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A Practical Implementation of Modular Algorithms for

Frobenius Normal Forms of Rational Matrices

Shuichi Moritsugu†

Modular algorithms for computing the Frobenius normal forms of integer and rational ma-
trices are presented and their implementation is reported. These methods compute Frobenius
normal forms over Zpi , where pi’s are distinct primes, and then construct the normal forms
over Z or Q by the Chinese remainder theorem. Our implementation includes: (1) detection
of unlucky primes, (2) a new formula for the efficient computation of a transformation ma-
trix, and (3) extension of our preceding algorithm over Z to one over Q. Through experiments
using a number of test matrices, we confirm that our modular algorithm is more efficient in
practical terms than the straightforward implementation of conventional methods.

1. Introduction

In a previous paper19), we studied a mod-
ular algorithm for the exact computation of
Frobenius normal forms of integer matrices, and
substantiated its efficiency by computational
experiments. In this paper, we extend the
above algorithm to the case of rational matri-
ces. We propose several algorithms and com-
pare their efficiency and effectiveness through
experiments.

The motivation for these studies is the fact
that computing various types of normal forms
of matrices is a very important subject in sym-
bolic linear algebra. In particular, the Jordan
normal form is theoretically fundamental, but it
requires an algebraic extension field to which all
the eigenvalues belong. Hence, we have to han-
dle algebraic numbers efficiently in computer
algebra systems, but this is often so difficult
that computing Jordan normal forms becomes
generally inefficient.

In contrast, the Frobenius normal form is
computed only by rational operations of the
matrix elements without algebraic extensions,
and it is absolutely unique, while the Jordan
normal form is unique up to the permutation of
Jordan blocks. Moreover, the Frobenius normal
form provides the same detailed information on
the matrix as the Jordan normal form; for ex-
ample24):
• the characteristic polynomial,
• the minimal polynomial,
• the algebraic and geometric multiplicities

of the eigenvalues, and
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• the structure of eigenvectors or generalized
eigenvectors.

In addition, algorithms for symbolic computa-
tion of Jordan normal forms can be realized by
transforming the Frobenius normal forms9),20).
Therefore, Frobenius normal forms are the most
suitable for constructing linear algebra algo-
rithms by means of computer algebra systems.
They also have important applications such as
the eigenvalue method for solving systems of
algebraic equations22),23),30).

Algorithms for Frobenius normal forms have
been discussed in a number of papers, but these
have been concerned mainly with the theoreti-
cal computational complexity. As an improve-
ment over the classical O(n4) algorithm16),26),
the O(n3) algorithm was proposed in Storjo-
hann 29), and a series of algorithms by Gies-
brecht6)∼8) are known to give the best complex-
ity. Nevertheless, implementations of such algo-
rithms have rarely been reported, and Maple2)

is the only existing commercial computer alge-
bra system to provide a function for Frobenius
normal forms.

The purpose of this paper is to describe the
implementation of computing normal forms and
transformation matrices, comparing algorithms
from a practical point of view. The algorithm
adopted here belongs to the O(n3 log n) class1)
and is not necessarily optimal. However, in-
stead of precise analysis of the complexity, we
focus on the practical application of modular
methods for the computation of normal forms.

The basic idea of the modular algorithm
was first explained by Howell12), where only
Frobenius normal forms are computed, with-
out transformation matrices. In Mathieu and
Ford18) and Mukhopadhyay25), p-adic methods
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for the computation of characteristic polyno-
mials were proposed, in which only block di-
agonalized forms or upper triangular forms are
computed. The latest paper by Giesbrecht and
Storjohann8) also describes a modular method
and an algorithm for a transformation ma-
trix. The detection of unlucky primes is treated
in both Howell12) and Giesbrecht and Storjo-
hann8), but since the notions in those stud-
ies are slightly different, the procedure is eluci-
dated in this paper from the viewpoint of actual
implementation.

As another approach for Frobenius normal
forms, we previously proposed a fraction-free
algorithm21) for polynomial matrices. This al-
gorithm is also applicable to integer matrices,
but it does not necessarily yield a dramatic im-
provement in efficiency. In this paper, there-
fore, we apply modular methods to integer and
rational matrices, and focus particularly on the
following:
• detection of unlucky primes and its imple-

mentation,
• efficient computation of transformation

matrices with simple elements, and
• recovery of rational numbers and algo-

rithms for rational matrices.
The implementation for integer matrices was
reported in our previous paper19). Theories
necessary for both integer matrices and ratio-
nal matrices are summarized here in sections 2
and 3. We show an extension of the method
to rational matrices in section 4, and discuss
its efficiency with reference to the experimental
results in section 5. Most other papers discuss
only integer matrices, because it is theoretically
sufficient to extract the common denominator
of rational matrices. However, our results show
that such an approach is quite inefficient in ac-
tual implementation.

2. Frobenius Normal Forms of Matri-
ces

In the following sections, we assume that the
elements of a given matrix are rational num-
bers; that is, A = [aij ] , aij ∈Q. Refer to text-
books by Iri and Kan13) and Kan and Iri14) for
details of the normal forms theory.

Definition 1 (Companion Matrix).
The following n × n square matrix

C =




0 1

0 0
. . . O

...
...

. . . . . .
0 0 · · · 0 1
c0 c1 · · · cn−2 cn−1




(1)

is called the companion matrix associated with
the polynomial f(x) = xn − cn−1x

n−1 − · · · −
c1x − c0. In particular, the companion matrix
associated with the polynomial of degree one
f(x) = x− c0 is the 1× 1 square matrix [c0].

Lemma 2. The characteristic polynomial
ϕC(x) and the minimal polynomial φC(x) of the
companion matrix C are equal to the associated
polynomial f(x) = xn−cn−1x

n−1−· · ·−c1x−c0.

Theorem 3 (Frobenius Normal Form).
(i) Using a suitable regular matrix S, every

n × n square matrix A can be transformed
into a block diagonal matrix as follows:

F = S−1AS = C1 ⊕ C2 ⊕ · · · ⊕ Ct. (2)
This is called the Frobenius normal form (or
rational normal form) of A. Each block ma-
trix Ci (i = 1, · · · , t) is a di × di compan-
ion matrix in the form of Eq.(1), and the
associated polynomial ϕi+1(x) of Ci+1 di-
vides the associated polynomial ϕi(x) of Ci

(i = 1, . . . , t − 1).
(ii) For every given matrix A, its Frobenius

normal form F of Eq.(2) is uniquely deter-
mined, while a transformation matrix S is
not unique. Furthermore, the minimal poly-
nomial of A is given by φA(x) = ϕ1(x), and
the characteristic polynomial of A is given by
ϕA(x) = ϕ1(x) · ϕ2(x) · · ·ϕt(x).
For the computation of characteristic poly-

nomials, there is a similar algorithm using ma-
trix block diagonalization, as in Eq.(2), known
as Danilevskii’s method3),4), where the condi-
tion ϕt(x) | ϕt−1(x) | · · · | ϕ1(x) is not required.
Hence, the result given by Danilevskii’s method
is not unique and ϕ1(x) is not necessarily iden-
tical to the minimal polynomial of A.

The normal form in the strict sense of
Theorem 3 is deduced by the constructive
proof of the “cyclic decomposition theorem
of a finite-dimensional vector space”5),11),13).
The computational complexity is analyzed as
O(n3 log n)1), where O(n3) corresponds to basic
matrix operations such as multiplication, and
O(log n) is interpreted as the number of com-
panion blocks t in the normal form of Eq.(2).

However, instead of the “constructive proof”
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above, this paper adopts the algorithm ex-
pressed by the composition of elementary trans-
formations14), which is the conversion by the
authors of 13) themselves. To our knowledge,
there is nothing in the English literature that
gives such an algorithm explicitly, even though
the formulation in Iri and Kan13) is essentially
identical to that in Hoffman and Kunze11).

According to the formulation in Kan and
Iri14), we eliminate the elements step by
step analogously to the Gaussian elimination
method, and finally obtain the normal form F
as well as a transformation matrix S. The num-
ber of loop counts is not stable, but depends on
the arrangement of the elements in the original
matrix A. However, this algorithm, whose com-
plexity is also considered to be O(n3 log n), is
certainly deterministic. In order to compute a
similar transformation A �→ S−1AS, we apply
the following elementary transformations suc-
cessively:

Definition 4 (Elementary Transforma-
tions). The following three operations are
called the elementary transformations.
op1(k, l): Exchange the k-th row and the �-

th row of A, and then exchange the k-th
column and the �-th column of A.

op2(k, c): Multiply the k-th row of A by c−1,
and then multiply the k-th column of A by
c.

op3(k, l, c): Add the �-th row multiplied by c
to the k-th row of A, and then subtract the
k-th column multiplied by c from the �-th
column of A.

In these transformations, the operations on
rows correspond to the transformation matrix
S−1, and the operations on columns correspond
to S. When we apply suitable transformations
successively · · ·S−1

3

(
S−1

2

(
S−1

1 AS1

)
S2

)
S3 · · ·,

we finally obtain F, S, S−1 in Eq.(2). This pro-
cedure is carried out by performing only ratio-
nal operations in Q, and can be realized by
preparing two unit matrices with the same size
for A, as follows:

E A E −→ S−1 F S (3)

Remark 1. In some of the literature, in-
cluding Kan and Iri14), a companion matrix is
defined as the transposed form of Eq.(1), and
the Frobenius normal form as the transposed
form of Eq.(2). Both definitions are related by
FT = S−1AT S ⇐⇒ F = ST AS−T ; hence,
they are essentially identical. However, we

adopt the form in Definition 1 for the symbolic
formulation of eigenvectors. Let S−1AS = C
in Eq.(1), and let λ be a root of the associated
polynomial f(x) of C. If we put

u :=
[
1, λ, λ2, . . . , λn−1

]T
,

then we have Cu = λu, A(Su) = λ(Su).
These relations give the symbolic expression of
an eigenvector of C and A with the eigenvalue
λ. (Hence, we do not compute S−1 in the actual
implementation.)

Remark 2. If all the elements of A are in-
tegers, then its Frobenius normal form F con-
sists only of integers. On the other hand, we can
take the transformation matrices S and S−1 so
that only one of them is integral, even though
A is rational. There exists no known algorithm
that yields both S and S−1 as integer matrices.

3. Modular Algorithm for Integer Ma-
trices

In this section, we summarize the modular
algorithm for integer matrices given in our pre-
vious paper19). We assume that the straightfor-
ward program based on procedure (3) over Q is
already implemented. We propose an algorithm
that consists of the following two steps:
(i) compute the normal form F s.t. AS =

SF , using modular arithmetic, and
(ii) compute a transformation matrix S with

simpler integer elements.
3.1 Chinese Remainder Theorem
The elementary transformation op2(k, c) in-

cludes division by c, but this step is per-
formed in Zp as the multiplication by s ≡ c−1

(mod p), where cs + pt = 1 from the Euclidean
algorithm. Therefore, every rational operation
in the elementary transformations in Definition
4 can be executed modulo a prime p, and the
same procedure as over Q yields the Frobenius
normal form over Zp such that ApSp = SpFp.

In order to recover F over Z from several im-
ages Fp1 , Fp2 , . . ., we apply the Chinese remain-
der theorem (CRT). Since the elements of S in
procedure (3) generally produce much longer
integers than those of F , recovery of S by the
CRT is very inefficient. Hence, we abandon this
procedure and do not reserve each Spi

.
Let us denote by F (k) the normal form F

(mod p1 · · · pk). Applying the Newtonian solu-
tion to the CRT (Theorem 9 in the appendix),
we compute F (1) → F (2) → · · · for the moduli
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p1, p1p2, . . . successively.
In the lifting procedure, when we obtain

F (k−1) = F (k) for (mod p1 · · · pk−1) and (mod
p1 · · · pk−1pk), we check the condition ϕ(A) = 0
over Z, where ϕ(x) is the minimal polynomial
of F (k). Since the minimal polynomial of A is
unique, if we have the above condition, F (k)

coincides with the normal form over Z.
We can also estimate the bound for the ele-

ments of F and compute Fp’s using a sufficient
number of primes to recover the integer8). How-
ever, we selected the above incremental formula
so that the minimum necessary number of Fp’s
would be computed in the framework of sequen-
tial computation. We should also note that it
is difficult to extend the bound to the case of
rational matrices.

3.2 Detecting and Avoiding Unlucky
Primes

In this section, we discuss the criterion for de-
tecting unlucky primes, arranging various defi-
nitions used in several previous studies. First,
we introduce the following broad definition:

Definition 5 (Unlucky Prime).
Let AS = SF be the normal form and a
transformation matrix computed over Z, and
ApSp = SpFp be those computed over Zp. If we
have F �≡ Fp (mod p) or S �≡ Sp (mod p),
then we call the prime number p “unlucky.”

The following lemma shows that unlucky
primes (in the sense of Definition 5) are de-
tected by recording and comparing the history
of pivoting in the elimination process.

Lemma 6 (Howell12)). The pivoting
pattern for a lucky prime p is identical to that
over Z.

If an unlucky prime p divides the pivot ele-
ment at some step and the pivot is reduced to
0, we have to apply op1(k, �) to choose a non-
zero pivot, but such an exchange of rows and
columns does not occur in the computation over
Z. Hence, we discard the result over such mod-
ulus p, and apply the CRT to pi’s that hold the
same pivoting pattern as that over Z. Since the
number of prime factors of the pivot element
for each step is finite, only a finite number of
unlucky primes exist for a certain matrix.

In contrast, other papers6),8) that also pro-
pose a modular algorithm using the CRT adopt
the following narrow definition:

Definition 7 (Strictly Unlucky Prime).
Let A, F , Ap, and Fp be the same as in Defini-
tion 5. If we have F �≡ Fp (mod p), then we

call the prime number p “strictly unlucky.”
In this definition, we do not care about trans-

formation matrices S and Sp. It is obvious that
F �≡ Fp (mod p) ⇒ S �≡ Sp (mod p); how-
ever, if we have F ≡ Fp (mod p) and S �≡ Sp

(mod p), then we do not regard p as strictly
unlucky. In order to detect such strictly un-
lucky primes, instead of the pivoting pattern,
the block structure and their sizes (d1, . . . , dt)
are noted in the normal form F = C1⊕· · ·⊕Ct.

Lemma 8 (Giesbrecht6),8)). If and only
if we have lexicographically

(d1, . . . , dt) 	 (d(p)
1 , . . . , d

(p)
t′ ),

then p is strictly unlucky.
According to this lemma, we can apply the

CRT using every Fp that has the same block
structure as F , even if S �≡ Sp (mod p). The
existence of such p’s is discussed later with ref-
erence to an example.

Nevertheless, we implemented the history of
pivoting on the basis of the criterion in Lemma
6, because we also implemented the recovery
of S by means of the CRT, using Sp’s for the
comparison of algorithms19). If we recover only
F by means of the CRT, then we can adopt the
criterion of Lemma 8, but the program has not
yet been optimized.

The difficulty in detecting unlucky primes lies
in the fact that neither the correct pivoting
pattern over Z nor the block structure in F
is known beforehand. In our implementation,
we presume the correct pattern by a majority
decision, comparing the results for first three
primes p1, p2, and p3. As explained in Morit-
sugu19), this presumption is correct with very
high probability if we use prime numbers of ap-
propriate magnitude; for example, word size.
Cases where the presumption is incorrect will
rarely occur unless we purposely use very small
primes; for example, those with values less than
500. Therefore, the detection of unlucky primes
is practically resolved.

3.3 Construction of a Transformation
Matrix

Applying similar transformations (3) succes-
sively, we can compute a transformation matrix
S together with the normal form F , but the re-
sult S = S1S2 · · · has very long integers as its
elements. If we also recover S by means of the
CRT, we have to use a larger number of moduli
pi’s than for the recovery of F . Experimen-
tal results19) have shown that this approach is
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fairly inefficient.
However, since transformation matrices S are

not unique, we have only to obtain one regu-
lar matrix S such that AS = SF . Hence, we
first recover F by means of the CRT, and then
we compute S with elements that are as simple
possible, so that AS = SF is satisfied. This ap-
proach is also proposed in Giesbrecht and Stor-
johann8), using another formulation.

For the sake of simplicity, we first consider the
case where F has one companion block. The
relation

AS = S




1
. . .

1
c0 c1 · · · cn−1




ϕ(x) = xn − cn−1x
n−1 − · · · − c1x − c0

is rewritten as follows by putting

S =
[

s1

∣∣∣ s2

∣∣∣ · · ·
∣∣∣ sn

]
:




As1 = c0sn

As2 = s1 + c1sn

· · ·
Asn−1 = sn−2 + cn−2sn

Asn = sn−1 + cn−1sn.

By eliminating sn−1, . . . , s1 in turn upward
from the lowest equation, we obtain(

An − cn−1A
n−1 − · · · − c1A − c0E

)
sn

= 0; i.e., ϕ(A)sn = 0. (4)

When the normal form F has more than one
block, we have the following conditions for sd,
where we let d be the size of the target block:
• For the first companion block, ϕ(x) is the

minimal polynomial of A. Then we have
ϕ(A) = O according to Cayley-Hamilton’s
theorem, and sd can be arbitrary.

• For the second block downward, we need
to solve the system of linear equations (4)
actually, where 0 ≤ rankϕ(A) < n. Then
we let sd be one of its solutions.

Other column vectors are computed by means
of the recurrence formula

sj = Asj+1 − cjsd (j = d − 1, . . . , 1).
The complexity of the algorithm shown below
is also O(n3 log n), because we solve systems of
linear equations (4) with size n, whose num-
ber is (#blocks − 1) ∝ log n, and conven-
tional methods for a system of linear equations
such as Gaussian elimination have the complex-
ity O(n3).

Algorithm 1 (Construction of a Trans-

formation Matrix).
% input: an integer matrix A and its Frobe-

nius normal form F = C1 ⊕ C2 ⊕ · · · ⊕ Ct

% Let the associated polynomial of each Ck

be ϕk(x) = xdk − ck,dk−1x
dk−1−
· · · − ck,1x − ck,0.

% output: an integer matrix

S =
[
s1,1

∣∣∣· · · ∣∣∣s1,d1

∣∣∣ · · ·∣∣∣ st,1

∣∣∣ · · ·∣∣∣ st,dt

]
s.t. AS = SF

(Step) for k = 1 to t do
Compute sk,dk

by
solving ϕk(A)sk,dk

= 0;
for j = dk − 1 downto 1 do

sk,j = Ask,j+1 − ck,jsk,dk
;

If the initial vector sk,dk
is inappropriately

chosen, this algorithm might return a singular
matrix S even when the condition AS = SF is
satisfied. If we obtain rank(S) < n by Gaus-
sian elimination, then we try this algorithm
again, choosing another initial vector sk,dk

. A
necessary condition for such appropriate initial
vectors is discussed in our previous paper19),
which guarantees the existence of an appropri-
ate sk,dk

. In our actual implementation, we set
the vector sk,dk

with randomly chosen simple
but generic elements. Hence, Algorithm 1 is
probabilistic at this step, but experiments indi-
cate that it is practical enough.

3.4 Modular Algorithm for Integer
Matrices

The whole algorithm for integer matrices is
given below. For the sake of simplicity, the pro-
gram will simply stop when 10 unlucky primes
are detected, where the first presumption might
be incorrect. Otherwise, the CRT process is
terminated when F (k−1) = F (k), and we check
ϕ(A) = O, where ϕ(x) is the minimal polyno-
mial of F (k). Since the minimal polynomial is
unique, F (k) is exactly equal to the Frobenius
normal form of A when ϕ(A) = O.

Algorithm 2 (Modular Algorithm for
Integer Matrices).
% input: an n × n integer matrix A and the

list of large prime numbers {p1, p2, . . . , ps}
% Let F (k) be the result (mod p1 · · · pk) ex-

cept for unlucky pi. We do not reserve Spk
.

% output: the Frobenius normal form F of
A and a transformation matrix S

s.t. AS = SF
(S1) Compute Fpi

s.t. Api
Spi

≡ Spi
Fpi

(mod pi i = 1, 2, 3);
(S2) Presume the correct pivoting pattern by

comparing the above three results;
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% To simplify the following description, we
assume a majority decision; for example,
the patterns for p1 and p3 are identical but
p2 gives a different pattern. (Refer to the
discussion in §3.2 for details.)

(S3) Construct F (3) from Fp1 and Fp3

by the CRT;
(S4) k := 3; count := 1;
(S5) Do until (F (k−1) = F (k))

k := k + 1;
Compute Fpk

s.t. Apk
Spk

≡ Spk
Fpk

(mod pk);
If pk does not yield

the presumed pivoting pattern
then { count := count + 1;

If count = 10 then STOP; }
else construct F (k) from

F (k−1) and Fpk
by the CRT;

(S6) If ϕ(A) �= O then goto (S5);
% ϕ(x) = min.pol. of F (k)

(S7) Construct S from A, F (k)

by Algorithm 1 ( over Z );
(S8) While rank(S) < n ( over Z ) do

reconstruct S by Algorithm 1;
(S9) Return 〈F (k), S〉;

Figure 1 shows the result for a 10 × 10 ma-
trix A with random integer elements −10 ≤
aij ≤ 10. We applied the list of prime numbers
{13, 17, 19, 23, . . .} to test the program. In the
first presumption process, p = 13 and p = 19
were supposed to be lucky primes, where no piv-
oting occurred in the elimination in both cases.
Since p = 17 yielded another pivoting pattern,
it was eliminated. Subsequently, since the ex-
change of rows and columns was executed for
p = 23 and p = 37, we discarded these two
primes and computed the CRT using nine other
primes. We should note that the block struc-
ture was also identical:

d
(p)
1 = 10 for p = 17, 23, 37.

Hence those primes are “unlucky” in the sense
of Definition 5, but not “strictly unlucky” in
the sense of Definition 7, and they can be in-
cluded in the CRT process for the recovery of F .
In contrast, when we recovered S by means of
the CRT for comparison, we needed 30 primes,
excluding p = 17, 23, 37.

A transformation matrix S was constructed
by Algorithm 1, and we obtained a regular S
at the first attempt. The regularity was con-
firmed using modular arithmetic for efficiency,
because it is sufficient to check that rank(S) =
n (mod p).

Remark 3. Let us compute the bound for
F using Lemma 2.1 in 8):

γ = 2nen/2‖A‖nnn/2,

where ‖A‖ = max
ij

|Aij |. (5)

Substituting n = 10 and ‖A‖ = 10, we obtain
γ � 1.5 × 1020, while the final modulus

∏
pi ≤

1014 was used in the actual computation of the
CRT.

4. Algorithms for Rational Matrices

Two ways can be considered for treating ra-
tional matrices, as shown in the following sub-
sections.

4.1 An Algorithm Executeed over the
Integers

We let Ã = kA (aij ∈ Q, k, ãij ∈ Z),
where A is a rational matrix and k is the com-
mon denominator of aij ’s. We can perform the
computation over Z as far as possible by ap-
plying Algorithm 2 to Ã. The relation between
the Frobenius normal forms of A and Ã is illus-
trated below for the case of two blocks.

First, we compute F̃ and S̃ over Z by means
of Algorithm 2:

S̃−1ÃS̃

=




1
1

1
p q r s

1
x y




(p, q, r, s; x, y ∈ Z)

=: F̃ . (6)

Then, letting

V :=




1
k

k2

k3

1
k




, (7)

we apply a similar transformation to

F̃ /k = S̃−1
(
Ã/k

)
S :

V −1
(
F̃ /k

)
V

=




1
1

1
p/k4 q/k3 r/k2 s/k

1
x/k2 y/k
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matpprint A;

[ 8 -7 9 -2 -10 -10 -10 6 -5 -10 ]
[ 3 -7 -5 1 -6 7 -9 4 -6 9 ]
[ -8 -5 -2 -7 1 1 5 9 -9 -7 ]
[ -5 1 -6 7 -9 4 -6 9 -8 -5 ]
[ -2 -7 1 1 4 -6 9 -1 -7 4 ]
[ -3 1 -3 -3 1 2 2 -3 -8 -8 ]
[ -1 4 -3 3 0 -4 -2 6 -1 -3 ]
[ -3 0 2 -1 3 9 -7 -10 -7 1 ]
[ -5 -10 -9 9 -10 1 -8 -2 3 6 ]
[ 7 -7 -7 1 4 -7 -2 9 7 9 ]

frobenius_nf(A,’F,’after);

p = 13 pivot = (nil nil nil nil nil nil nil nil nil) #block = 1 size = [10]
p = 17 pivot = (nil (2 . 3) nil nil nil nil nil nil nil) #block = 1 size = [10]
p = 19 pivot = (nil nil nil nil nil nil nil nil nil) #block = 1 size = [10]

lucky primes = (13 19)
lucky pivots = (nil nil nil nil nil nil nil nil nil)
initial mod = 247

p = 23 is unlucky : pivot = (nil nil nil nil nil (6 . 7) nil nil nil) #block = 1 size = [10]
p = 37 is unlucky : pivot = (nil nil nil nil nil (6 . 7) nil nil nil) #block = 1 size = [10]

#block = 1 size = [10]

regular_p = t (mod 19)
S is regular (time for test : 0) max length = 11 digits (time : 0)
time for construction of S : 0

product of 9 lucky primes (except 2 unlucky primes) : 14 digits

Time for Frobenius : 15

Fig. 1 Example of execution of Algorithm 2.

=: F. (8)
Consequently, we obtain F , which is the Frobe-
nius normal form of Ã/k = A. Since

(S̃V )−1A(S̃V ) = F,

a transformation matrix S such that AS = SF
is given by S := S̃V . In this formulation, we
note that S is integral (sij ∈ Z), even though
A and F are rational (aij , fij ∈ Q).

Remark 4. Most other papers discuss the
Frobenius normal forms only for integer matri-
ces, ignoring rational matrices. It seems that
applying the above-mentioned procedure is con-
sidered to be sufficient. However, we discuss the
direct recovery of rationals in the next subsec-
tion, and implement both algorithms to com-
pare their efficiency.

4.2 An Algorithm Using Integer-to-
Rational Conversion

We can also recover the Frobenius nor-
mal form F (over Q) directly from F (k)

(mod p1p2 · · · pk) by using integer-to-rational
conversion (Algorithm 6 in the appendix).
When we first convert A (over Q) into Ap ≡ A
(mod p), we discard the unlucky prime p that
divides the denominator of an element aij in A.

Combining the modular arithmetic, CRT, and
Algorithm 6, we compute the Frobenius normal
form F (over Q):

S−1AS

=




1
1

1
p′ q′ r′ s′

1
x′ y′




(p′, q′, r′, s′; x′, y′ ∈ Q)
=: F. (9)

We note that a transformation matrix S is un-
known at this point. If we apply Algorithm 1
to this A and F , we obtain S such that sij ∈ Q.
However, we consider executing Algorithm 1
over the integers for efficiency in our implemen-
tation, because integer computation is much
faster than rational computation in our envi-
ronment (§5.1).

Therefore, we convert F into F̃ , which is the
normal form of the integer matrix Ã = kA, and
is identical to (6). Using the same matrix V as
(7), we apply the inverse of the similar trans-
formation (8) to kF :
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V (kF )V −1

=




1
1

1
k4p′ k3q′ k2r′ ks′

1
k2x′ ky′




=: F̃ . (10)

Thus we obtain the normal form over Z for Ã.
Applying Algorithm 1 to Ã and F̃ , we construct
S̃ such that ÃS̃ = S̃F̃ . Finally, we obtain the
transformation matrix S by letting S := S̃V as
in the previous section. We should note again
that this result S is also integral.

4.3 Practical Algorithms
We implemented the following three algo-

rithms and experimented to compare their ef-
ficiency. For all three algorithms, the input is
an n × n matrix A (over Q), and the output is
the Frobenius normal form F (over Q) and a
transformation matrix S (over Q or Z).

In the first algorithm, given by Kan and
Iri14), rational arithmetic is used straightfor-
wardly.

Algorithm 3 (Rat).
(Step) According to procedure (3), compute

F and S (AS = SF ) directly over Q.
In the second algorithm, shown in §4.1, the

computation is performed over the integers as
far as possible.

Algorithm 4 (Zmod).

(Z1) Extract the common denominator:
Ã := kA.

(Z2) Compute F̃ (over Z) by using
modular arithmetic and the CRT.

(Z3) Construct S̃ (over Z) from Ã and F̃
by Algorithm 1.

(Z4) Convert F̃ into F (over Q) by Eq.(8),
and let S := S̃V (over Z).

% Steps (Z2) and (Z3) correspond to
Algorithm 2.

In the third algorithm, discussed in §4.2,
which we propose as the most practical one,
integer-to-rational conversion is used to recover
rationals from modular numbers.

Algorithm 5 (Qmod).
(Q1) Compute F (over Q) by using

modular arithmetic, the CRT, and
integer-to-rational conversion.

(Q2) Convert F into F̃ (over Z) by Eq.(10),
which is the normal form of Ã := kA.

(Q3) Construct S̃ (over Z) from Ã and F̃
by Algorithm 1.

(Q4) Let S := S̃V (over Z).
% This result S is essentially identical

to S in the Zmod algorithm.

5. Experimental Results

5.1 Environment for Implementation
We have been developing the program code

for modular computation of Frobenius normal
forms in the following environment:
• Computer algebra system:

Reduce 3.710) (Windows version)
+ RLISP ’8817)

– Computation of polynomials and ratio-
nal numbers:

algebraic mode of Reduce
– Computation over Z and Zp:

RLISP (symbolic mode of Reduce)
• CPU: Pentium 4 (2 GHz)

Main memory: 1.5GB
(limited to 1.0 GB for the Reduce system)

• List of prime numbers less than 231:
{p1, p2, . . . , p1000} =

{2147483647, 2147483629, ..., 2147462143}
• Generation of test matrices:

(i) Prepare a characteristic polynomial
with random rational coefficients whose
sizes are normalized.

(ii) Construct the Frobenius normal
form associated with the characteristic
polynomial.

(iii) Randomize the normal form by a
similar transformation.
(Maximal size of elements in the result:
about 200 digits/200 digits for n = 100)

• Verification and comparison:
Maple 72) (Windows version)

5.2 Experimental Results
We prepared two groups of test matrices and

applied the three algorithms shown in §4.3.
First, we note that no unlucky prime was de-
tected in any of these examples.

Table 1 shows the result for nonderogatory
matrices, whose Frobenius normal forms con-
sist of one companion block. The number of
primes used as moduli is given in the #pi col-
umn. We set two types of matrices in each size
and divided the results into two subgroups:
Upper: Non-diagonalizable (i.e., those whose

minimal polynomials are not square-free),
Lower: Diagonalizable (i.e., those whose min-

imal polynomials are square-free).
The difference between these properties sig-
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Table 1 CPU time (sec) for rational matrices I.

Rat Zmod Qmod Maple
n TR #pi TZ TZ/TR #pi TQ TQ/TR TM TQ/TM

30 19.20 171 13.34 0.695 13 2.48 0.129 108.36 0.023
35 37.20 234 29.53 0.794 15 5.36 0.144 238.91 0.022
40 66.45 285 54.08 0.814 16 9.56 0.144 481.57 0.020
45 110.61 376 106.97 0.967 18 18.33 0.166 871.97 0.021
50 168.42 465 189.12 1.123 20 31.88 0.189 1427.22 0.022

100 3845.44 >1000 (failure) 39 1170.11 0.304 51088.66 0.023
30 23.22 162 12.50 0.538 12 2.28 0.098 135.86 0.017
35 55.34 216 26.83 0.485 14 4.83 0.087 371.56 0.013
40 152.30 320 63.08 0.414 18 11.09 0.073 1152.73 0.010
45 330.14 417 123.64 0.375 20 21.22 0.064 2635.40 0.008
50 696.86 530 228.25 0.328 23 37.70 0.054 5897.08 0.006

100 42331.16 >1000 (failure) 34 1067.83 0.025 (not tried)

cf. max length of sij (digits) for n = 50
Rat Zmod Qmod

Upper 2113 / 2102 4318 4318
Lower 5023 / 5024 4899 4899

Table 2 CPU time (sec) for rational matrices II.

Rat Zmod Qmod Maple
n (Structure) TR #pi TZ TZ/TR #pi TQ TQ/TR TM TQ/TM

30 (15+15) 18.23 38 4.31 0.237 7 2.34 0.129 146.25 0.016
35 (20+15) 45.67 75 13.28 0.291 9 6.06 0.133 216.72 0.028
40 (25+15) 115.50 117 31.50 0.273 11 13.38 0.116 632.09 0.021
45 (30+15) 263.70 164 65.86 0.250 13 28.22 0.107 1579.33 0.018
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50 (20+15+15) 128.24 75 38.92 0.304 9 19.47 0.152 866.04 0.022
55 (20+20+15) 351.95 75 63.78 0.181 9 36.27 0.103 2633.78 0.014
60 (25+20+15) 522.86 117 128.56 0.246 11 69.61 0.133 4350.91 0.016
65 (25+25+15) 1386.89 117 191.43 0.138 11 114.97 0.083 13083.23 0.009
70 (30+25+15) 1573.34 164 336.09 0.214 13 198.11 0.126 14743.82 0.013
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70 (25+20+15+10) 511.84 117 292.49 0.571 11 145.27 0.284 6839.38 0.021
80 (30+25+15+10) 2635.15 164 650.16 0.247 13 375.71 0.143 34695.14 0.011
90 (30+25+20+15) 4168.56 164 900.19 0.216 13 519.23 0.125 46700.11 0.011
100 (35+30+20+15) 3640.00 210 1974.35 0.542 14 1163.09 0.320 47808.79 0.024

cf. max length of sij (digits) for n = 100
Rat Zmod Qmod

4104 / 4096 2056 2052

nificantly affected the computation time when
the Rat algorithm was used. The cause of this
lies mainly in the length of sij output; that is,
the upper subgroup yielded much shorter sij ’s
than the lower subgroup. Therefore, the Rat
algorithm is affected not only by the size n of
matrices, but also to their properties.

In contrast, the Zmod and Qmod algorithms
showed a common tendency for both the upper
and lower subgroups, and seem to be entirely
dominated by the matrix size. Moreover, the
Qmod algorithm is always faster than Zmod,
because Qmod needs much fewer primes than
Zmod. Consequently, the Zmod algorithm is
not useful, particularly for the upper subgroup,
whereas the Qmod algorithm is superior to the
Rat and Zmod algorithms for both subgroups.

Table 2 shows the result for derogatory ma-
trices, whose Frobenius normal forms consist of
more than one companion block. On the whole,
the Zmod algorithm is not so inefficient as in

Table 1, whereas the efficiency of the Qmod al-
gorithm is confirmed. The values of output S
produced by Zmod and Qmod are essentially
identical, although they vary slightly in each
computation because the initial vectors sk,dk

in
Algorithm 1 are randomly chosen.

All the test matrices in Table 2 are diagonal-
izable; that is, their minimal polynomials are
square-free. We also experimented with using
non-diagonalizable matrices, but the difference
was not so clear as in Table 1.

To confirm the results and compare the com-
putation time, we used the “frobenius” function
in Maple 7. The results for the timing data
showed a similar tendency to those of the Rat
algorithm, and seem to be influenced by the
length of elements in a transformation matrix
P , which corresponds to S−T in our formula-
tion.
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6. Concluding Remarks

In this paper, we implemented modular algo-
rithms for the Frobenius normal forms of inte-
ger and rational matrices, and confirmed their
efficiency by experiments. Modular methods
for integer matrices have been proposed by sev-
eral authors, but it seems that no implemen-
tation including rational matrices has yet been
reported elsewhere. Finally, we itemize the re-
sults of our studies.

( 1 ) We implemented the criterion of the
history of pivoting for detecting unlucky
primes, and confirmed that it works correctly.
The criterion of the block structure in the nor-
mal form F is also discussed. If a transforma-
tion matrix S is not recovered by the CRT, the
detection of “strictly unlucky primes” is suffi-
cient for the recovery of F .

( 2 ) The number of primes used as moduli
is significantly reduced by the Newtonian so-
lution to the CRT in the form of Eq.(12), in
comparison with the Lagrangian solution using
a theoretical bound given by Eq.(5). Moreover,
since it seems difficult to extend the theoreti-
cal bound to the rational case, we consider our
approach using the incremental formula to be
more practical than using theoretical bounds.

( 3 ) A transformation matrix S should be
constructed after the normal form F is com-
puted in order to avoid swelling of its elements.
This procedure is probablistic, but in practical
terms it returns a regular matrix almost with-
out fail.

( 4 ) Among commercial computer algebra
systems, only Maple provides a function for
Frobenius normal forms. The details of its algo-
rithm are not open, but it tends to be affected
by swelling of the elements in the transfor-
mation matrix computed simultaneously. This
Maple package has been converted into the Re-
duce library27), but it seems to be working less
efficiently in Reduce than in Maple.

( 5 ) For rational matrices, the Qmod algo-
rithm should be used rather than the Zmod al-
gorithm. When the number of primes pi needed
for each algorithm is compared, it is obvious
that Qmod is superior to Zmod for matrices
with longer elements. Hence, algorithms appli-
cable only to integer matrices, which have been
studied by other authors, are not sufficient for
rational matrices. Our success in developing
the Qmod algorithm, which is directly targeted
at rational matrices, shows the benefits of our

study.
( 6 ) Divide-and-conquer algorithms for in-

teger-to-rational conversion28) are now being
studied. Since it is not easy to implement such
fast algorithms in our environment, we imple-
mented a classical algorithm by Wang31),32).
Although the step of integer-to-rational conver-
sion is not necessarily dominant in the present
framework of computation, implementation of
such divide-and-conquer algorithms should also
be considered in the future development of
practical computer algebra systems.
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Appendix

A.1 Solutions to the CRT
Theorem 9 (CRT: the Case of Two

Moduli). When m1 and m2 are relatively
prime integers, the solution of the following sys-
tem of modular equations{

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

is given by computing
x ≡ (a2−a1)m1s+a1 (mod m1m2), (11)

where m1s + m2t = 1; that is, s ≡ m1
−1

(mod m2).
The number of moduli required to recover the

Frobenius normal form F over Q is not known
in advance. For integer matrices, several the-
oretical bounds are known, but they are often
overestimated. Hence, it is recommended that
the Newtonian solution to the general CRT be
adopted rather than the Lagrangian solution15).
Therefore, using prime numbers p1, p2, p3, . . .,
in order to lift the modulus to p1p2, p1p2p3, . . .,
we repeatedly apply Theorem 9 to the following
system:{

x ≡ ak−1 (mod p1 · · · pk−1)
x ≡ ak (mod pk)

(k = 2, 3, . . .), (12)
which is the Newtonian solution to the CRT
with more than three moduli.

A.2 Algorithm for Integer-to-Rational
Conversion

The following algorithm is well known as an
extension of the classical Euclidean algorithm:

Algorithm 6 (Integer-to-Rational Con-
version31),32)).
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% input: an integer c, the modulus m
(0 < c < m), m̃ :=

√
m/2

% output: a/b ≡ c (mod m)
−m̃ < a < m̃, 0 < b < m̃

(R1) u := (1, 0, m); v := (0, 1, c);
(R2) while v3 ≥ m̃ do

{ q := u3/v3; r := u − qv;
u := v; v := r };

(R3) if abs(v2) ≥ m̃ then ERROR;
(R4) a := sign(v2)v3; b := abs(v2);
(R5) return ((a, b));
This algorithm is straightforwardly used in our
implementation.
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