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Abstract  
  

 Bioelectrical signals have become an important source of information about the human 
body and are commonly used in modern hospitals and healthcare facilities during diagnosis, 
treatment including surgery and recovery by monitoring of patients. Bioelectrical 
measurement through resistive coupling is traditionally used in such case, but the limitations 
and effort required to record a satisfactory signal are a big obstacle in the adoption of 
bioelectrical measurements in daily life. On the other hand, capacitive coupling bioelectrical 
sensors achieve capacitive coupling between the electrode lead and the user’s skin, thereby 
removing the need for skin preparation and electromechanical contact with the skin, a core 
property which potentially facilitates high usability and wearability. Though many different 
models of capacitive coupling bioelectrical sensors have been developed, they all only focus 
on internal noise sources whereas noise from motion artefacts or nearby electrical appliances 
has been so far ignored. Because of that, bioelectrical measurements either have less than 
ideal accuracy or can only be recorded in very limited and artificially controlled environments 
with some types of bioelectrical signals recording are yet to be reported. 

 The purpose of this research is to bring the signal robustness expected from traditionally 
used contact type resistive electrodes and to the potentially more comfortable and practical 
non contact type capacitive electrodes by reducing the dependency of the bioelectrical 
information on the contact state between the sensor and the user's skin, approaching this 
problem from both a internal and external level perspective as well as from system level 
perspective and developing a hybrid sensor capable of both resistive and capacitive ECG, 
EMG, EOG and EEG bioelectrical signal measurements. 

  Development of a novel electric circuit model based on both resistive and capacitive 
measurement principles as well as all the associated internal noise factors, namely internal 
thermoelectrical noise, current drift and saturating noise recovery. We extend the sensor 
model for external noise noise monitoring, namely external electromagnetic noises and 
motion artifacts and  developing a built in dual differential input noise cancelling method. We 
design and develop a sensor module satisfying the conditions of the developed models 
introduced. After that, we verify noise and response system properties as well as resistive and 
capacitive ECG, EOG, EMG and EEG measurements. Because there is no commercial 
capacitive bioelectrical sensing system, we compare our sensor against traditional wet 
resistive wet electrodes and obtain similar results. Finally we develop a novel wearable high 
spatial and temporal resolution and self contained system for EEG measurements in order to 
minimise noise and demonstrate the full advantages of high wearability and usability that our 
developed sensors provide. We hope to contribute bringing bioelectrical measurement based 
prevention and treatment methods that rely on bioelectrical signals in to daily life.  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 1 Introduction 

 1.1 The importance and applications of wearable bioelectrical 
measurement 

 Since the first studies on the use of electrical signals derived from cardiac activity in 
1872 by Alexander Muirhead for medical purposes[1], bioelectricity amplification and 
recording electronic instrumentation technology has been continuously researched. Thanks to 
those advancements, through the last century, bioelectrical signals have become an important 
source of information about the human body and are commonly used in modern hospitals and 
healthcare facilities, during diagnosis, treatment including surgery and recovery monitoring of 
patients. Bioelectrical signals are either measured by themselves or in conjunction with other 
types of biosignals, such as blood pressure[2,3] or body movement[4,5], using devices 
ranging from large desktop computers to smartphone sized handheld and wearable devices, as 
shown in Fig.1. 

 In particular, wearable and stand-alone implementations of these technologies are 
increasingly more relevant in a wide selection of academic and engineering fields, ranging 
from medicine and rehabilitation to sports and entertainment. Wearable implementations of 
bioelectrical sensing technologies are easier to integrate in the daily life activities and 
contribute to the prevention and treatment of cardio-vascular and neurological disorders as 
well as support and augmentation of motion and man-machine interfaces[6,7].  

 Based on signal source location, source nature, frequency and amplitude bioelectrical 
signals can be classified in many types. In this study we focus on the four types below: 

 1) Electrocardiogram(ECG): ECG is a category of bioelectrical signals originated from 
the heart activity, in particular electrical signals originated as a byproduct of the sequential 
contraction of cardiac muscles and are recorded by placing sensors over skin. In the order of 
10µV up to 1mV, wearable ECG measurements done by a Holter Monitor for long periods of 
time are frequently used to diagnose cardiac diseases or measure cardiac stress[8,9] under 
physical exercises[10,11] are classical applications. 

 2) Electromyogram(EMG): EMG signals are generated by skeletal striated muscular 
contracting simultaneously when generating torque, are in the order of 10µV up to100µV and 
are measured over the skin surface. Wearable measurements are used to interface with 
exoskeletons such as the HAL robot suit[12,13,14], prosthetic limbs[16,17] as well as 
evaluation of biomechanical performance in sports[18,19] . 

 3) Electrooculogram(EOG): EOG signals are a a variation of EMG signals generated by 
the muscles actuating eye movement. Due to the spontaneous and quick  characteristics of eye 
movements, EOG signals usually have pulse-like characteristics granting those signals their 
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own category for practical application reasons. Wearable EOG signals are commonly used as 
a input in man-machine interfaces for fully-disabled patients. Applications in the prediction 
and interpretation of human emotions though face expressions[20,21]  and in entertainment 
and virtual reality have also being proposed[22,23].   

 4) Electroencephalogram(EEG): EEG signals are bioelectrical signals measured on the 
scalp of the user. Compared to the other types, EEG signals are very weak signals in the order 
of 0.1µV up to10 µV generated by the collective neural activity inside the brain. Wearable 
EEG signals are used in the psychology and psychiatric fields, such as diagnosis of sleep 
disorders[24,25] and epilepsy[26]. Applications in the as as man-machine interfaces and in 
entertainment have also been proposed[27]. 

 

FIGURE 1 - BIOELECTRICAL SIGNALS AND EXAMPLE OF WEARABLE APPLICATIONS 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 1.2 Bioelectricity principles 

 Bioelectrical signals are originated at cellular level as the resulting sum from the 
electrical potential caused by various biochemical reactions and the ionic displacements 
associated to them[28]. The most relevant and useful bioelectrical potentials used in this 
research are originated from the inhibition and excitation of neural and muscular cellular 
tissue[29]. For the purposes of this research, bioelectrical signals can be categorised in two 
major different types based on function: resting potentials and action potentials. 

 Resting potentials are the default electrical potential in living cells at rest. The difference 
of concentration of potassium(K+)  and sodium(NA+) ions in the intracellular and extracellular 
mediums creates a resting potential of -70 ± 20mV across the cellular membrane[30]. The 
difference in the ionic concentration between intra and extracellular mediums is a direct result 
of the resting selective permeability of the cellular membrane, which favours K+ ions in the 
intracellular fluid. The concentration of K+ and Na+ relative to the concentration of chloride 
ion(Cl-) regulates the equilibrium at rest[31].  

 Action potentials are the response of the cell towards external stimuli. They are a short 
pulse that travels through the cell membrane when the stimuli successfully disturbs the resting 
potential beyond a threshold. When an action potential occurs, the electrical potential across 
the cellular membrane is reversed, until it peaks.  As shown in Figure 2, when activation 
happens voltage-gated ion channels become temporary permeable to their respective ions, 
allowing sodium to flow into the cell and potassium to flow out of the cell, increasing the 
electrical potential on a limited region of the membrane. The peak voltage can trigger the 
reaction on neighbouring regions of the membrane creating a cascade effect. After the 
voltage-gated ion channels become inactivated and later deactivated, Na+/K+-ATPase, also 
known as the sodium-potassium pump, actively brings the membrane to it’s original resting 
state through the consumption of energy in for of adenosine triphosphatase(ATP). 

 At cellular levels, single action potential can be recorded by directly placing 
microelectrodes inside and around the cell and measuring the short-lasting rises and falls of 
electrical potential on the cell. However, at macroscopic levels, many brain and muscle 
related phenomena occur by having a large number of cell manifesting active potential 
simultaneously. When such phenomena occurs, the total sum of electrical potential can be 
strong enough to allow the propagation of electrical signals through multiple layers of 
biological tissue and, eventually, skin.   
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FIGURE 2 -  ION CHANNELS AND GENERATION OF BIOELECTRICAL SIGNALS 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 1.3 Resistive bioelectrical measurement 

 Bioelectrical signals over the user’s skin are measured by establishing electrical coupling 
between the skin and a recording device. Electrical coupling can be realised in two different 
ways: resistive coupling and capacitive coupling. In this subsection we focus on resistive 
coupling which consists in creating and maintaining electrical coupling through direct 
mechanical contact between the skin and a conductor attached to the recording device input. 
Multiple types of electrode based sensors are used for this type of measurement. 

 Wet resistive electrodes such as the Vitrode (Nihonkohden, Japan) or the electrodes used 
in the G.Tec electrode cap (G.Tec Medical Engineering GMBH, Austria) are used widely to 
perform these measurements. However, the use of wet electrodes has major drawbacks such 
as the requirement for skin preparation and the use of conductive or adhesive gels[32,33].  As 
a solution to those problems, dry resistive electrodes have been developed to increase sensor 
performance and usability[34,35]. Dry electrodes involve an active resistive contact with the 
user’s skin, which eliminates the need to use a gel and the problems associated with its use. 
Skin preparations such as body hair removal and cleaning may be required because constant 
electromechanical skin contact remains a requirement[35]. Furthermore the lack of adhesive 
gels make dry electrodes difficult to use over clothing. Also, in extreme cases, patients with 
exposed wounds, such as high degree burns, or allergies may not be capable of attaching 
neither wet nor dry electrodes directly to their bodies. 

 While resistive coupling based bioelectrical measurement is traditionally used on medical 
facilities as well as research and sports, the limitations and effort required to record a 
satisfactory signal are a big obstacle in the adoption of bioelectrical measurements in daily 
life, and the spread of novel technologies that could help in the prevention and treatment of 
cardio, muscular or neural disorders. 
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 1.4 Capacitive bioelectrical measurement 

 By contrast, in order to solve problems associated with the various types of resistive 
coupling bioelectrical sensors, non contact electrodes have been proposed. Non contact 
electrodes rely on capacitive coupling between the electrode sensing lead and user’s skin. 
Capacitive coupling bioelectrical sensors achieve capacitive coupling between the electrode 
lead and the user’s skin, thereby removing the need for skin preparation and 
electromechanical contact with the skin, a core property which potentially facilitates high 
usability and wearability. 

  However, ultra-high input impedances (1016~1018Ω) are required by the design[36,37]. 
The ultra-high impedance input is highly susceptible to any electrostatic noise that originates 
from the surroundings. Therefore, robust shielding, isolation, and current leakage prevention 
techniques are required to reduce the noise. Furthermore, complex low noise bootstrapping 
techniques are required to avoid drift due to the bias current from the input. These 
disadvantages indicate that capacitive electrodes are considerably larger, noisier, and more 
expensive than conventional electrodes[37]. 

 Furthermore, though many different models of capacitive coupling bioelectrical sensors 
have been developed, they all only focus on internal noise sources, whereas noise from 
motion artefacts or nearby electrical appliances has been so far ignored. Because of that many 
reported capacitive coupled bioelectrical signals such as EEG or ECG[38,39,40,41], either 
have less than ideal accuracy or can only be recorded in very limited and artificially 
controlled environments, while some types of bioelectrical signals, such as capacitively 
coupled upper and lower body EMG signals during motion in realistic application scenarios 
are yet to be reported.  

 Moreover, because capacitive bioelectrical measurement techniques rely on different 
physical phenomena, a system level engineering approach that takes into consideration the 
strengths and weaknesses of bioelectrical measurements through capacitive coupling is an 
important step in towards the practical realisation of these technologies. 
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 1.5 Internal and external noise counter measures and system 
level optimisations towards a hybrid approach for bioelectrical 
measurement 

 Daily life bioelectrical monitoring requires a sensor that gives the potentially high 
usability of capacitive coupling electrodes while retaining the high sensor performance of 
conventional electrodes. A hybrid sensor capable of such function could be achieved by 
simultaneously being capable of both resistive and capacitive coupling methods, thus 
minimising the dependency of the bioelectrical information on the user skin-electrode 
interface. In order to achieve that, we must approach this problem from 3 different points of 
view: development of a hybrid resistive and capacitive sensing model and internal sensor 
noise, external noise counter-measures and system level design. 

 Previous studies only considered human body-electrode coupling in their designs, which 
maximised the input impedance. We also propose the use of noise source coupling in the 
sensor model. This model allows us to optimise the electrode impedance so that it is 
sufficiently high to record bioelectrical signals but low enough to reject external electrical 
noise. Moreover, internal noise originated from input current leaks and shielding must also 
assessed and appropriately processed. 

 Furthermore, in order to solve the problems from previous bioelectrical measurement 
through capacitive coupling technologies, noise from real life situations such as motion 
artifacts or near high-power devices such as electrical motors must also be assessed and 
countered. By extending the developed hybrid resistive-capacitive bioelectrical measurement 
model by actively measuring noise and cancelling it from the sensor output. This new model 
would allow the development of a novel dual input noise cancelling electrode design, one for 
noise and one for bioelectrical signals, at different input impedance settings which are locally 
processed using analog circuits, resulting in a cleaner signal output. 

 Finally, developing wearable systems that are built around the advantage of having high 
wearability and usability provided by capacitive coupling, but that are still strong against 
disadvantages such as higher environmental electrostatic noise sensitivity is the final step in 
to taking full advantage of the hybrid resistive-capacitive bioelectrical measurement methods. 
In particular, self-contained wearable system capable of multichannel, high spatial and 
temporal resolution recordings using parallel analog and digital processing techniques could 
improve the signal and information quality recorded from the developed sensor while also 
demonstrates its usefulness and open the path for further improvements and applications, in 
particular for EEG measurements where high wearability, low noise, high spatial and 
temporal resolution are desirable qualities.  
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 1.6 The purpose of this research 
  

 The purpose of this research is to bring the signal robustness expected from traditionally 
used contact type resistive electrodes and to the potentially more comfortable and practical 
non contact type capacitive electrodes by reducing the dependency of the bioelectrical 
information on the contact state between the sensor and the user's skin, by approaching this 
problem from both a internal and external level perspective as well as from system level 
perspective and developing a hybrid sensor capable of both resistive and capacitive ECG, 
EMG, EOG and EEG bioelectrical signal measurements. In order to realise the above, the 
following objectives must be achieved: 

 (1) Development of a novel electric circuit model based on both resistive and capacitive 
measurement principles as well as all the associated internal noise factors, namely internal 
thermo electrical noise, current drift and saturating noise recovery. 

 (2) Extend the sensor model for external noise noise monitoring, namely external 
electromagnetic noises and motion artifacts and  developing a dual differential input noise 
cancelling method that can be built in on each sensor. 

 (3) Designing and developing a sensor module satisfying the conditions of the developed 
models introduced in (1) and (2). After that, verify noise and response system properties as 
well as resistive and capacitive ECG, EOG, EMG and EEG measurements. 

 (4) Develop a novel wearable high spatial and temporal resolution and self contained 
system for EEG measurements in order to minimise noise and demonstrate the full advantages 
of high wearability and usability that our developed sensors provide. 

 1.7 The structure of this paper 

 Figure 3 shows objectives while illustrating the overall structure of this paper. 

 In this chapter we discussed the basic principles behind bioelectricity as well as the latest 
advances and different approaches in the development of bioelectric signal measurement 
techniques. 

 In Chapter 2 we develop the sensing model by focusing on both internal and external 
noise sources as well as designing and constructing the sensor module and basic measurement 
hardware. We also measure internal noise levels, noise cancelling capabilities and compare to 
previous researches. 

 Chapter 3 is focused on actually using the developed hybrid sensor to measure ECG, 
world first upper limb and lower limb capacitive coupled EMG, EOG and EEG signals and 
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compare to previous researches on capacitive coupling bioelectrical signal sensor as well as 
traditional methods and standards. 

 Chapter 4 goes in to the development of system level improvements to take full 
advantage of our developed hybrid sensor. In this chapter we develop a novel wearable high 
spatial and temporal resolution and self contained system for EEG. In order to do so we 
develop parallel digital processing algorithms build around the limitations of a original 
wearable GPGPU based data processing device. Furthermore, we measure noise 
characteristics, multichannel EEG measurements and analyse the impact that our novel 
wearable parallel processing and hybrid bioelectrical sensing methods had on the data. 

 Chapter 5 discusses the impact of our research on both resistive and capacitive 
bioelectrical measurement methods, how it our developed sensors can help in the treatment 
and prevention of cardio, mucular and neural disorders and how the our wearable parallel 
processing technologies can be extended beyond bioelectricity measurements. 

 Finally in Chapter 6 we present the summary and conclusion to this paper. 

 

FIGURE 3 - THE STRUCTURE OF THIS RESEARCH  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 2 Wearable hybrid resistive-capacitive 
design 
 2.1 Hybrid resistive and capacitive bioelectrical measurement 
introduction and requirements 
  

 Non contact electrodes that are capable of achieving capacitive coupling between the 
electrode lead and the user’s skin, thereby removing the need for skin preparation and 
electromechanical contact with the skin facilitating high usability, have been proposed. 
However previous researches only focused on internal noise sources and minimalistic sensor 
models, thus only reporting results from limited bioelectrical measurements done under very 
specific and controlled conditions[38,40]. 

 In this chapter we designed a novel sensor circuit model based on the consideration of the 
electronic components imperfections and the user skin-sensor interface, which also accounted 
for the internal thermoelectrical noise sources and input bias current. The model contains the 
basic hybrid measurement principle derived from both resistive contact sensors and capacitive 
coupling sensors. On top of this we create a bias current feedback circuit that eliminates 
current leakage and the increasing output voltage offset caused by it. Finally we expand the 
circuit model into a dual input system for dual input environmental noise cancelling. 

 Using this model, we developed an optimal original hybrid electrode that was capable of 
resistive contact and capacitive coupling sensing with an input impedance of 1 TΩ, which is 
about 104~106 times smaller than that proposed in other studies[36], immune to internal 
current leakage and quick to recover from input saturating disturbances while also being 
capable of providing noise cancelling capabilities to external noise sources from electrical 
motor equipped robots and motion artifacts. 

 2.2 Optimal input impedance and minimal thermo-electrical 
noise 
 2.2.1 Equivalent circuit model 
  

 We designed our hybrid resistive capacitive electrode such that it could function as a 
resistive contact electrode if electromechanical contact with the skin was not possible. Thus, 
the electrode collected bioelectrical signals via capacitive coupling if electromechanical 
contact was not possible. Capacitive sensing measures bioelectrical signals using the AC 
coupling between the electrode lead and the skin. Figure 4 shows the equivalent circuit for our 
proposed electrode containing a human body, the electrode-skin signal collection interface, 
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the electrode circuit, and noise sources. The total electrical current in the electrode input is 
given by equation (1) as the sum of the currents from the noise sources and the current from 
the bioelectrical signal, i.e., 

  (1) 

where VB is the bioelectrical signal voltage, VI is the electrode input voltage, VN is the total 
noise source voltage on the electrode board, ZB is the skin-electrode interface impedance, Rc 
is the electrode input impedance, and ZN is the noise input impedance on the electrode board. 
We can assume that the values for ZB, and ZN are very large; therefore, we can simplify 
equation (1) as 

   (2) 

where ZB is represented as 

  (3) 

where CB is the capacitance, RB is the resistance between the electrode and the skin, and f is 
the signal frequency. 

 From equation (2) and (3), we can infer that the collected signal is highly dependent on 
the impedance of the electrode-skin interface and the total input impedance of the circuit, 
while the input impedance of the electrode should be considerably higher than the impedance 
at the electrode-skin interface. When our electrode is in the resistive contact mode, CB→0 so 
ZB is highly dependent on RB. When our electrode is in the capacitive coupling mode, 
however, RB→∞ so ZB is highly dependent on CB. From equation (3), we may assume the 
presence of noise sources in the surroundings that are connected via capacitive coupling to the 
input of the circuit. The impedance between the noise source and the electrode input is usually 
much higher than the impedance of the electrode-skin interface. Therefore, signals from the 
electrostatic noise sources may be amplified as well as or better than the bioelectrical signals 
if the electrode input impedance is excessively high. The effects of noise on the ultra-high 
impedance input may be strong if the electrode makes recordings using capacitive coupling 
sensing because ZB is already very high. Therefore, the input impedance should be set to a 
minimal value, which is sufficiently high to allow bioelectrical signals to be recorded. 
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FIGURE 4 - BASIC HYBRID CAPACITIVE-RESISTIVE SENSOR MODEL

 2.2.2 Optimal parameter setting 
  

 To measure the bioelectrical signals used by medical applications, our electrode needed 
to measure signals with frequencies ranging from 3 Hz to 100 Hz[42,43]. The capacitive 
coupling mode requires a higher impedance than the resistive contact mode; therefore, the 
minimal circuit input impedance requirement is the input impedance used for the capacitive 
coupling measurements. 

 The capacitance of the skin-electrode interface in the capacitive coupling mode is given 
as 

  (4) 

where ε0 is the dielectric constant in vacuum, εr is the relative dielectric constant to the 
material, A is the electrode lead area nearest to the skin, and d is the distance between the skin 
and the electrode lead. As discussed in the previous section, we do not need to calculate the 
noise signal components in equation (2) because setting the input impedance at a minimal 
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value also allows us to perform noise signal minimization. Given that Rsei→∞ in the 
capacitive coupling mode and by inserting combining equations (2), (3), and (4), we define 
the circuit input impedance as follows (5). 

  (5) 

 In the capacitive mode and based on the equivalent circuit described in Figure 4, our 
electrode is a first-order high-pass filter with a theoretical cut-off frequency that is derived as 
follows: 

  (6) 

where CB can be calculated from equation (4), and R is the input impedance of the operational 
amplifier used in the electrode design. 

  

 2.3 Noise from optimal input design and counter measurements 
 2.3.1 Input current leakage and voltage drift 
 As shown in Figure 5, in capacitive coupling mode, bioelectrical sensors have only the 
equivalent of a capacitor connected to the input of the preamplifier circuit. Given that on a 
realistic operational amplifier there will be input bias current caused by the current leakage 
from semiconductor imperfections, there will be accumulation of charge over time on the 
input lead. Therefore the output voltage of such system can be expressed as 

 (7)  

where Aopa is the operational amplifier amplification factor, t is the charging time, which is the 
operational time of the system, iBias is the input bias current.  
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FIGURE 5 - CAPACITOR BEING CHARGED BY INPUT BIAS FROM A REAL OP-AMP

 The output voltage will start drifting as soon as the sensor is turned on and depending on 
the amplification factor as well as the type of operational amplifier used on the preamplifier 
circuit, it will eventually saturate the output at varying speeds. Furthermore, strong motion 
artefacts and body electrostatic discharges may also cause the input to saturate. Having a 
circuit to return the circuit to it’s original state as quickly as possible is an important 
requirement for future signal processing[44]. 

 The obvious way to restrict the effects of bias current on the input is to add a resistor 
between the input and reference voltage, as shown in Figure 6. However given that resistors 
have their thermoelectrical noise defined by the Johnson-Nyquist noise equation as 

 (8) 

where Vnoise is the thermoelectrical noise, kB is the Boltzmann constant, T is the temperature 
in Kelvin and Z is the impedance of the passive component. By adding a resistor to the input 
lead of the hybrid sensor, the input impedance will be close to the total resistance of the 
operational input impedance and resistor in parallel. Therefore a very high value resistor must 
be attached to the input lead, adding up to several mV of thermoelectrical noise to the input, 
far surpassing the amplitude of the target bioelectrical signals. 
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FIGURE 6 - RESISTOR BASED INPUT BIAS CURRENT LEAKAGE
 Another approach consists in adding discharge transistors between the input lead and 
reference voltage, as it’s been proposed in previous researches[39,40]. Unlikely resistors, and 
similar to the operational amplifier inputs each transistor has unique high impedance values 
when not activated. However, in order to discharge the input lead, those transistors must be 
discharged. Discharge can happen in multiple fashion, depending on the adopted method, but 
they can introduce consistent pulse like noise from the discharge operation, gate/base current 
leakage noise, data distortion from temporary lower impedance and oscillation from the 
charging/discharging cycle. This is a major obstacle for high frequency bioelectrical signals, 
in particular EMG signals. 

  

 2.3.2 High impedance bootstrapping method 
  

 Given that input bias current based voltage drift is a relatively slow signal, if we can 
implement a low impedance low pass filter circuit to the input circuit without changing the 
high impedance input for higher frequency bioelectrical signals, then we could limit the range 
of the bias current base voltage drift. Therefore we define the input bias current as 

 (9) 

where fBias is the frequency of the input bias current, iin(fBias) is the current component in this 
frequency, and iBias is the input bias current. 
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 In this research we propose a new frequency dependant bootstrapped current leakage 
limiting circuit based on back to back diodes. Back to back diodes are a common circuit 
technique shown in Figure 7 that limits the voltage between a certain range from a given 
reference voltage, based on their drop voltage. Therefore when the accumulated voltage at the 
input lead goes above or bellow the back to back diode threshold, the input impedance at the 
input lead drops while the accumulated charge flows out. The problem with a passive back to 
back diode circuit is that during the discharge, electrical signals of all frequency will be lost. 
In this research we propose a solution to this problem by, instead of using a static reference 
voltage we use a dynamic reference based on a high pass filter feedback circuit which is 
defined as 

 (10) 

where CD and RD are the passive components responsible for the anti-drift high pass filter in 
the feedback bootstrap circuit. Vout=Vin as it is the non amplified preamplifier circuit, which is 
being used as simply a impedance converter. The updated model with our bootstrapped 
feedback circuit is shown in Figure 8. 

 With this feedback circuit, signals with frequency above fbias will have still have a high 
input impedance because there is no differential of potential between the input bias and 
reference voltage, small thermoelectrical noise as there are no passive components and small 
switching noise as there is no constant switching of active components. On the other hand, 
signals with lower frequencies will slowly and continuously being discharged as those signals 
with those frequencies were filtered out by the high pass filter in the bootstrap feedback 
circuit. This relationship between the the input bias frequency and the feedback current iD is 
given as 

 (11) 
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FIGURE 7 - EXAMPLE OF BACK TO BACK DIODE CIRCUIT

FIGURE 8 - REDESIGNED CIRCUIT MODEL WITH BOOTSTRAPPED FEEDBACK CIRCUIT

 2.4 Dual input based noise cancelling for hybrid resistive-
capacitive sensing method 

 So far we focused only on internal noise sources such as thermoelectrical noise and input 
bias current. Noise from real life situations such as motion artifacts or near high-power 
devices such as electrical motors are still a issue. In this study,  by focusing on extending our 
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hybrid resistive-capacitive bioelectrical measurement model by actively measuring noise and 
cancelling it from the sensor output. This new model allow us to develop a new electrode 
design with two inputs, one for noise and one for bioelectrical signals, at different input 
impedance settings which are locally processed using analog circuits, resulting in a cleaner 
signal output. 

 This new model for our hybrid electrodes contains two built in sensing leads, one for the 
bioelectrical signals and one for the noise signals. The sensor output is given as the difference 
of potential of both sensing leads as 

 (12) 

where Vout is the sensor output, Vin is the bioelectrical signal with noise and Vin_N is only non 
white noise such as motion artifacts or pulses from nearby electrical devices. Figure 9 shows 
the equivalent circuit when the electrodes are in use.  

  

FIGURE 9 -REDESIGNED CIRCUIT MODEL WITH DUAL INPUT NOISE CANCELLING CIRCUIT
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 2.5 Hardware design 
 2.5.1 Developed sensor unit 

 Based on the proposed model above and assuming a maximum 3 mm distance between 
the electrode and the scalp, a circular electrode lead with 38 mm diameter  and signal input 
impedance of 1 TΩ was developed. Furthermore, in similar fashion the noise electrode lead is 
designed so that only coupling with environment noise sources is significant. Under these 
conditions a 1 mm thick ring shaped electrode lead with outer radius of 40 mm is designed. 
Input impedance Rc_N is also reduced to 1 MΩ, so that only noise signals with frequency 
above the myoelectrical frequency spectrum are measured. In resistive contact mode the area 
of the leads has little effect on the input impedance and low input impedance contact are 
enough to measure bioelectrical signal.  

 Because of that the noise sensing lead is electrically isolated using a thin layer of PCB 
resist coating. Without the coating, in resistive contact mode, very similar bioelectrical signals 
would be collected by both the bioelectrical and noise sensing leads, cancelling each other 
during the differential preamplifier stage at the electrode. As our built in noise sensing 
electrode lead can only filter out signals with higher frequency than myoelectrical signals, 
effectively acting as a very high order Low Pass Filter, a High Pass Filter circuit is also 
implemented using traditional circuits in order to eliminate undesirable offset voltages that 
can appear due to the difference in potential between both electrode sensing leads. 
Furthermore, back-to-back diodes are also attached to the leads in order to reduce the effects 
from input bias current. 

 In order to further increase sensor robustness, shielding attached to the noise cancelling 
lead was implemented as shown in Figure 12 by making using of inner layers of a multi layer 
printed circuit board, in which the electronic components as well as most of the circuit pattern 
is located in the component layer and the sensing leads in the solder layer. The assembled 
electrode is shown in Figure 11. 

 2.5.2 Data recording unit 

 The developed electrode data recording and evaluation system also shown in Figure 10 
included three stages. In the first stage, a second instrumentation amplifier receives analog 
signals from two electrodes and outputs the amplified difference between them. The second 
stage is responsible for conditioning the signal for the AD converter. The final stage involved 
a 16-bit AD converter connected via an SPI channel to a microcontroller. Signal sampling was 
performed at 1 kHz. Data was transferred from the controller to a laptop computer via a 
Bluetooth connection. This system is compatible with the hybrid electrodes and the 
commercially available Vitrode electrodes for simultaneous comparative recordings. The 
common ground was connected to a clean exposed body area of the user via a stainless steel 
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plate. Each sensor was connected to the system using a 1 meter long cable. Noise frequency 
spectrum measurement experiments were performed for both resistive and capacitive modes 
using this system by placing two electrodes face to face on differential input. 

 

FIGURE 10 - NOISE CANCELLING LEAD IMPLEMENTATION AND RECORDING SYSTEM
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FIGURE 11 - DEVELOPED SENSOR

 2.6 Noise and parameter evaluation 
 2.6.1 Frequency response 

 In this experiment, we measured the frequency responses of our electrodes in the resistive 
contact mode and the capacitive coupling mode. The experimental setups are shown in Figure 
12. The electrode made direct contact with a metal signal plate attached to a function 
generator (WF1946B, NF Corporation, Japan) when measuring the resistive contact mode 
signals. To determine the capacitive mode responses, the electrode and the metal signal plate 
were separated by a 1 mm thick insulating rubber layer. The filters used in the data collection 
system shown in Figure 11 were bypassed in this experiment to facilitate direct measurements 
of the electrode frequency responses.  

 Figure 15 shows the results for the Vitrode and the hybrid electrode in the resistive mode 
and capacitive mode, as well as the theoretical frequency responses of the electrode in the 
capacitive mode. The results show that the frequency response of our electrode in the resistive 
mode was identical to that of Vitrode F. As both electrodes directly connect the substrate to 
the amplifier, there was no phase or gain change in the target frequency band. 

 Our results showed that the experimental cutoff frequency of 2.7 Hz was close to the 
theoretical cutoff frequency of 2.3 Hz. The results also showed that the hybrid electrode and 
the model behaved in a very similar manner to a first-order high-pass filter, as predicted by 
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our model. The difference in the cutoff frequency was attributed to the assumptions of our 
model, which only considered the ideal electronic components of the system. When 
developing the electrode, we added new resistive and capacitive features on the basis of the 
high-impedance input bias current escape path circuit described in Section 3.1 and the printed 
circuit board pattern and materials. The resultant input impedance was a combination of the 
amplifier input impedance and the impedance from the new elements. The difference in the 
input impedance created a difference in the cutoff frequency. 

 Our model was not a perfect representation of the entire system; however, 2.7 Hz was 
very close to the target cutoff frequency and it was an adequate value for applications in the 
3–100 Hz band, which are discussed in this paper. 

FIGURE 12 - FREQUENCY RESPONSE MEASUREMENT SETUP

FIGURE 13 - FREQUENCY RESPONSE FOR THE DEVELOPED SENSOR  

�22



 2.6.2 Electromagnetic noise spectrum 
 The noise levels attributable to the electronic sources of the electrode were measured by 
connecting the inputs of two electrodes. Resistive contact mode measurements were 
performed by directly shorting the inputs of the two electrodes. Capacitive coupling mode 
measurements were performed by placing the inputs face to face, separated by only a 3 mm 
thick insulating vinyl layer. The experiment setup is shown in Figure 14. The noise spectrum 
of the Vitrode F wet Ag/AgCl electrodes was also measured in a manner similar to that used 
for our electrodes in the resistive mode.  

FIGURE 14 - NOISE SPECTRUM MEASUREMENT SETUP

 The noise spectrum obtained is shown in Figure 15. The Vitrode and the hybrid electrode 
in the resistive mode had very similar noise spectrum characteristics in the 10-100 Hz band 
because they were both resistive contact-type electrodes and they were electrically coupled 
better with the substrate than the environment. In the 1-10 Hz band, however, our hybrid 
electrodes had about 1 µV/Hz1/2 less noise than the Vitrode because our electrode was an 
active, pre-amplified type of electrode whereas the Vitrode was a passive electrode. 

 Because the Vitrode F is a passive electrode, it was more susceptible to displacement 
currents due to chemical degradation of the Ag/AgCl gel and electrostatic effects in the 1m 
long cable that connected the electrode lead to the amplifier and the measurement system. 

 However, the hybrid electrode in the capacitive mode was about 0.3 and 1 µV/Hz1/2 
noisier than the other two cases. According to the model shown in Figure 11 and equations (2) 
and (3), the relative  value of the impedance value was lower in the capacitive mode when 
coupling the environmental noise sources (Znc and Znsei) compared with the impedance of the 
coupling with the signal source (Zsei) in the resistive contact mode. This condition allowed the 
electrode to couple the environment noise sources better. However, our new optimal 
impedance electrode design indicated that the noise levels were at least two times smaller than 
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the weakest bioelectrical signals considered in this study and 4-6 µV/Hz1/2 smaller than the 
capacitive coupling electrodes proposed in other studies[40,41].  

 This low noise characteristic in the resistive and capacitive modes was comparable to that 
of conventional electrodes, and it showed that our electrode was a viable sensor for detecting 
ECG, EMG,  EEG and EOG signals.  

FIGURE 15 - NOISE SPECTRUM OF THE DEVELOPED ELECTRODE

�24



 2.6.3 Output drift 

 Output drift was measured by attaching the developed hybrid electrodes in capacitive 
mode with a 3mm thick vinyl tape isolating over the sensing lead to a participant’s chest with 
and without the feedback bootstrapping circuit. Figure 16 shows the ECG data collected over 
the period of 60 seconds without the bootstrapping circuit and Figure 17 shows the ECG data 
collected over the same amount of time with the bootstrapping circuit being implemented. 

 The sensor from Figure 17 shows no drift and potential to keep measuring the ECG 
signal for an indefinite amount of time, whereas the sensor Figure 18 clearly shows an output 
drift of 0.64V/min, indicating that it would start losing bioelectrical waveform information in 
another 2 minutes and be completely saturated in less than 10 minutes.  

FIGURE 16 - ECG MEASURED WITHOUT THE BOOTSTRAPPING FEEDBACK CIRCUIT

FIGURE 17 - ECG MEASURED WITH THE BOOTSTRAPPING FEEDBACK CIRCUIT
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 2.6.4 Motion artifacts and input saturation recovery 
measurements 
  

 Similarly to the previous experiment, input saturation recovery was measured by 
attaching the developed hybrid electrodes in capacitive mode with a 3mm thick vinyl tape 
isolating over the sensing lead to a participant’s chest with and without the feedback 
bootstrapping circuit. Saturating perturbation was  introduced during the ECG measurements 
as a motion artefact by momentarily removing the sensors from the top of the participant’s 
chest. Figure 18 shows the ECG data collected over the period of 10 seconds and perturbation 
at the 3.1 second mark without the bootstrapping circuit and Figure 19 shows the ECG data 
collected over the same amount of time and perturbation at the 3.7 second with the 
bootstrapping circuit being implemented. 

 The sensor without the feedback circuit from Figure 18 takes over a second to recover 
from the saturating perturbation while the sensor with the feedback bootstrapping circuit on 
Figure 19 takes only half a second to recovery. This experiment was repeated 10 times, with 
the bootstrap-less sensor having a recovery time of 1.3±0.2 seconds of recovery whereas the 
bootstrapped sensor having a recovery time of 0.5±0.1 seconds. 

  

FIGURE 18 - RECOVERY TIME WITHOUT BOOTSTRAPPING FEEDBACK CIRCUIT

�26



 

FIGURE 19 - RECOVERY TIME WITH BOOTSTRAPPING FEEDBACK CIRCUIT

 2.6.5 Noise cancelling evaluation measurement 
 Noise cancelling effect was evaluated by attaching sensors with and without the noise 
cancelling sensor to the participant’s arm when the arm was in contact with a moving robotic 
arm(Kinova Jaco, Canada) moving performing a repetitive movement at approximately 
2.4Hz, as shown in Figure 20. Figure 21 shows the measured data when the human arm 
was in rest when the robotic arm was not moving; Figure 22 when the robot arm was moving 
without noise cancelling on the bioelectrical sensor and Figure 23 when the robot arm was 
moving with noise cancelling. The sensor recording without noise cancelling registered an 
average amplitude of 0.11±0.09V where as the sensor with noise cancelling registered an 
amplitude of only 0.02±0.01V and a noise reduction of 15.4 dB.  

FIGURE 20 - NOISE CANCELLING EXPERIMENT SETUP
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FIGURE 21 - MEASURED DATA WHEN THE HUMAN ARM WAS IN REST WHEN THE ROBOTIC ARM 
WAS NOT MOVING(RIGHT IS ZOOMED UP)

FIGURE 22 - ROBOT ARM WAS MOVING WITHOUT NOISE CANCELLING ON THE BIOELECTRICAL 
SENSOR(RIGHT IS ZOOMED UP)

FIGURE 23 - ROBOT ARM WAS MOVING WITH NOISE CANCELLING ON THE BIOELECTRICAL 
SENSOR(RIGHT IS ZOOMED UP)
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 2.7 Discussion 

 The effectiveness of some of medical applications can be highly dependent on the 
frequency at which the patient uses the equipment. One of the main obstacles in the spread of 
these technologies is the difficulty of placing electrodes and performing measurements during 
daily life because of the requirements for skin preparation and the electromechanical contact 
problems associated with conventional electrodes From a usability perspective, our electrodes 
are easier to use than any commercially available electrodes. Noise and parameter benchmark 
experiments suggest our system provides the high reliability required by professionals and 
end-users while also being the first time capacitive coupling based electrode measuring 
bioelectrical signals on non ideal conditions. As shown, skin preparation is unnecessary and 
our electrodes can even measure bioelectrical signals in covered body areas were 
electromechanical contact is impossible. This high usability has the potential to increase 
reliability. If electrodes are easier to use, the probability of human error is reduced. This 
higher usability makes our electrodes a significant step toward the popularisation of wearable 
sensors and computers during daily life. 

 The experimental results presented support our electrode impedance optimisation method 
and our optimal model in terms of its noise and frequency utility. The optimisation results 
showed that the noise levels were 4-6 µV/Hz1/2 lower than those reported by other studies. 
The frequency response results were very close to the theoretical values; however, the 
observed difference suggested that the resulting input impedance in the actual electrode is 
slightly lower than the target value. This was not a problem for the applications described in 
this paper; however, some commercial and medical situations require very high levels of 
reliability or industrial standard definitions, so a full understanding of the electrode 
impedance may be required. An enhanced model that includes resistive and capacitive 
elements using additional board components and board design features, and different 
materials, may be introduced in future works. 

 2.8 Conclusion 

 In this chapter we designed a novel sensor circuit model based on the consideration of the 
electronic components imperfections and the user skin-sensor interface, which also accounted 
for the internal thermoelectrical noise sources and input bias current. The model contains the 
basic hybrid measurement principle derived from both resistive contact sensors and capacitive 
coupling sensors. On top of this we developed a bias current feedback circuit that eliminates 
current leakage and the increasing output voltage offset caused by it. Finally we expanded the 
circuit model into a dual input system for dual input environmental noise cancelling. 
Benchmark experiments showed that the parameters were as predicted by our models and that 
internal and external noise sources were processed as required by design. 
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 3 Bioelectrical signal measurement using 
developed hybrid electrode 
 3.1 Introduction 

 In the previous part we focused on modelling and  and measurement of the basic 
capabilities and parameters of the developed electrodes. In this part we collected the ECG, 
lower limb and upper limb EMG,  EOG and EEG bioelectrical data using our electrodes, 
which we compared with commercial traditional wet electrodes (Vitrode type D, Nihon 
Kouden) using both statistical methods and by observing characteristic points in the wave 
forms. Traditional wet electrodes were used due to the lack of commercial bioelectrical 
sensors capable of capacitive coupling for bioelectrical sensing. However, by showing that 
our sensors are capable of readings comparable to traditional wet electrodes we can prove the 
effectiveness of our sensors. 

 Data measurement hardware is the same as introduced in Chapter 2.5. Pearson’s 
correlation coefficient ρ for the data collected from the hybrid electrode and wet electrodes 
was calculated as follows:  

(13) 

where n is the number of samples, Xi is a normalised sample from our hybrid electrode and Yi 
is a normalised sample from the Vitrode F electrode. 

�30



 3.2Bioelectrical signal measurement, evaluation methods and 
results 
 3.2.1 Electrocardiogram measurement 

 In this experiment we verify if our electrode is capable of recording ECG signals with 
fidelity by verifying if the component waves of a standard ECG signal are present or not and 
by checking if the ECG signal is consistent over a long period of time. In this experiment two 
electrodes following standard ECG electrode placement methods as shown in Figure 24. The 
subject was wearing a cotton shirt with average thickness of 1 mm and the electrodes were 
placed above the shirt and 3 mm thick vinyl tape. Data was recorded for 20 seconds while the 
participant stayed seat comfortably on a chair and is shown in Figure 25. 

 

FIGURE 24 - ELECTRODE PLACEMENT FOR ECG MEASUREMENT

FIGURE 25 - MEASURED ECG DATA IN WHICH WE CAN VERIFY THE EXISTENCE OF ALL 
COMPONENT WAVE FORMS 

�31



 3.2.2 Upper body electromyogram measurement 

 Several upper body EMG measurements were made under different loads and motion 
types. 

 In the first experiment we investigate the correlation between the myoelectrical signals 
such as the EMG data collected from a pair of hybrid electrodes with the EMG data collected 
simultaneously for a pair of conventional Vitrode disposable wet electrodes. Therefore we 
investigate the correlation of the data collected by both types of electrodes and verify the 
nature of the data collected by the developed capacitive coupling electrodes. Two developed 
hybrid electrodes are placed over the right biceps of the experiment participant. Between the 
right biceps skin and the electrode metallic plate a piece of cotton with thickness of 1 mm is 
placed in order to simulate clothing. The sensor in capacitive mode had a 3 mm thick vinyl 
tape glued on top of the sensing lead to guarantee isolation.  Below the clothing, 2 Vitrode 
type D electrodes are placed as close as possible from the hybrid electrodes. Electrode placing 
position for upper limb EMG is shown in Figure 26 and 27. The experiment is performed by 
contracting the right biceps after 5s, keeping it in position for 10s and then relaxing for 
another 5s. The total measurement time is of 20s. Data is shown in Figure 28. 

FIGURE 26 - POSITIONING OF THE SENSOR FOR EMG MEASUREMENTS

�32



 

FIGURE 27 - ELECTRODE POSITIONING OF THE SIMULTANEOUS DYNAMIC EMG MEASUREMENT 
WITH WET ELECTRODES AND HYBRID ELECTRODES IN CAPACITIVE MODE

FIGURE 28  - SIMULTANEOUS DYNAMIC EMG MEASUREMENT WITH WET ELECTRODES AND 
HYBRID ELECTRODES IN CAPACITIVE MODE
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 In the second experiment we set to verify whether the developed hybrid electrode is 
capable of collecting EMG data from a muscle at different loads and is adequate to be used as 
an interface sensor for exoskeletons and assistive devices. The experiment setting is very 
similar to the previous experiment. However in this case the participant keeps his biceps 
under continuous stress for 10 seconds. Data is measured for loads of 2kg, 4kg, 6kg, 8kg and 
10kg. Data is also measured when there is no load and the results are shown in Figure 29. 
Similar to the previous experiment, a pair of hybrid electrodes is placed above right biceps 
with a piece of cotton cloth with average thickness of 1 mm between the electrode and the 
skin to simulate clothing. The sensor in capacitive mode had a 3 mm thick vinyl tape glued on 
top of the sensing lead to guarantee isolation. 

FIGURE 29 - CAPACITIVELY COUPLED EMG MEASUREMENT UNDER MULTIPLE LOADS
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 In the third and final experiment, in order to verify the operation of our developed 
electrodes near electrical appliances, a simple robot arm control experiment was also 
performed. While leaving the arm at rest, the robotic arm(Jaco by Kinova, Canada) also 
stayed at a resting position. By lifting the arm into a 45 degree position, the EMG signals 
from the biceps switch on the robotic arm, also rotating it 45 degrees. Each movement was 
repeated two times for 10 seconds. The participant's arm was in contact with the robotic arm 
through the entire experiment.  Results are shown in Figure 30. 

 

FIGURE 30 -  ROBOT CONTROL USING CAPACITIVELY COUPLED EMG
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 3.2.3 Lower body electromyogram measurement 

 Measurement of EMG signals while walking is a fundamental procedure in rehabilitation 
treatments. In this study we evaluate the performance of our enhanced hybrid electrodes by 
measuring EMG signals from the quadriceps while walking on a treadmill. 

 In this experiment the participant walked at a constant speed of 1.2 m/s on a treadmill for 
a period of 20 seconds. The enhanced hybrid electrodes were attached to the quadriceps of the 
participant as shown in Figure 27. Simultaneous measurements on both resistive and 
capacitive mode were performed. Electrodes in capacitive mode were separated from the skin 
through a 2.2 mm jeans pants. Results are shown in Figure 31. 

FIGURE 31 - CAPACITIVE COUPLED EMG FROM THE QUADRICEPS MEASURED DURING WALKING
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 3.2.4 Electrooculogram measurement 

 Eyeball and eyelid movement recordings were made using the developed hybrid 
electrodes in the resistive contact and capacitive coupling modes. The resistive contact and 
capacitive coupling mode recordings were made in a similar manner to the experiment 
described in previous experiments. Simultaneous recordings with Vitrode F were made for 
comparative purposes. The Vitrode F electrode pair was positioned as close as possible to our 
developed electrodes, where the center of each Vitrode electrode was 30 mm from the center 
of the nearest developed electrode. The Vitrode F electrodes were attached to skin areas that 
had been cleaned with alcohol to remove any sweat and skin oils, in accordance with the 
manufacturer’s instructions. No skin preparation was required for our hybrid electrode in the 
resistive or capacitive modes. However, the electrode was isolated from the skin using a 3mm 
thick vinyl tape layer during the capacitive mode experiments. Electrodes were placed as 
shown in Figure 32. Blinking results are shown in Figure 33 and eyeball movement results are 
shown in Figure 34. 

FIGURE 32 - POSITIONING OF THE SENSORS FOR EOG MEASUREMENTS
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FIGURE 33 - BLINKING RESULTS AND CORRELATION FACTOR WITH TRADITIONAL ELECTRODES
 

FIGURE 34 - EOG(EYEBALL MUSCULAR ACTIVITY) MEASUREMENTS AND CORRELATION FACTOR 
WITH TRADITIONAL ELECTRODES 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 3.2.5 Electroencephalogram measurement 

 The 10-20 Hz band bioelectrical signal recording capacity of our hybrid electrodes was 
tested by performing alpha and beta band EEG recording experiments. The three types of 
electrodes were placed over the skin. A pair of Type L electrodes was positioned, using the 
headset shown in Fig. 5, near the forehead and near points F3 and F4 in the International 
10-20 Electrode Placement System[45]. The correlation coefficient for the data obtained using 
the hybrid electrode and the Vitrode was calculated using equation (13). Electrodes were 
placed as shown in Figure 35. Results are shown in Figure 36. 

 

FIGURE 35 - POSITIONING OF THE SENSORS FOR EEG MEASUREMENTS

FIGURE 35 - EEG MEASUREMENT RESULTS WITH CORRELATION COEFFICIENTS 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 3.3 Bioelectrical signal measurement analysis 
 3.3.1 Electrocardiogram measurement 

 Recorded data is shown in Figure 28. From the results we can see that our electrode was 
capable of recording ECG signals consistently over a period of time of 20 seconds. Also by 
plotting the data from the first three seconds in Figure 29, we are able to verify that the 
electrode recorded all the major component waves(P,Q,R,S,T,U waveforms) of the standard 
ECG waveform. 

 3.3.2 Upper body electromyogram measurement 

 In the first experiment, the recorded experimental data is shown in Figure 30. From the 
results we can see that the EMG data collected from the Vitrode pair of electrodes overlap 
most of the data collected by the hybrid electrodes. The calculated correlation coefficient for 
this dataset was of 0.93, showing that the developed capacitive electrodes are capable of 
collecting the signals originated from myoelectrical activity and that both the hybrid electrode 
and vitrode disposable wet electrodes are capable to collect very similar EMG signals. 

 In the second experiment , acquired results are shown in Figure 31. The root mean 
square(RMS) value for each case is calculated and displayed inside its corresponding graph. 
The results show that the developed hybrid electrode is capable of recording signals with 
variable intensities and from the RMS values, we verify that the heavier the load the stronger 
is the signal. 

 In the third the recorded experimental data for the robot arm control experiment is shown 
in Figure 32. The arm weight was enough to stimulate the biceps and create a signal strong 
enough to be used as in a simple trigger algorithm. Moreover, the presence of an electrical 
motor near the electrodes did not interfere with its functionality. 

 3.3.3 Lower body electromyogram measurement 

 The recorded experimental data for the treadmill walking experiment is shown in Figure 
33. The results showed that the quadriceps is in constant work during the walking process but 
upon contact of the leg with the floor, the temporary weight supporting action of the muscle is 
the biggest. From the results we also can observe that the myoelectrical data collected by the 
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enhanced hybrid electrode in both resistive and capacitive mode is mostly overlapping, with a 
calculated correlation coefficient of 0.76. No visible motion artifacts were observed in the 
experiment data. 

 3.3.4 Electrooculogram measurement 

 During eyelid movement recordings, the participant blinked at a frequency of 1 Hz, 
according to a metronome. The datasets obtained are shown in Figure 34. The calculated 
correlation coefficient for the data collected from our electrodes in the resistive contact mode 
and Vitrode F was 0.94, while the correlation coefficient for data collected from our 
electrodes in the capacitive coupling mode and Vitrode F was 0.92.  

 During eyeball movement recordings, the participant moved his eyeballs up and down at 
a frequency of 0.5 Hz, according to a metronome. The datasets obtained are shown in Figure 
35. The calculated correlation coefficient for the data collected from our electrodes in the 
resistive contact mode and Vitrode F was 0.95, while the correlation coefficient for the data 
collected from our electrodes in the capacitive coupling mode and the Vitrode F was 0.90. 

 3.3.5 Electroencephalogram measurement 

 EEG signals were measured while the participant kept their eyes open for 30 s when beta 
waves were predominant, and they were then closed for another 30 s when the alpha waves 
were predominant. Figure 13 shows the spectrograms of the recorded data and a binary 
version that only shows signals >1 dBmV, for all three types of measurements. The 
spectrograms clearly show that our electrodes measured strong beta bands during the first 30 s 
and strong alpha bands during the last 30 s of the experiment. The calculated correlation 
coefficient for the data collected from our electrodes in the resistive contact mode and Vitrode 
F was 0.90, while the correlation coefficient for the data collected from our electrodes in the 
capacitive coupling mode and Vitrode F was 0.84. The results show that our hybrid electrodes 
delivered a performance that was comparable to that of conventional electrodes when sensing 
EEG signals. 

 3.4 Discussion 

 One of the key aspects of this paper, the implementation of a dual signal lead system with 
a differential preamplifier unit built in the electrode, is better design choice than applying an 
analog or digital Low Pass Filter during signal conditioning because it removes a significant 
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amount of noise before the electrical signal enters our system, avoiding problems caused by 
the limits on operational amplifiers power supply. Both lower and upper limb  EMG 
recordings did not show any major disturbances from nearby robotic arm and electrical 
treadmill. During experiment the first experiment in the EMG measurement experiment set,  
there are two reasons for the correlation coefficient between the data collected by the wet 
electrodes and the data collected by the developed hybrid electrodes to be 0.93 instead of 1. 
One reason is that EMG recorded by the hybrid electrodes at varying loads because the hybrid 
electrode and its correspondent wet electrode were not placed in the exact same place. 
Between the center of the hybrid electrode and the center of the wet electrode there was a 
distance of 3 cm. Previous research have shown that 3 cm  is a distance big enough to produce 
create distortions between the data collect at two points. The second reason is in the fact that 
the measured physical phenomena between both types of sensors is slightly different. Wet 
electrodes are directly measurement the electrical current on the skin, where as hybrid 
electrodes are measuring the electrical field produced by those currents. 

 Similarly, the observed correlation coefficients for the EOG experiments presented in the 
last section were all above 0.90. However, the correlation coefficients in the EEG experiments 
in were between 0.84 and 0.90. The EEG readings had lower correlation coefficients because 
they were 10 to 100 times weaker than the EOG signals. Weaker signals had a larger effect on 
the random noise shown, which reduced the correlation between the two different readings. 
Another factor was the distance between the electrodes. Previous studies have shown that a 
30-mm distance between the centers of the two electrodes during simultaneous recordings 
was sufficient to produce different signals and a lower correlation. 

 3.5 Conclusion 

 In these experiments we verified through both characteristic waveforms as well as 
statistical analysis that our electrode maintained a low noise level that was comparable to the 
noise level maintained by traditionally wet electrodes during ECG, EMG, EOG and EEG 
measurements while also being providing the higher wearability and usability expected from 
non contact electrodes. 
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 4 Wearable high resolution high speed 
hybrid resistive-capacitive bioelectrical 
sensing system 
 4.1 Realising the full potential hybrid resistive capacitive 
measurement system 

 Developing wearable systems that are built around the advantage of having high 
wearability and usability provided by capacitive coupling, but that are still strong against 
disadvantages such as higher environmental electrostatic noise sensitivity is the final step in 
to taking full advantage of the hybrid resistive-capacitive bioelectrical measurement methods. 
In particular, self-contained wearable system capable of multichannel, high spatial and 
temporal resolution recordings using parallel analog and digital processing techniques could 
improve the signal and information quality recorded from the developed sensor while also 
demonstrates its usefulness and open the path for further improvements and applications, in 
particular for EEG measurements where high wearability, low noise, high spatial and 
temporal resolution are desirable qualities. 

 The use of brain machine interfaces for monitoring the changes in the brain activity of 
patients under rehabilitation treatments has been proven effective in the field of neuro-
rehabilitation[46]. By constantly monitoring the brain activity of patients in rehabilitation, 
recordings of the stimulated areas of the brain during the total treatment period can be 
obtained, as opposed by sporadic data sets obtained through Magnetic Resonance Imaging 
(MRI). Analysing this data could help in the development of new more efficient training 
techniques, reducing the treatment time and improving the treatment results. 

 For both implementation of brain computer interfaces for disabled patients and 
rehabilitation training evaluation, it's required to develop a brain activity monitoring device 
that can be used during daily life. Such device would have to meet the following 
requirements: 

 (1)Portability: Patients already have to use beds and chairs cluttered with other medical 
equipment. It's mandatory that all the devices in the life support system, including brain 
machine interfaces to have the smallest footprint as possible. In addition to that, rehabilitation 
patients must be able to freely move while wearing the device. 

 (2)Reliability: The device must have high temporal and spatial data resolutions and high 
signal-noise ratios, in order to allow the implementation of efficient applications and 
construction of robust data sets. 

 (3)Wearability: The device also must easily be worn in order to reduce physical and 
psychological stress on the patient and reduce the error due to sensor misplacement. The 
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device must also be easily taken off for personal hygiene, personal comfort or maintenance 
purposes. 

 (4)Flexibility: to be able to adapt to the user needs. Rehabilitation patients may need only 
to monitor the motor cortex while patients may want to monitor the entire brain. 

 Numerous brain activity monitoring techniques exist. Functional Magnetic Resonance 
Imaging (fMRI), Positron Emission Topography (PET) and  Magnetoencephalography (MEG) 
are high-precision techniques used in big hospitals and research centers. fMRI and PET, while 
capable of recording activity at less than a millimeter precision, those two techniques are 
dependent on blood flow variation[47]. Because of that, depending of the application they 
may not be responsive enough. Furthermore, all those three techniques require large scale 
equipment, have high initial and maintenance costs, highly specialized personal and the brain 
monitoring recordings must be executed under heavily controlled environments, making those 
techniques not adequate for constant brain monitoring. 

 On the other hand, small scale, low cost techniques such as functional Near-Infrared 
Spectroscopy (fNIRS) and EEG are widely adopted. Similarly to fMRI, fNIRS is also based 
on measuring variations in the blood flow and levels of oxygenation. While fNIRS data may 
help locating active areas of the brain with precision, previous researches have shown that it 
also contains delays and may not be suitable for real-time brain machine interfaces[48]. EEG, 
therefore, is the only brain monitoring technique that can potentially satisfy all the 
requirements listed in the previous section at satisfactory levels. 

 Currently there are several EEG recording devices commercially available[49][50][51]. 
However devices such as the EPOC (Emotiv Systems, Australia) headset lack flexibility and 
reliability, while devices such as the G.Tec headset (Guger Technologies, Austria) lack 
wearability and portability. Thus, an EEG monitoring system that satisfies all the 
requirements listed in the previous section does not exist yet.  

 In this research, we propose a design and build an EEG monitoring platform for 
rehabilitation and life support for disabled patients, that is wearable, user-friendly flexible and 
is capable of high-resolution data measurements. 

 In order to achieve this purpose we, first, develop an EEG sensor that can record EEG 
signal under a variety of circumstances, including lack of direct of contact with the scalp, and 
are easy enough to wear so that it can be used during daily life while still keeping signal/noise 
ratio high enough to be used for both rehabilitation and life support applications. Secondly, 
we develop a headgear using simple link mechanisms and elastic arrays in order to quickly 
and easily accommodate 119 electrodes on the users head. We also develop a embedded 
system to record the data and a computer software to record, analyse and display the data in 
real time. As for the next step, we perform device operation checks through a series of 
common EEG experiments to verify if our system perform capable to collect standard brain 
waves as well as other already available EEG recording devices.  
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 4.2 Fully integrated electroencephalogram measurement 
system 
 4.2.1 Small package hybrid electrodes 

 Using the hybrid electrode design theory from Chapter 2,  we developed hybrid 
electrodes in a small package all the conditions necessary to perform non-contact EEG 
recording through capacitive coupling and active EEG recordings. The electrode was 
designed by selecting an operational amplifier that at the same time had a input impedance of  
1 TΩ and 9 nV/Hz1/2 and low noise characteristics and by protecting the input with standard 
shielding techniques. The developed electrodes are pictured in Figure 36. 

  

FIGURE 36 - DEVELOPED SMALL PACKAGE HYBRID ELECTRODES

 4.2.2 Headgear mechanism 
  

 Commercial EEG monitoring devices can be divided in to 3 categories: 

 High wearability low flexibility devices: The Epoc headset is a major example. Epoc is 
capable of collecting data from 16 electrodes. However, the position and maximum number of 
electrodes is fixed eliminating any possibility of user  customization. The low resolution may 
also not be enough for driving a multiple input computer based BMI system. 

 Mid wearability, mid flexibility devices: The G-tec head set is a major example. of this 
category of devices. Headsets in this category usually have between 48~96 electrodes. 
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However while the headset itself is wearable, the amplifiers and filter boxes are standalone 
devices connected to a PC. Furthermore, most headsets in this category require wet electrodes 
and need to be assembled every time measurements take place showing higher flexibility but 
lower usability than the headset such as the Epoc. 

 Low wearability, high flexibility: Custom electrode array attached directed to the scalp 
are a major example of this category of devices. In this category of headsets, users can freely 
place as many electrodes as they want, offering maximum flexibility in measurement. 
However, due to the fact the electrodes on those devices are usually attached to the scalp 
using the adhesive gel in the electrodes, when the user sweats or move the scalp too much, the 
electrodes lose contact and fall from the system. For this reason the maximum amount of time 
a measurement can take place is limited. Also, for the same reason, the patient must remove 
all hair from the head demonstrating very low usability. 

 The standard 10-20 electrode placement method is very old and only allows only up to 20 
electrodes. It also only allows one reference electrode on a predetermined place. Depending 
on the experiment, such as Mu-rhythm monitoring, being able to select different or multiple 
reference electrodes is necessary. For those reasons, we developed a custom EEG electrode 
placement method. The scalp is divided in 7 areas, each are representing 1 microcontroller 
and all the electrodes attached to it. Each area can accommodate 16 EEG electrodes and 1 
reference electrode. All the areas can share one or more reference electrodes by using an 
appropriate cable. Also, using software, it is possible to ignore the reference electrode input in 
each area and even create new reference electrodes, although in this case the number of 
channels is reduced. Our custom Electrode Placement Method is shown Figure 37. 

FIGURE 37 - CUSTOM ELECTRODE PLACEMENT METHOD
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 Our headgear mechanism is composed of a link mechanism, pictured in Figure 38 and a 
array made of elastic bands. 

 The link mechanism was designed based on the Statistical data offered by the Japanese 
National Institute of Advanced Industrial Science and Technology(AIST)[52]. The link 
mechanism has two main functions: 

 1. To keep the headgear in shape when it is not been worn. Because the electrodes 
are not taken removed from the headgear in order to save time when wearing it, if the is no 
mechanism to keep the shape of the headgear constant when nobody is wearing it, it would be 
very easy for large amount of cables to entangle. That could damage the electrode grid and the 
cable structure. 

 2. To provide a frame for the manufacturing of the elastic grid. Each link in the 
mechanism contains several holes which are used to fix the grid. The holes are equally 
distanced and allocated in order to create a grid capable accommodating up to 134(although 
only 119 were used in this research) electrodes. 

FIGURE 38 - HEADGEAR FRAME 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 The electrode grid is made of elastic band. Similarly to the link mechanism it has two 
primary functions: 

 1. To keep the headgear shape as close as possible to the users head shape by 
exerting constant pressure towards the center of the head. The headgear when not worn is 
smaller than the average human skull. When the headgear is worn, it stretches all its 
structures. fitting on the users head. The elastic grid pressure, keeps all the electrodes in 
constant contact with the scalp. If the users head is too small to stretch the elastic grid enough 
to produce a satisfactory pressure or if the users head is too big for the headgear to even fit, 
the user can just fasten  

 2. To mechanically link all electrodes together and keep them on the headgear using 
holes allocated in the electrode cases. 

 The electrode grid is configured as shown in Figure 39 and 40. 

FIGURE 39 - ELECTRODE GRID CONFIGURED
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FIGURE 40 - COMPLETE WEARABLE ELECTRODE GRID WITH USER
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 4.2.3 Built in electronics 
 In order to collect EEG data from 119 electrodes and transfer the data to a PC for 
recording and analysis and embedded system was designed.  

 Our embedded system is composed of 7 ARM Cortex M3 custom controller boards 
running in parallel. Each board can communicate independently with a host pc either using 
USB or Bluetooth communication protocols. In case of standard usage, where all the boards 
are connected the same host computer, all the boards are first connected to a 10 port USB 
HUB, converting seven USB cables into a single one. When using only one or two boards, 
Bluetooth connection can be used for data communication. With more devices, delay is 
observed and data is lost reducing the reliability of the system. Data can be collected from 
each board at the samplings rate of 125Hz, 250Hz, 500Hz and 1kHz. 

 Each board is composed of a 16 instrumentation amplifiers that calculate the difference 
of signal between each channel and the reference potential. The output of each 
instrumentation amplifier pass through a band pass filter(lower limit:0.1Hz, upper limit 1500 
Hz) for signal conditioning. Finally the each conditioned data channel is sampled by a 16 bit 
external AD converter at 44100 Hz. All the 16 AD converters are connected to the ARM 
processor through a SPI network. The developed embedded system diagram is shown in 
Figure 41. 

FIGURE 41. ADC BOARD DIAGRAM
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 This design is highly modular and, in the future, it can be recycled when design 
specialised headsets and applications, offering high reliability and flexibility on a device 
developer level. The controller board also contains a Ethernet port and is capable of running a 
web server for remote data accessing. The designed controller board is pictured at Figure 42 
The controller box containing 7 controller boards is shown in Figure 43. All modules are 
connected through USB 3.0 to a dual core Intel Atom Based mother-board with a CUDA 
capable Nvidia Ion 2 chipset. This motherboard was extracted from a ASUS EEE PC 1215N 
netbook computer. 

 

FIGURE 42 - DEVELOPED ADC BOARD
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 4.3 Parallel bioelectrical signal processing using wearable 
graphical processing unit 
  
 Most EEG monitoring devices either don't give the user access to the raw EEG data, 
making it impossible to directly check if the electrodes are functioning correctly the or require 
the use of complex and sometime slow software such as MATLab. Such user interface 
problems make it very difficult for using those devices during daily life, especially if the user 
does not have technical background. 

 In this research we developed a software system to collect, save and analyse data in real 
time from our developed device that relies on a intuitive and straightforward graphical user 
interface(GUI). 

 Starting a measurement is done by simply connecting the USB cord in to the built in 
digital processing board, starting the software and pressing the "Start Communications" 
context menu button. 

 Selecting the areas and controllers used can be done on a graphical settings menu. In the 
same menu it's also possible to select sampling frequency and file buffer sizes. Adequate 
buffer sizes are important on PCs with low RAM or running 32bit operational systems, since 
a large amount of uncompressed analog data is collected per unit of time which could lead to 
buffer overflows and mini-dumps. Custom reference electrodes are also selected in this 
screen. Data is plot in real time, both in time domain and frequency domain as well as on 2D 
and 3D maps, as shown in Figure 43.  

  

FIGURE 43 - DEVELOPED GUI 

�52



 In order to perform digital signal processing and spectral analysis in real time for all EEG 
data channels, we propose the use General Purpose Graphical Processing Unit (GPGPU) 
available on modern computers and distribute the load between the CPU and hundreds of 
GPU cores. In order to do so, we chose to use CUDA (Nvidia Corporation) since it is, the 
fastest API available at the time of this research. 

 The digital signal processing algorithm used in our research is described in the flowchart 
in Figure 44. 

 

FIGURE  44 - DEVELOPED WEARABLE CUDA EEG DATA PROCESSING ALGORITHM 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 After each data channel is read from the USB port and saved in the RAM and HDD, an 
array of the size of a sampling window is created with this data and previous data is arranged 
in chronological order. Each array is send to the GPU and with the CUDA instruction set. Our 
custom instructions set contains a basic, a Hamming Window function, which is used if the 
according to the user settings, and a FFT based on Cooley-Tukey FFT algorithm and a 
function for calculating the power spectrum after the FFT is over. When all the processing is 
done, the GPU copies the result array from the VRAM to the RAM. Each channel runs on its 
own independent thread in parallel with all the other channels. 

 When a window of 1024 data points is set it takes the CPU 400ms to execute the process 
described above. Considering that even the slowest sampling rate our system can do is 125 
samplings per seconds(8ms for , there would be only less than 1 ms for the processor to do 
everything including, but not limited to retrieving the data from the USB port, save the data 
and spectral analysis in to the hard disk and displaying data on the screen. In future works, 
when our device is used for BMI and complex pattern matching and machine learning 
algorithms, we won't be able to achieve real time performance by loading all the work on the 
CPU.  

 On the other hand, by using CUDA, hamming window, FFT and power spectrum 
calculations for all 112 under 1 ms. Not only a a large part of the workload is removed from 
the CPU, but by knowing that the GPU takes less than 1 ms to perform the calculations shows 
that there is still untapped processing power. In future works, this processing power should be 
used to develop EEG monitoring applications for BMI systems, while still keeping the 
software responsive and running in real time. 
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 4.4 EEG measurement experiments 
 4.4.1 Basic EEG measurement benchmark using the developed 
wearable EEG monitoring system and small size hybrid electrodes 
  

 A standard experiment monitoring EEG signals was performed for in order to verify the 
recorded signals of a single sensor.. 

 The experiment consists in measuring brain activity changes above the motor cortex that 
are due to hand and finger motions. When the participants’ intention of movement is small, 
such as when the subject is at rest, it’s possible to record strong signal on the 10 Hz u-rhythm 
frequency range, in the area above the motor cortex of the human brain. On the other hand, 
when the participant is moving one hand, u-rhythm gets weaker above the motor cortex 
opposite to the hand[53]. In this experiment we perform EEG recordings by placing the 
participants on a dark and silent room with the eyes closed. The subject stayed motionless for 
30 seconds and then moved the right hand on a finger tapping movement, for another 30 
seconds. This cycle was repeated 2 times for each experiment for a total experiment time of 
120 seconds. 

 In order to evaluate the impact of the use of the GPU, the experiments was performed 
with and without using the CUDA features described in the previous sections. The 
experiments were performed with 2 participants, each experiment was performed 3 times. 

 For the second experiment, the developed system was also capable to record the data on 
both participants and the results matching previous researches. For both participants, when the 
participant is performing the finger tapping motion, the electrode C located on group 1 
(Figure 39) of the system, above the left motor cortex, recorded alpha band signals weaker 
than the when the participant was at rest. Figure 45 shows the sample spectrogram for the 
target sensor with a visible µ-band, showing that even on a multichannel system the 
developed sensors can still work as designed.  

 When experiments were executed with the CUDA features described in the previous 
section, the system was able to record data from all 112 channels at 1 kHz and perform FFTs 
for all channels after each sampling without delay or data loss. On the other hand, without 
using the CUDA features, thus allocating all the stress entirely on the CPU, the system took 
400 ms to finish the FFTs for all channels and was unable to keep up with the 1 kHz sampling 
rate. 
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FIGURE 45 - Μ-BAND MEASUREMENTS AS EEG RESPONSE TO MOTOR STIMULUS

 4.4.2 Full scalp beta wave EEG measurement  
 During intense mental activity, beta waves(15~25Hz) are known to appear in scalp area 
above the frontal lobe of the human brain[54]. In this experiment we attempt to evaluate the 
EEG measurement capabilities of our sensor on multichannel wearable setup by measuring 
beta waves during arithmetical calculations. 

 As shown in Figure 46 and 47, in this experiment 6 participants perform this test by 
deciding whether the mathematical equation on the display is correct or not. Strong signals in 
the beta band are expected to be detected by the electrodes in the region above the highlighted 
region shown in Figure when the participants are concentrating. Each participant is asked to 
go through 10 sets of problems, each set consisting of cycles of 30 seconds of problem 
solving and 30 seconds of relaxation. A robotic arm carrying a bottle of tea illustrating a 
possible application of our system in daily life support programmed so that if more than 8 
sensors record beta wave signals stronger than 1dBmV, as shown in Figure 48, it will move 
and bring the tea bottle to the participant. During the problem solving. A sample of the 
mapping every 30 second for one participant is shown in Figure.  

 As shown on Table 1, the accuracy for all participants was above 75% confirming that all 
participants were concentrating and relaxing at the appropriated times during the test. Also all 
participants activated the robot over 7 out of the 10 trials. Considering those participants were 
untrained in this mental task, these results show that our hybrid electrodes not only can 
correctly measure EEG signals in a high resolution set up, but this set up allows users to with 
no experience to perform as well as users with experience using other types of lower 
resolution wearable EEG devices. 
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FIGURE 46 - TASK DESIGN FOR BETA WAVE MEASUREMENT 

FIGURE 47 - DURING THE BETA WAVE MEASUREMENT EXPERIMENT

FIGURE 48 - SAMPLE DATA SHOWING BETA WAVE DURING RELAXATION AND CALCULATION
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TABLE 1 - Beta wave measurement rates for each participant during relaxation and 
calculation 

 4.5 Discussion 

 The experiments have shown that our electrodes were capable of recording both µ-
rhythm and beta waves without the need for skin preparation and that the results from our 
system are matched known brain activity phenomena. Our noise frequency analysis shows 
that our hybrid electrodes have a noise level below 3 µV/Hz1/2, performing at similar levels 
to commercially available electrodes. Both experiments suggest our system provides the high 
reliability required by professionals and end-users. 

 With our hybrid electrodes removed the need of skin preparation, the wearability of the 
system was further increased by using a novel mechanism the allows the placement of over a 
hundred EEG electrodes over the users scalp simultaneously, thus reducing the time for 
wearing our 119 electrode system to up to 5 minutes, similar to the time required for 1-16 
electrode systems[55]. Quick and easy electrode placement is fundamental for daily life 
usage, as it gives the user time to perform other activities while also it does not require 
specialised staff or training for correctly wearing the system. Furthermore, the lack of 
conductive gel and the problems associated with it such as signal degradation over time are 

Participant

Failed 
Measurements 

More than 8 
channels recorded 
beta waves during 
relaxation

Successful 
Measurement 

More than 8 channels 
recorded beta waves 
during calculation

S u c c e s s 
Rate 

A 2 9 85%

B 2 9 85%

C 1 8 85%

D 2 7 75%

E 3 7 70%

F 1 8 85%
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completely avoided rendering battery capacity the only limiting factor for long continuous 
monitoring sessions. Using hybrid capacitive-resistive electrodes provided a high usability 
required by end users while also increasing the reliability of the system without reducing the 
spatial resolution of the sensor network. 

 The experiments have shown that our GPU based signal processing algorithm is powerful 
enough to perform FFTs for each channel after each sampling is finished, at 1 kHz sampling 
rate. While sampling at 1 kHz is a common practice, performing FFTs for each sampling at 
this rate is excessive considering the relatively low frequency EEG bioelectrical signals 
oscillate. However in this study, by showing that our system can perform heavy calculations 
at very fast rates, we show that our system perform in real time under heavy load by using 
algorithms optimised for parallel processing. On a realistic application scenario we can reduce 
the FFT execution and use the GPU processing power for other tasks capable of 
parallelisation, such as neural networks[56][57]. Offloading signal processing to the GPU 
using CUDA not only allowed us to perform frequency analysis at real time but also freed the 
CPU for writing data to the hard-disk as well as displaying a fully interactive GUI with a 3D 
map of the EEG signals over the scalp. The high speed data processing allowed us to support 
a high spatial and temporal resolution which increase the reliability of the signal while leaving 
the CPU free for user interaction contributing in increasing the usability of the system. 
Furthermore, using a mobile GPU allowed us to have all these advantages in a wearable 
package, achieving a system with high portability and removed the need to have an external 
host PC, creating an all-in-one integrated system. 

 The data transfer between the electrodes and the GPU equipped motherboard was 
performed by seven 16-channel modules. This modular design allows users to add or remove 
at will. Taking advantage of this design professional users can perform experiments and 
development using high-density sensor networks, whereas when supplying the EEG 
monitoring system for the end user they can easily reduce hardware and optimise the system 
for the target application while still maintaining system consistence, thus reducing costs but 
offering a high application flexibility. In this study our system was a proof-of-concept 
prototype, thus also containing not optimised off-the-shelf parts, such as the motherboard 
containing the GPU. With the popularisation of GPGPU capable System on Chip devices such 
as the Tegra 3 (Nvidia Corporation, USA) processor, further miniaturisation and increase in 
power efficiency can be achieved in the near future. 

 EEG signals are used extensively on sleep disorder diagnosis and treatment, assistive 
device control and neurorehabilitation. The effectiveness of some of these applications can be  
dependent on the frequency at which the patient uses EEG monitoring systems and is able to 
provide feedback to oneself as well as to the medical staff.  While testing our new integrated 
system on a clinical environment is required, our tests with healthy participants suggest that 
the techniques in this study are a step forward in to increasing the impact of EEG technologies 
have in the medical field. Furthermore, the techniques introduced in this study can be 
extended towards other fields of wearable computing, robotics and medicine. 
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 4.6 Conclusion 

 In this study we developed a novel integrated EEG monitoring system combining 
capacitive bioelectrical measurement and parallel computing technologies. A portable high-
resolution EEG monitoring headgear composed of 112 sensing electrodes and 7 reference 
custom hybrid capacitive-resistive electrodes was developed. In order to record and analyse 
the massive amount of data from the headgear, a CUDA based wearable processing system 
was developed providing real-time signal analysis.  

 We confirmed the efficiency of the system both as a self-contained high-resolution device 
made to minimise the noise on the developed hybrid electrodes, but also takes full advantage 
of the enhanced wearability that our hybrid electrodes provide. Furthermore, in this chapter 
we developed the world first wearable GPGPU platform, optimised it  so that even mobile 
GPUs can provide responsiveness that rivals desktop CPUs, and as mobile GPUs get more 
powerful in the future, our platform allow us to build more complete self-contained systems 
by using algorithms that can take advantage of the high parallelisation that GPGPU 
programming provides. 
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 5 Discussion 
 5.1 Academic and practical advantages of the hybrid 
bioelectrical measurement model, noise cancelling methods and 
parallel processing methods 
  

 In this study we developed a system that satisfies all the requirements listed in the 
Chapter 1 of this paper in a much greater level than any previously developed capacitive 
coupling bioelectrical sensor. 

 In Chapter 2 we developed a novel type of hybrid electrode that, on Chapter 3, based on 
the desired user application can collect ECG, EMG, EOG and EEG data using either 
capacitive or resistive coupling. Our sensor is the first capacitive bioelectrical sensor that can 
collect all major, commonly used types of bioelectrical signals. The way the electrode 
operates can easily be set by the user by just changing how the electrode makes contact with 
the user's skin, thus minimising dependency of the bioelectrical information on the skin-
electrode interface. Furthermore, on Chapter 4, we considered our sensing model on a system 
level and how it we could maintain it’s performance. Doing so led us to into the development 
of the world first wearable GPGPU based parallel self-contained processing system and EEG 
measurement results that bring the performance expected from desktop type devices to fully 
wearable devices. 

 Our proposed model enables the design of flexible bioelectrical monitoring devices that 
can easily be customised according to the user or application need and, at the same time, user-
friendly devices due to lack of need for skin preparation and conductive gels. Previous 
researches only considered the most basic skin-electrode capacitor model and because of that 
were limited to very specific situations. However in our research we fused resistive 
measurement, capacitive measurement, internal noise counter-measures and external noise 
cancelling techniques into one single model and a compact set of equations, this know how 
can be applied into the design of a variety of bioelectrical sensors that go beyond the scope of 
this study, such as flexible sensors or non wearable sensors, such as the one shown in Figure 
49. In the development of further applications that contain potentially noise components, such 
as use of those sensors with wearable laser LEDs or exoskeletons equipped with electrical 
actuators, our proposed model can be expanded and electrode design parameters can be 
updated at will in order to satisfy new noise cancelling or internal noise requirements. 
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FIGURE 49 - EXAMPLE OF EXPANDING THE WEARABLE INTERNAL AND EXTERNAL NOISE 
CANCELLING  TECHNIQUES IN TO NON WEARABLE/HANDHELD BIOELECTRICAL MEASUREMENT 

DEVICES
  

 5.2 An engineering approach to prevention and treatment of 
major health issues 

 As in this research we developed a sensing model that is considerably more complex than 
a traditionally used resistive contact electrode, new precision standards as well as data 
interpretation and device usage protocols may be required for clinical use of medical devices 
that employ our sensors for regulated medical applications. In order to do so, clinical studies 
on the application of our sensors on specific health disorders will be the focus of future 
research as the focus of this paper is purely on the physical properties of the developed 
method. 

 Due to the higher usability and wearability provided by our hybrid bioelectrical 
measurement method, we expect a bigger mainstream appeal compared to the traditional 
methods available in the market today. With that assumption in mind, the possibility of 
recording the various types of bioelectrical data from patients multiple times a day, or even 
continuously, open the possibilities for a new generation of treatment and prevention methods 
based on massive bioelectrical activity databases. However, design and development of large 
scale network systems for collecting this massive data, alongside extensive long term clinical 
trials with both healthy individuals as well as patients is necessary in order for our developed 
sensors to be recognised as reliable tools for the prevention and treatment of cardio, muscular 
and neural disorders. Until proper regulation is complete, however, sports and entertainment 
applications using our technologies can be introduced in the market as the advancements from 
the research and development for non medical applications can be later transferred for 
medical applications. 
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 5.3 Further applications and expansions for the techniques 
developed in this research 

 In this research we focused on minimising internal sensor sources, cancelling external 
sources and designing systems that do not interfere with the hybrid sensor basic capabilities 
while also taking full advantage of it’s properties. As a result, we developed very sensitive 
sensor built upon a modular, powerful and flexible data processing platform. 

 While the focus of this research is on the development of wearable hybrid resistive-
capacitive sensors, the input current feedback control, dual input noise cancelling and 
wearable GPGPU parallel concepts can be generalised and applied to a variety of other 
sensors in wearable and non wearable applications. As shown in Figure 50, future hardware 
development related research will focus in particular on application systems consisting of 
multiple types of bioelectrical signals simultaneously alongside non bioelectrical data and 
man-machine interactivity. 
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 6 Conclusion 

 In this research we focused on bringing the signal robustness expected from traditionally 
used contact type resistive electrodes and to the potentially more comfortable and practical 
non contact type capacitive electrodes by reducing the dependency of the bioelectrical 
information on the contact state between the sensor and the user's skin. We approached this 
problem from both a internal and external level perspective as well as from system level 
perspective and developed a hybrid sensor capable of both resistive and capacitive ECG, 
EMG, EOG and EEG bioelectrical signal measurements in realistic conditions. 

 In this research, in order to realise the above, we performed the followed three steps: 

 (1) We performed a internal level analysis of the proposed sensing method by creating a 
novel electric circuit model based on both resistive and capacitive measurement principles as 
well as all the associated internal noise factors, namely internal thermoelectrical noise and 
current drift. Based on the new model we designed our sensor using a optimal minimal 
impedance and input current feedback circuit for minimal thermoelectrical noise, minimal 
current drift and quick saturating noise recovery while still being sensitive enough for all the 
target bioelectrical signals. 

 (2) Using the same model we also performed a sensor external level analysis by focusing 
on external noise sources, namely external electromagnetic noises and motion artifacts. Using 
this information, we developed a dual differential input noise cancelling method built in on 
each sensor. Using a secondary electrode circuit based on (1) but calibrated exclusively for 
external noise. 

 (3) We developed a sensor module satisfying the conditions of the developed models 
introduced in (1) and (2). Through experiments we verified superior frequency response 
parameters, noise characteristic, noise cancelling effectiveness compared to previous reported 
capacitive coupling electrodes. We also verified resistive and capacitive ECG, EOG and EEG 
measurements using our sensor with the same level of precision as traditional resistive 
coupling electrodes. Furthermore we verified for the first time, both resistive and capacitive 
robust EMG signals from both upper body and lower body limbs, an achievement that has yet 
to be reported by any other capacitive sensors research team. 

 (4) In order to minimise external electromagnetic noise sources as well as take full 
advantage of the contact state independency property of the developed hybrid resistive 
capacitive sensor, we developed a novel wearable high spatial and temporal resolution EEG 
self contained system. We developed a 112 channel compatible sensor mounting mechanism 
and realtime GPGPU based parallel signal processing and hardware. Using this world first 
GPGPU parallel processing wearable system we verified consistent and low noise EEG 
signals over the scalp of several untrained participants after quickly being able to wearing the 
entire system. 
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 7 Future works 

 Designing a novel bioelectrical sensor by focusing simultaneously on both internal and 
external noise sources as well as a system level improvements that not only reduce noise but 
also take full advantage of the sensor practical properties, we were capable to measure all 
major types of bioelectrical signals at a higher precision than any other previously developed 
and reported type of capacitive bioelectric sensor or system. Being capable of simultaneously 
measure any bioelectrical signal using either the resistive or capacitive method allows the user 
to record bioelectrical signals regardless of the contact situation, such as clothes, dirty or body 
hair, between the sensor and skin, thus greatly improving user freedom during use. We hope 
to contributing bringing bioelectrical measurement based disease prevention, treatments and 
life support methods that rely on ECG, EMG, EOG or EEG signals. Furthermore, as shown in 
Figure 50 we hope to expand the developed noise cancelling and parallel processing methods 
into other types of biosignals as well as relevant environment signals. This extra information 
will not only help in the design of better self-contained wearable systems but in the 
measurement of better bioelectrical signals, and thus better medical applications. 

FIGURE 50 - EXPANDING THE DEVELOPED NOISE CANCELLING AND PARALLEL PROCESSING 
METHODS INTO OTHER TYPES OF BIOSIGNALS AS WELL AS APPLICATION DEVELOPMENT FOR 

TREATMENT AND PREVENTION OF CARDIO, MUSCULAR AND NEURAL DISORDERS.
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