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We investigate the phase structure of three-flavor QCD in the presence of finite quark chemical potential
μ=T ≲ 1.2 by using the nonperturbatively OðaÞ improved Wilson fermion action on lattices with a fixed
temporal extent Nt ¼ 6 and varied spatial linear extents Ns ¼ 8, 10, 12. Especially, we focus on locating
the critical end point that characterizes the phase structure, and extracting the curvature of the critical line
on the μ-mπ plane. For Wilson-type fermions, the correspondence between bare parameters and physical
parameters is indirect. Hence we present a strategy to transfer the bare parameter phase structure to the
physical one, in order to obtain the curvature. Our conclusion is that the curvature is positive. This implies
that, if one starts from a quark mass in the region of crossover at zero chemical potential, one would
encounter a first-order phase transition when one raises the chemical potential.
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I. INTRODUCTION

At zero baryon number density, on the two-dimensional
plane spanned by the light (up-down degenerated) quark
mass mud and strange quark mass ms, the first order phase
transition around the massless point mud ¼ ms ¼ 0
becomes weaker as the quark masses increase, and even-
tually turns into a crossover at some finite quark masses.
The boundary between the first order phase transition
region and the crossover region forms a line of second
order phase transition, called the critical end line.
A question of obvious importance is the location of the

critical line. Monte Carlo results on this issue are rather
confusing at present. For the staggered fermion action,
recent studies with improved action could place only an
upper bound on the three-flavor degenerate critical quark
mass, m, which is very small in the range of m=mphys

ud ≈ 0.1
[1,2]. This is in contrast to recent as well as an earlier study
with the naive action [3–6] which observed first order
signals up tom=mphys

ud ≈ 2–3. Furthermore, our recent study
with the Wilson-clover fermion action [7], motivated in part
by the unclear status with the staggered action, could
identify the critical end point, although the cutoff depend-
ence of the location is rather large.
The location of the critical end point in the QCD phase

diagram with finite density is also an important issue. The
first serious study on a critical end point in QCD was given

by Fodor and Katz who employ Lee-Yang zero analysis
[8,9]. After this study, various attempts were made and here
we quote some reviews [10,11] about such studies. In this
paper, we address an issue of how the critical end line
extends when switching on the chemical potential. An
interesting result was reported in [6,12] which explored the
imaginary chemical potential approach with the naive
staggered fermion action. There it was observed that the
critical surface has a negative curvature in the μ direction.
This means that a first-order phase transition at zero
chemical potential disappears when the chemical potential
is increased, rather contrary to one’s naive guess. Our
purpose in this paper is to study this question by simu-
lations with real chemical potential using the Wilson-clover
fermion action. This is a natural sequel of our work in [7].
The rest of the paper is organized as follows. In Sec. II,

we explain a strategy on how to draw the critical line on the
μ −mπ plane. Simulation details including the parameters
and the simulation algorithm are summarized in Sec. III.
We present numerical results in Sec. IV. Finally, concluding
remarks are given in Sec. V.

II. STRATEGY

Let us explain our strategy to survey the phase space for
Nf ¼ 3 QCD in order to identify the critical end point for
theWilson-type fermions. The final goal of this section is to
show how to obtain the curvature of the critical end line on
the μ-mπ plane. Note that in this section we do not use
lattice units when expressing dimensionful physical
quantities.
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First we consider the zero density case. Since the quark
masses are all degenerate, we have only two bare param-
eters β and κ (aμ ¼ 0 plane in the left panel in Fig. 1). For a
given temporal lattice size, say Nt ¼ 4, by using the peak
position of susceptibility or zero of skewness of quark
condensate, one can draw the line of finite temperature
transition (the solid red line and the dotted green line in the
left panel in Fig. 1). The transition changes from being of
first order to cross over at a second order critical end point
(the blue point in the left panel in Fig. 1). We compute the
kurtosis (which is the Binder cumulant minus three) of
quark condensate along the transition line for a set of spatial
volumes N3

s . The intersection point is identified as the
critical end point [4]. In this way, we can determine the
critical end point in the bare parameter space ðβE; κEÞ and
this procedure can be repeated for other values of Nt.
In order to translate the critical end point in the bare

parameter space to that in the physical parameter space, we
measure dimensionless ratios of pseudoscalar meson mass
and some reference quantity with mass dimension one
mPS=Λ for the bare parameters ðβE; κEÞ by a zero temper-
ature simulation. One can choose any reference quantity Λ,
sayT (temperature), 1=

ffiffiffiffi
t0

p
(Wilson flow) [13] ormV (vector

meson mass). To avoid the multiplicative renormalization
issue, we usemPS in the numerator of the ratio and not quark
masses. In this way we pin down the critical end point (the
blue point in the right panel in Fig. 1) in the physical
parameter space whose axes are given by mPS=Λ and μ=Λ.
By repeating the same calculation for increasingly larger
values of Nt, we can take the continuum limit (the orange
downward arrow in the right panel in Fig. 1) of the critical
end point in the physical parameter space at zero density,

mcont
PS;Eðμ ¼ 0Þ

Λcont
E ðμ ¼ 0Þ ¼ lim

Nt→∞

mPS;Eðμ ¼ 0Þ
ΛEðμ ¼ 0Þ : ð1Þ

This strategy is in fact used in our zero density study [7].

When switching on the chemical potential, the basic
procedure is the same; one just has to repeat the same
analysis on a different plane with μ ≠ 0 (see the left panel in
Fig. 1). For a fixed lattice temporal size, Nt ¼ 6, in order to
draw the critical end line, we consider a pair of dimension-
less ratios,

mPS;EðμÞ
mPS;Eð0Þ

and
μ

TEð0Þ
; ð2Þ

where for each ratio we have chosen proper reference
quantities at zero density. By plotting these two quantities
one can obtain a critical line as shown in the right panel of
Fig. 1. We are interested in seeing whether the critical line
bends toward the lighter mass or heavier mass direction.
More quantitatively, from a fitting

�
mPS;EðμÞ
mPS;Eð0Þ

�
2

¼ 1þ α1

�
μ

πTEð0Þ
�

2

þ α2

�
μ

πTEð0Þ
�

4

þ � � � ;

ð3Þ

we shall extract the curvature α1 and see its sign, and this is
the final goal of this paper.
If one wants to take the continuum limit of the critical

end line, one has to take the Nt → ∞ limit for fixed values
of μ=TEð0Þ,

mcont
PS;EðμÞ

mcont
PS;Eð0Þ

¼ limNt→∞
mPS;EðμÞ
mPS;Eð0Þ

����
fixed μ=TEð0Þ

: ð4Þ

After repeating the same procedure with different values of
μ=TEð0Þ, one can plot ðmcont

PS;EðμÞ=mcont
PS;Eð0ÞÞ2 as a function

of μ=TEð0Þ. Then by fitting with the same form as in
Eq. (3), one can obtain the curvature in the continuum limit.

FIG. 1 (color online). Strategy: The left panel is the phase diagram for bare parameters spanned by β, κ and aμ for Nf ¼ 3. The right
panel is the same phase diagram but depicted for physical parameters spanned by mPS=Λ and μ=Λ where Λ is some reference physical
quantity at zero density. The blue line extending from the critical end point at aμ ¼ 0 is the critical line. We study the signature of the
curvature of the critical line with fixed Nt ¼ 6.
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FIG. 3 (color online). Relative error of the reweighting factor of multiensemble reweighting in Eq. (B3) as a function of κ for β ¼ 1.70
(left top), 1.73 (right top), 1.75 (bottom left), 1.77 (bottom right). The shaded bands represent the respective κ values at transition/
crossover, from Table I and the dotted lines indicate the location of the simulated κ values. Here only three selected values of the
chemical potential are shown for each β. The spatial lattice is fixed Ns ¼ 12. The relative weight is significantly smaller than one, thus
the sign problem is mild even for the reweighted parameter space.
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FIG. 2 (color online). The average of phase reweighting factor with Nf ¼ 3 as a function of κ:μ=T ¼ aμ × Nt ¼ 0.1 × 6 ¼ 0.6. The
reweighting factor is significantly away from zero. This shows that the sign problem is mild in this region.
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III. SIMULATION DETAILS

We employ the Wilson-clover fermion action with non-
perturbatively tuned csw [14] in the presence of chemical
potential with the antiperiodic boundary condition in the
temporal direction for fermion fields while the periodic
boundary condition is imposed for spatial direction. The
Iwasaki gauge action [15] is used for the gluon sector and
gauge link variables satisfy the periodic boundary con-
dition. The number of flavor is three, Nf ¼ 3, and the
masses and chemical potentials for quarks are all degen-
erate. The temporal lattice size and the simulated quark
chemical potential are fixed to Nt ¼ 6 and aμ ¼ 0.1,
respectively, and thus μ=T ¼ 0.6. In our study, the phase
reweighting method explained below is used to deal with
the complex phase, and to survey a wide range of μ and κ,
we adopt the multiparameter reweighting method; details
are given in Appendix A. To perform finite size scaling
analysis, the spatial volume is changed over the linear sizes
Ns ¼ 8, 10 and 12. In order to search for the transition
point, we select four β points (β ¼ 1.70, 1.73, 1.75 and
1.77) and for each β, we vary κ to locate the transition point.
The phase reweighting method is adopted to handle the

complex phase according to

hOi ¼ hOeiNfθi∥
heiNfθi∥

; ð5Þ

where h� � �i∥ is the average with phase quenched fermion
determinant

Z∥ ¼
Z

½dU�e−SG jdetDðμÞjNf ; ð6Þ

and the phase factor for one-flavor is given by

eiθ ¼ detDðμÞ
jdetDðμÞj : ð7Þ

Configurations are generated by RHMC [16] with the phase
quenched quark determinant. The MD step size is chosen
such that a reasonable acceptance rate ≳80% is retained.
For each lattice parameter set ðβ; κ; Nt; NsÞ we generate
Oð100; 000Þ trajectories and the configurations are stored
at every 10th trajectory; the order of number of configu-
rations are Oð10; 000Þ for each parameter set. The phase
factor and μ-derivatives of the fermion determinants
required in μ-parameter reweighting are computed exactly
using the analytical reduction technique [17–19] for all
stored configurations. The dense matrix obtained by the
reduction is numerically computed on GPGPU with LAPACK

routines. We measure the trace of quark propagator and its
higher power up to fourth order which are used not only for
the computation of higher moments of quark condensate
but also for the parameter reweighting (see Appendix A for
details). In the computation of traces, we adopt the noise

method with 20 Gaussian noises that is checked to be
sufficient to control the noise error.
For each fixed parameter set (β, aμ, Nt, Ns), we make

runs at several values of κ. In order to integrate those runs

TABLE I. The transition point κt, the peak hight of suscep-
tibility and the minimum of kurtosis. The errors are estimated by
the jackknife analysis except for the value of κt at Ns ¼ ∞ where
the error is calculated from the fit in Eq. (8).

β aμ Ns κt χmax Kmin

1.70 0.00 8 0.1415100(52) 63.25(57) −1.6237ð72Þ
1.70 0.00 10 0.1415209(28) 121.74(91) −1.7447ð50Þ
1.70 0.00 12 0.1415177(15) 210.09(90) −1.8336ð24Þ
1.70 0.00 ∞ 0.1415203(27)
1.70 0.10 8 0.1414498(52) 60.54(57) −1.5946ð83Þ
1.70 0.10 10 0.1414577(28) 112.71(93) −1.6951ð63Þ
1.70 0.10 12 0.1414541(15) 190.9(1.0) −1.7826ð38Þ
1.70 0.10 ∞ 0.1414554(31)
1.70 0.20 8 0.1412465(59) 48.22(65) −1.424ð15Þ
1.70 0.20 10 0.1412493(32) 76.0(1.7) −1.417ð25Þ
1.70 0.20 12 0.1412516(27) 125.0(7.3) −1.550ð64Þ
1.70 0.20 ∞ 0.1412537(46)
1.73 0.00 8 0.1404267(44) 25.66(20) −1.2943ð84Þ
1.73 0.00 10 0.1404304(37) 40.90(51) −1.310ð12Þ
1.73 0.00 12 0.1404340(16) 54.54(48) −1.2600ð94Þ
1.73 0.00 ∞ 0.1404371(29)
1.73 0.10 8 0.1403406(44) 24.68(20) −1.2580ð87Þ
1.73 0.10 10 0.1403400(38) 37.29(47) −1.228ð13Þ
1.73 0.10 12 0.1403421(16) 47.41(44) −1.126ð11Þ
1.73 0.10 ∞ 0.1403427(30)
1.73 0.19 8 0.1401016(50) 20.60(22) −1.082ð19Þ
1.73 0.19 10 0.1400964(59) 26.22(82) −0.983ð53Þ
1.73 0.19 12 0.1400946(92) 29.5(1.8) −0.72ð13Þ
1.73 0.19 ∞ 0.1400913(97)
1.75 0.00 8 0.1396591(87) 14.37(21) −1.115ð16Þ
1.75 0.00 10 0.1396684(58) 19.41(41) −0.985ð21Þ
1.75 0.00 12 0.1396682(37) 23.27(42) −0.878ð20Þ
1.75 0.00 ∞ 0.1396722(64)
1.75 0.10 8 0.1395533(87) 13.82(21) −1.077ð17Þ
1.75 0.10 10 0.1395547(59) 17.90(39) −0.914ð21Þ
1.75 0.10 12 0.1395546(39) 20.52(38) −0.765ð21Þ
1.75 0.10 ∞ 0.1395552(67)
1.75 0.18 8 0.1393077(97) 11.86(22) −0.938ð28Þ
1.75 0.18 10 0.1392962(75) 14.37(38) −0.776ð42Þ
1.75 0.18 12 0.1393035(97) 14.93(53) −0.59ð10Þ
1.75 0.18 ∞ 0.139295(12)
1.77 0.00 8 0.1389157(85) 8.34(15) −1.009ð16Þ
1.77 0.00 10 0.1389300(88) 10.17(29) −0.794ð31Þ
1.77 0.00 12 0.1389349(93) 11.41(43) −0.619ð50Þ
1.77 0.00 ∞ 0.138944(11)
1.77 0.10 8 0.1387866(88) 8.02(14) −0.976ð16Þ
1.77 0.10 10 0.1387902(98) 9.36(29) −0.708ð34Þ
1.77 0.10 12 0.138792(10) 10.34(40) −0.549ð51Þ
1.77 0.10 ∞ 0.138794(13)
1.77 0.16 8 0.1385825(95) 7.29(14) −0.914ð20Þ
1.77 0.16 10 0.138570(13) 8.07(27) −0.610ð45Þ
1.77 0.16 12 0.138559(15) 8.98(41) −0.453ð88Þ
1.77 0.16 ∞ 0.138553(18)
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we adopt the multiensemble reweighting technique [20]
and search for the transition point in κ for the fixed
parameter set. See Appendix B for the details of the
multiensemble reweighting. Here we only mention that
we use some approximation to efficiently evaluate the
quark determinant in the reweighting factor as well as
observables at many reweighting points.
In our approach, there are practically two important

issues: the overlap problem and the validity of approxi-
mation made at calculating the ratio of quark determinant in
the reweighting factor. The issue of the overlap problem
will be addressed in the next section. The validity of the
approximation is discussed in Appendix A and the con-
clusion is that the approximation we made is safe in our
parameter region.
The physical scale settings we use in this paper, for

example the Wilson flow scale
ffiffiffiffi
t0

p
[13] and the hadron

mass, are taken from Ref. [7].

IV. RESULTS

A. Phase reweighting factor

Figure 2 shows the average value of the phase-
reweighting factor as a function of κ. For small κ and
large volumes, the value becomes smaller, signaling that the
sign problem is becoming serious. Nevertheless, it stays
away from zero (≳0.5) beyond statistical error, guarantee-
ing the validity of the phase reweighting for our range of
lattice parameters.
We also check the average of the reweighting factor wT

in Eq. (B3) of the multiensemble reweighting, hwTiME ¼P
UwTðUÞ=PsNs where unexplained notation is given in

Appendix B. The relative error of the reweighting factor is
plotted in Fig. 3. The errors are estimated by the jackknife
method with bin size of 1000 configurations. Figure 3
shows that the relative error is sufficiently small
½error ofhwTiME�=hwTiME ≪ 1, even at larger chemical
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FIG. 4 (color online). The susceptibility and kurtosis of quark condensate as a function of κ for β ¼ 1.70 (left top), 1.73 (right top),
1.75 (bottom left), 1.77 (bottom right). In each figure, in addition to the raw data at aμ ¼ 0.1 with Ns ¼ 8, 10, 12, we plot the
reweighting results expressed by a band with selected three values of aμ. All reweighting results are produced from configurations at
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reweighting factors and observables (see Appendix A for details of the approximation) is fine.
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potential aμ ≈ 0.2. This means that the central value of the
reweighting factor is significantly away from zero beyond
many sigmas. Thus, we conclude that the overlap problem
is not so severe in our parameter region.

B. Moments of chiral condensate
and transition point

At finite quark mass, the quark bilinear operator ψ̄ψ is
not a real order parameter but considered to be a mixture of
“energy” and “magnetization” operators [4]. We study the
bilinear operator as a primarily magnetization operator,
however, since we do not have enough data set to resolve
the mixing of observables. The detailed practical definition
of its moments is given in Ref. [7].
Figure 4 shows curves of the susceptibility and kurtosis

for quark condensate obtained by the multiensemble
reweighting. The error bands are estimated by the jackknife
method with bin size of 500–1000 configurations. For
aμ ¼ 0.1, the averages at each point of data generation are
shown in order to illustrate how multiensemble curves
interpolate those raw data. At β ¼ 1.73, the curves
reweighted to aμ ¼ 0 can be compared with data generated
at zero density [7]. The agreement supports the validity of
multiensemble reweighting and jackknife error estimation
away from aμ ¼ 0.1. The applicable range of μ=κ-
reweighting depends on β, and judged from the growth
of error, the lower β tends to have a larger applicable range.
As seen in the figures, the locations of the maximum of

susceptibility and minimum of kurtosis are consistent with

each other. Furthermore the skewness zero location is also
consistent with them although it is not shown here. We take
the location of the maximum of susceptibility as the
transition point. The numerical values are summarized in
Table I where the peak height of susceptibility χmax and the
minimum of kurtosisKmin are also listed for selected values
of aμ.
As seen in Table I, the volume dependence of the

transition points is rather mild. Hence the thermodynamic
limit can be safely taken with a fitting ansatz,

κtðNsÞ ¼ κtð∞Þ þ c=N3
s : ð8Þ

The resulting value of κtð∞Þ is shown in Table I. The phase
diagram of bare parameters β and κ is given in Fig. 5. The
transition lines have a sensitivity on the value of chemical
potential, aμ.

C. Kurtosis intersection

The next step is to determine the critical end point. For
that purpose we adopt the kurtosis intersection method [4].
The value of kurtosis can be used to diagnose the strength
of phase transitions. For a first order phase transition, the
infinite volume value of kurtosis is K ¼ −2 while for a
crossover it is K ¼ 0. At the critical point as the end point
of a first order phase transition line, the kurtosis is expected
to take the same value irrespective of the spatial volume
between −2 and 0. The value at the critical end point
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depends on the universality class of the second order phase
transition.
Figure 6 plots the minimum of kurtosis as a function of β

for some selected values of aμ. This shows that a strong
first order phase transition at lower β becomes weaker for
higher β and such a change becomes rapid for larger
volumes. We fit the data with the fitting form [6] inspired
by finite size scaling,

Kmin ¼ KE þ AN1=ν
s ðβ − βEÞ; ð9Þ

where KE, A, ν and βE are fitting parameters and the results
are listed in Table II. The resulting exponent ν and the
value of kurtosis at the critical end point KE are indepen-
dent of aμ within errors, and they are consistent with the
values of three-dimensional Z2 universality class, ν ¼ 0.63
and KE ¼ −1.396 respectively. On the other hand, the
universality class of three-dimensional O(2) and three-
dimensional O(4) are rejected, rather strongly by the value
of KE.
We superimpose the obtained critical end points

ðβEðaμÞ; κEðaμÞÞ for 0 ≤ aμ ≤ 0.19 in the phase diagram
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FIG. 6 (color online). Kurtosis intersection at aμ ¼ 0.00–0.19. In the fitting, three lowest values of β are used. The black pentagon
represents the critical end point (CEP) in bare parameter space βE and it moves to the lower side for larger chemical potential. See
Table II for the values of fitting parameters. The horizontal magenta line shows KE ¼ −1.396 for the three-dimensional Z2 universality
class. In this region of the chemical potential, the value of KE is constant, namely the universality class does not change.
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of Fig. 5. The critical end point moves toward the upper-left
corner by increasing aμ.
In order to confirm the universality class and the location

of the critical end point, we check another exponent γ=ν
which is obtained from the volume scaling of the suscep-
tibility peak height of quark condensate

χmax ¼ CNb
s ; ð10Þ

with fit parameters b and C. The exponent b depends on the
nature of transition, i.e., b ¼ d the spatial dimensionality at
a first order phase transition, and b ¼ 0 for a crossover. At
the critical point as the boundary of the first order phase
transition line, the exponent is expected to be b ¼ γ=ν with
critical exponents γ and ν. Figure 7 shows the exponent b
along the transition line as a function of β. We observe that
the exponent b at the critical end point estimated by the
kurtosis intersection is consistent with the value for the
three-dimensional Z2, γ=ν ¼ 1.964. Thus we observe a
consistency between the kurtosis intersection analysis and
the volume scaling of susceptibility. We note that it is
difficult to differentiate universality classes depending
solely on the volume scaling of the susceptibility peak
since the values of γ=ν are very close to each other as listed
in Table II.

D. Critical line

The analysis of the critical line below requires a careful
manipulation with scale setting. Thus we distinguish
quantities in lattice units from those in physical units by
placing a tilde on the former, e.g., the chemical potential in
physical units is denoted as μ and that in lattice units
by ~μ ¼ aμ.

In the previous subsection, we have determined the
critical end points in the bare parameter space. The last step
is to translate the critical end point on the ðβ; κÞ plane to the
physical space, to obtain the critical line as one varies μ,
and finally to extract its curvature. For that purpose, as
explained in Sec. II, we need to compute the pair of ratios in
Eq. (2) as follows:

mPS;EðμÞ
mPS;Eð0Þ

¼ ~mPS;Eð ~μÞ
~mPS;Eð0Þ

·
að0Þ
að~μÞ ; ð11Þ

μ

TEð0Þ
¼ ~μ ·

að0Þ
að ~μÞ · Nt; ð12Þ

where ~mPS;Eð ~μÞ is the pseudoscalar (PS) meson mass in
lattice units evaluated at ðβ; κÞ ¼ ðβEð~μÞ; κEð ~μÞÞ. Note that
the PS mass at the critical point does not depend on ~μ
directly, but only through βE and κE at ~μ. The PS mass is
measured by the zero temperature simulation at βE and κE.
On the other hand, the lattice spacing requires some careful
thought as follows.
We usually determine the lattice spacing by choosing a

line of constant physics (LCP) and specifying the value of a
dimensionful physical quantity on that line. For example,
one may choose the dimensionless combinationmPS

ffiffiffiffi
t0

p
for

specifying the LCP, and the value of mPS in physical units
to determine the lattice spacing along the chosen LCP,

aðβ; yÞ ¼ ~mPSðβ; κyðβÞÞ
mPSðyÞ

; ð13Þ

where y is the value of the constant physics y ¼ mPS
ffiffiffiffi
t0

p
and κyðβÞ is defined such that the following equation holds
for each β:

TABLE II. Fit results for kurtosis intersection for selected values of aμ. The errors are estimated by the jackknife
method. χ2=dof is the average value. In the region 0 ≤ aμ ≤ 0.19, the exponent ν and the value of kurtosis at the
critical end point KE are constant within errors and the universality class is consistent with three-dimensional Z2,
while other universality classes, three-dimensional O(2) and three-dimensional O(4) are rejected.

aμ βE κE KE ν A χ2=dof

0.00 1.7247(10) 0.1406320(29) −1.366ð15Þ 0.734(35) 0.64(10) 3.76
0.05 1.72249(92) 0.1406904(29) −1.383ð14Þ 0.694(32) 0.545(86) 3.24
0.10 1.71803(76) 0.1407928(29) −1.403ð12Þ 0.615(27) 0.371(64) 3.18
0.15 1.71372(95) 0.1408541(31) −1.381ð15Þ 0.569(33) 0.281(67) 5.54
0.16 1.7129(11) 0.1408622(33) −1.371ð18Þ 0.567(38) 0.279(78) 4.94
0.17 1.7119(14) 0.1408723(38) −1.358ð22Þ 0.570(49) 0.285(99) 3.89
0.18 1.7109(20) 0.1408864(48) −1.346ð28Þ 0.590(74) 0.33(15) 2.86
0.19 1.7095(32) 0.1409120(62) −1.335ð43Þ 0.66(13) 0.47(33) 2.03

Universality class KE ν γ=ν

Three-dimensional Z2 −1.396 0.63 1.964
Three-dimensional O(2) −1.758 0.672 1.962
Three-dimensional O(4) −1.908 0.748 1.975
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y ¼ ~mPSðβ; κyðβÞÞ
ffiffiffiffi
~t0

q
ðβ; κyðβÞÞ: ð14Þ

The notation of the lattice spacing in Eqs. (11) and (12)
means that

að~μÞ ¼ aðβEð ~μÞ; yÞ: ð15Þ

Note that, again, the lattice spacing does not depend on μ
directly, but only though the βE at ~μ. Thanks to LCP, where
the physical unit mass in the denominator in Eq. (13) is not
known a priori but common, the physical mass cancels out
in the ratio of lattice spacings and the ratio may be
computed by using the PS mass in lattice units,

að0Þ
að~μÞ ¼

~mPSðβEð0Þ; κyðβEð0ÞÞÞ
~mPSðβEð ~μÞ; κyðβEð ~μÞÞÞ

: ð16Þ

In the following, for the computation of the ratio of lattice
spacings, we use the Wilson flow scale instead of the PS
mass since the former is precisely calculated,

að0Þ
að~μÞ ¼

1=
ffiffiffiffi
~t0

p
ðβEð0Þ; κyðβEð0ÞÞÞ

1=
ffiffiffiffi
~t0

p
ðβEð~μÞ; κyðβEð~μÞÞÞ

: ð17Þ

One can employ a different LCP by specifying a different
value of y0ð≠ yÞ. The resulting lattice spacing coincides
with that from the original (y) definition if, in specifying the
value of the dimensionful quantity, one takes into account

the variation of that quantity in moving from the original
LCP to a new LCP. In general the agreement will not be
exact due to scaling violations.

aðβ; y0Þ ¼ aðβ; yÞ þ ðlattice artifactsÞ: ð18Þ

Thus differences one may observe in physical results due to
the choice of LCP are a scaling violation effect. In the
following, we choose two values for the line of constant
physics,
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FIG. 7 (color online). Exponent b of peak height of susceptibility as a function of β (open symbols). The lines connecting points are
just a guide for your eyes. The filled regions represent the corresponding critical end point determined by the kurtosis intersection
method. The horizontal three lines (b ≈ 2) represent the values of γ=ν for universality classes Z2, O(2) and O(4) in three dimensions. It is
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y ¼ mPS
ffiffiffiffi
t0

p ¼ 0.55 and 0.65: ð19Þ

We use the Wilson flow scale and the hadron mass
computed in Appendix A of Ref. [7], where the zero
temperature simulations were carried out with the same
lattice actions and sufficiently large lattices mπL > 5.
Especially, we select β ¼ 1.70, 1.73, 1.75 and 1.77 data
in our analysis here. By combining the above scale inputs
and the information of the critical end point at finite
chemical potential determined in the previous subsection,
we calculate the two ratios in Eqs. (11) and (12). The results
are plotted in Fig. 8.
We extract the curvature by using the fitting form in

Eq. (3). The results are tabulated in Table III. The errors of
fitted parameters are estimated by the jackknife method
using the uncorrelated chi squared function in each fit. We
also try to perform a fit including correlations by using the
covariance matrix estimated by the jackknife method; the
results are consistent with the above analysis although
the covariance matrix is poorly estimated. We observe that
the critical line has a sensitivity on the value of constant
physics. This difference is considered as a systematic
uncertainty caused by the choice of the scale setting as
discussed above. All in all, we find the curvature of the
critical line to be positivewith a statistical error of about 3%
and a systematic error of about 10%.

V. CONCLUDING REMARKS

We have investigated the critical line on the μ −mπ

plane, especially its curvature, in Nf ¼ 3 QCD by using
nonperturbatively OðaÞ improved Wilson fermion action.
We have determined the critical end point by making use of
the kurtosis intersection method. The critical line is drawn
by repeating the calculation in the range of chemical
potential with applications of various reweighting tech-
niques, that is, the multiparameter/phase/multiensemble
reweighting.
The value of kurtosis at the critical end point and the

exponent ν obtained from the kurtosis intersection analysis
in the range of chemical potential we investigated are
consistent with those of the three-dimensional Z2 univer-
sality class. Furthermore, if the above universality class is
used as an input in the analysis of exponent extracted from
susceptibility peak, the expected location of the critical

point is consistent with that obtained from the kurtosis
intersection method.
Our analysis shows that the curvature of the critical line

is positive. This disagrees with a previous study with the
naive staggered fermion action [6,12] where the critical line
is expressed in terms of quark mass. We note that neither
the previous study nor ours have taken the continuum limit.
Thus further work with larger Nt is desired.
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APPENDIX A: REWEIGHTING

The phase reweighting and multiparameter reweighting
for bare parameters1 m0 and μ can be done by the formula

hOðm0
0;μ

0Þim0
0
;μ0 ¼

D�
detDðm0

0
;μ0Þ

detDðm0;μÞ
�
NfeiNfθðm0;μÞOðm0

0;μ
0Þ
E
∥;m0;μD�

detDðm0
0
;μ0Þ

detDðm0;μÞ
�
NfeiNfθðm0;μÞ

E
∥;m0;μ

:

ðA1Þ

Here, m0
0 and μ0 are target parameters while m0 and μ are

actual simulation parameters. The average h� � �im0
0
;μ0 in the

left-hand side is taken by using the Boltzmann factor
including the full quark determinant at parameter m0

0, μ
0,

while the average h� � �i∥;m0;μ in the right-hand side is taken by
using the Boltzmann factor including the phase quenched
quark determinant at parameter m0, μ. Here we have
explicitly written down the bare parameter dependence on
the observable Oðm0; μÞ, say the quark propagator.
In Eq. (A1), one needs to evaluate the reweighting

factor,

�
detDðm0

0; μ
0Þ

detDðm0; μÞ
�

Nf

eiNfθðm0;μÞ; ðA2Þ

where the second factor is already computed and stored but
the first factor, the ratio of quark determinants, requires

TABLE III. The curvature of the critical line in the fitting form
in Eq. (3) for scale inputs (

ffiffiffiffi
t0

p
) and the values of constant physics

mPS
ffiffiffiffi
t0

p ¼ 0.55, 0.65. The error of curvature is estimated by the
jackknife method.

Constant physics Scale input α1 α2

mPS
ffiffiffiffi
t0

p ¼ 0.55 1=
ffiffiffiffi
t0

p
1.924(60) −0.58ð72Þ

mPS
ffiffiffiffi
t0

p ¼ 0.65 1=
ffiffiffiffi
t0

p
2.148(39) −1.74ð52Þ

1We use the bare mass parameter m0 instead of
κ ¼ 1=ð2m0 þ 8Þ, since the former parameter is useful in the
following discussion. In this Appendix, μ is the chemical
potential in lattice units. We do not consider β-reweighting.
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high cost computation if one tries to calculate it directly at
many target parameter points ðm0

0; μ
0Þ. Thus we adopt a

cheaper approximation method, that is, the Taylor expan-
sion of the logarithm of determinant which is known to
have a better convergence property than the other expan-
sion schemes [22],

ln
�
detDðm0

0; μ
0Þ

detDðm0; μÞ
�

¼
�X∞
j;k¼0

Δmj
0Δμk

j!k!

� ∂
∂m0

�
j
� ∂
∂μ

�
k
ln detDðm0; μÞ

	

− ln detDðm0; μÞ; ðA3Þ

with

Δm0 ¼ m0
0 −m0; ðA4Þ

Δμ ¼ μ0 − μ: ðA5Þ

Once some leading coefficients in the expansion are
calculated, one can easily evaluate the ratio at many
reweighted points up to truncation errors. In our calcu-
lation, we include the following coefficients:

ðj; kÞ ¼

 ð1 − 4; 0Þ ∶ purelym0-derivatives;

ð0; 1 − 4Þ ∶ purely μ-derivatives;
ðA6Þ

but no mixed derivatives say (1,1) and so on. The explicit
form of the approximated ratio of determinant is given by

�
detDðm0

0; μ
0Þ

detDðm0; μÞ
�

Nf

≈ exp
�
Nf

X4
j¼1

ð−Þjþ1Δmj
0

j
TrD−jðm0; μÞ

þ Nf

X4
k¼1

ðΔμ=TÞk
k!

Wkðm0; μ=TÞ
	
;

ðA7Þ
where W1;2;3;4 are given in [22].
For the same reason as the ratio of determinant, we use

an expansion form of the observable in Eq. (A1),

Oðm0
0; μ

0Þ ¼
X∞
j;k¼0

Δmj
0Δμk

j!k!

� ∂
∂m0

�
j
� ∂
∂μ

�
k

×Oðm0; μÞ: ðA8Þ
For the trace of higher powers of quark propagator which is
included in the higher moments of quark condensate,2 we
apply the following approximation (μ-derivative terms are
totally neglected):

trD−1ðm0
0; μ

0Þ ≈ trD−1ðm0; μÞ

þ
X3
j¼1

ð−ÞjΔmj
0trD

−ðjþ1Þðm0; μÞ; ðA9Þ

trD−2ðm0
0; μ

0Þ ≈ trD−2ðm0; μÞ

þ
X2
j¼1

ð−Þjðjþ 1ÞΔmj
0trD

−ðjþ2Þðm0; μÞ;

ðA10Þ

trD−3ðm0
0; μ

0Þ ≈ trD−3ðm0; μÞ

þ
X1
j¼1

ð−Þjðjþ 1Þðjþ 2ÞΔmj
0

× trD−ðjþ3Þðm0; μÞ; ðA11Þ

trD−4ðm0
0; μ

0Þ ≈ trD−4ðm0; μÞ: ðA12Þ

At first glance, you may doubt the approximation for the
ratio of determinant in Eq. (A7) and observables in
Eqs. (A9)–(A12) especially the higher powers of the
inverse. We however have some evidences that this
approximation is good within our parameter range and
statistical error. First, the approximation for the observables
in Eqs. (A9)–(A12) is compared with the partial quenching
results where there is no truncation error in the observable.
Even for the kurtosis including Eq. (A12), we do not see
any significant difference between them within errors.
Second, in order to check the effects of the mixed derivative
terms in the reweighting factor, we compute and include the
mixed-derivative coefficients up to fourth order, namely
ðj; kÞ ¼ ð1; 1Þ, (2,1), (3,1), (1,2), (2,2), (1,3) coefficients in
Eq. (A3), and check their effects on the moments of chiral
condensate (of course, the associated mixed derivative
contributions for the observable are also included) at
β ¼ 1.73 and Ns ¼ 12 in the range of the chemical
potential, 0 ≤ μ ≤ 0.19. Then it turns out that the difference
is quite small, that is, within statistical errors in the
parameter space. Furthermore, we check the hierarchy of
the terms and observe that the dominant term is (1,0) and
the leading term in the mixed derivative terms is (1,1), and
then it turns out that the magnitude of their ratio,
j½ð1; 1Þterm�=½ð1; 0Þterm�j is of order 10−3 at a maximum.
This shows that neglecting the mixed derivative terms is
justified and our approximation in Eq. (A7) is fine. We
naturally expect that the same goes for the other cases of
β ¼ 1.70, 1.75, 1.77. Thus, we conclude that the approxi-
mation made in Eq. (A7) is legitimate in the range of
parameter we explored.

2The formulas for higher moments of quark condensate in
terms of quark propagator are explicitly given in Ref. [7].
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APPENDIX B: MULTIENSEMBLE
REWEIGHTING

In this Appendix, we review the multiensemble
reweighting technique in [20]. An estimated
(E) expectation value of some operator at a target parameter
denoted by T is given by

ΩE
T ¼

P
UwTðUÞΩTðUÞP

U0wTðU0Þ ; ðB1Þ

where
P

U is an abbreviation of sum over all configura-
tions, namely sum over all ensembles (each ensemble is
numbered by r) and all configurations (numbered by n)
therein,

X
U

fðUÞ ¼
XR
r¼1

XNr

n¼1

fðUr;nÞ; ðB2Þ

with the number of ensembles R and the total number of
configurations Nr for ensemble r.
The reweighting factor wT is given by

wTðUÞ ¼
P

R
s0¼1

Ns0P
R
s¼1Nsexp½STðUÞ − S∥sðUÞ þ fs − FT�

; ðB3Þ

where ST is the action at the target parameter, and S∥s is the
simulated actions (using phase quenched determinant at the
simulated parameter) for ensemble s (s ¼ 1; 2;…; R). In
our case3

e−STðUr;nÞ → e−SGðUr;nÞdetDðκT; μT;Ur;nÞ; ðB4Þ

e−S
∥
s ðUr;nÞ → e−SGðUr;nÞjdetDðκs; μs;Ur;nÞj: ðB5Þ

The ratio of Boltzmann weight in Eq. (B3) is given by

exp½STðUr;nÞ − S∥sðUr;nÞ� →
jdetDðκs; μs;Ur;nÞj
detDðκT; μT;Ur;nÞ

¼
jdetDðκs;μs;Ur;nÞj
jdetDðκr;μr;Ur;nÞj e

−iθðκr;μr;Ur;nÞ

detDðκT;μT;Ur;nÞ
detDðκr;μr;Ur;nÞ

; ðB6Þ

where we have already measured the phase θðκr; μr; Ur;nÞ.
The ratio of determinants can be estimated by using the
expansion method given in the previous Appendix.
fs (s ¼ 1; 2;…; R) in Eq. (B3) which are free parameter

and we determine them by solving the nonlinear equation,

fs ¼ Fs − ln
X
U

�XR
s0¼1

Ns0exp½S∥sðUÞ − S∥s0 ðUÞ

þ fs0 − Fs�
�

−1
∈ R; ðB7Þ

where Fs are dummy to avoid numerical instability. We
solve the equation by iteratively substituting trial values of
fs with initial values fs ¼ 0 for all s. We observe that this
iteration converges after around (or less than) 20 iterations
for all cases.
FT in Eq. (B3) is a constant to avoid numerical

instability,

FT ¼ 1P
R
r¼1Nr

X
U

1

R

XR
s¼1

½S∥TðUÞ − S∥sðUÞ þ fs� ∈ R:

ðB8Þ
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