π phase kinks in the phase at the nodes of the electric field
in c direction with n an integer. For the initial configurations with which the system falls into the McCumber
state, the consuming time is taken as infinitely long. The average time that the system spends before entering
π phase kink states is displayed in Figure. 5.2 when the standard deviation σ is varied. As one can see from
Figure 2, the average time is shorter when σ is larger, which suggests thermal fluctuations can help synchronize
the system.
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5.2 Typical ordered initial phase configurations

Figure 5.3: Several typical ordered initial phase configurations.

In order to make comparison, several typical ordered initial phase configurations are also studied, such as case I:
γl(x, t = 0) = A′ cos(πx/Lx); case II: γl(x, t = 0) = A′ cos(πx/Lx +0.1π); case III: γl(x, t = 0) = A′(x/Lx −1/2);
case IV: γl(x, t = 0) = A′(x/Lx − 0.45) and case V: γl(x, t = 0) = A′ sin(2πx/Lx). It is found that in all these
cases, the system can be driven into the π phase kink state for large enough amplitudes. The minimal amplitude
for case I is 0.11π, for case II is 0.1π, for case III is 0.23π, for case IV is 0.21π and for case V is 0.11π. Several
snapshots of phase for A′ = 0.3π of case I and for A′ = 0.28π of case III are shown in Figure 5.1(b) and (c)
respectively. The time spent before entering the π phase kink state is shown in Figure 5.2 when the amplitude
A′ is varied.

Some other ordered initial phase states are also studied such as case VI: γl(x, t = 0) = A′ sin(πx/Lx) and case
VII: γl(x, t = 0) = A′ cos(2πx/Lx). We find that in these two cases, the system cannot be driven into the π phase
kink states. This is because of that the distributions of phases in cases VI and VII are similar to the (2, 0) mode,
and thus the energy cannot be pumped into the system at the (1,0) mode frequency given by the bias voltage.
The initial phase configurations for different ordered state are plotted in Figure 5.3.

5.3 Effects of non-uniform distributions of conductance and critical current

As the radiation happens at the place where Joule heating is sever, the thermal effects may play an important role
in the synchronization of the system. Especially at the center of mesa, due to the injection of external current
and the bad heat removal condition of the experimental setup, hot spot forms near the center of sample. In
this situation, the properties of the BSCCO mesa like conductance and critical current density are not spatially
uniform any more, one need to take the non-uniform distribution of these quantities into consideration. Here
we set several typical distributions of conductance, which is shown in Figure 5.4. Then we count the possibility
of entering the π phase kink state from different random initial phase configurations for these typical non-
uniform conductance distributions. The result is displayed in Figure 5.5, one sees that when the distribution
of conductance is similar to the corresponded π phase kink like the half case, the possibility of entering the π
phase kink state is higher than other distributions, which suggests that the local thermal effects play an positive
role in the synchronization of the system if one can control the hot spot in a proper position.
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Figure 5.4: Several typical non-uniform distributions of conductance β(x) along c direction.

Figure 5.5: Probabilities of entering the π phase kink state (first mode) with different β(x)s from initial states in
Gaussian distribution. σ is the standard deviation, the sample number N=600 with a error bar about 5%. When
β(x) is closer to the corresponded π phase kink state, the positive effect is more obvious.
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Another quantity affect by the hot spot is critical current density. For critical current density we consider two
kinds of distributions which are shown Figure 5.6(a) and (b). We focus on their effects on I-V characteristics
which is displayed in Figure 5.6(c), where they coincide well with the uniform case.

Figure 5.6: (a) and (b) Two kinds of non-uniform distributions of critical current density; I-V characteristic for
non-uniform and uniform distributions of critical current. These three cases coincides well with each other.

5.4 Comparisons with experimental results

In above discussion, we find that the system can be driven into the π phase kink state from a random initial phase
configuration and the consuming time for entering the π phase kink state is shorter if the standard deviation of
the random configuration is larger. As a larger standard deviation corresponds to a higher temperature of the
system, this result suggests that the thermal effects play a positive role during the synchronization process of
IJJs. Several experiments also explore the thermal effects on the THz radiation from IJJs and it is meaningful
to compare our simulation result with the experimental ones. Kakeya et al. investigated the THz radiation
from the BSCCO mesas with thick (400 nm) and thin (<100 nm) electrodes and they found that only for the
sample with thin electrodes the THz radiation could be detected, which suggests that the thin electrodes help
excite the Josephson plasma as a result of the poor heat flow through the thin electrodes [45]. Comparing
with our simulation result, the samples with thick and thin electrodes correspond the random initial phase
configurations with small and large σs in our simulation. As one sees from Figure 5.2, the system is difficult
to be driven into the π phase kink state especially σ < 0.2, which is consistent with Kakeya’s experimental
result that no radiation can be detected for samples with thick electrodes. Another interesting experiment is to
tune the emission power from IJJs with a focused laser beam. Figure 5.7 displays the experimental data for
the emission powers when the laser beam focus on different position of the sample [47]. As one sees from
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Figure 5.7: (a) Emission power with laser positioned at coordinate xL for a bias current of 28 mA. (b) Pe vs
bias current while sweeping the laser, for discrete values of I, from xL = 10µm to xL = 300µm (left scale). The
black line indicates Poff

e vs I, as measured for the laser turned off; thus, the vertical red lines indicate, for each
current, the maximum laser-induced change ∆Pmax

e . Right-hand scale, blue curve: ratio ∆Pmax
e = Poff

e vs I.
For I = 28mA, (c) shows a 2D plot of Pe vs laser position (xL; yL) and (d) shows a 2D LTSLM image −∆V vs
(xL; yL). In (c) and (d), the boundaries of the stack are indicated by the dashed boxes. The bath temperature is
22 K. [After Zhou et al., Phys. Rev. Apl. 3, 044012 (2015)]
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Figure 5.7, the emission power is enhanced when the laser is on due to increasing of the average temperature of
the sample and the emission power is enhanced most when the position of the laser beam is close to the middle
of BSCCO sample (xL = 145µm). From Figure 5.7 (d) we see that this most enhanced case is actually similar
to the π-phase-kink-like distribution (half case) of non-uniform conductivity in our simulation as displayed
in Figure 5.4, where the non-uniform distribution of conductivity in half case improves the possibility of the
junctions entering the phase kink state from random initial phase configuration. For example the possibility of
entering the π phase kink state for σ = 0.2 is increasing from 0.63 to 0.9 from the uniform case to the half case
and the radiation power in the experiment is enhanced from 26nW to 42nW when the laser is focused on the
different locations of the sample for bath temperature near 22K [47].
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6 General solution at small and medium inductive couplings

In above discussion, the phase dynamics of IJJs associated with the π phase kink state is discussed. One
necessary condition for the establishment of alternating π phase kinks is the large inductive coupling among
junctions, which is usually of order of 105. The large inductive coupling requirement narrows one’s vision for
choosing potential materials for powerful THz radiation and the study of phase dynamics in IJJs for small and
medium inductive couplings is desirable. As discussed in what follows, a general solution valid for high cavity
modes and weak or moderate inductive couplings is proposed based on numerical simulation and analytical
analysis [50]. This new solution develops a structure in form of cavity mode in lateral directions and charac-
terized by an alternating configuration in c direction similar to the π phase kink. The present state can enhance
dc energy injection into the system at cavity resonance and convert it to EM radiation. Increasing the inductive
coupling, this new solution evolves into the π phase kink state smoothly.

6.1 General solution

To reveal the phase dynamics of IJJs at small and medium inductive couplings, computer simulation of E-
q. (4.12) is performed. Initial phase difference is assigned between −π and π randomly in the in-plane directions
and over all junctions. The parameters for the simulation are taken the same as those in Figure 4.3 except for
that a medium ζ = 230 is used here. The simulation result for cavity (1,0) mode is shown in the first column of
Figure 6.1 by the black square.

Similar to the case of strong inductive coupling, the solution of Eq. (4.12) at small and medium values of ζ can
be summarized into an identical form as Eq. (4.21). The difference focus on the static term γs, whose equation
is given as

∂2
xγ

s(x) = 2ζ′ cos
(
nπx
Lx

)
sin γs(x), (6.1)

where ζ′ = ζA cosφ. The solution of Eq. (6.1) is plotted in Figure 6.1 for a moderate inductive coupling
ζ′ = 198 and several typical cavity modes. One finds that to a good approximation, the static γs term can be
written as

γs(x) =
π

2
− B cos

(
nπx
Lx

)
, (6.2)

where B is to be determined.

Substituting Eq. (6.1) into Eqs. (4.24) and (4.25) one arrives at

A =
2J1(B)√

(βω)2 + (ω2 − k2)2
, (6.3)

Bk2 = 2ζA cosφ[J0(B) − J2(B)], (6.4)
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Figure 6.1: Static term γs in solution (4.21) at moderate inductive coupling and several cavity modes with
left/right row for the junction with even/odd index. Red dot is the numerical result of Eq. (6.1) with ζ′ = 198,
blue solid curve is the analytic solution given in Eq. (6.2) with B = 0.41π, 0.21π and 0.11π for n = 1, 2 and 3
respectively, and black square is the simulation result of Eq. (4.12) with ζ = 230 and Jext = 0.16 for the (1,0)
cavity mode. Other parameters are taken same as those of figure 1. These three solutions are in good agreement
with each other and the differences among them are less than 3% in the whole space.

where k = nπ/Lx is the cavity wave number and tanφ = βω/(ω2 − k2).

Solving Eqs. (6.3) and (6.4) one obtains the inductive coupling ζ and frequency ω dependencies of A and B
defined in Eqs. (3) and (23) for the (1,0) cavity mode, which is displayed by Figure 6.2. As seen from Figure 6.2,
A and B grow continuously from zero at a bifurcation point of the system. Below this point, the system takes
the McCumber state [8]. Simultaneously with Eqs. (6.3) and (6.4) one obtains the external current analogous
to Eq. (4.25) [8, 27]

Jext = βω +
A sinφ

2Lx

∫ Lx

0
cos(kx) cos γsdx. (6.5)

It is clear that the cavity mode and the uniform external current are coupled by the γs term, a scheme akin to
the π kink state. The I-V characteristics of the present solution is plotted in Figure 6.3 for ζ = 230, where large
supercurrent flows into the system at the resonance voltage of (1,0) cavity mode ωcav = 7.85 which corresponds
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Figure 6.2: (a) and (b): Inductive coupling ζ and frequency ω dependencies of A and B defined in Eqs. (4.12)
and (6.2) for the (1,0) cavity mode. Parameters are taken same as those in Figure 6.1.

to 1.2mV. Thus, this state is expected to be useful for the realization of powerful radiation. The detailed shape
of I-V characteristics does not depend on the value of ζ sensitively.

6.2 Relation with the π phase kink state

There are many similarities between the π phase kink state and the present state. One may naturally ask the the
relationship between them. To answer this, the typical length of π phase kink is estimated. From Eq. (6.1) the
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Figure 6.3: I-V characteristics of the (1,0) cavity mode for ζ = 230. Solid curve represents the analytic result
of Eqs. (6.3) to (6.5) and square is the simulation result of Eq. (4.12). Other parameters are taken same as those
in Figure 6.1.

typical length of the π phase kink state is obtained as

λπ =

(
2ζ′

nπ
Lx

)−1/3

. (6.6)

When nπλπ > Lx the lateral size of IJJs cannot hold enough π kinks for the corresponding cavity mode.
Rephrasing this condition in terms of ζ′ and n based on Eq. (6.6)

2ζ′ <
(
nπ
Lx

)2

, (6.7)

it becomes clear that when the inductive coupling is small and/or the cavity mode is high, the π phase kink state
becomes unstable. In this case the π phase kink state deforms into the present state, where the the static phase
term does not reach π and 0 at sample edges.

In Figure 6.4 the magnetic energy per junction given as EBs =
⟨
∂xγ

sT M−1γs
⟩

x
/N with γs = γsI2 and N

the number of junctions is plotted for ζ ranging from 10 to 105. One sees that the static magnetic energy is
EBs ∼ 1/

√
ζ in the whole range of ζ, which suggests that the present state continuously evolves into the π phase

kink state as ζ increases. As a matter of fact, when the inductive coupling ζ increases from 10 to 105, the γs

term evolves into the π phase kink gradually as seen in the inset of Figure 6.4.

6.3 Other cavity modes

So far we concentrate on (1,0) cavity mode. One can extend the discussion to other cavity modes. Here we
show (1,1) mode in a rectangular mesa as an example. Based on simulation on Eq. (4.12), the γs term for (1,1)
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Figure 6.4: Inductive coupling ζ dependence of static magnetic energy EBs obtained by the simulation on
Eq. (4.12) at Jext = 0.4. The red curve is for EBs ∼ 1/

√
ζ. The inset shows the evolution process of the present

state to the π phase kink state when the inductive coupling ζ increases obtained by the simulation of Eq. (4.12).
Other parameters are taken same as those in Figure 6.1.

cavity mode can be written as

γs =
π

2
− B cos

(
πx
Lx

)
cos

(
πy
Ly

)
, (6.8)

where Ly = 200µm is the mesa size in y direction. The term γs(x, y) and I-V characteristics of the (1,1) mode
are displayed in Figure 6.5. For clarity we only show the simulation result of Eq. (4.12) for ζ = 230 and
Jext = 0.19, noticing that the differences among simulation result of Eq. (1), numerical solution of Eq. (3) for
ζ′ = 198 and the analytic solution Eq. (6.2) with B = 0.46π are less than 5% in the whole space.

6.3.1 Cylindrical geometry

One can also extend this general solution to other geometry like cylindrical mesa. As the distribution of EM
standing wave can be observed directly in experiments [86], we plot them out explicitly for the lowest two
cavity modes of cylindrical mesa. The eigen mode (m,n) of cylindrical mesa is given as the first kind Bessel
function Jm(χmnr/R0) cos(mφ). The distributions of static phase, supercurrent, the spatial part of the oscillating
electric and magnetic field for (1,1) mode of cylindrical mesa are displayed in Figure 6.6 with radius of cylinder
R0 = 100µm. As seen by Figure 6.6, the magnetic field is always zero at the edge of cylinder, which is imposed
by the boundary condition. The electric field takes its maximal absolute value at the left- and right-most parts,
while is reduced to zero along the diameter at φ = ±π/2. For the distribution of supercurrent it is positive over
the cylinder as the associated cavity mode and the γs term are coupled together, which permit large external
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Figure 6.5: (a): Spatial distribution of γs term for (1,1) cavity mode given by the simulation on Eq. (4.12)
for Jext = 0.19; (b): I-V characteristics of the (1,1) cavity mode. Solid curve represents the analytic result
of Eqs. (5) to (7) and square is the simulation result of Eq. (4.12). Here ζ = 230, Ly = 200µm, and other
parameters are taken same as those for Figure 6.1.

current when the system is at resonance frequency. For cylindrical (1,1) mode the wave number χ11 = 1.84.
Figure 6.6 displays the electric and magnetic field, the static γs term and the supercurrent distributions of (2,1)
mode for cylindrical mesa. For (2,1) cylindrical mode, the magnetic field penetrates into the cylinder along
two directions, φ = 3π/4 and φ = −π/4, and flows away along the two orthogonal directions, φ = π/4 and
φ = −3π/4, where the absolute value of magnetic field assumes its maximum. The electric field and the
supercurrent become maximall at the directions of multiples of φ = π’s. The (2,1) mode for cylinder geometry
looks similar to the (1,1) mode of rectangular geometry. For (2,1) mode of cylindrical mesa χ21 = 3.05.

The I-V characteristics of cylindrical mesa can be obtained by solving Eq. (4.23) to Eq. (4.25) numerical,
which are shown in Figure 6.8 for the cavity (1,1) and (2,1) modes. As seen by Figure 6.8, there are two large
currents step at the cavity resonances of cylinder, which suggests large supercurrent is pumped into the system
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Figure 6.6: Spatial distribution of (a) standing electric field, (b) the static phase term γs, (c) the magnetic field
and (d) the supercurrent for the (1,1) mode of cylindrical mesa. Here ζ′ = 200 is taken for Eq. (4.25). The
lateral coordinates are normalized by the radius of the cylinder. The quantities except the phase difference γs

are up to the plasma amplitude A.
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Figure 6.7: Same as Figure 6.6 for the (2,1) mode of cylindrical mesa.
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Figure 6.8: I-V characteristic for the cylindrical mesa including the two lowest modes. The dimensionless or
equivalently the wave number and frequency, is given by ω = χ/R0 with χ = 1.84, 3.05 for the (1,1) and (2,1)
mode respectively. The radius of the cylinder R0 = 100µm.

53



and strong radiation can be expected.

6.4 Comparison with the breather solution

Figure 6.9: (a) and (b): Snapshots of time evolution of the present state for (2,0) cavity mode and breather state
in a half period respectively, the red/blue color represents the junction with even/odd index in the c direction;
(c) and (d): snapshots of time evolution of sin γ for (2,0) cavity mode and sin γB respectively in a half period.
Here T = 2π/ω with ω = 15.7 and T ′ = 2π/ω′ with ω′ = 0.8.

Krasnov studied the phase dynamics of IJJs especially for high cavity modes and discussed that a breather-like
solution may be stabilized. [84] Here we discuss the relation between the present solution and the breather
solution [85]

γB = 4atan

 √1 − ω′2 cosω′t

ω′ cosh(
√

1 − ω′2x)

 (6.9)

with ω′ ≤ 1. Compared with the present solution discussed above, first we notice that the frequency ω′ in
breather solution has a different meaning, which is determined by the eigen values of related inverse scattering
problems to the sine-Gordon equation [85], and not directly related to the applied voltage like ω in the present
solution. Secondly the peak value of the breather solution becomes smaller when ω′ is approaching unity, while
in the present solution both the amplitudes of cavity mode and static term become larger when ω is closer to
the resonance one. The snapshots of time evolution of present solution for (2,0) cavity mode, γB, sin γ for
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(2,0) cavity mode and sin γB are shown in Figure 6.9 in half period. To make the comparison apparent, we
set the maximal value of breather solution similar to the one of present solution for (2,0) cavity mode near
resonance by choosing ω′ = 0.8 in Figure 6.9. As seen in Figure 6.9(a) and (b), although the even branch of
present solution and breather solution have a similar shape at t = 0 , they become different during the time
evolution, for example the even branch of present solution becomes flat at t = T/6 and t = T/3 while the shape
of breather solution remains domed at t = T ′/6 and t = T ′/3. For the supercurrent distributions of the present
solution and breather solution displayed in Figure 6.9(c) and (d), we can see that although the supercurrent of
breather solution has a similar shape to the supercurrent of even branch of the present solution at t = 0 and
t = T/2 (t = T ′/2), their time evolutions are different. According to our study, what was seen in simulations by
Krasnov [84] is actually the solution revealed in the present work.
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7 Optimal Condition for Strong Radiation from IJJs

7.1 Proposed device

Figure 7.1: Schematic view of proposed device with a thick BSCCO cylinder embedded in a dielectric material.
The surrounding dielectric material is considered as infinitely thick.

Even with the novel π kink state, the radiation power based on IJJs is still not sufficient due to the small
radiation area limited by the mesa thickness (∼ 1µm), and enhancement of the radiation power remains a
problem. Here we propose to use a long cylindrical BSCCO single crystal embedded in a dielectric material
as shown schematically in Figure 7.1. In this way, on one hand one can increase the radiation area, and on the
other hand one can form a cavity. Then there is a question: what is the optimal dielectric material for active
radiation?

By answering this question, the cavity modes and quality factor through are solved by Maxwell’s equations
and the phase dynamics in IJJs are analyzed according to the coupled sine-Gordon equations. We find that the
radiation power has a maximum when the dielectric constant of wrapping material is adjusted. It is found that
the maximum is realized when the radiation power equals the dissipation of Josephson plasma. This gives us
the optimal dielectric constant of surrounding material in terms of the property of the superconductive single
crystal. The maximal radiation power is proportional to the typical superconducting current squared and the
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typical normal resistance, or the gap energy squared divided by the typical normal resistance.

7.2 Cavity mode

The cavity modes and quality factor are solved through Maxwells equations to find the optimal dielectric
constant of wrapping material. A long BSCCO cylinder wrapped by a dielectric material is considered. One can
take the system as infinite in the c direction as a reasonable approximation when the thickness of the BSCCO
cylinder is several wavelengths, i.e. several millimeters. The dielectric constant of wrapping material should
be larger than that of BSCCO sample to ensure the existence of radiating modes. We consider the EM fields is
uniform along the c direction as we are interested in coherent radiations.

For a radiating (or an open) system, the EM waves should be described by complex electromagnetic waves. By
considering the Helmholtz wave equation and the continuity conditions of EM wave at the interface between
BSCCO single crystal and surrounding material, the complex eigen wave number kmn can be given by [88](

J′mHm
)2
+ εr

(
JmH′m

)2
+ (1 + εr)J′mJmHmH′m = 0, (7.1)

where Jm(
√
εckmnR) and Hm(

√
εkmnR) are the first kind of Bessel and Hankel functions with R the radius of

BSCCO cylinder, εr = ε/εc (for BSCCO we take εc = 16) is the ratio between dielectric constants of wrapping
material and BSCCO single crystal; “prime”s denote the derivatives with respect to R.

The derivation of eigen equation can be obtained by considering the continuities of electromagnetic fields at the
boundary of BSCCO cylinder, which is given as follows. The electric field and magnetic field in the z direction
of the system can be written as

Ez =

Ae Jm
(√
εckmnρ

)
cos (mϕ) ρ ≤ R

Ce Hm
(√
εdkmnρ

)
cos (mϕ) ρ > R

,Hz =

Ah Jm
(√
εckmnρ

)
cos (mϕ) ρ ≤ R

Ch Hm
(√
εdkmnρ

)
cos (mϕ) ρ > R

(7.2)

With Ae (Ah) and Ce (Ch) the amplitude of electric (magnetic) field inside and outside the BSCCO cylinder to
be determined. From the Maxwell equations we have relation between the electromagnetic fields in z direction
and the electromagnetic fields in later direction as

Ht =
ikz

εcω2∇tHz +
iε0

ω
ẑ × ∇tEz (7.3)

Et =
ikz

εcω2∇tEz −
iµ0

ωεp
ẑ × ∇tHz, (7.4)

where ∇t refers to take derivatives in lateral directions. Considering the continuity of electric field at the edge
of BSCCO cylinder, one has the following boundary condition

Eϕ
(
R+

)
= Eϕ(R−), Ez

(
a+

)
= Ez(R−),

Hϕ
(
R+

)
= Hϕ(R−),Hz

(
a+

)
= Hz(R−).

(7.5)

Substitute Eqs. (7.2) to (7.4) into the above boundary condition, one obtains the following relation
(

1
εc
+

1
ε

)
mkz

ω2a
−

(
mu0√
εc

J′m
Jm
+
µ0√
ε

H′m
Hm

)
√
εc

J′m
Jm
+
√
ε

H′m
Hm

−
(

1
εc
+

1
ε

)
mkz

ω2a


Ae

Ah

 = 0. (7.6)

Then in order to get non-trivial solution of Ae and Ah, the determinant of Eq. (7.6) should be zero and consid-
ering that we are focusing on uniform modes with kz ≡ 0, one obtains the eigen equation given by Eq. (7.1).
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Solving Eq. (7.1) one obtains two kinds of cavity modes, namely perfect magnetic conductor (PMC) like one,
and perfect electric conductor (PEC) like one [88]. Here we take the PMC-like (1,1) mode as an example, and
the extension for other modes is straightforward. The spatial part of the electric field in the z (or c) direction for
PMC-like (1,1) mode inside the BSCCO cylinder is given by [41]

g11(r) = J1(
√
εck11ρ) cos ϕ (7.7)

with the cylindrical coordinate r = (ρ, ϕ), k11 the eigen wave number of PMC-like (1,1) mode, as shown in
Figure 7.2.

Figure 7.2: Distribution of (a) the real part and (b) the imaginary part of electric field in the c direction for
PMC-like (1,1) mode.

The angular eigen frequency, or equivalently the real part of eigen wave number k11 in a dimensionless form,
is given by

ω0 =
χ11c

R
√
εc

(7.8)

with χ11 ≈ 1.84 standing for the first node of J′1. For R = 100µm and εc = 16, f0 = ω0/2π = 0.22THz. The
eigen frequency will not change with the dielectric constant of wrapping material as far as it is larger than the
one of BSCCO sample.

7.3 Quality factor

The quality factor is given by the ratio between the stored energy and the power loss multiplying an applied
frequency. There are two sources of power loss in the system: one comes from the radiation, and the other is
the dissipation due to ohmic heating. In order to characterize the radiation energy from the open system, only
the radiation power is considered in the quality factor and the ohmic dissipations are taken into account in the
phase dynamic part as discussed later. In this way, the quality factor accounting for radiation is given by

Q ≡ ω0
Energy Stored

Radiation Power
. (7.9)

Considering that a cavity mode oscillates harmonically with time, the radiation part of quality factor can be
rewritten as

Q =
kr

2ki
, (7.10)

where kr and ki are the real and imaginary parts of wave number respectively. The εr dependence of Q can be
evaluated by Eqs. (4) and (7). As displayed by figure 5, the Q increases with εr approximately in the form:

Q ≈ 0.66
√
εr − 0.13. (7.11)
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Q ≈ 0.66
√
εr − 0.13. (7.12)

As seen in Eq. (9), Q diverges at infinite εr because only the radiation part of quality factor is considered here.

Figure 7.3: Dependence of the quality factor on the ratio of dielectric constants between wrapping material and
BSCCO single crystal for PMC-like (1,1) mode.

Q increases as the dielectric constant of wrapping material increases, and finally a perfect cavity is formed
where emission is reduced to vanishingly small.

7.3.1 Quality factor for rectangular geometry

By solving the eigen value equations for plane wave, we can obtain the expression of quality factor for rectan-
gular BSCCO single crystal wrapped by a dielectric material explicitly.

The electric field in c direction in the BSCCO and dielectric material can be given respectively by

Ec =
A1√
εc

exp[i(
√
εcky + ωt)] − A2√

εc
exp[i(−√εcky + ωt)], (7.13)

Ec =
C1√
εd

exp[i(
√
εcky + ωt)] − A2√

εd
exp[i(−√εcky + ωt)], (7.14)

where εc and εd are the dielectric constants in the BSCCO and the dielectric material. Then from the Maxwell’s
equations, the magnetic fields in the BSCCO and the dielectric material can be given by

Bx = A1exp[i(
√
εcky + ωt)] + A2exp[i(−√εcky + ωt)], (7.15)

Bx = C1exp[i(
√
εdky + ωt)] +C2exp[i(−√εdky + ωt)]. (7.16)
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Figure 7.4: Dependence of the quality factor on the ratio of dielectric constants between wrapping material
and BSCCO single crystal for rectangular BSCCO single crystal surrounded by a dielectric material. The line
and dot denote the analytical result of Eq. (7.18) and the numerical result obtained by finite element method
package COMSOL.

On the the left boundary where y = 0 we have

Bx(0+) = Bx(0−) (7.17)

Ez(0+) = Ez(0−) (7.18)

with C1 = 0, and on right boundary where y = L we have

Bx(L+) = Bx(L−) (7.19)

Ez(L+) = Ez(L−) (7.20)

with C2 = 0. After a straight calculation and eliminating C1 and C2 we obtain the equations for A1 and A2 1 +
√
εr 1 −

√
εr(

1 −
√
εr

)
exp

(
i
√
εckL

) (
1 +
√
εr

)
exp

(
−i
√
εckL

) (A1
A2

)
= 0. (7.21)

In order to obtain non-trivial solutions, the determinant should be zero, the we obtain

exp
(
2
√
εci(kr + iki)L

)
=

(
1 +
√
εr

1 − √εr

)2

, (7.22)
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where kr and ki are the real and imaginary parts of wave number. Solving this complex equation we have

kr =
nπ
√
εcL

, ki =
1
√
εcL

ln
√
εr − 1
√
εr + 1

. (7.23)

Then we can calculate the quality factor straightforwardly from Eq. (7.5)

Q =
kr

2ki
=

nπ

2 ln
√
εr+1√
εr−1

. (7.24)

For the fundamental cavity mode n = 1 the εr dependence of Q is shown in Figure 7.4.

7.4 Phase dynamics in the proposed device

Figure 7.5: Corresponded π phase kink for the PMC-like (1,1) of BSCCO cylinder wrapped by a dielectric
material.

The π kink solution can also be applied to the cylindrical geometry. The solution of kink state can be constructed
as follows. First one finds the cavity mode by solving the Maxwell equations for the BSCCO cylinder embedded
in a dielectric material as we have already done in the previous section. One then substitutes the resulting cavity
mode in the coupled sine-Gordon equation to find the solution for phase kinks and amplitude of the plasma
oscillations. The corresponded π phase kink state for cylindrical (1,1) mode is displayed in Figure 7.5.

The radiation power and plasma dissipation per unit length in the c direction can be given respectively by

Pr =
ω

2Q

∫
|E|2dΩ, Pdp =

β

2

∫
|E|2dΩ, (7.25)

where E = iωAg is the spatial part of electric field in the c direction.

For a given Q factor, or equivalently a given dielectric constant (see Eq. (7.12)), the voltage dependence of
current injection and radiation power can be evaluated by solving Eqs.(4.23) to (4.25). The result for Q = 73.73
(or ε = 2.01 × 105) is displayed in Figure 7.4.
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Figure 7.6: Dependence of current injection and radiation power on the bias voltage for Q=73.72 and β =0.05.
The resonance takes place at V=0.45mV, which corresponds to the eigen frequency 0.22 THz of the PMC-like
(1,1) mode for R=100µm.

7.5 Optimal radiation power

Now we investigate the Q-dependence of the radiation power and the dissipation caused by plasma oscillation.
As shown in Figure 7.7, the radiation power reaches its maximum when it equals the plasma dissipation. The
reason for the existence of a maximal radiation power is that there exist two competing factors in the system:
a good cavity associated with large Q makes a strong resonance on one hand, but it suppresses energy leak on
the other hand.

In order to understand the optimal condition for radiation power, we check the relations between radiation
power and plasma dissipation. The ratio between them is given by

Pr

Pdp
=
ω

Qβ
. (7.26)

From the energy conservation we have

Pr + Pdp =
S
2
ω(Jext − ωβ), (7.27)

where S is the lateral area of BSCCO cylinder and ωβ is the normal ohmic current.

From Eqs.(4.23) and (4.24) the supercurrent density is given by

Jext − βω =
ν

S
Re

[
1

i(ω2 − k2 − iωβ)

]
, (7.28)

with

ν =

(∫
gr cos γsdΩ

)2
+

(∫
gi cos γsdΩ

)2

4
∫
|g|2dΩ

, (7.29)
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Figure 7.7: Q-factor dependence of radiation power and plasma dissipation at resonance for the PMC-like
(1,1) mode with β = 0.05 and R = 100µm. The radiation power reaches its maximum when it equals plasma
dissipation.

where gr and gi are the real and imaginary parts of cavity mode. From Eqs.(7.26) to (7.28), the radiation power
at resonance where ω = kr = ω0 can be given by

Pr =
νω0/Q

2(ω0/Q + β)2 . (7.30)

It is then clear that Pr reaches the maximal value at

Q =
ω0

β
, (7.31)

where Pr = Pdp from Eq. (7.26).

By substituting Eq. (7.12) into Eq. (7.31), the optimal dielectric constant of wrapping material for strong radi-
ation can be obtained

ε

εc
≈

(
χ11c
√
εc

2.64πRσc
+ 0.20

)2

. (7.32)

In Gaussian units, Eqs.(7.30) and (7.31) give

Pr =
ν

8
I2
c Rc, (7.33)

where Ic ≡ Jcλ
2
c = cϕ0/8π2s is the typical superconducting current with ϕ0 the magnetic flux quantum, Rc ≡

1/σcλ
2
c is the typical c-axis resistance per unit length of BSCCO sample. This expression looks like the Ohm’s

law but we should notice that Ic is the typical superconducting current.

The Eq. (7.33) can also be written as:

Pr =
νπ2∆2

32Rcs2e2 , (7.34)
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where ∆ = ecϕ0/4π3λ2
cσc is the superconducting gap energy.

For the PMC-like (1,1) mode ν ≈ 0.15. Taking Ic = 0.22A, Rc = 0.95 × 105Ω/cm, typical values for BSCCO,
[26] the maximal radiation power is evaluated as 85W/cm.

7.5.1 Other cavity modes

In above discussion we take PMC-like (1,1) mode as an example. From Eq. (7.20) one sees that the optimal
condition dose not depend on the specific cavity modes or geometries, all the couplings between the cavity
mode and the phase kink manifests itself through the geometric factor nu. Here we show the case for PMC-like
(2,1) mode, which is displayed in Figure 7.8. As shown in Figure 7.8, the radiation power reaches its maximum
when it equations the dissipation caused by Josephson plasma, which is the same as the PMC-like (1,1) mode.

Figure 7.8: (a) spatial distribution of phase difference, (b) I-V characteristic, (c) standing electric field, (d) Q
dependences of radiation power and plasma dissipation for PMC-like (2,1) cavity mode of BSCCO cylinder
surrounded by a dielectric material with R0 = 100µm.

7.6 Verification of energy conservation

During the derivation of the optimal condition for radiation power we apply the energy conservation law and
we treat the radiation part as a perturbation in the coupled sine-Gordon equations. Here we verify the energy
conservation law at the resonance to justify the approximation used above. The radiation power per unit length
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can be written as the integration of Poynting vector over the edge of BSCCO cylinder

Pr = Re
[
−1

2

∫ 2π

0
E∗z BϕR0dϕ

]
=

∫ 2π

0
Re

[
iωkR0|A|2J∗n(kR0)J′n(kR0) cos2(mϕ)

]
dϕ

= Re
[
iπ|A|2ωkR0J∗n(kmnR0)J′n(kmnR0)/2

]
.

(7.35)

Here we take PEC-like (1,1) mode as an example and use the relation Q = kr/2ki, the radiation power at
resonance place can cast into

Pr =
π|A|2ω3

0r2
0

4Q
|J′1(χ11)|2, (7.36)

where the approximation J∗1(kr(1 + i/2Q)r0) = J∗1(χ11) − J′∗1 (χ11)ikrr0/2Q is applied for Q ≫ 1. The Joule
heating can be given as

Pdis =
β

2

∫
S
|Ez|2dΩ = β

∫ 2π

0
cos2 ϕdθ

∫ R0

0
ρdρ(ω2

0 + ω
2
0|A|2|J1(k11ρ)|2)

=
S
2
βω2

0 +
π

2
βω2

0|A|2
∫ R0

0
|J1(k11ρ)|2ρdρ =

S
2
βω2

0 +
πβω2

0|A|2R2
0

4
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where the relation
∫ 1

0 xJ1(xχ11)J1(xχ11) = [J′1(χ11)]2/2 is used. Then we take the Eq. (4.24) into Eq. (7.36)
and obtain

Pr =
πω3

0r2
0

4Q
|J′(χ11)|2

|
∫

g∗ cos γsdΩ|2

4(ω2
0/Q + ω0β)2(

∫
|g|2dΩ)2

=
νω0/Q

2(ω0/Q + β)
(7.38)

with ν the geometric factor defined in Equation (7.29). Similarly we have the expression for the Joule heating

Pdis =
S
2
βω2

0 +
νβ

2(ω0/Q + β)2 . (7.39)

The total energy is given then

Ptotal = Pr + Pdis =
S
2
βω2

0 +
ν

2(ω0/Q + β)
, (7.40)

which is just the S Jextω followed Equation. (7.28).

7.7 Setup with anti-reflection coating

In the above discussion we focus on the simple case in which the thickness of wrapping material is infinite,
where the only one reflection of EM wave at the interface between BSCCO and the dielectric material deter-
mines the cavity frequency. In what following, we show that two wrapping layers with finite thicknesses can
work in the same way (Figure 7.9), when the dielectric constant and thickness of the outside layer are tuned
appropriately such that the two reflections at the interfaces between the two wrapping layers and between the
outer layer and vacuum cancel each other totally.

The ratio between ingoing and outgoing of electric fields at the interface between two dielectric layers is given
by

r =
M11H(1)

m (kLa1)H(1)
m
′(kRa2) + M12H(1)

m
′(kLa1)H(1)′(kRa2) − M21H(1)
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m
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m (kLa1)H(1)

m
′(kRa2) − M12H(2)

m
′(kLa1)H(1)

m
′(kRa2)

, (7.41)

with the transfer matrix

M =
 H(1)

m (kMa2) − H(2)
m (kMa2)

H(1)
m
′(kMa2) − H(2)

m
′(kMa2)

  H(1)
m (kMa1) − H(2)

m (kMa1)
H(1)

m
′(kMa1) − H(2)

m
′(kMa1)

−1

, (7.42)
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Figure 7.9: Schematic view of the proposed device with anti-reflection coating.

where kL, kM and kR are the wave numbers in the inner wrapping layer, the AR coating and vacuum respectively,
and a2 = a1 +d (for definition see Figure 7.9); “prime”s denote the derivatives with respect to a1 or a2. Solving
the equation r = 0 the dielectric constant and thickness of AR coating can be determined as functions of ε and
a1. Numerical results for typical parameters are displayed in Figure 7.10.

7.7.1 AR coating for cylindrical wave

For cylindrical propagation wave the electric field in the c direction can be written by

Ec(k, ρ) = A1H(1)
m (kρ) − A2H(2)

m (kρ), (7.43)

where H(1)
m and H(2)

m are the first and the second kind of Hankel function, presenting the outgoing and ingoing
cylindrical waves. From Maxwell’s equations, the magnetic field in the angular direction is given by

Bθ(k, ρ) =
1
iω

[
A1H(1)

m
′(kρ) − A2H(2)

m
′(kρ)

]
(7.44)

with “prime” denoting the derivative with respect to ρ.

Considering the continuity of Ec and Bθ at the interfaces between the inner wrapping layer and the AR coating
and between the AR coating and vacuum (Figure. 7.9), we obtain H(1)

m (kLa1) − H(2)
m (kLa1)

H(1)
m
′(kLa1) − H(2)

m
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 (AM1
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)
=

 H(1)
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H(1)
m
′(kRa2)

 AR1, (7.46)

where kL, kM, and kR are the wave vectors, AL1, AL2, and AM1, AM2, and AR1 are the amplitudes of electric
field in the inner wrapping layer, the AR coating and the vacuum respectively. Eliminating AM1 and AM2 in
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Figure 7.10: Dependence of dielectric constant and thickness of anti-reflection coating on (a) the dielectric
constant of the inner wrapping layer with a1 = 120µm, (b) the thickness of the inner wrapping layer with
ε = 100 of PMC-like (1,1) mode with eigen frequency 0.22THz.

Eqs. (7.45) and (7.46) we have

M
 H(1)

m (kLa1) − H(2)
m (kLa1)

H(1)
m
′(kLa1) − H(2)

m
′(kLa1)

 (AL1
AL2

)
=

 H(1)
m (kRa2)

H(1)
m
′(kRa2)

 AR1. (7.47)

Then we obtain the reflectance r ≡ AL2/AL1 as given in Eq. (7.41) and the transmittance t ≡ AR1/AL1 as

t =
4i/πa2

M21H(2)
m (kLa1)H(1)

m (kRa2) + M22H(2)
m
′(kLa1)H(1)
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m
′(kRa2)

, (7.48)

where the Wronskian formula

H(1)
m (x)H(2)

m
′(x) − H(1)

m
′(x)H(2)

m (x) =
−4i
πx
, (7.49)

has been used in order to obtain Equation (7.48).
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7.8 Discussions

The maximal radiation power is not affected by the radius of the BSCCO cylinder. The reason for this is that
when the radius of the BSCCO cylinder increases, more current can be injected in, but the eigen frequency
will decrease (proportional to the inverse of radius), with these two factors canceling each other. The optimal
radiation power Eq. (7.33) is apparently similar to the result in Ref. [13], but there the discussion was limited
to nonresonant junctions.

The result that the radiation power is maximal when it equals the dissipation can be considered as a case of
Jacobi’s law. Krasnov reached numerically at a similar result for radiation in finite magnetic fields [87]. This
result does not depend on the geometry of BSCCO single crystal which can be seen from Eq. (7.3).

In the present work, we focus on the case that the Josephson plasma is uniform along a long crystal as estab-
lished by the cavity formed by the dielectric material. The maximal radiation power is therefore given by power
per unit length. Bulaevskii and Koshelev discussed the case that synchronization is achieved by the coupling
between Josephson plasma and EM wave [25]. Therefore, their maximal radiation power is achieved when the
length of BSCCO single crystal at c-axis equals the EM wave length.
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8 Summary

In this thesis, the dynamics of the gauge invariant phase difference in a stack of coupled IJJs are investigated by
the inductively coupled sine-Gordon equations, which is useful for the development of an efficient and compact
device for electromagnetic wave radiation in terahertz band. Three aspects of phase dynamics of IJJs toward
terahertz radiations are discussed including an efficient way to synchronize the system to the π phase kink state,
a general solution at small and medium inductive coupling and an optimal condition for radiation power in a
long stack of IJJs in a cylindrical geometry.

In order to reveal the way to synchronize efficiently the IJJs to the π phase states, we have studied phase dy-
namics starting from random and several typical ordered initial phase configurations by numerical simulations.
It is found that for random initial phase configurations the system can be driven into the phase kink states. The
average time spent before entering the π phase kink states is shorter when the standard deviation of random
distribution is larger corresponding to higher temperature. The system can be driven into the π phase kink state
staring from several typical initial phase configurations, which can be done by applying a non-uniform bias
voltage.

By computer simulations, we solve coupled sine-Gordon equations with weak and moderate inductive couplings
under current driving and dissipations for the phase dynamics of IJJs. We find a general solution characterized
by a static term γs in gauge-invariant phase differences in IJJs, which is distributed around ±π/2 in form
of cavity mode in in-plane directions and arranged alternatingly along c direction. This solution is stable at
small and moderate inductive couplings and high cavity modes, and evolves into the π phase kink state at
large inductive coupling. Calculating the I-V characteristics of this solution, we show that large energy can be
pumped into the cavity modes at the resonance voltages, which is useful for strong terahertz electromagnetic
radiation. This state may hopefully trigger a search for source of strong terahertz electromagnetic wave in a
broader class of superconducting materials.

In order to enhance the radiation power in the terahertz band we embed a long Bi2Sr2CaCu2O8+δ cylinder in
a dielectric material to increase the radiation area and simultaneously form a cavity. We find that the radiation
power has a maximum when the dielectric constant is tuned. The maximum is achieved when the radiation
power equals the dissipation caused by the ac voltage associated with plasma oscillation, which yields the opti-
mal dielectric constant of the wrapping material in terms of the properties of the superconducting single crystal.
The maximal radiation is proportional to the critical superconducting current squared and the typical normal
resistance, which offers a guideline for choosing superconductors as a source of strong radiation. Adding an
anti-reflection coating, we can build a compact device with the Bi2Sr2CaCu2O8+δ cylinder and two wrapping
dielectric layers with finite thicknesses.
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