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CHAPTER 1 

Introduction – research background: understanding the global cycle of 

CO2 using satellite remote sensing 

 

 

 The rapid atmospheric buildup of carbon dioxide (CO2) observed over the past 

several decades [e.g. Keeling et al., 1976] raised a broad array of concerns about future 

climatic changes because of the role CO2 plays in determining the Earth’s heat budget 

[Ramanathan et al., 1987]. The Mauna Loa Observatory, operated by the US National 

Oceanic and Atmospheric Administration (NOAA), is one of the atmospheric 

observatories located around the globe for monitoring the long-term trend of atmospheric 

CO2 levels. Figure 1.1 shows the result of the CO2 measurement at the Observatory. Also 

shown in the figure are CO2 records collected at NOAA’s five other atmospheric 

monitoring stations. The figure indicates a steady rise in atmospheric CO2 concentration 

around the globe, from the Antarctic to the Arctic. From the data collected at these global 

atmospheric monitoring stations between 2001 and 2010, the global-mean annual 

increase of CO2 concentration was found to be 1.97 ppm [World Meteorological 

Organization, 2011]. (The unit ppm used here for the concentration of atmospheric CO2 

expresses how much volume of CO2 in cm3 occupies in 1 m3 (1 million cm3) of dry air 

(parts per million by volume).) 

Based on an estimate for the total mass of the atmosphere (5.14×1018 kg 
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[Trenberth and Smith, 2004] or approximately 5,000 trillion tons), the global-mean annual 

CO2 increase can be expressed in terms of the amount of CO2 that was not absorbed and 

remains in the atmosphere. For the ten year period, the amount is calculated to be 

approximately 15.3 billion tons of CO2 per year.  

Since CO2 in the atmosphere is inert, and the amount of CO2 emitted through 

human activities, based on national fossil fuel consumption statistics, is known to be about 

29.6 billion tons per year (estimate based on ODIAC anthropogenic emission inventory 

[Oda and Maksyutov, 2011]), the amount of CO2 uptake by terrestrial vegetation and 

oceans can be estimated as about 14.3 billion tons per year. These figures point out that 

humans are emitting CO2 approximately twice the amount terrestrial biosphere and ocean 

together are capable of absorbing in a year, thereby raising steadily the global atmospheric 

CO2 concentrations. 

As demonstrated above, it is possible to obtain an approximate global estimate of 

the amount of CO2 exchanged between the atmosphere and the Earth’s surface (denoted 

as surface CO2 fluxes). However, with growing evidence of global climate change, as 

reported regularly by the Intergovernmental Panel of Climate Change (IPCC) [IPCC, 

2013], there is an impending need, both scientifically and policy driven, to understand 

this global cycling of carbon in greater detail [Rayner and O’Brien, 2001]. Scientists and 

decision makers need to know the answers to overarching questions of 1) how 

anthropogenic CO2 emissions are changing the global carbon cycle, 2) how policy and 

management decisions affect the level of atmospheric CO2 concentration, and 3) how the 
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rising atmospheric CO2 levels, the associated changes in climate, and the carbon 

management decisions impact on ecosystems, biodiversity, and natural resources 

[Micharak et al., 2011]. Also, much research is needed as to the possibility that these 

human-induced changes in the global carbon cycle may eventually lead to shifting the 

Earth systems to new states, known as climate change tipping points, such as the ceasing 

of the global ocean conveyer belt and the melting of glaciers over Greenland. Gaining 

clear insight into these aspects is particularly important in projecting future changes in 

climate. Climate predictions rely upon estimates by multiple climate models that are 

forced with a common set of scenarios for atmospheric CO2 levels [IPCC, 2013]. The 

development of reliable scenarios, essential for better future projections, is dependent on 

better answering the three questions listed above. Understanding the present and past state 

of the carbon cycle is the first yet critical step and lays a foundation for answering those 

intricate inquiries. 

For this, there exist two approaches that give surface CO2 flux estimates: the 

“bottom-up” and “top-down” approaches. CO2 flux estimates by the bottom-up approach 

are obtained by summing up the estimates of CO2 fluxes based on on-site observations, 

forestry statistics, fossil fuel consumption inventories, and land use change statistics, as 

well as those simulated by models of terrestrial biosphere and oceans. Although this 

method allows for the detailed estimation of CO2 fluxes of particular regions, it may be 

difficult to obtain global scale estimates with it because detailed source data are available 

for particular parts of the globe. The top-down approach, on one hand, derives CO2 fluxes 
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from measured distributions of atmospheric CO2 concentration, such as ones shown in 

Figure 1.1. This method is based on Bayesian inverse modeling, a statistical scheme used 

for inferring unknown values, such as locations on Earth, hypocenters of earthquakes, etc., 

from observations and a set of theoretical (or a priori) information on the value to be 

inferred (details on this approach is given in Chapter 2). This approach allows for global-

scale CO2 flux estimation, but there are issues associated with source data availability.  

Attempts at studying the spatial distribution of CO2 fluxes with the top-down 

approach have gathered pace in the late 1990s when individual estimates by different 

modeling systems were inter-compared in a series of research campaign called TransCom 

[e.g. Denning et al., 1999; Gurney et al., 2002]. In the third phase of the campaign, CO2 

flux estimates for 22 terrestrial and oceanic regions, based on data from 76 surface CO2 

monitoring sites, were compared against one another to gain insight into uncertainties 

inherent to the approach. Figure 1.2 shows the 22 global regions and the locations of the 

surface data providing sites used. The result showed that estimates for undersampled parts 

of the globe, particularly tropical latitudes, Africa, South America, and Asia (Figure 1.2), 

were associated with much larger uncertainties than those for temperate North America 

and Europe, where more data are available for the estimation [Gurney et al. 2002, 2004].  

To augment the number and spatial coverage of the CO2 data and reduce the flux 

uncertainties for the undersampled regions, it was suggested to use space-based spectral 

soundings of surface-reflected sunlight in the short-wave infrared (SWIR) wavelength 

range from which column-integrated CO2 concentrations (XCO2) can be retrieved [e.g. 
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Rayner and O’Brien, 2001; Houweling et al., 2004]. Rayner and O’Brien [2001] 

demonstrated that the satellite-based global XCO2 retrievals can reduce uncertainties in 

regional flux estimates substantially if data from the surface-based monitoring stations 

were augmented by the XCO2 retrievals with precisions of 1-2 ppm (~0.5%; on a regional 

scale with no zero systematic error, or “bias”). To this end, the Japanese Greenhouse 

Observing SATellite (GOSAT) was placed in orbit in early 2009. The satellite flies at an 

altitude of 666 km with a repeat cycle of 3 days. With an Earthward-looking Fourier 

transform spectrometer onboard, GOSAT takes global soundings of SWIR spectra in a 

raster scanning pattern (individual soundings are ~160 - 260 km apart in the cross-track 

direction), and approximately 60,000 XCO2 retrievals over clear-sky locations on land are 

obtained in a year. 

 With the advent of GOSAT, a new era has come to the estimation of surface CO2 

fluxes and the research of the global carbon cycle [e.g. Maksyutov et al., 2012; Chevallier 

et al., 2014; Basu et al., 2014]. As is always the case with any newly initiated data analyses, 

it is essential to evaluate and characterize first the new satellite-based CO2 flux estimates 

and gain insight into the range of uncertainties associated with them before stepping into 

a stage in which the interpretation of those estimates is carried out. The objective of this 

study was therefore set as to evaluate the degree of contribution that GOSAT data make 

to the global surface CO2 flux estimation and to elucidate sources of uncertainties 

associated with the flux estimates obtained and quantify them. In the chapters that follow, 

I will first give explanations on the top-down surface flux estimation scheme used for this 
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study and its subsystems developed, as well as the first estimation results (Chapter 2), and 

present the utility of GOSAT data in the flux estimation (Chapter 3). In Chapters 4 and 5, 

I will present the results of investigating sources of uncertainties in the flux estimates 

using the developed system and the GOSAT data utility evaluation metric explained in 

Chapters 2 and 3; in Chapter 4, I will show how differences in XCO2 retrieval algorithms, 

as a source of the uncertainty, impacts the surface flux estimation, and then in Chapter 5 

I will present how differences in XCO2 spatial coverage, another source of the uncertainty, 

affects the surface flux estimation. Finally in Chapter 6, I will sum up the new findings 

for gaining future research perspectives. 
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Figures 

 

 

 

 

 

 

 

Figure 1.1. The time series of long-term CO2 measurement taken at six atmospheric 

baseline observatories operated by the Earth System Research Laboratory of the US 

National Oceanic and Atmospheric Administration. The data were downloaded from: 

ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/. 
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Figure 1.2. Boundaries of 22 terrestrial and oceanic regions used in the TransCom 3 flux 

intercomparison study. Red dots indicate the locations of 76 data providing sites used in 

the study. 
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CHAPTER 2 

Estimation of regional CO2 fluxes from GOSAT data  

– approach and first result – 
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2.1. Introduction 

 Here, explanations are given on the approach used throughout this study for 

estimating monthly regional CO2 fluxes from both surface-based CO2 data and GOSAT 

XCO2 retrievals. Descriptions are given on the following items involved in the regional 

CO2 flux estimation: 1) inverse modeling scheme, 2) a priori flux data, 3) atmospheric 

tracer transport model, 4) GOSAT averaging kernel, 5) unit emission patterns, 6) flux and 

observation error covariance matrices, and 7) CO2 concentration datasets. My 

involvement was in the development of the subsystems of the inverse modeling scheme 

in regard to items 4 through 6. Flux estimates obtained with the described approach are 

presented at the end of this chapter. 

 

2.2. Descriptions of the flux estimation approach 

2.2.1. Inverse modeling scheme 

The top-down approach, or atmospheric inverse modeling, is a technique 

employed for inferring global surface CO2 fluxes from the measurements of atmospheric 

CO2 concentrations. The theoretical basis for the technique rests on Bayes’ theorem [e.g. 

Tarantola, 2005], with which the “optimal” or a posteriori state of a set of parameters is 

deduced from a priori knowledge about those parameters and measured data values. In 

the case of estimating surface fluxes of CO2, which is approximated to be chemically inert, 

the relationship between the measured data values and their theoretical predictions based 

on physical process modeling is linear. The relationship can be expressed in matrix form 
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as  

dobs = Gm       (2-1) 

where dobs is the concentration vector recorded at measurement locations, and m denotes 

modeled CO2 fluxes in predefined regions, respectively. G in Equation 2-1 represents the 

matrix of linear operators that maps the field of CO2 fluxes onto that of concentrations. 

The elements of matrix G are given as changes in concentrations at each of measurement 

sites with respect to unit pulse emissions from each of the pre-defined regions. These 

elements, called the response functions, are obtained by running forward a set of unit 

pulse emissions (the basis functions) with an atmospheric tracer transport model [e.g. 

Rayner et al., 1999; Baker et al., 2006] (unit pulse emissions and atmospheric tracer 

transport model used in this study are explained in Sections 2.2.5 and 2.2.3). The 

magnitude of an element in the matrix, the “response” to a unit pulse emission, represents 

the degree of the contribution of individual observations to estimating a regional flux. 

The aim here is to find m that best describes dobs. Bayes’ Theorem, formulated as    

p(𝒎𝒎|𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜) = p�𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜�𝒎𝒎�  p(𝒎𝒎)
∫p�𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜�𝒎𝒎�  p(𝒎𝒎)  d𝒎𝒎

 ,    (2-2) 

states that the a posteriori probability (probability of m given dobs, denoted as p(m|dobs)), 

is equal to the probability of measurements (probability of dobs given m, p(dobs|m)), times 

the a priori probability of m (p(m)), normalized by the total probability. Assuming 

Gaussian error distributions, p(dobs|m) and p(m) are given as  

 p(𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜|𝒎𝒎) = 𝟏𝟏
�2π det𝐂𝐂𝐃𝐃

e−
1
2

(𝐆𝐆𝒎𝒎−𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜)T𝐂𝐂𝐃𝐃
−1(𝐆𝐆𝒎𝒎−𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜) and (2-3) 
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 p(𝒎𝒎) = 𝟏𝟏
�2π det𝐂𝐂𝐌𝐌

e−
1
2�𝒎𝒎−𝒎𝒎𝒑𝒑�

T𝐂𝐂𝐌𝐌
−1(𝒎𝒎−𝒎𝒎𝒑𝒑),   (2-4) 

respectively, where Gm denotes the expected values of dobs (model prediction), and mp is 

the a priori value of m. CD and CM are the error covariance matrices of the observations 

and the a priori value, respectively (square matrices). Equations 2-3 and 2-4 together gives 

the posterior probability density as  

 p(𝒎𝒎|𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜) ∝ e−
1
2((𝐆𝐆𝒎𝒎−𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜)T𝐂𝐂𝐃𝐃

−1(𝐆𝐆𝒎𝒎−𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜)+12�𝒎𝒎−𝒎𝒎𝒑𝒑�
T𝐂𝐂𝐌𝐌

−1(𝒎𝒎−𝒎𝒎𝒑𝒑)). 

(2-5) 

The optimal state, m’, is located at the center of this posterior probability density where 

the probability peaks out. m’ can be found by minimizing the negative of the exponent in 

Equation 2-5 or the “cost function” 

𝐋𝐋(𝑚𝑚) = 1
2

(𝐆𝐆𝒎𝒎− 𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜)T𝐂𝐂𝐃𝐃−1(𝐆𝐆𝒎𝒎− 𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜) + 1
2
�𝒎𝒎 −𝒎𝒎𝒑𝒑�

T
𝐂𝐂𝐌𝐌−1(𝒎𝒎−𝒎𝒎𝒑𝒑).     

(2-6) 

Taking the derivative of L with respect to m gives 

 ∂L(𝒎𝒎)
∂𝒎𝒎

= 𝒎𝒎(𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1) − 𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐂𝐂𝐌𝐌−1𝒎𝒎𝒑𝒑, 

and, further, setting it to zero yields (the minimum of the cost function (2-6)) 

𝒎𝒎′ = (𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1)−1 �𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜 +  𝐂𝐂𝐌𝐌−1 𝒎𝒎𝒑𝒑�, or  

  = 𝒎𝒎𝒑𝒑 + (𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1)−1 𝐆𝐆T 𝐂𝐂𝐃𝐃−1 �𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐆𝐆 𝒎𝒎𝒑𝒑�. (2-7) 

Further, taking the derivative of L with respect to m for the second time gives 

∂2L(𝒎𝒎)
∂𝒎𝒎2 = 𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1,     (2-8) 

which is the Hessian (the convexity) of the quadratic cost function (2-6). 
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As the cost function with respect to m is quadratic, the posterior probability 

density as presented in 2-5 is Gaussian, and can be expressed alternatively with the 

obtained optimal state m’ at its center and the posterior covariance C’M as   

 p(𝒎𝒎|𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜) =  𝟏𝟏
�𝟐𝟐𝟐𝟐 det𝐂𝐂′𝐌𝐌

e−
1
2�𝒎𝒎−𝒎𝒎

′�
T
𝐂𝐂′𝐌𝐌
−1(𝒎𝒎−𝒎𝒎′), and 

 p(𝒎𝒎|𝒅𝒅𝑜𝑜𝑜𝑜𝑜𝑜) ∝  e−
1
2�𝒎𝒎−𝒎𝒎

′�
T
𝐂𝐂′𝐌𝐌
−1(𝒎𝒎−𝒎𝒎′).   (2-9) 

The corresponding cost function is therefore written as 

 𝐋𝐋(𝐦𝐦) = 1
2
�𝒎𝒎 −𝒎𝒎′�

T
𝐂𝐂′𝐌𝐌

−1 �𝒎𝒎 −𝒎𝒎′�.   (2-10) 

Taking the derivative of L twice with respect to m yields 

 ∂2L(𝒎𝒎)
∂𝒎𝒎2 = 𝐂𝐂′𝐌𝐌

−1,      (2-11) 

which is the convexity of the quadratic cost function (2-10). With Equation 2-8, the 

posterior covariance matrix in Equation 2-11 (a square matrix) can be expressed as 

 𝐂𝐂′𝐌𝐌 = �∂
2L(𝒎𝒎)
∂𝒎𝒎2 �

−1
= (𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1)−1.   (2-12) 

This equation can be rearranged as follows:  

𝐂𝐂′𝐌𝐌 = (𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1)−1(𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 𝐂𝐂𝐌𝐌 −  𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 𝐂𝐂𝐌𝐌 + 𝐈𝐈) 

        = (𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1)−1�(𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1) 𝐂𝐂𝐌𝐌 −  𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 𝐂𝐂𝐌𝐌� 

        = 𝐂𝐂𝐌𝐌 − (𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1)−1𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 𝐂𝐂𝐌𝐌 

 = 𝐂𝐂𝐌𝐌 − 𝐂𝐂M 𝐆𝐆t(𝐆𝐆 𝐂𝐂M 𝐆𝐆t + 𝐂𝐂D)−1𝐆𝐆 𝐂𝐂𝐌𝐌,  (2-13) 

since 𝐆𝐆T 𝐂𝐂𝐃𝐃−1 (𝐆𝐆T 𝐂𝐂𝐃𝐃−1 𝐆𝐆 +  𝐂𝐂𝐌𝐌−1)−1  =  𝐂𝐂M 𝐆𝐆t(𝐆𝐆 𝐂𝐂M 𝐆𝐆t + 𝐂𝐂D)−1.  

The right-hand side of Equation 2-12 shows how the observed data decrease the posterior 
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error covariances. 

 The size of m in the present study was set to the number of flux estimation 

regions (64 regions) times the number of analyzed months. The 64 regions used in this 

study consist of 42 subcontinental-scale terrestrial regions and 22 ocean basins [Patra et 

al., 2005], which were defined by subdividing the original 22 land-ocean regions used in 

the TransCom 3 studies (Figure 1.2). The boundaries of these source regions are shown 

in Figure 2.1. The regions shaded with dark blue in the figure are not considered in the 

flux estimation. The dimension of matrix G is then determined as the size of m multiplied 

by that of vector dobs. For implementing matrix operations involved in Equation 2-7 

efficiently, a variant of the fixed-lag Kalman Smoother scheme (FLKS), formulated by 

Bruhwiler et al. [2005], was employed. The basis for this scheme is the fact that in 

atmospheric tracer transport simulations, the signals of unit pulse emissions detected at 

measurement sites decay rapidly within the first few months and are blended into the 

background state thereafter. The idea is to obtain the a posteriori fluxes via estimating m’ 

incrementally with a subset of G and dobs in a specified time-window. Using the FLKS 

setup with the same 64 region boundaries, Koyama et al. [2009] evaluated the influence 

that differences in the length of the time window have on a posteriori monthly flux 

estimates. Comparing results obtained using window lengths of 1 to 6 months, they 

concluded that a posteriori fluxes and their uncertainties estimated with three-month or 

longer windows converged quite strongly; Bruhwiler et al. [2005] arrived at a similar 

conclusion. Based on these findings, a window size of three month was chosen. 
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2.2.2 A priori fluxes 

 The a priori flux values stored in mp (whose size is the same as that of m) are 

comprised of four components: daily net ecosystem exchange (NEE) predicted by a 

terrestrial biosphere process model VISIT (Vegetation Integrative SImulator for Trace 

gases) [Ito, 2010; Saito M. et al., 2011]; monthly ocean-atmosphere CO2 fluxes generated 

with an ocean pCO2 data assimilation system run with the Ocean Tracer Transport Model 

(OTTM) [Valsala and Maksyutov, 2010]; monthly CO2 emissions due to biomass burning 

stored in GFED (the Global Fire Emissions Database) version 3.1 [van der Werf et al., 

2010]; and monthly anthropogenic CO2 emissions obtained via merging the ODIAC 

(Open source Data Inventory of Anthropogenic CO2 emission) high-resolution dataset 

[Oda and Maksyutov, 2011] and the Carbon Dioxide Information Analysis Center's 

monthly 1°×1° resolution dataset [Andres et al., 2011]. The spatial and temporal 

resolutions of these datasets are as follows: VISIT-predicted NEE: 0.5°×0.5° / daily; 

OTTM-based ocean flux: 1°×1° / monthly; GFED biomass burning emissions: 0.5°×

0.5° / monthly; ODIAC anthropogenic emissions: 1°×1° (finer resolution data available) 

/ monthly. Prior to the use in the forward concentration simulations, VISIT and GFED 

datasets were re-gridded to 1°×1°. The estimation of NEE by VISIT is based on the 

Japan Meteorological Agency (JMA)’s JCDAS (JMA Climate Data Assimilation System) 

meteorological analysis data [Onogi et al., 2007]. 
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2.2.3. Atmospheric tracer transport model  

In this study, atmospheric tracer transport simulation necessary for constructing 

elements of matrix G and predicting concentrations at measurement locations was 

performed with version 08.1 of the National Institute for Environmental Studies (NIES) 

atmospheric tracer transport model (NIES-TM) [Belikov et al., 2011]. The tracer transport 

in NIES-TM is driven by JCDAS wind analysis data. The wind data are 6-hourly and are 

given on Gaussian horizontal grid T106 (320×160). Data for the height of the planetary 

boundary layer were taken from the interim reanalysis data provided by the European 

Center for Mid-range Weather Forecasts [Simmons et al., 2007]. Concentration 

simulation by NIES-TM is performed on a 2.5°×2.5° horizontal grid at 32 vertical levels 

between the surface and the top of the atmosphere (3 hPa). Validation against 

measurement made at twelve sites of the monitoring site of the Total Carbon Column 

Observing Network (TCCON) [Wunch et al., 2011a], where upward-looking high-

resolution Fourier transform spectrometers are installed, showed that uncertainty 

associated with NIES-TM-simulated XCO2 is 0.2% of the concentration (~1 ppm) 

[Belikov et al., 2013]. 

 

2.2.4. Treatment of GOSAT averaging kernel in NIES-TM 

To account for the vertical sensitivity of the GOSAT measurement in the 

prediction of GOSAT-based column-averaged concentrations, the averaging kernel, 

derived in the retrieval of XCO2, was applied to each of the vertical concentration profiles 
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simulated with NIES-TM. As described by Connor et al. [2008], a model-simulated XCO2 

concentration 𝑿𝑿𝑪𝑪𝑪𝑪𝟐𝟐
𝒎𝒎 , which reflects the measurement vertical sensitivity, is given as 

𝑿𝑿𝑪𝑪𝑪𝑪𝟐𝟐
𝒎𝒎 = 𝑿𝑿𝑪𝑪𝑪𝑪𝟐𝟐

𝒂𝒂 � (𝒉𝒉𝑻𝑻𝐀𝐀)𝐢𝐢
𝐢𝐢

(𝒙𝒙𝒎𝒎 − 𝒙𝒙𝒂𝒂)𝐢𝐢 

 where 𝑿𝑿𝑪𝑪𝑪𝑪𝟐𝟐
𝒂𝒂 denotes a priori XCO2 values defined in the XCO2 retrieval, A is a matrix 

containing the CO2 elements of the averaging kernel, xm and xa denote the elements of 

the modeled and a priori vertical CO2 profiles, respectively. h is the pressure weighting 

function, a vector containing the dry air partial column abundance of each retrieval layer 

normalized to the total dry air column abundance. The calculation of the pressure 

weighting function was done as described in Appendix B of a report by Yoshida et al. 

[2009]. 

 

2.2.5. Unit emission patterns for constructing matrix G 

For each of the monthly regional fluxes estimated, a concentration simulation was 

performed with NIES-TM in which a unit emission of 1 GtC region-1 yr-1 was released 

from that region for one month and transported forward until the end of the simulation 

period to sample responses at the location of every XCO2 retrieval. The spatial pattern of 

the 1 GtC region-1 yr-1 unit emission for each of the 42 land source regions (this is named 

the basis function), was defined as that of 31-yr-mean net primary productivity estimated 

by VISIT (1980-2010). Figure 2.2 shows the emission patterns for the 42 terrestrial 

regions. No spatial patterns were given to the unit emissions for the 22 ocean basins 

(spatially uniform). The sampled responses, named the response functions, were recorded 
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in the columns of matrix G, which functions as a linear operator that relates 

concentrations with regional flux magnitudes. 

 

2.2.6. Concentration datasets used for inverse modeling 

The values assigned to the elements of vector dobs are the surface-based 

GLOBALVIEW-CO2 (GV) data provided by NOAA [GLOBALVIEW-CO2] averaged 

monthly, and version 02.00 of GOSAT Level 2 XCO2 retrievals, distributed by the NIES 

GOSAT Project, that are gridded to 5°×5° cells and averaged monthly. Descriptions on 

these datasets are given below. 

 

2.2.6.1. GLOBALVIEW data 

The GV data are a product generated with a technique developed by Masarie and 

Tans [1995], which incorporates interpolated and/or extrapolated values with flask and 

in-situ continuous measurements such that the resulting smoothed concentration time 

series become seamless in time. A GV data file for a monitoring site contains 48 

concentration values per year; for the estimation of monthly flux estimates in this study, 

these values were converted into monthly values. The reason behind the choice of GV 

data, instead of using simple averages of available flask and continuous observations in 

each month, as in a study by Rödenbeck et al. [2003], is to minimize the impact of 

temporal discontinuities that exist among those observations on the flux estimation.  

Following the approach by Law et al. [2003], GV sites for the use in the flux 
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estimation were selected by comparing GV data against concentrations predicted by 

NIES-TM over the one year analysis period. Sites whose root-mean-squared (RMS) 

model–observation misfits were less than 2 ppm were chosen. Altogether, 220 GV data 

time series were selected for this study (Table 2.1 shows the list of these sites). As an 

observation error estimate, the GV residual standard deviation (stored in the GV dataset) 

was assigned to each of the selected sites. Less weight was given at a GV site whose 

observational record completeness was less than 70% by tripling their data errors. 

Following Law et al. [2003], the minimum error for the GV data was set at 0.3 ppm. 

 

2.2.6.2. GOSAT XCO2 retrievals 

The TANSO (Thermal And Near infrared Sensor for carbon Observation) Fourier 

transform spectrometer (TANSO-FTS) is the main observational instrument aboard 

GOSAT, and measures surface-reflected sunlight and emitted thermal infrared radiation 

at wavelengths in the range 0.76–14.3 μm. The design and functions of the instrument are 

described in detail by Kuze et al. (2009). Sampled spectra recorded in the 0.76 μm oxygen 

absorption band and the 1.61 μm CO2 absorption band were used in an earlier version of 

the NIES Level 2 operational retrieval algorithm (version 01; described by Yoshida et al., 

[2011]) to retrieve XCO2 global distributions. Those retrieved XCO2 values exhibited 

promising characteristics, including distinct north–south gradients and seasonal 

variability, but they were found to contain a significant negative bias of 8.85 ±4.75 ppm 

[Morino et al., 2011] when compared with reference data collected at the TCCON 
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monitoring sites. Later, Uchino et al. [2012], using their lidar observations of aerosol 

particles, showed that assumptions made in version 01 of the retrieval algorithm on the 

vertical distributions of thin cirrus and aerosols are oversimplified, thereby contributing 

to the large bias. They proved that the issue could be mitigated significantly by the use of 

aerosol/cirrus optical properties retrieved simultaneously with spectra in the 2.06 μm 

band. Further, through investigating GOSAT spectra sampled over 2.5 yr, Yoshida et al. 

[2012] discovered a time-dependent degradation of TANSO-FTS’s radiometric accuracy, 

which they successfully modeled for use in the retrieval algorithm implementation. These 

new findings, along with other improvements, were incorporated into the NIES Level 2 

operational retrieval algorithm. The updated Level 2 XCO2 retrievals (version 02.00), 

processed from an improved GOSAT spectral dataset (Level 1B data, version 141.141, 

covering 14 months from June 2009 to July 2010) were shown to have a much smaller 

bias of −1.20±1.97 ppm (the causes of the remaining bias, however, require further 

investigation).   

Wunch et al. [2011b] made an attempt to assess and correct spatially- and 

temporally-varying biases in GOSAT XCO2 retrievals using an empirical regression model 

with which they correlated spurious variabilities in XCO2 retrievals with surface albedo, 

difference between the analyzed and retrieved surface pressure, airmass, and oxygen-

band spectral radiance. A similar analysis is performed on the GOSAT Level 2 XCO2 

retrievals [Inoue et al., in preparation], and the outcome of that effort will be reflected in 

the future updates of the XCO2 retrieval dataset. For this study, the bias was therefore 
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corrected by raising each XCO2 value by the global mean GOSAT-TCCON difference of 

1.20 ppm prior to the use in inverse modeling, assuming that the bias is uniform 

throughout the globe and the observation period. 

Figure 2.3 shows the number of GOSAT XCO2 retrievals per each of 5°×5° cells 

counted during the months of August 2009, November 2009, February 2010, and May 

2010. The distribution of the data number density changes with season owing to the 

occurrence of clear sky days and local solar zenith angle that determines the northern- 

and southern-most bounds of the GOSAT measurement. Note here that regions above 50° 

N latitude (the northern parts of North America and Eurasia) during fall and winter 

months saw very small numbers of GOSAT retrievals due to low local solar zenith angles 

therefore the flux inference for those regions during these months must rely on the GV 

data. Figure 2.4 displays GOSAT XCO2 retrievals in the form of input to the inverse 

modeling scheme (gridded to 5°×5° cells and averaged on a monthly time scale). Only 

the cells with three or more XCO2 retrievals per month are shown here. The monthly mean 

GV values are also shown in the figure in circles. The XCO2 bias correction was done prior 

to monthly averaging.  

 

2.2.6.3. Model-simulated concentrations 

The model-simulated concentration at each observation location of GV and 

GOSAT XCO2 was obtained by performing linear interpolation, in space and time, of the 

2.5°×2.5° NIES-TM predicted concentration field (updated at a time step of 10-15 min in 
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NIES-TM). Monthly averaging of the predicted values was then followed. The monthly 

aggregation of individual predicted XCO2 values to a 5°×5° grid was done for grid cells 

that contain three or more XCO2 retrievals per month.  

 

2.2.7. Prescribing error covariance matrices 

The observation errors for the monthly mean XCO2 retrievals, specified in the 

diagonal elements of the error covariance matrix for the observations, CD, were 

determined as the standard deviations of GOSAT XCO2 retrievals found in each of the 

5°×5° grid cells in a month. I took account of errors associated with the retrieval of XCO2 

values and the forward atmospheric transport simulation by setting the minimum of the 

observation error for GOSAT XCO2 retrievals at 3 ppm, which consists of an uncertainty 

associated with the retrieval of GOSAT XCO2 (2 ppm) and that of the aforementioned 

forward XCO2 modeling (1 ppm). The CD elements for GV data were set at the GV 

uncertainties described in Section 2.6.1. 

The diagonal elements of the matrix CM were prescribed as follows. The 

uncertainty of the terrestrial a priori flux was set at twice the standard deviation of the 

VISIT model monthly NEE (1°×1° resolution) values for the past 31 yr. The uncertainty 

of the oceanic a priori flux was determined as the RMS sum of the standard deviation of 

the OTTM-assimilated oceanic flux (1°×1° resolution) over a period between 2001 and 

2009 and the mean square of differences between the OTTM-assimilated oceanic flux and 

climatological flux estimates by Takahashi et al. [2009].  
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In the TransCom 3 CO2 inversion intercomparison, Gurney et al. [2003] assigned 

growing season net fluxes (GSNF; the sum of monthly-mean exchanges for months 

exhibiting net uptake) as terrestrial prior flux uncertainties (GSNF were based on NEE 

predicted by CASA (Carnegie Ames Stanford Approach) model [Randerson et al., 1997]). 

The reason behind it was that GSNF provide ecologically relevant upper bounds for 

annual-mean terrestrial flux. For oceanic fluxes, Gurney et al. [2003] set the uncertainties 

at 140% of the climatological net oceanic exchanges, which are approximately double the 

amount suggested by Takahashi et al. [2002]. The approach of using standard deviations 

of VISIT NEE and OTTM oceanic fluxes is similar to their case in finding reasonable 

upper limits of naturally varying fluxes and assigning them as boundaries in the flux 

estimation. These boundaries reflect natural variability in the past several decades (30 yr 

for terrestrial biosphere and 10 yr for ocean). 

The off-diagonal elements of CD and CM, i.e., the spatiotemporal covariances, 

were initially set at zero. 

 

2.2.8. Flux estimation approach and its limitations 

 The above-described inverse modeling system gives the monthly estimates of 

surface CO2 fluxes for the 42 sub-continental-scale terrestrial regions and 22 ocean basins 

of the globe, each of which is approximately 3000 km by 3000 km wide (Figure 2.1). The 

monthly regional CO2 fluxes are derived by implementing matrix operations shown in 

Equation 2-7. As indicated in this equation, the regional flux estimates are obtained via 
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“optimizing” or adjusting the a priori information on the monthly regional fluxes to be 

inferred (stored in mp); the term to the right of mp in the right hand side of the equation 

corresponds to the adjustments made to the elements of mp that are determined by the 

observed concentrations and response functions (Section 2.2.1) stored in dobs and G 

(values are monthly-averaged in the modeling system), respectively, along with the 

magnitudes of covariances for the observations (CD) and a priori fluxes (CM). The 

response functions for individual observations are determined by atmospheric transport 

simulated with NIES-TM and the basis function (unit emission patterns) pre-defined 

regionally based on the VISIT-predicted strength of net primary productivity in each 

terrestrial regions (patterns for ocean basins are flat). The emissions due to fossil fuel and 

biomass burning, two of the four components of the a priori flux, are handled as given in 

the flux estimation. Thus, the adjustments to the a priori flux mp are made with respect to 

the terrestrial biosphere and ocean fluxes. 

 The optimization in the inverse modeling before the advent of GOSAT, as in the 

TransCom 3 study campaign in the late 1990s, was performed on fluxes of regions that 

are much wider in area than those used in this study (22 global regions shown in Figure 

1.2; approximately 7000 km by 7000 km wide). Figure 1.2 also shows how the 76 GV 

data providing stations used in the TransCom flux estimation are distributed among the 

22 large regions; the horizontal distances among the 76 GV stations ranged from a few 

hundred kilometers (some stations in the US) to several thousand kilometers (stations 

over the under-sampled continents such as Africa and South America), indicating 
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unevenness in the station distribution. Ideally, for the purpose of sampling CO2 as 

spatially evenly as possible in the horizontal direction, it is desirable to locate the surface 

stations in a mesh. However, this is quite difficult because of challenges and issues in 

building, staffing, and maintaining financially new stations, particularly in the under-

sampled regions of the globe. Since the frequency of the current CO2 flask and in-situ 

sampling, which ranges about twice a month to several times in a second, is site-

dependent, unevenness also exists in the temporal direction. GOSAT, launched to 

complement the surface-based measurements, does make spectral measurement in a 

mesh-like, raster-scanning pattern with a repeat cycle of three days. Historically, with the 

expectation that the overall CO2 data volume would be significantly increased by the 

satellite, the 22 regions used in the TransCom study were further sub-divided into the 64 

regions, as adopted by Maksyutov et al. [2013] and this study. Despite the overall data 

number leap, the horizontal distribution of the retrieved XCO2 can be space- and time-

dependent thereby uneven because the spectral measurement by GOSAT can be perturbed 

by local clouds and aerosols, and the XCO2 retrieval is only possible for locations where 

the local solar zenith angle, which changes with season, is less than 70°. 

 To reduce the impact of the potential spatiotemporal unevenness in the CO2 data 

distribution on the flux estimation, GOSAT XCO2 retrievals were gridded to 5°×5° cells 

and averaged on a monthly basis. This way, the horizontal data number distribution is 

regularized; the downside of it is that the XCO2 information content may be reduced via 

the data aggregation. The temporal consistency between the CO2 data used and the fluxes 
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estimated (both are monthly) is maintained in the present inverse modeling setup, but if 

the temporal resolution of the flux estimates were to be improved (e.g., to weekly or three-

day estimates), then the limiting, bottleneck factor in resolving the regional fluxes would 

be the low temporal resolution of the surface CO2 measurements.  

 Another factor in limiting the current flux estimation capability is the coarse-

resolution modeling of atmospheric CO2 transport. The prediction of measured and 

retrieved CO2 concentrations in the present system with NIES-TM is performed on a 2.5°

×2.5° grid (a cell near the equator is approximately 250 km × 250 km wide); the grid 

size used is very close to what are adopted by the many other existing atmospheric 

transport models used for the flux estimation (lists of the existing transport models are 

found in the reports by Patra et al. [2011] and Niwa et al. [2011]). Concentration 

simulations on finer grids allow for accounting for smaller-scale details in the 

atmospheric transport and dispersion, but the increase in the computational cost is 

significant and cannot be ignored; Belikov et al. [2011] reported that a doubling of the 

horizontal resolution of NIES-TM (from 2.5°×2.5° to 1.25°×1.25°) leads to an increase 

in the computational time of about 5 times, and a quadrupling (0.625°×0.625°) requires 

37 times more time than the current 2.5°×2.5° simulation. The forward concentration 

simulations required for the flux estimation over the one-year period lasted 4 days (single-

core jobs run with Intel Xeon E5-4600 series processors on SGI UV20 servers installed 

at NIES); performing the same simulation on the doubled and quadrupled grids, based on 

the reported computing cost estimation, may require ~20 days and 148 days, respectively. 
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Balancing the computing cost and the efficiency in obtaining the end results is an issue 

here. 
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2.3. Flux estimation result 

 Using 14-month-long GOSAT Level 2 XCO2 retrievals (version 02.00) and the 

GV data in the 3-month-window FLKS scheme, monthly fluxes were inferred for the 64 

subcontinental regions for 12 months between June 2009 and May 2010. A total of 9106 

observations were available for the estimation, of which 6125 were gridded monthly-

mean GOSAT XCO2 retrievals and 2981 were monthly-mean GV data. The monthly 

breakdown of the XCO2 number statistics are found in Table 2.2 (their spatial distributions 

are shown in Figure 2.7). Figure 2.5 presents the monthly posteriori fluxes for the months 

of August 2009, November 2009, February 2010, and May 2010 (results for the other 

months are found in Figure 2.6). Values in the unit of gC m-2 day-1 are shown. Positive 

and negative values, as color-coded in the figure, indicate whether a region served as a 

net source of CO2 (net emission) or a sink of the gas (net absorption) for a given month. 

It can be seen in the figure that regions with net sink are predominant over the boreal 

regions of the North America and Eurasia in August 2009 (summer in the Northern 

Hemisphere) during which CO2 uptake by forest via photo synthesis is maximum. The 

uptake then weakens during the fall and winter months of the Northern Hemisphere, and 

gradually comes back in the spring season (May 2010). The opposite is found in the high 

latitude bands of the Southern Hemisphere. 

 To indicate which regional fluxes are adjusted most by the surface and satellite 

CO2 data in this one-year flux estimation, I present in Figure 2.8 the difference between 

the a posteriori fluxes (net) and the corresponding a priori values to which the 
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optimization was performed. The values are shown as the a posteriori minus the a priori 

values in GtC region-1 year-1 (departure from the a priori value). It turned out that the 

optimization, on an annual time scale, lead to more CO2 outgassing in most of the tropics 

(tropical America, tropical Africa, tropical Asia, and northern Australia), western United 

States (Regions 5 and 7), Eastern Eurasia (Regions 26 and 32), and middle South America 

(Regions 15 and 16). The optimization on one hand resulted in more CO2 uptake in north-

eastern US (Region 8), western Europe (Regions 39 and 41), northern Eurasia (Regions 

25, 27, and 28), central Eurasia (Regions 30 and 31), and the high-latitudinal regions of 

the Southern Hemisphere (Regions 13, 14, 21, and 36). These terrestrial adjustments are 

in a range between -0.5 and 0.5 GtC region-1 year-1 (a 0.5 GtC region-1 year-1 emission is 

equivalent to about twice as much the GFED-estimated biomass-burning emissions from 

Region 17 (western tropical Africa) in a year). 
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Tables 

 

Table 2.1. List of GLOBALVIEW sites used for this study (220) 

   SITE                   LAT     LON      SITE                   LAT     LON 
ABP_01D0 -12.77 -38.17  NHA035_01P2 42.95 -70.63 
AIA005_02D2 -40.53 144.30  NHA045_01P2 42.95 -70.63 
AIA015_02D2 -40.53 144.30  NHA055_01P2 42.95 -70.63 
AIA025_02D2 -40.53 144.30  OPW_01D0 48.25 -124.42 
AIA035_02D2 -40.53 144.30  ORL015_11D2 47.80 2.50 
AIA045_02D2 -40.53 144.30  ORL025_11D2 47.80 2.50 
AIA055_02D2 -40.53 144.30  ORL035_11D2 47.80 2.50 
AIA065_02D2 -40.53 144.30  PFA015_01P2 65.07 -147.29 
ALT_01D0 82.45 -62.51  PFA025_01P2 65.07 -147.29 
ALT_06C0 82.45 -62.51  PFA035_01P2 65.07 -147.29 
AMS_01D0 -37.95 77.53  PFA045_01P2 65.07 -147.29 
AMS_11C0 -37.95 77.53  PFA055_01P2 65.07 -147.29 
AMT012_01C3 45.03 -68.68  PFA065_01P2 65.07 -147.29 
AMT107_01C3 45.03 -68.68  PFA075_01P2 65.07 -147.29 
ASC_01D0 -7.97 -14.40  POCS35_01D1 -35.00 180.00 
ASK_01D0 23.18 5.42  POCS30_01D1 -30.00 -176.00 
AVI_01D0 17.75 -64.75  POCS25_01D1 -25.00 -171.00 
AZR_01D0 38.77 -27.38  POCS20_01D1 -20.00 -174.00 
BHD_01D0 -41.41 174.87  POCS15_01D1 -15.00 -171.00 
BHD_15C0 -41.41 174.87  POCS10_01D1 -10.00 -161.00 
BME_01D0 32.37 -64.65  POCS05_01D1 -5.00 -159.00 
BMW_01D0 32.27 -64.88  POC000_01D1 0.00 -155.00 
BNE030_01P2 40.80 -97.18  POCN05_01D1 5.00 -151.00 
BNE050_01P2 40.80 -97.18  POCN10_01D1 10.00 -149.00 
BNE070_01P2 40.80 -97.18  POCN15_01D1 15.00 -145.00 
BRW_01D0 71.32 -156.61  POCN20_01D1 20.00 -141.00 
BRW_01C0 71.32 -156.61  POCN25_01D1 25.00 -139.00 
CAR030_01P2 40.37 -104.30  POCN30_01D1 30.00 -135.00 
CAR040_01P2 40.37 -104.30  POCN35_01D1 35.00 -137.00 
CAR050_01P2 40.37 -104.30  POCN40_01D1 40.00 -136.00 
CAR060_01P2 40.37 -104.30  POCN45_01D1 45.00 -131.00 
CAR070_01P2 40.37 -104.30  PSA_01D0 -64.92 -64.00 
CAR080_01P2 40.37 -104.30  RPB_01D0 13.17 -59.43 
CBA_01D0 55.21 -162.72  RTA005_01P2 -21.25 -159.83 
CFA_02D0 -19.28 147.06  RTA015_01P2 -21.25 -159.83 
CGO_01D0 -40.68 144.69  RTA025_01P2 -21.25 -159.83 
CHR_01D0 1.70 -157.17  RTA035_01P2 -21.25 -159.83 
CMA030_01P2 38.83 -74.32  RTA045_01P2 -21.25 -159.83 



41 
 

CMA050_01P2 38.83 -74.32  RYO_19C0 39.03 141.83 
CMA070_01P2 38.83 -74.32  SCA030_01P2 32.77 -79.55 
CMO_01D0 45.48 -123.97  SCA050_01P2 32.77 -79.55 
COI_20C0 43.15 145.50  SCA070_01P2 32.77 -79.55 
CPT_36C0 -34.35 18.49  SCSN03_01D1 3.00 105.00 
CRZ_01D0 -46.45 51.85  SCSN06_01D1 6.00 107.00 
CSJ_06D0 51.93 -131.02  SCSN09_01D1 9.00 109.00 
CYA_02D0 -66.28 110.52  SCSN12_01D1 12.00 111.00 
DND030_01P2 48.38 -99.00  SCSN15_01D1 15.00 113.00 
DND050_01P2 48.38 -99.00  SCSN18_01D1 18.00 113.50 
DND070_01P2 48.38 -99.00  SCSN21_01D1 21.00 114.00 
EIC_01D0 -27.15 -109.45  SEY_01D0 -4.67 55.17 
ESP_02D0 49.58 -126.37  SGP015_01P2 36.80 -97.50 
ESP005_01P2 49.58 -126.37  SGP025_01P2 36.80 -97.50 
ESP015_01P2 49.58 -126.37  SGP035_01P2 36.80 -97.50 
ESP025_01P2 49.58 -126.37  SGP045_01P2 36.80 -97.50 
ESP035_01P2 49.58 -126.37  SHM_01D0 52.72 174.10 
ESP045_01P2 49.58 -126.37  SIS_02D0 60.17 -1.17 
ESP055_01P2 49.58 -126.37  SMO_01D0 -14.25 -170.56 
ETL010_01P2 54.35 -104.98  SMO_01C0 -14.25 -170.56 
ETL030_01P2 54.35 -104.98  SPLDTA_03C0 40.45 -106.73 
ETL050_01P2 54.35 -104.98  SPO_01D0 -89.98 -24.80 
ETL070_01P2 54.35 -104.98  SPO_01C0 -89.98 -24.80 
GMI_01D0 13.43 144.78  STM_01D0 66.00 2.00 
GOZ_01D0 36.05 14.18  STMEBC_01D0 66.00 2.00 
GSN_24D0 33.28 126.15  STP_12D0 50.00 -145.00 
HAA005_01P2 21.23 -158.95  SUM_01D0 72.58 -38.48 
HAA015_01P2 21.23 -158.95  SYO_01D0 -69.00 39.58 
HAA025_01P2 21.23 -158.95  TAP_01D0 36.73 126.13 
HAA035_01P2 21.23 -158.95  TDF_01D0 -54.87 -68.48 
HAA045_01P2 21.23 -158.95  TGC005_01P2 27.73 -96.86 
HAA055_01P2 21.23 -158.95  TGC015_01P2 27.73 -96.86 
HAA065_01P2 21.23 -158.95  TGC025_01P2 27.73 -96.86 
HAA075_01P2 21.23 -158.95  TGC035_01P2 27.73 -96.86 
HAT_20C0 24.05 123.80  TGC045_01P2 27.73 -96.86 
HBA_01D0 -75.58 -26.50  TGC055_01P2 27.73 -96.86 
HDPDTA_03C0 40.56 -111.65  TGC065_01P2 27.73 -96.86 
HFM015_01P2 42.54 -72.17  TGC075_01P2 27.73 -96.86 
HFM025_01P2 42.54 -72.17  THD005_01P2 41.05 -124.15 
HFM035_01P2 42.54 -72.17  THD015_01P2 41.05 -124.15 
HFM045_01P2 42.54 -72.17  THD025_01P2 41.05 -124.15 
HFM055_01P2 42.54 -72.17  THD035_01P2 41.05 -124.15 
HFM065_01P2 42.54 -72.17  THD045_01P2 41.05 -124.15 
HFM075_01P2 42.54 -72.17  THD055_01P2 41.05 -124.15 
HIL030_01P2 40.07 -87.91  THD065_01P2 41.05 -124.15 
HIL050_01P2 40.07 -87.91  THD075_01P2 41.05 -124.15 
HIL070_01P2 40.07 -87.91  TRM_11D0 -15.88 54.52 
ICE_01D0 63.40 -20.29  UTA_01D0 39.90 -113.72 
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IZO_01D0 28.31 -16.50  UUM_01D0 44.45 111.10 
IZO_27C0 28.31 -16.50  WBI030_01P2 41.72 -91.35 
JBN_29C0 -62.23 -58.82  WBI050_01P2 41.72 -91.35 
KEY_01D0 25.67 -80.16  WBI070_01P2 41.72 -91.35 
KUM_01D0 19.52 -154.82  WKT030_01C3 31.31 -97.33 
KZM_01D0 43.25 77.88  WKT122_01C3 31.31 -97.33 
LEF010_01P2 45.95 -90.27  WKT457_01C3 31.31 -97.33 
LEF020_01P2 45.95 -90.27  WPON30_20D2 30.00 146.00 
LEF030_01P2 45.95 -90.27  WPON25_20D2 25.00 146.00 
LEF040_01P2 45.95 -90.27  WPON20_20D2 20.00 146.00 
LMP_01D0 35.52 12.62  WPON15_20D2 15.00 146.00 
MAA_02D0 -67.62 62.87  WPON10_20D2 10.00 146.00 
MBC_01D0 76.25 -119.35  WPON05_20D2 5.00 146.00 
MHD_01D0 53.33 -9.90  WPO000_20D2 0.00 146.00 
MHDCBC_11C0 53.33 -9.90  WPOS05_20D2 -5.00 146.00 
MHDRBC_11C0 53.33 -9.90  WPOS10_20D2 -10.00 146.00 
MID_01D0 28.21 -177.38  WPOS15_20D2 -15.00 146.00 
MKN_01D0 -0.05 37.30  WPOS20_20D2 -20.00 146.00 
MLO_01D0 19.54 -155.58  WPOS25_20D2 -25.00 146.00 
MLO_01C0 19.54 -155.58  YON_19C0 24.47 123.02 
MNM_19C0 24.30 153.97  ZEP_01D0 78.90 11.88 
MQA_02D0 -54.48 158.97  ZOT015_45D2 60.75 89.38 
NHA015_01P2 42.95 -70.63  ZOT025_45D2 60.75 89.38 
NHA025_01P2 42.95 -70.63  ZOT035_45D2 60.75 89.38 
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Table 2.2. Monthly breakdown of the number of 5°×5° monthly-mean GOSAT XCO2 

retrievals used in the one-year flux estimation.  

Year/Month GOSAT  
5°×5° 

GOSAT  
5°×5° 
land 

GOSAT 
5°×5° 
ocean 

Latitude of 
northern-most 
GOSAT data 

Latitude of 
southern-most 
GOSAT data 

0906 471 e e 72.5 -47.5 
0907 447 306 141 72.5 -47.5 
0908 460 329 131 72.5 -47.5 
0909 499 353 146 67.5 -47.5 
0910 491 302 189 57.5 -47.5 
0911 474 263 211 47.5 -42.5 
0912 411 208 203 42.5 -47.5 
1001 413 199 214 47.5 -42.5 
1002 347 190 157 47.5 -47.5 

e 390 227 163 52.5 -52.5 
1004 390 241 149 62.5 -52.5 
1005 425 278 147 67.5 -42.5 
1006 420 318 102 82.5 -42.5 

e 487 340 147 77.5 -42.5 
Average 438 277 160 

Total 6125 3883 2242 
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Figures 

 

 

 

 

 

 

Figure 2.1. Boundaries of the 64 regions adopted in this study. The numbers on the figure 

are the region IDs. Regions shaded with dark blue are not considered in the flux 

estimation.  
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Figure 2.2. 1 Gt yr-1 region-1 unit emission patterns for the 42 terrestrial regions. These 

spatial patterns were defined as that of 31-yr-mean net primary productivity estimated by 

VISIT (1980-2010). 
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Figure 2.3. The number of GOSAT Level 2 XCO2 data records per each of 5°×5° grid cells 

during the months of August 2009, November 2009, February 2010, and May 2010. Red 

circles indicate the locations of the GV measurement sites chosen for this study. 
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Figure 2.4. GOSAT XCO2 retrievals in the form of input to the inverse modeling scheme 

(gridded to 5°×5° cells and averaged on a monthly time scale). Cells with three or more 

XCO2 retrievals per month are shown. The bias was corrected by raising each XCO2 

retrieval by 1.20 ppm. Overlaid are GLOBALVIEW values (in circles; monthly means). 

Values for the months of August 2009 (summer in the Northern Hemisphere), November 

2009 (fall), February 2010 (winter), and May 2010 (spring) are shown. 
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Figure 2.5. Monthly fluxes (g C m−2 day−1) estimated for the 64 subcontinental regions 

using GV data and GOSAT XCO2 retrievals. Results for the months of August 2009 

(summer in the Northern Hemisphere), November 2009 (fall), February 2010 (winter), 

and May 2010 (spring) are shown. 
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Figure 2.6. Monthly fluxes (g C m−2 day−1) estimated for the 64 subcontinental regions 

using GV data and GOSAT XCO2 retrievals. Results for the analyzed one year are shown. 
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Figure 2.7. Monthly-mean concentration data used for the estimation of monthly fluxes 

presented in Figure 2.6 (12-months period).  
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Figure 2.8. Annual-mean of the difference between the a posteriori and a priori fluxes 

(net). Values are shown as the a posteriori minus the a priori values (GtC region-1 year-1). 
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CHAPTER 3 

Utility of GOSAT data in regional monthly CO2 flux estimation 
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3.1. Introduction 

Prior to the launch of GOSAT, Kadygrov et al. [2009], using an inversion system 

which was a predecessor to the one described in Chapter 2 and a set of pseudo GOSAT 

XCO2 retrievals, investigated the utility of GOSAT observations in the estimation of 

regional CO2 fluxes. The dataset of the pseudo GOSAT XCO2 retrievals for 2005 was 

generated by running forward a set of climatological a priori fluxes using a version of 

NIES-TM [Maksyutov et al. 2008]. Clear-sky probabilities calculated from observational 

data collected in 2005 by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observations (CALIPSO) [Winker et al., 2006] were used in projecting the number 

distribution of successful XCO2 retrievals. The simulated XCO2 retrievals were then 

aggregated monthly to a 7.5°×7.5° grid. They concluded in this simulation analysis that 

the addition of the 7.5°×7.5° monthly GOSAT XCO2 retrievals with an assigned precision 

of 1.8 ppm to data from the existing surface monitoring sites (76 sites as used by Gurney 

et al. [2002]; see Figure 1.2 for the locations of the sites) can reduce the uncertainty of 

monthly regional surface fluxes as much as 50% (annual mean reduction). 

Herein, I report the benefit of actual GOSAT observations to the estimation of 

CO2 surface fluxes, using the established inversion system described in the previous 

chapter. For this, I estimated monthly regional fluxes and their uncertainty from 1) the 

2011 issue of GV data [GLOBALVIEW-CO2 2011] and 2) both GV and version 02.00 of 

GOSAT Level 2 XCO2 retrievals, and compared these two sets of results in terms of flux 

uncertainty reduction as in the analysis by Kadygrov et al. [2009]. The rate of reduction 
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in the flux uncertainty corresponds to the degree to which the GOSAT XCO2 retrievals 

contribute to constraining the surface fluxes. The analysis period is the one-year between 

June 2009 and May 2010, the first year of GOSAT sounding, as in Chapter 2. 
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3.2. Data and method 

The GV data (220 sites) and 5°×5°-grid monthly mean GOSAT XCO2 retrievals, 

as well as the inverse modeling system, used for this analysis are the same as the ones 

described in Chapter 2. The results shown in here are thus based on the flux estimates 

obtained and described therein. 

Shown in Figure 3.1 is the number of GOSAT XCO2 retrievals per each of 5°×5° 

grid cells over the one-year analyzed period. Overlaid onto this figure are the locations of 

the selected GV measurement sites whose data were used in this analysis (red circles; 

220). Successful GOSAT XCO2 retrievals are particularly numerous over Africa, South 

America, and Australia, owing to the frequent occurrence of clear-sky days. For 

comparison, the number of pseudo GOSAT XCO2 retrievals in a 7.5°×7.5° grid for July 

2005 as presented in the report by Kadygrov et al. [2009] is contrasted in Figure 3.2 with 

that of actual GOSAT retrievals obtained in July 2009 (on the same 7.5°×7.5° grid). The 

actual data number distribution shows high data volume over land in the Southern 

Hemisphere as the simulation indicates, but in the Northern Hemisphere, in particular the 

northwestern America and boreal Eurasia, it appears that the simulation may have over-

predicted the successful retrievals. The difference can be also due to year-to-year 

variations in cloud cover distribtions. 
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3.3. Results 

The reduction in the a priori flux uncertainty corresponds to the degree to which 

observations used in the flux inference contributed to determining, or “constraining”, the 

surface fluxes. The reduction is often expressed by contrasting the diagonal parts of the a 

posteriori error covariance matrix, C’M, to that of the a priori one, CM. Here, it was rather 

chosen to consider the uncertainty reduction attained by the addition of the GOSAT XCO2 

retrievals to the GV data. Following Rayner and O’Brian [2001], the uncertainty 

reduction (UR) in % is expressed as: 

UR = �1 − 𝜎𝜎𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝜎𝜎𝐺𝐺𝐺𝐺

� × 100 , 

where σGV and σGV+GOSAT denote the uncertainties in the monthly fluxes estimated 

from the GV data only and those from both the GV data and the GOSAT retrievals, 

respectively. For this evaluation, I implemented the inversion scheme using only the GV 

data to obtain flux estimates and the value of σGV. Figure 3.3 presents the UR values for 

August 2009, November 2009, February 2010, and May 2010. As indicated in Equation 

2-12, the value of UR is affected by three factors: (1) the uncertainty in the observations 

and a priori fluxes, given by CD and CM, respectively; (2) the sensitivity of observations 

to surface fluxes (determined by atmospheric transport and stored in G); and (3) the size 

of CD, which reflects the number of observations available for constraining the fluxes. 

Note that in the current inversion setup the uncertainties specified for GV data and that 

for GOSAT retrievals can differ by as much as one order of magnitude (e.g. the minimum 

uncertainty set for GV data and GOSAT retrievals is 0.3 and 3.0 ppm, respectively). This 
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implies that the GV data have much greater weight in constraining regional fluxes. Also, 

there is approximately a one-order-of-magnitude difference between the uncertainties 

prescribed to land and ocean fluxes. These differences contribute to creating strong 

region-to-region or land-to-ocean contrasts in UR values, as seen in Figure 3.3. 

Regions that are far from ground-based observation networks but are covered by 

GOSAT retrievals (e.g. Regions 29 (Temperate Asia SW) and 17 (Tropical Africa SW); 

see Figure 2.1 for identifying the regions) show higher UR values, with a maximum UR 

of 61% for region 29 in October 2009 (shown in Figure 3.4). However, the UR values for 

the North American and Australian regions (Regions 5–8 and 35–38) barely exceed 

~15 %, despite the fact that GOSAT retrievals were constantly available within and 

around these regions throughout the 1-year analysis period (see Figure 2.3). This 

represents a case in which the constraint provided by the GV data prevails over that 

provided by the GOSAT XCO2 retrievals. Thus, higher URs in the figure highlight regions 

whose a posteriori fluxes were constrained by the GOSAT retrievals more strictly than 

those in other regions (Middle East, Asia, Africa, and South America). In light of the 

GOSAT mission objectives, Figure 3.3 indicates what the satellite was designed to 

perform in complementing the ground-based observations. However, care must be taken 

in evaluating the flux values, as these remote regions coincide with locations where the 

validation of GOSAT retrievals is not currently possible and the retrieval of XCO2 values 

itself is challenged by higher local surface albedo and/or contamination by clouds and 

aerosols. 
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 Shown in Figure 3.5 are the annual means of monthly UR values over the June 

2009-May 2010 analysis period. The uncertainty reductions attained over land on an 

annual basis ranged from 2 to 44 %; the mean UR over land was 10%. For comparison, 

the result of the annual uncertainty reduction analysis by Kadygrov et al. [2009] is shown 

in Figure 3.6. A dataset of pseudo GOSAT retrievals aggregated monthly on a 7.5°×7.5° 

grid and GV data from 76 sites, as opposed to 220 sites used in the present study, were 

used in their study. The commonalities found in these two annual estimates are that they 

both indicate low URs in temperate North America, Europe, and Australia, where a 

number of the GV stations exist. Also, the oceanic URs in both cases are very low (<5%). 

URs for temperate Asia, Africa, and mid-latitude South America in both cases, where GV 

data are sparse, are higher than those for regions with more GV data. 

As implied in the differences between the number distributions of the pseudo and 

actual XCO2 retrievals shown in Figure 3.2, their result suggested that URs of up to about 

40% can be attainable in boreal America and Eurasia, whereas the actual result turned out 

that the boreal URs are much lower than the expected (< ~15%). This may be attributed 

to the fact that the high latitudinal bands of the Northern Hemisphere during the winter 

months see nearly no XCO2 retrievals (Figure 2.3); the simulation may have been 

overestimating the available XCO2 retrievals there. Another contrast is found in the 

tropical South America regions (Regions 9-12). The actual result show that these regions 

received very small number of XCO2 retrievals there (Figure 3.1) and the annual URs for 

the regions were in the 5-15% range, whereas the simulation predicted much greater URs 
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of over 40%.  

Figure 3.7 shows the monthly time series of a priori flux (green line), a posteriori 

flux estimated from GV (red line), a posteriori flux estimated from both GV and GOSAT 

XCO2 retrievals (blue line), and the uncertainty reduction rate (gray vertical bar) for north-

western Temperate North America (Region 7; top) and south-western Tropical Africa 

(Region 17; middle). Time series for the other terrestrial regions are found in Figure 3.8. 

Note here that the uncertainty reduction rate is variable in a year since the number of 

GOSAT XCO2 retrievals, which is subject to the occurrence of clear-sky days and the local 

solar zenith angle that affects the XCO2 retrieval, changes with season. Both regions 

received GOSAT XCO2 retrievals over the one-year period (>30 retrievals per grid within 

those regions; Figure 3.1), but these two regions are quite contrasting in the density of 

GV stations therein and nearby. This is clearly reflected in the difference in the flux 

uncertainty reduction. The flux inferred for north-western Temperate North America finds 

much less uncertainty reduction by GOSAT XCO2 retrievals than that for south-western 

Tropical Africa does. The trends of a posteriori fluxes estimated from GV only and GV 

and GOSAT XCO2 retrievals are nearly identical over the analysis period. This is attributed 

to the fact that the observation errors prescribed to GV data are nearly one order of 

magnitude smaller than those of GOSAT XCO2 retrievals (Sections 2.6.1 and 2.7), 

allowing GV data to constrain the flux more strictly than the GOSAT XCO2 retrievals do. 

New information brought by GOSAT is therefore found in the Tropical Africa a posteriori 

flux estimated from both GV and GOSAT XCO2 retrievals. Eastern Pacific South (Region 
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47; Figure 3.6 bottom) is one of the oceanic basins that received larger numbers of 

GOSAT XCO2 retrievals. The uncertainty reduction on the order of a few percent indicates 

the challenging nature of estimating oceanic fluxes, which are approximately one order 

of magnitude smaller than the terrestrial counterparts (see the ordinate of Figures 3.7 

bottom for the flux scale; see also Figure 3.8), via the "top-down" Bayesian surface CO2 

flux inference. 
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3.4. Concluding Remarks 

  Here in this Chapter, UR was used as a metric to evaluate the degree of benefit 

the satellite-based XCO2 retrievals bring to the regional flux estimation. The GOSAT XCO2 

retrievals were found to benefit the undersampled regions, such as Africa and Asia, most, 

reducing the a posteriori uncertainties as much as ~60%.   

The results presented above were obtained by using the monthly means of the GV 

data records and GOSAT XCO2 retrievals gridded to 5°×5° cells. One important aspect to 

note here is that the reduction of a posteriori flux uncertainty is dependent on the number 

of the observations used for constraining surface fluxes. The number of observations 

available for constraining surface fluxes is significantly reduced via averaging (e.g., a few 

tens of observations in a grid cell down to a single monthly mean). Thus, the result 

presented herein shows only a portion of the full benefit that GOSAT soundings can bring 

to the surface CO2 flux estimation. 
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Figure 3.1. The number of GOSAT Level 2 XCO2 data per each of 5°×5° grid cells in a 

12-months period between June 2009 and May 2010. The red circles indicate the locations 

of the GV measurement sites chosen for this study (220 sites).  
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Figure 3.2. Left: the number of pseudo GOSAT XCO2 retrievals in a 7.5°×7.5° grid for 

July 2005 as presented in the report by Kadigrov et al. [2009]. Right: the number of 

successful GOSAT retrievals obtained in July 2009 (on the same 7.5°×7.5° grid). 
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Figure 3.3. Percent reduction in the uncertainty of monthly surface flux estimates, 

attained by adding the GOSAT XCO2 retrievals to the GLOBALVIEW dataset. 
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Figure 3.4. UR for October, 2009. 
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Figure 3.5. Annual mean URs over the June 2009-May 2010 analysis period.  
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Figure 3.6. Annual uncertainty reduction (in fraction) predicted by Kadygrov et al. [2009] 

for the year 2005 (figure after Kadygrov et al., [2009]). A pseudo dataset of GOSAT XCO2 

retrievals aggregated monthly to a 7.5°×7.5° grid was used for the simulation. An 

uncertainty of 1.8 ppm was prescribed to each of the gridded XCO2 values used. 
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Figure 3.7. The time series of a priori flux (green), a posteriori fluxes estimated from GV 

(red), a posteriori flux estimated from both GV and GOSAT XCO2 retrievals (blue), and 

the uncertainty reduction rate (gray vertical bars). The blue shade indicates the a priori 

flux uncertainty. The error bar (red and blue) shows the a posteriori flux uncertainty. 

Results for north-western Temperate North America (Region 7; top panel), south-western 

Tropical Africa (Region 17; middle panel), and Eastern Pacific South (Region 47; bottom 

panel) are shown. 
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Figure 3.8. Time series of estimated fluxes, as shown in Figure 3.7, for the other 

remaining regions of the globe. 
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CHAPTER 4 

Influence of differences in GOSAT XCO2 datasets on surface flux 

estimation 
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4.1. Introduction 

 The history of retrieving XCO2 from satellite-based SWIR spectral soundings 

traces back only to the period after the launch of SCIAMACHY (SCanning Imaging 

Absorption spectroMeter for Atmospheric CHartographY) instrument aboard the 

European ENVISAT [Bovensmann et al., 1999] in 2002. Reports on initial 

SCIAMACHY-based XCO2 retrievals and algorithm development work were made by 

Buchwitz et al. [2005] and Barkley et al. [2006]. Later, these pioneering attempts were 

followed by the efforts of four independent groups that were involved in the research 

work of retrieving XCO2 from measurements by GOSAT, which was launched after 

SCIAMACHY/ENVISAT in 2009 to collect high-precision spectral soundings. In the 

GOSAT research community, there exist, as of 2013, five retrieval algorithms developed 

by the four groups: the National Institute for Environmental Studies (NIES), Japan (NIES 

v02 and PPDF-S) [Yoshida et al., 2013; Oshchepkov et al., 2013a], the NASA 

Atmospheric CO2 Observations from Space (ACOS) team (ACOS B2.10) [O'Dell et al., 

2012], the Netherlands Institute for Space Research / Karlsruhe Institute of Technology, 

Germany (RemoTeC v2.0) [Butz et al., 2011; Guerlet et al., 2013], and University of 

Leicester, UK (UoL-FP v3G) [Boesch et al., 2011; Cogan et al., 2012]. These algorithms 

have already gone through several updates since the launch of GOSAT. Although the 

algorithm improvement efforts continue, recent comparisons of the five XCO2 retrievals 

to the ground-based TCCON reference data showed that the mean and standard deviation 

of the GOSAT-TCCON differences are on the order of a few tenths of a percent [e.g. 
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Oshchepkov et al., 2013b]. With this progress, the first attempts at estimating CO2 fluxes 

from the GOSAT-based XCO2 retrievals were made by multiple inverse modeling groups, 

and the results were cross-compared in the GOSAT CO2 inversion inter-comparison 

campaign [Houwelling et al., in review]. The goal of the study is to assess the range of 

differences and the benefit of using GOSAT-based XCO2 retrievals in the flux estimation. 

In the initial stage of the campaign, each group used their choice of inverse modeling 

scheme and XCO2 retrieval dataset in obtaining their flux estimates. The result of the first 

assessment, focused on a one-year period from June 2009 to May 2010, are reported by 

Houwelling et al. [in review].  

For evaluating and characterizing differences in flux estimates that are based on 

various modeling setups and concentration datasets, it is critical to know individual 

contributions from 1) the inverse modeling systems and 2) the XCO2 retrievals. I herein 

present the result of the latter assessment, which was obtained by estimating CO2 fluxes 

from the five different XCO2 retrieval datasets using a single inverse modeling system, for 

the same one year between June 2009 and May 2010. 
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4.2. Data and method 

4.2.1 Differences in XCO2 retrievals  

The flow of data processing common to all of the five XCO2 retrieval algorithms 

is as follows: 1) pre-screening of GOSAT Level 1B SWIR spectral radiance data for 

perturbations by clouds and aerosols, 2) simulating the measured radiance spectra with a 

forward radiative transfer model, 3) retrieving XCO2 by optimizing the fit to the observed 

spectra, and 4) post-screening for low-quality XCO2 retrievals. The details of the 

implementation of these steps vary among the individual retrieval algorithms. Some key 

differences among the algorithms, as well as the number of successful land XCO2 retrievals 

yielded by each algorithm over the analyzed period, are shown in the upper part of Table 

4.1.  

The assessment of biases in the obtained XCO2 values, as discussed in Section 2.7.2, 

is an integral part of post-retrieval data validation. The lower part of Table 4.1 lists global-

mean GOSAT-TCCON differences of the five retrieval datasets. Results based on both 

bias-corrected and uncorrected datasets (in parentheses) are shown. Biases in PPDF-S, 

ACOS, RemoTeC, and UoL-FP datasets were analyzed and corrected using multivariate 

linear regressions with which variabilities in XCO2 values were correlated with retrieval 

parameters such as surface albedo. The regression-based bias analysis for the NIES 

dataset (v02.00) was underway at the start of the GOSAT CO2 inversion inter-comparison 

campaign, and for the current study the bias was corrected by raising each retrieved value 

by a global-mean GOSAT-TCCON difference (1.2 ppm). While debates on how to best 
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analyze and correct biases outside the TCCON sites still continue, efforts are also devoted 

to investigating the causes of the biases. For more detailed descriptions on each of the 

five algorithms, including the bias correction approaches adopted, I refer the readers to a 

report on GOSAT retrieval algorithm inter-comparison by Oshchepkov et al. [2013b] and 

literature listed in Table 4.1. 

Figure 4.1 shows the standard deviations (SD) of collocated XCO2 retrievals by the 

five algorithms for July 2009. The left panel shows SDs of coincident XCO2 retrievals to 

which bias corrections were applied, and the right panel presents those of uncorrected 

retrievals. Note that the geographical distribution of these coincidences does not represent 

that of any particular retrieval dataset (see Figure 4.2 for the distributions of five XCO2 

datasets for July 2009). Only a fraction of five XCO2 datasets was found to coincide (see 

Figure 4.3 for coincidences in other months in the analyzed one year), thus values on 

these figures do not represent the spatial coverage of the individual datasets. Yet, Figure 

4.3 indicates that the application of bias correction diminishes the spread among the five 

retrievals over the analyzed one year period. The global-mean SDs of the bias-corrected 

and uncorrected retrievals for July 2009 were 1.2 and 1.8 ppm, respectively. Over the 

whole analysis period, the global-mean SDs turned out to be 1.2 ppm (min.: 0.2; max.: 

4.5) and 1.6 ppm (min.: 0.2; max.: 5.4), respectively (Table 4.2 A and B show monthly 

statistics). Despite that the bias correction reduced the global-mean biases to nearly zero 

(Table 4.1), SDs of GOSAT-TCCON differences, both before and after the application of 

bias correction, remain approximately 2 ppm. The GOSAT-TCCON difference SDs, 
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shown in Figure 4.4, may suggest Gaussian distributions. This 2 ppm uncertainty was 

considered as a random error associated with the current versions of XCO2 retrieval 

datasets, and it was taken into account in the flux estimation as the GOSAT data 

uncertainty (described in the next section). 

 4.2.2 Experimental setup   

  The inversion system described in Chapter 2 was used in this experiment. The a 

priori flux data used here consist of ODIAC fossil fuel emissions (ver. 3), GFED biomass 

burning emissions (ver. 3.1), VISIT-simulated terrestrial biosphere NEE (ver. 3.0), and 

OTTM assimilated ocean-atmosphere exchange. Monthly regional fluxes and their 

uncertainties were estimated from each of the five XCO2 retrieval datasets that were 

combined with the 2011 issue of GV surface-based network data [GLOBALVIEW-CO2, 

2011]. Data from 220 surface monitoring locations, including airborne sites, were used 

(see upper left panel of Figure 4.2 for locations). Following Law et al. [2003], the 

locations of all coastal sites used were shifted offshore in order to account for the selective 

measurements reflected in GV data. After performing the forward concentration 

simulation of each GV and XCO2 value, the GV values were monthly-averaged, and the 

XCO2 retrievals were gridded to 5°×5° cells and averaged on a monthly basis. The XCO2 

retrievals were regularized this way to reduce the potential influence of differences in the 

number of XCO2 retrievals each algorithm yields (Table 4.1; the maximum difference is 

as large as ~40000 retrievals yr-1) and in their horizontal coverage (Figure 4.2) on the flux 

estimation as much as possible. 5°×5° cells with less than three XCO2 retrievals per month 
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were not considered here. The uncertainties for the GV values were taken from residual 

SDs about smooth curves that are stored in the GV 2011 dataset, and those for the XCO2 

retrievals were determined as SDs of XCO2 retrievals found in each of 5°×5° grid cells in 

a month (all-data mean SD: 1.6 ppm; range: 0.02-7.8 ppm). Figures 4S.1-4S.5 show SD 

distributions for the five XCO2 datasets. 

Following Law et al. [2003], I took account for errors associated with both the 

measurement and the forward concentration simulation by setting minimum uncertainties 

for the GV and XCO2 values at 0.3 and 3.0 ppm, respectively. The minimum uncertainty 

for XCO2 retrievals is based on the above-mentioned uncertainty associated with XCO2 

retrieval (2.0 ppm) and error in the simulation of vertical column concentrations (~1.0 

ppm) as reported by Belikov et al. [2013]. 
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4.3. Results  

4.3.1 Spread of five estimated fluxes due to differences in XCO2 

Presented in panels A and B of Figure 4.5 are the mean and SD of the five 

independent monthly fluxes for July 2009 estimated from the bias-corrected XCO2 

retrievals. The fluxes shown include anthropogenic emissions. The influence of the XCO2 

retrievals on these regional flux estimates is not uniform, but depends, among other 

factors, on the availability of both XCO2 retrievals and GV data within and around each 

region. To identify flux estimates on which XCO2 retrievals had large influence, I show in 

panel C the uncertainty reduction rate (UR) that represents the degree to which XCO2 

retrievals contribute to constraining regional fluxes. As defined in Chapter 3, UR in 

percent is given as  

UR(%) = �1 − 𝜎𝜎𝐺𝐺𝐺𝐺+𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝜎𝜎𝐺𝐺𝐺𝐺

� × 100, 

where σGV and σGV+GOSAT denote the uncertainties of fluxes estimated from the GV data 

alone and both the GV and XCO2 retrievals, respectively. Panel C shows the mean of five 

UR values. To distinguish cases with pronounced influence by GOSAT retrievals from 

those in ambiguity, I set a threshold of 10% UR, which comes from doubling the annual-

mean URs of Amazonian regions (Regions 9 to 12) whose fluxes were constrained by 

data collected in distant regions since both GV data and XCO2 retrievals were nearly not 

present in these regions throughout the analyzed year. In panel B, terrestrial regions with 

URs greater than the threshold are indicated with asterisks. The statistical consistency of 

these above-UR-threshold GV+XCO2 fluxes with the corresponding GV-only values, 
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which determines whether the GV-GOSAT joint estimation is a refinement of the GV-

only case, is ensured by the fact that among the high-UR GV+XCO2 fluxes (total of 767 

monthly estimates in the analyzed year; five flux datasets total), 93% of them were found 

within the uncertainty ranges (flux estimated ± a posteriori uncertainty) of the 

corresponding GV-only values, and in the remaining cases (7%), their uncertainty ranges 

overlapped those of the corresponding GV-only values.  

Flux SDs for these high-UR regions ranged from 0.2 (Region 18) to 0.6 (Region 39) 

gC m-2 day-1, and each of these SD values was found to be nearly equal or smaller than 

the mean of the corresponding a posteriori flux uncertainties (panel D). In the case of 

Region 39 (Europe SW; associated with the largest SD in the analyzed period), the spread 

between the largest and smallest flux estimates among the five results was 1.2 gC m-2 day-

1, which translated into a maximum SD of five a posteriori concentrations of 3.7 ppm 

(panel E; SD of monthly-mean concentrations simulated on a 2.5°×2.5° grid at 0.975 

sigma level within Region 39).  

(Figures for the other months of the analysis year are found in Figures 4S.5 –4S.15.) 

4.3.2 Annual mean fluxes 

To investigate the larger-scale influence of the differences in the five XCO2 

retrievals on the flux estimation, I calculated annual global mean fluxes (net) and 

land/ocean partitions (without anthropogenic emissions) for each of the five inversion 

results. The values were obtained by aggregating the monthly regional fluxes, and are 

listed in Table 4.3 (unit: GtC yr-1). The mean of the five annual global land uptakes was 
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1.7±0.3 GtC yr-1. Relative to the GV-only result, all five results show reduction in global 

terrestrial biosphere uptake or enhancement in respiration.  

To further explore this commonality, I show in Figure 4.6 annual regional fluxes 

estimated from GV data alone (panel A) and the mean of five GV+XCO2 annual regional 

fluxes (panel B). The anthropogenic and biomass burning emissions are not included here. 

Panel C shows the mean and SD of the departure of each of the annual mean GV+XCO2 

estimates from the GV-only result. The values are shown as GV+XCO2 minus GV-only 

result. Similar to the approach presented in the previous section, annual regional flux 

estimates with pronounced influence of GOSAT retrievals were identified based on 

annual-mean UR values (mean URs ≥ 10%). Those are marked with asterisks in panel B 

and colored in panel C. URs of temperate North America (Regions 05-08) and Australia 

regions (Regions 35-38) were below the threshold because the fluxes were constrained 

more strongly by surface-based data because of their uncertainties that are smaller than 

those of XCO2 retrievals. URs of upper boreal regions (>~60°N) were low because GOSAT 

retrievals were only available during the local summer months. Oceanic URs were all 

below the threshold, and therefore only the terrestrial results are presented in panel C. 

Integrated over the 11 continental-scale TransCom terrestrial regions (the names 

of the 11 regions are listed at the bottom of panel C), the GV-only annual estimates on 

panel A shows a pattern of tropical land regions (tropical America, tropical Africa, and 

tropical Asia) being CO2 sources and Northern Hemisphere extra-tropics (temperate 

North America, Europe, and boreal Eurasia) being CO2 sinks, which agrees with the 
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results of surface-based, long-term inversion studies previously reported [Baker et al., 

2006; Gurney et al., 2008; and Bruhwiler et al., 2011]. The GV+XCO2 result on panel B 

shows the same pattern, but in the finer 42 terrestrial-region sub-continental-scale 

framework (panel C), it indicates uptake reductions or respiration enhancements in 

northern parts of South America region (Regions 15 and 16), south eastern boreal Eurasia 

(Region 26), and north eastern temperate Asia (Region 32), which partly account for the 

changes of the global terrestrial uptake values from the GV-only result shown in Table 

4.3. It also shows uptake enhancements or respiration reductions in northern parts of 

South Africa region (Regions 23 and 24), and south western temperate Asia (Region 30).  
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4.4. Discussion and concluding remarks 

Among the departures of the high-UR GV+XCO2 flux estimates from the GV-only 

results presented in Figure 4.6 C (colored), values for Regions 16, 23, 24, and 26 are 

associated with small SDs (<0.1 GtC yr-1), indicating that the flux estimates are less 

dependent on the choice of XCO2 dataset. The spatial coverage that each of the five 5°×5°-

gridded XCO2 datasets shows over these regions was found to be similar to one another 

throughout the analyzed year (see Figures 4S.16 - 4S.26). The number of 5°×5°- gridded 

XCO2 data that cover Region 16 for July 2009, for instance, is nearly the same among the 

five datasets (8 to 9; see Figure 4.7 for the spatial coverage). On one hand, the departures 

for the remaining colored regions (15, 17, 18, 22, and 29 through 32) are variable with 

SDs greater than ~0.2 GtC yr-1. The error bars of the values for Regions 18, 22, 29, and 

31 cross the zero departure line in Figure 4.6 C, showing that the sign of the five departure 

values (enhancement or reduction) was not uniform in these cases. The larger SDs may 

be linked to the following: 1) the agreement among XCO2 retrievals within and around 

these regions, which did not appear on Figures 4.1 and 4.3, was difficult to reach, and/or 

2) the horizontal distribution of the number of available XCO2 retrievals was quite different 

from dataset to dataset. While the former link remains to be unclear, the spatial coverage 

by each of the five 5°×5°-gridded XCO2 datasets was found to be different from one to 

another, particularly over the temperate Asia regions (see Figure 4.7). The number of 

5°×5°-gridded data that cover Region 32 (temperate Asia NE) in July 2009, for instance, 

varied from 6 to 20, and that of individual XCO2 values (not averaged to monthly-gridded 
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values) counted in the same region and month ranged from 57 to 161 (see Figure 4.7 for 

the distribution differences).   

How strongly fluxes are constrained in the inversion (as reflected in UR values) 

depends on the number and geographical locations of the observations and the data 

uncertainty prescribed to them. The influence of differences in horizontal data coverage 

on a posteriori flux estimates has been addressed in previous surface-data-based inversion 

studies by Law et al [2003] and Bruhwiler et al. [2011]. The implication is that the impact 

of the differences in the number of XCO2 retrievals may be more pronounced if they were 

processed in the inversion without any application of data number regularization as in the 

present study. A check on the sensitivity of SDs of the departures (shown in Figure 4.6 C) 

to changes in the minimum uncertainty for the XCO2 retrievals reveals that with a reduction 

by 1 ppm (reduced from 3 to 2 ppm; meaning more constraint exerted by XCO2 retrievals), 

SDs of the temperate Asia departures increase by ~23%. Care should be taken in 

analyzing flux estimates of regions in which the number of XCO2 retrievals varies largely 

from dataset to dataset as in the case of Region 32. 
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Tables 

 

Table 4.1. Key differences in the five XCO2 retrieval algorithms  

 NIES v02 PPDF-S ACOS B2.104 RemoTeC v2.0 UoL-FP v3G5 
 

Number of vertical 
layers/levels  

15 layers (fixed†) 22 levels (variable‡) 20 levels (fixed†) 12 layers (fixed†) 20 levels 
(variable‡) 

Simultaneous retrieval 
of surface pressure 

Yes No (meteorological 
analysis data used) 

Yes No (meteorological 
analysis data used) 

Yes 

Cloud-contaminated 
data screening method 
(pre-screening) 

CAI1 Image data 
+ 2μm-band 
radiance  

 CAI1 Image data Difference 
between retrieved 
surface pressure2 
and prior value  

CAI1 Image data + 
2μm-band radiance 

Difference 
between retrieved 
surface pressure2 
and prior value 

Aerosol vertical 
distribution 

6 layers 3 layers 20 layers Normal distribution Normal 
distribution 

Types of 
aerosols/clouds 
modeled 

4 - 4 1 3 

Num. of land 
retrievals (1 yr:  
Jun. 2009- May 2010) 

58933 65038 78529 39956 62067 

Bias correction Global uniform 
correction 

Multivariate linear 
regression 

Multivariate 
linear regression 

Multivariate linear 
regression 

Multivariate 
linear regression 

Global mean and SD 
of GOSAT-TCCON 
difference3 (ppm) 
(*before bias 
correction) 

0.0±2.0 
(-1.2±2.0)* 

0.0±1.6 
(0.1±1.8)* 

-0.1±1.8 
(-1.0±2.0)* 
 

-0.1±2.1 
(-2.3±2.2)* 

-0.1±2.4 
(0.2±2.6)* 

Reference Yoshida et al. 
2013 

Oshchepkov et al. 
2013b 

O’Dell et al. 2012 
Wunch et al. 
2011b 

Butz et al. 2011 
Guerlet et al. 2013 

Boesch et al. 2011 
Cogan et al. 2012 

1 CAI: Cloud and Aerosol Imager onboard GOSAT. 

2 Retrieved with an O2 A-band-only algorithm based on an assumption of no clouds and aerosols present.   

3 Each XCO2 retrieval found within a ±2° grid box centered at each of 11 TCCON sites was compared with TCCON 

data that were averaged over ±30 min. of GOSAT overpass time. The 11 TCCON sites are Sodankyla (67.368°N, 

26.663°E), Bialystok (53.230°N, 23.025°E), Bremen (53.104°N, 8.845°E), Orleans (47.970°N, 2.113°E), Garmisch 

(47.476°N,11.063°E), Park Falls (45.945°N, 90.273°W), Lamont (36.604°N, 97.486°W), Tsukuba (36.051°N, 

140.122°E), Darwin (12.424°S,130.829°E), Wollongong (34.406°S, 150.879°E), and Lauder (45.038°S, 169.684°E). 

4 Only the retrievals based on GOSAT Level 1B spectral radiance data collected in high-gain mode (including 

oceanic retrievals) were used in this study. 

5 Only the terrestrial retrievals are available. 

† Number of retrieval layers/levels are fixed (layer thickness or level varies with surface pressure). 

‡ Number of retrieval levels varies with local surface pressure (only the number of the lowest few levels changes). 
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Table 4.2 A. The global-mean SDs of collocated XCO2 retrievals that were bias-

corrected. Unit: ppm.  

YYMM Global 
mean SD 

Minimum 
SD 

Maximum 
SD RANGE 

0906 1.2 0.3 3.1 2.8 
0907 1.2 0.3 3.2 3.0 
0908 1.2 0.2 2.6 2.4 
0909 1.2 0.2 2.8 2.7 
0910 1.2 0.2 4.5 4.3 
0911 1.1 0.2 2.7 2.4 
0912 1.3 0.3 2.6 2.3 
1001 1.3 0.3 3.1 2.8 
1002 1.2 0.3 2.5 2.2 
1003 1.0 0.2 2.8 2.5 
1004 1.0 0.3 2.3 2.1 
1005 1.1 0.3 2.6 2.4 
Average 1.2    

 

 

Table 4.2 B. The global-mean SDs of collocated XCO2 retrievals whose biases were not 

corrected. Unit: ppm. 

YYMM Global 
mean SD 

Minimum 
SD 

Maximum 
SD 

RANGE 

0906 1.8 0.5 3.3 2.7 
0907 1.8 0.6 4.0 3.4 
0908 1.6 0.4 3.6 3.2 
0909 1.8 0.4 3.6 3.2 
0910 1.6 0.3 5.4 5.1 
0911 1.5 0.4 3.1 2.6 
0912 1.4 0.4 2.7 2.3 
1001 1.5 0.3 3.7 3.4 
1002 1.4 0.4 2.7 2.3 
1003 1.5 0.4 3.6 3.2 
1004 1.3 0.4 3.5 3.1 
1005 1.4 0.2 3.1 3.0 
Average 1.6    
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Table 4.3. Annual mean fluxes in GtC yr-1 over the one-year analyzed period (Jun. 2009 

– May 2010). 

 GV only NIES  
v02 

PPDF-S ACOS 
B2.10 

RemoTeC 
v2.0 

UoL-FP 
 v3G 

Mean and SD 
of five results 

Global (net) 4.7 5.1 4.7 4.8 5.1 4.8 4.9±0.2 
Land uptake* 2.2 1.3 2.1 1.8 1.4 1.8 1.7±0.3 
Ocean 
uptake* 

2.0 2.4 2.1 2.2 2.3 2.2 2.3±0.1 

 

* (Uptake: absorption.) Land and ocean uptakes do not include anthropogenic emissions. Land uptakes include 

biomass burning emissions.  
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Figures 

 

 

 

 

 

 

 

 

 

Figure 4.1. Standard deviation of five collocated XCO2 retrievals found in July 2009.  

Left: bias correction applied. Right: bias correction not applied.  
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Figure 4.2. Distributions of five XCO2 values retrieved with NIES v02 (upper right), 

ACOS B2.10 (middle left), RemoTeC v2.0 (middle right), PPDF-S (lower left), and UoL-

FP v3G (lower right) algorithms. Bias corrections are applied. Values shown: July 2009. 

The upper left panel shows the locations of GLOVALVIEW-CO2 data sites selected for 

this analysis (220 stations including airborne sites). 
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Figure 4.3. (1st half) SDs of five collocated XCO2 retrievals found in even-numbered 

months in the one-year analysis period. Top row: June 2009. Bottom row: November 

2010. Left column: bias correction applied. Right column: no bias correction applied. 
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Figure 4.3. (2nd half) SDs of five coincident XCO2 retrievals found in even-numbered 

months in the one-year analysis period. Top row: December 2009. Bottom row: May 

2010. Left column: bias correction applied. Right column: no bias correction applied. 
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Figure 4.4. Frequency distribution of GOSAT-TCCON differences in ppm (NIES v02.00, 

ACOS B2.10, PPDF-S, RemoTeC v2.0, and UoL v3G). Abscissa: concentration bins in 

ppm (bin size: 1 ppm). 
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Figure 4.5. Panels A and B: mean and standard deviation of five independent monthly 

flux estimates for July 2009 (in gC m-2 day-1). Panel C: mean of five uncertainty reduction 

rates (UR; %) relative to GV-only inversion. The printed value in each region represents 

region ID number, and the color denotes uncertainty reduction magnitude. Asterisks in 

panel B indicates regions with UR ≥10%. Panel D: Mean of five a posteriori uncertainties. 

Panel E: SD of five a posteriori concentrations (in ppm; monthly-mean concentrations 

simulated on 2.5°×2.5° grid at 0.975 sigma level). The upper and lower scales embedded 

in panels A and B are for the terrestrial and oceanic values, respectively. Note the oceanic 

scale is one tenth of the terrestrial one. 
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Figure 4.6. Panels A and B: annual mean regional fluxes estimated from GV data alone 

and both GV and GOSAT XCO2 retrievals, respectively (in GtC region-1 yr-1). 

Anthropogenic and biomass burning emissions are not included. Panel C: mean of the 

departure of five GV+XCO2 estimates from the GV-only results (in GtC region-1 yr-1). 

Colored values are associated with the pronounced influence of GOSAT retrievals (mean 

URs ≥ 10%). Error bar: SD of five departure values. Inset on panel C indicates the 

locations of the high-UR regions. 
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Figure 4.7. Distributions of five 5°×5°- gridded XCO2 values retrieved with NIES v02 

(upper right), ACOS B2.10 (middle left), RemoTeC v2.0 (middle right), PPDF-S (lower 

left), and UoL-FP v3G (lower right) algorithms. Values shown: July 2009. 
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Figure 4S.1. SDs of XCO2 retrievals found in 5°×5° grid cells (NIES v02.00) over the 12- 

months analysis period.  
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Figure 4S.2. SDs of XCO2 retrievals found in 5°×5° grid cells (ACOS B2.10) over the 

12- months analysis period.  
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Figure 4S.3. SDs of XCO2 retrievals found in 5°×5° grid cells (PPDF-S) over the 12- 

months analysis period.  
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Figure 4S.4. SDs of XCO2 retrievals found in 5°×5° grid cells (RemoTeC v2.0) over the 

12- months analysis period.  
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Figure 4S.4. SDs of XCO2 retrievals found in 5°×5° grid cells (UoL v3G) over the 12- 

months analysis period.  
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Figure 4S.5. Figure 4.5 for June 2009. See caption for Figure 4.5 for explanation. 
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Figure 4S.6. Figure 4.5 for August 2009. See caption for Figure 4.5 for explanation.  
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Figure 4S.7. Figure 4.5 for September 2009. See caption for Figure 4.5 for explanation.  
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Figure 4S.8. Figure 4.5 for October 2009. See caption for Figure 4.5 for explanation.  
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Figure 4S.9. Figure 4.5 for November 2009. See caption for Figure 4.5 for explanation.  
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Figure 4S.10. Figure 4.5 for December 2009. See caption for Figure 4.5 for explanation.  
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Figure 4S.11. Figure 4.5 for January 2010. See caption for Figure 4.5 for explanation.  
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Figure 4S.12. Figure 4.5 for February 2010. See caption for Figure 4.5 for explanation.  
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Figure 4S.13. Figure 4.5 for March 2010. See caption for Figure 4.5 for explanation.  
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Figure 4S.14. Figure 4.5 for April 2010. See caption for Figure 4.5 for explanation.  
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Figure 4S.15. Figure 4.5 for May 2010. See caption for Figure 4.5 for explanation.  
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Figure 4S.16. Figure 4.7 for June 2009. Distributions of five 5°×5°- gridded XCO2 values 

retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.17. Figure 4.7 for August 2009. Distributions of five 5°×5°- gridded XCO2 

values retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.18. Figure 4.7 for September 2009. Distributions of five 5°×5°- gridded XCO2 

values retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 

 

 

 



119 
 

 

 

 

Figure 4S.19. Figure 4.7 for October 2009. Distributions of five 5°×5°- gridded XCO2 

values retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.20. Figure 4.7 for November 2009. Distributions of five 5°×5°- gridded XCO2 

values retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.21. Figure 4.7 for December 2009. Distributions of five 5°×5°- gridded XCO2 

values retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.22. Figure 4.7 for January 2010. Distributions of five 5°×5°- gridded XCO2 

values retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.23. Figure 4.7 for February 2010. Distributions of five 5°×5°- gridded XCO2 

values retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.24. Figure 4.7 for March 2010. Distributions of five 5°×5°- gridded XCO2 

values retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.25. Figure 4.7 for April 2010. Distributions of five 5°×5°- gridded XCO2 values 

retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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Figure 4S.26. Figure 4.7 for May 2010. Distributions of five 5°×5°- gridded XCO2 values 

retrieved with NIES v02 (upper right), ACOS B2.10 (middle left), RemoTeC v2.0 

(middle right), PPDF-S (lower left), and UoL-FP v3G (lower right) algorithms. 
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CHAPTER 5 

Impact of differences in spatial coverage of multiple GOSAT-based 

CO2 datasets on regional flux estimates 
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Sergey Oshchepkov2, Robert Parker5, Makoto Saito2, Osamu Uchino2, Vinu Valsala11, Tatsuya Yokota2, 
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5.1. Introduction 

The inference of regional CO2 fluxes with the top-down approach, as introduced in 

Chapter 1, relies solely upon atmospheric CO2 observations. As part of characterizing this 

inherent nature, several studies were conducted in the past to see the sensitivity of flux 

estimates to the choice of data-providing sites [e.g. Law et al., 2003; Yuen et al., 2005; 

Gurney et al., 2008] and to the expansion of surface monitoring networks over time 

[Bruhwiler et al., 2011]. These studies showed that changes in the geographical 

distribution of surface data have a large impact on regional-scale flux estimates. 

With the advent of GOSAT in early 2009, CO2 measurement by the surface 

monitoring networks is significantly augmented with the spaceborne XCO2 retrievals. As 

mentioned in Chapter 4, there exist five independent XCO2 retrieval datasets, and their 

precisions have been reported to be below 2 ppm level [Oshchepkov et al., 2013]. Where 

they coincide over land, the five XCO2 retrievals (bias corrected) were found to agree well 

within one standard deviation of about 1 ppm [Takagi et al., 2014]. Different from CO2 

measurements at fixed surface monitoring stations, success in the retrieval of satellite-

based XCO2 is highly affected by the existence of light-scattering clouds and aerosols in 

the local sky, and therefore the chance that the XCO2 retrievals can be obtained again at 

the same location over the surface in the satellite’s repeat cycle is not guaranteed. Also, 

in attempts to obtain better retrieval results, the five retrieval algorithms adopt different 

approaches in, e.g., modeling the vertical distribution of clouds and aerosols and 

screening low-quality XCO2 retrievals. Thus, it is highly possible that the spatial 
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distributions of XCO2 retrievals yielded by each of the five algorithms differ from one 

another. 

Takagi et al. [2014], in their study on the influence of differences in five independent 

GOSAT XCO2 datasets on flux estimates (content presented in Chapter 4), concluded that 

large spread among five fluxes estimated for temperate Asia regions could be linked to 

differences in spatial data coverage by each of the five XCO2 datasets. They also suggested 

that the flux spread could be more pronounced if individual, “single-shot” XCO2 values 

(as opposed to gridded and monthly-averaged values) were used in the estimation. 

Here, I investigate further this previously addressed topic by shedding light on the 

extent that the differences in the XCO2 data spatial coverage alter constraints on flux 

estimates. For this, I estimated monthly fluxes for the same 64 source regions as explained 

in Chapter 4, but this time I used single-shot XCO2 values as stored in each of the five 

datasets; also, the XCO2 values were not used in combination with surface-based CO2 data 

as in the previous experiment to isolate their contributions to the flux estimation. My 

focus here was directed onto temperate Asia, in particular its north eastern region that 

cover Japan, eastern China and the Korean Peninsula (Region 32) where the spread 

among the five flux estimates in the previous experiment was found to be large. For 

comparison, constraints on five regional fluxes estimated for this region were quantified 

and visualized by using two diagnoses, response function and resolution kernel (explained 

in Sections 5.2.2 and 5.2.3). 
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5.2. Data and method 

5.2.1 XCO2 retrieval datasets 

The five XCO2 retrieval datasets considered here are as follows (the updated versions 

of the datasets listed in Chapter 4 were used here): NIES v02.11, PPDF-S v02.11, ACOS 

B3.4, RemoTeC v2.11, and UoL-FP v4. The biases in the XCO2 values stored in these 

datasets were corrected by the individual research groups, using linear regressions that 

correlate variabilities in XCO2 values and selected retrieval parameters [Wunch et al., 

2011a; Guerlet et al., 2013; Cogan et al., 2012; Inoue et al., in preparation]. The data over 

land and ocean are stored in these datasets, except that UoL-FP v4 comes with land values 

only. To perform the flux inter-comparison under an equal condition, I used only the land 

retrievals stored in each of the datasets. Also, since the end of the time period that each 

of the datasets covers is not the same, I used the retrieval values over a period from June 

2009 to March 2011 for inverse modeling (25 months). Among those analyzed months, 

the focus here was directed onto year 2010. 

For estimating random errors associated with the XCO2 datasets considered, I 

compared the five bias-corrected XCO2 datasets over year 2010 against reference data 

obtained at the TCCON observational sites. Each GOSAT XCO2 retrieval found within a 

±2° grid box centered at each of 11 selected TCCON sites was compared with TCCON 

XCO2 data that were averaged over ±30 min. of local GOSAT overpass time. It turned 

out that the standard deviations (SD) of GOSAT-TCCON differences, averaged over the 

one-year analyzed period, ranged from 1.6 ppm (PPDF-S v02.11) to 2.0 ppm (RemoTeC 
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v2.11 and UoL-FP v4) (see Table 5.1). These are about twice the global, one-year mean 

of the SDs of five collocated XCO2 values over land (0.8 ppm; sample distributions of 

collocated XCO2 SDs are found in Figure 5.1). This suggests that the agreement among 

the five XCO2 retrievals is well met within the range of their random errors and that the 

focus of the satellite-based inversion inter-comparison can now be directed onto the 

differences in the data spatial coverage.   

To contrast the satellite-based inversion results with one based on data from existing 

surface monitoring networks, I obtained another estimate using GV (2012 issue). Data 

from 212 monitoring locations were selected (Figure 5.2), and they were monthly-

averaged when used in the inversion. 

5.2.2 Inverse modeling setup 

The inverse modeling system and a priori flux datasets used here are the same as the 

ones used in Chapter 4, except that the individual XCO2 values were used (thereby not 

gridded nor monthly-averaged) in the inversion. The model-observation mismatch errors 

for XCO2 retrievals, stored in the diagonal elements of square matrix CD, were set at the 

sum of 2 ppm random error (Section 5.2.1) and the forward modeling uncertainty of 1 

ppm as reported by Belikov et al. [2013] (3 ppm total). The values for GV data were taken 

from residual SDs that are recorded in the GV 2012 dataset. The minimum mismatch 

error for GV data was set at 0.3 ppm. For this experiment, I ran the system to estimate 

monthly fluxes for the 64 source regions over the 25 modeling months. 

5.2.3 Response functions 



133 
 

As introduced earlier in Chapter 2, for each of the monthly regional fluxes estimated 

in this analysis, a concentration simulation was performed in which a unit emission of 1 

GtC region-1 yr-1 was released from that region for one month and transported forward 

until the end of the simulation period to sample responses at the time and location of every 

XCO2 retrieval. The spatial pattern of the 1 GtC region-1 yr-1 unit emission for each of the 

42 land source regions was defined as that of 31-yr-mean (1980-2010) net primary 

productivity estimated by VISIT terrestrial biosphere process model. No spatial patterns 

were given to the unit emissions for the 22 ocean basins (spatially uniform). The sampled 

responses, or the response functions, were recorded in the columns of matrix G, which 

functions as a linear operator that relates concentrations with regional flux magnitudes. 

The responses in matrix G represent the degree of the contribution of individual XCO2 

retrievals to constraining regional monthly fluxes. 

The magnitude of a response to a unit emission from a region, as stored in matrix G, 

is dependent on 1) the horizontal pattern of the unit emission, 2) atmospheric transport 

(which changes with time and space), and 3) the time and location of XCO2 retrieval. The 

unit emission patterns vary from region to region, and in some regions there exist highs 

and lows in their emission patterns owing to the distribution of land cover types. Such a 

contrast is clearly seen in the unit emission pattern for Region 32, and is shown in Figure 

5.3. The contrast seen over the continental Region 32 comes from its land cover type that 

changes from its northern part (grasslands and barren fields) to the southern part (mostly 

mixed forests). Because of this north-to-south contrast, responses sampled closer to the 
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emission sources can be higher than those away from the sources. This suggests that the 

response magnitudes, which are related to constraints on regional fluxes, are dependent 

on where the XCO2 retrievals cover and how many of them exist in and around a region of 

interest.  

5.2.4 Resolution kernel 

A convenient diagnostic to show the degree to which observations constrain the 

estimated fluxes is the resolution kernel [Tarantola, 1987; Menke, 1989; Bruhwiler et al., 

2011]. It is a square matrix whose rank is equal to the number of individual fluxes 

estimated, and is derived from the error covariance matrix associated with the a posteriori 

flux estimates,  

𝐂𝐂′𝐌𝐌 = 𝐂𝐂𝐌𝐌 − 𝐂𝐂M 𝐆𝐆t(𝐆𝐆 𝐂𝐂M 𝐆𝐆t + 𝐂𝐂D)−1𝐆𝐆 𝐂𝐂𝐌𝐌,  (2-13) 

or 

 𝐂𝐂′𝐌𝐌 = (𝐈𝐈 − 𝐑𝐑) 𝐂𝐂𝐌𝐌,     (5-1) 

where R is given as 

 𝐑𝐑 =  𝐂𝐂M 𝐆𝐆t(𝐆𝐆 𝐂𝐂M 𝐆𝐆t + 𝐂𝐂D)−1𝐆𝐆 ,    (5-2) 

the resolution kernel (RK). RK is equivalent to the averaging kernel in the retrieval of 

XCO2 values. Equation 5-1 suggests that as R comes close to I (identity matrix; diagonal 

elements are unity), C’M approaches 0; such a posteriori flux estimates can be considered 

as well resolved by the observations. Also, Equation 5-2 indicates the dependence of R 

on the linear operator matrix G whose row size reflects the availability of observational 

data for resolving the regional fluxes. The row size and the magnitude of the elements in 
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the columns of G together represent how well the retrieval datasets (or the surface-based 

data) can resolve regional fluxes. I will use this diagnostic to see quantitatively how the 

differences in the spatial coverage by the five retrieval datasets bring changes to the 

constraints on the regional fluxes. 
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5.3. Results 

Presented in Figure 5.4 is the time series of fluxes estimated for Region 32 for 

2010. The seven solid lines in the figure show the following estimates: a priori (its 

uncertainty is shown with shade), GV-only, NIES, ACOS, PPDF-S, RemoTeC, and UoL-

FP. The values shown are in gC m-2 day-1, and are without anthropogenic emissions. The 

five GOSAT-based flux estimates agreed well after August; large disagreements are found 

from February to August. The annual regional total flux in GtC yr-1 thus turned out to be 

variable: 0.9 (NIES), -0.8 (ACOS), -0.7 (PPDF-S), 0.8 (RemoTeC), and -0.7 (UoL-FP).  

The smallest and largest spreads (maximum value minus minimum value among the five 

flux estimates in a month) are found in September (0.5 gC m-2 day-1) and April (1.9 gC 

m-2 day-1), respectively. Below, I will present the results for these two contrasting months. 

The circles in the upper panels of Figure 5.5 show the horizontal distribution of 

the locations of XCO2 retrievals that contributed to the estimation of September 2010 

fluxes (characterized with the small flux spread). The color in each circle denotes the 

magnitude of the response (Section 5.2.3) sampled at the time of GOSAT measurement. 

Presented in Figure 5.6 are the distributions of monthly-mean responses on a 2.5-degree 

grid for April and September 2010. The figure shows the prevailing trend of atmospheric 

tracer transport (the responses) within and around Region 32 on a monthly timescale. 

Over the continental Region 32, there is an ellipse-shaped region of high responses whose 

center is located over the locations of high surface emissions. The circles shown in Figure 

5.5 that are close to the high response center are colored in warmer colors in both months 
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(April and September). The extent of the high response area varies owing to seasonal 

changes in atmospheric transport, therefore the distribution of the colored circles found 

in Figure 5.5 also changes with season. It can be seen in Figure 5.6 that below 0.4 ppm 

the light-green outer edge of the ellipse blend quickly into the background (blue color). 

Here in this analysis, I use this 0.4 ppm boundary as a threshold for distinguishing 

significant or “influential” responses from those at the background level and 

characterizing each of the five XCO2 spatial distributions.  

The spatial coverage by each XCO2 dataset for September 2010 is not exactly 

identical to one another, yet each dataset covers well the higher response grids from near 

the high center to the outer perimeter. I counted the number of individual measurement 

locations shown on Figure 5.5 at which sampled responses are greater than the 

significance threshold (0.4 ppm). Then I calculated the averages of the following values 

at those locations considered as influential in constraining the fluxes: 1) responses, 2) 

retrieved XCO2 concentrations, 3) a posteriori (optimized) XCO2 concentrations, and 4) 

differences between the retrieved and the optimized (residuals). These values for each of 

the five retrieval dataset are listed in Table 5.2A (September case). The number of 

influential measurement locations varied from 53 (ACOS and PPDF-S) to 118 

(RemoTeC). The averages of retrieved XCO2 concentrations for all the cases were found 

to be around 387 ppm (386.9±0.3 ppm), and the a posteriori XCO2 concentrations were 

very close to that range (387.1±0.3 ppm). The narrow retrieved XCO2 range supports the 

small spread among the five flux estimates for this month.  
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The RK values for the September flux estimation are shown in the upper panel of 

Figure 5.7. The diagonal RK value for the GV-only case, indicated with region ID 32 on 

the horizontal axis, was 0.73 in both the September and April cases. This value was 

similar to one obtained by Bruhwiler et al. [2011] for broader Temperate Asia region (0.7; 

area equal to Regions 29-32 combined) using a surface network configuration for the year 

2000. The diagonal RK values for the five GOSAT-based cases are all above 0.9 (range: 

0.94 (PPDF-S) – 0.98 (UoL-FP)), signifying that the fluxes were resolved by the XCO2 

retrievals better than the GV data. The difference between the GV-only and GOSAT-based 

RKs can indicate the amount of extra information that can be supplied by the wide-

covering XCO2 retrievals that are larger in number density but less precise than the surface-

based data (minimum uncertainty of 3 ppm specified for XCO2 retrievals as opposed to 

~0.3 ppm for GV data). The differences seen in the GOSAT-based RK values are found 

to be reflective of the differences in the number of influential XCO2 retrievals counted. 

The off-diagonal RKs found elsewhere (RK values in Figure 5.7 other than one for Region 

32 (the diagonal RK)) are all below 0.3. RK values at ~0.3 level were found in the GV-

only case for remote regions such as tropical America (Regions 9-12) whose fluxes were 

inferred from data collected in distant regions (no GV sites within these regions; see 

Figure 5.2). A sample RK for Region 09 (tropical America SW) is shown in Figure 5S.1 

(notice the GV-only RK values in red that are below 0.3 throughout the year). The low 

off-diagonal RKs found in the September case (Figure 5.7) suggest that the Region 32 

fluxes are well distinguished from the estimates for the neighboring regions. 
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The lower panels of Figure 5.5 show the response distributions for the April 2010 

estimation (characterized with large flux spread). Corresponding data numbers and 

average values are listed in Table 5.2B (April case). The horizontal extent of the higher 

response grids (>~0.4 ppm) is much more limited than that of the September case; as 

shown in Figure 5.6, the location of the high center is about the same, but the northern 

edge of the higher response field does not reach 40° N. The spatial distributions of the 

measurement locations over the region differ largely from dataset to dataset; those of 

UoL-FP and RemoTeC are quite contrasting, particularly in the south. The majority of the 

measurement locations of the five XCO2 datasets were found in the northern part of 

continental Region 32 (away from the strong sources), and therefore their responses are 

low. Only a few XCO2 retrievals located within or near the higher response field were 

counted to be influential; the number ranged from 5 (ACOS) to 22 (NIES) (see Table 

5.2B). These numbers are much smaller than those found in the September case (Table 

5.2A), suggesting increased cloudiness and/or atmospheric aerosol loading in the 

southern part of the continental Region 32 in this month. The differences in the total 

number of measurement also suggest that each of the five retrieval algorithms screens the 

satellite measurements and retrieval results quite differently.  

The averages of the a posteriori XCO2 concentrations differed one to another in the 

April case (range: 393.6-395.0 ppm). The mean a posteriori concentrations for the NIES 

and RemoTeC cases are about 395 ppm, and those for the remaining cases are all below 

that level (<394 ppm). The monthly flux estimates associated with the higher mean 
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concentration cases (NIES and RemoTeC) are >1.5 gC m-2 day-1, and the others turned 

out to be below 0.7 gC m-2 day-1. This concentration-flux relation is shown in Figure 5.8 

(right). Note here that this trend is not seen in the September case (Figure 5.8 left).     

The diagonal RK values for the April case (Figure 5.7, bottom panel) are reflective 

of the numbers of the influential measurements that are much smaller than those seen in 

the September case (>50). The individual RK values are all smaller than the 

corresponding September values, and varied from 0.79 (ACOS) to 0.93 (UoL-FP). The 

diagonal RK for ACOS in this case is nearly comparable to that for GV-only (0.73).  

For the Region 32 monthly cases in 2010, I found a clear correlation (r = 0.6) 

between the level of agreement in the fluxes (SD of five fluxes) and the variability in the 

diagonal RK values (SD of five RKs), and it is shown in Figure 5.9. Other regional cases 

in which clear correlations were found between flux SD and RK SD (e.g. Regions 16, 22, 

28, and 30) showed variability in the data spatial coverage by the influential XCO2 

retrievals similar to that found in Region 32.  
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5.4. Concluding remarks 

 Based on the fact that the recent versions of five bias-corrected GOSAT XCO2 

retrievals over land agree reasonably well within the range of their random errors (Section 

5.2.1 and Figure 5.1), I investigated how the differences in spatial coverage by the five 

retrieval datasets can alter constraints on regional monthly flux estimates. I found, based 

on the results obtained for the Temperate Asia NE region (Region 32), that constraint on 

a regional flux is dependent on how the influential XCO2 retrievals are spatially distributed. 

I showed quantitatively the alteration in flux constraint, using the resolution kernel (RK), 

a diagnostic for indicating the degree to which a set of observations constrain flux 

estimates (defined in Section 5.2.4). April 2010, one of the two focused months, was the 

month in which the spread between the largest and smallest flux estimates was 1.9 gC m-

2 day-1 (Figure 5.4), and I observed in this case that the data spatial coverage differ largely 

from one dataset to another (Figure 5.5, bottom panels). I saw that this spread was 

signified in the larger variability in RK values (Figure 5.7, bottom panel) and in the 

averages of retrieved XCO2 concentrations that were classified as influential to the regional 

flux estimation (Table 5.2B). I found a clear correlation between the level of agreement 

in fluxes (SD of five flux estimates) and the variability in RK (SD of five RK values) in 

this region in this analyzed year, and also in other regions where the coverage patterns 

differ largely from one dataset to another.   

 The April 2010 case may also represent other regional flux estimation cases in 

which data coverage patterns change with season, or perhaps from year to year for various 
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reasons (e.g., changes in local clear-sky probabilities, infrequent large-scale forest fire 

events, etc.). In those cases, flux estimates with diagonal RK values that vary largely with 

time may need to be analyzed carefully as they potentially contain uncertainties 

associated with changing data number density and coverage.   
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Table 5.1. SD of GOSAT-TCCON differences averaged over 2010 

 NIES v02.11 ACOS B3.4 PPDF-S v02.11 RemoTeC v2.11 UoL-FP v4 
Number of land 
retrievals (2010, 1 yr.)  

59316 59424 79189 53314 86815 
Global mean and SD 
of GOSAT-TCCON 
differences (ppm) 

0.2±1.9 0.3±1.6 0.4±1.7 0.4±2.0 0.4±2.0 
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Table 5.2. The number of influential measurements counted in Region 32 (red) and 

averages of concentrations. The four concentrations shown (response, retrieved XCO2, a 

posteriori XCO2, and retrieved-a posteriori residual) are the averages of values considered 

as influential (> 0.4 ppm threshold). 

 

A: September 2010 

 NIES v02.11 ACOS B3.4 PPDF-S v02.11 RemoTeC v2.11 UoL-FP v4 
Num. of data counted* 79 / 383 53 / 528 53 / 362 118 / 286 108 / 603 
Avg. Response (ppm) 0.6 0.6 0.7 0.7 0.7 
Avg. Retrieved (ppm) 387.4 387.1 386.8 386.9 386.6 
Avg. Posterior (ppm) 387.6 387.3 387.1 387.2 386.6 
Avg. Residual (ppm) 0.2 0.2 0.3 0.3 0.0 

 

B: April 2010 

 NIES v02.11 ACOS B3.4 PPDF-S v02.11 RemoTeC v2.11 UoL-FP v4 
Num. of data counted* 22 /222 5 / 211 9 / 84 9 / 83 18 / 267 
Avg. Response (ppm) 0.6 0.5 0.6 0.6 0.8 
Avg. Retrieved (ppm) 395.1 394.6 392.3 394.9 393.6 
Avg. Posterior (ppm) 395.0 393.8 393.6 394.7 393.9 
Avg. Residual (ppm) -0.1 -0.8 1.3 -0.2 0.3 

 

* The number in black is the total number of measurement found in Region 32 in the month. The 

number in red is the number of influential measurement (> 0.4 ppm threshold; see Section 3). 
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Figures 

 

 

 

 

Figure 5.1. Standard deviation of five collocated XCO2 retrievals. Values for the even-

numbered months in 2010 are shown (indicated in YYMM format). 
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Figure 5.2. Locations of GV monitoring stations selected in this study (212). 
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Figure 5.3. Unit emission pattern for Region 32 (Temperate Asia NE region that covers 

eastern China, part of Mongolia, the Korean Peninsula, and Japan). 
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Figure 5.4. Time series of monthly fluxes estimated for Region 32 for 2010. The seven 

solid lines in the figure show the following: a priori (light green; its uncertainty is shown 

with green shade), GV-only (red), NIES (blue), ACOS (light blue), PPDF-S (purple), 

RemoTeC (green), and UoL-FP (orange). The error bar indicates a posteriori uncertainty. 
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Figure 5.5. Horizontal distribution of the locations of XCO2 retrievals that were used for 

the flux estimation. The color in each circle denotes the response sampled at the time of 

GOSAT spectral measurement. Upper row: September 2010. Lower row: April 2010. 



152 
 

 

 

 

 

 

 

 

 

 

Figure 5.6. Distribution of monthly-mean responses on a 2.5°×2.5° grid in Region 32 

for April and September 2010. 
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Figure 5.7. Resolution Kernel for Region 32 for the September (upper panel) and April 

(lower panel) flux estimation. Red: GV-only. Blue: NIES. Light blue: ACOS. Purple: 

PPDF-S. Green: RemoTeC. Orange: UoL-FP. 
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Figure 5.8. Monthly flux estimates vs. corresponding mean a posteriori XCO2 

concentrations. Values for the September (left) and April (right) cases are shown. Blue: 

NIES. Light blue: ACOS. Purple: PPDF-S. Green: RemoTeC. Orange: UoL-FP. 
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Figure 5.9. Standard deviation (SD) of five flux estimates vs. SD of five diagonal RK 

values. Values for Region 32 in the analyzed 12 months in 2010 are shown.  
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Figure 5S.1. RK for tropical America region (Region 09). Values for even-numbered 

months are shown. Red: GV-only. Blue: NIES. Light blue: ACOS. Purple: PPDF-S. 

Green: RemoTeC. Orange: UoL-FP. Notice that the GV-only RKs in red are all below 

0.3 level throughout the year. 
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CHAPTER 6 

Summary and perspective on future studies 
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The advent of GOSAT in 2009 has brought a new era in the estimation of surface 

CO2 fluxes, providing researchers with an unprecedented amount of global CO2 

concentration data than ever made available for global carbon cycle studies. A top-down, 

inverse modeling system and its subsystems developed were used to estimate monthly 

fluxes for 64 global regions from both GLOBALVIEW surface-based CO2 data and 

GOSAT XCO2 retrievals for the first time in the world. It was found that the addition of 

grid-aggregated monthly GOSAT XCO2 retrievals to the existing surface-based data brings 

reductions in the a posteriori flux uncertainties as much as about 60 % during the analyzed 

one year (June 2009 - May 2010) (first in the world in evaluating the benefit of GOSAT 

XCO2 data to regional CO2 flux estimation). On an annual basis, regional uncertainty 

reductions over land ranged from 2% to 44%. Those reductions were shown to be variable 

depending on the availability of GOSAT data, which is closely related to the change of 

season (shifts in local solar zenith angles) and local clear sky conditions that influence 

success in the XCO2 retrieval. 

   Not only by changes due to season and sounding conditions, differences in XCO2 

retrieval algorithms were also found to affect XCO2 spatial distributions and thus influence 

regional flux estimates. On a global scale, five annual total terrestrial fluxes, estimated 

independently from XCO2 datasets by five different XCO2 retrieval algorithms, were found 

to be all smaller than that estimated from the surface-only data. The spread (SD) among 

the five global total estimates was also found to be small. On annual regional scales, 

however, fluxes varied largely, particularly those estimated for the temperate Asia regions 
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where the spatial coverage by the five XCO2 datasets was found to differ from one to 

another. In other regions where the data distribution is similar, the five flux estimates 

agreed well regardless of the XCO2 datasets used.      

The influence of data spatial distribution differences on regional fluxes was further 

explored in the flux estimation from individual, “single-shot” XCO2 retrievals, as it was 

implied that the impact can be more pronounced without the XCO2 grid aggregation and 

averaging in inversion. Region 32, a Temperate Asia region that cover eastern China, 

Mongolia, the Korean Peninsula, and Japan, was chosen for the study. It was shown that 

five collocated XCO2 values found within the region and around the globe agree well; the 

global mean of collocated XCO2 SDs was 0.8 ppm, which is less than a half of XCO2 

random error (2 ppm). The analysis of five independent flux estimates using resolution 

kernels indicated that constraints on fluxes are dependent on the number of “influential” 

XCO2 retrievals whose responses to the regional unit pulse emission are strong. Further, 

analyzing the response functions for the concerned region revealed that where in the 

region and how densely the XCO2 retrievals are distributed impact the monthly flux 

estimate. 

The study described in Chapter 4 was performed as part of the GOSAT inversion 

inter-comparison campaign [Houweling et al., in review]. Through this study, the range 

of possible spread in regional flux estimates owing to differences in XCO2 retrievals was 

quantified. The next step to be pursued in the flux comparison effort is to quantify flux 

spread due to differences in existing inverse modeling systems. This evaluation is 
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necessary in determining whether uncertainties in GOSAT-based flux estimates come 

from the differences in XCO2 retrieval algorithms or in the inversion systems themselves. 

Also, it allows for specifying regions in the globe where the existing inversion systems 

and XCO2 retrievals are most or least capable of estimating quality fluxes. This experiment 

can be performed with the use of a common set of XCO2 retrieval data and a priori flux 

data. Plans for the next-step study are being arranged. 

Another potential research activity that can be conducted, upon the completion of 

the above-mentioned flux inter-comparison, is to find out such regions for which the 

inverse modeling system developed in this study is capable of generating reliable flux 

estimates, and to analyze their long-term trends to see if those GOSAT-optimized fluxes 

are in tune with observable changes including temperature, precipitation, and land cover. 

Findings in researching whether those trends can be explained by process-based terrestrial 

biosphere models can be an valuable input to ongoing studies in comparing top-down and 

bottom-up CO2 flux estimates, such as one conducted by Kondo, Ichii, and Takagi [in 

review], and can be also a “first-step” contribution to improving the scenarios used for 

the prediction of future climate, as touched in the introduction in Chapter 1.  
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APPENDIX: Sensitivity of flux uncertainty reduction rate (UR) to uncertainty associated 

with forward XCO2 modeling 

 

 As mentioned in Section 2.2.3, the uncertainty associated with the prediction of 

GOSAT XCO2 concentrations with NIES-TM was found out, via comparison to TCCON 

surface-based XCO2 measurements, to be 0.2% (~1 ppm) [Belikov et al., 2013]. This 

forward modeling uncertainty is taken into account in determining the diagonal elements 

of the covariance matrix CD; the minimum of each of the diagonal elements was set as 

the sum of the random error associated with GOSAT XCO2 (2 ppm) and the uncertainty 

associated with the XCO2 forward modeling (1 ppm). To show that the result and 

conclusion regarding the uncertainty reduction attained by the addition of GOSAT XCO2 

data to the surface-based GV data are robust, I performed a check on the sensitivity of 

URs to the XCO2 forward modeling uncertainty. Here I considered a case in which the 

uncertainty is reduced by 50% (0.5 ppm; equivalent to doubling the current modeling 

capability). 

 Figure A1 shows annual mean URs attained with the reduced forward modeling 

uncertainty and they are contrasted with those presented in Chapter 3 (Figure 3.5). The 

average of the terrestrial URs for the 50% reduction case turned out to be 12%, which 

only differed by 2 points from the Chapter 3 case being contrasted. The maximum annual 

mean UR is found in Region 29 (47%; Temperate Asia SW: Arabian Peninsula); this 

region was found to be associated with the largest annual UR in the Chapter 3 case (41%). 

The left panel in the figure show that the high URs were attained in the estimation of 

fluxes for regions that are undersampled by the GV monitoring stations but well sampled 

by GOSAT, which is consistent with the finding presented in Chapter 3. Overall, the 
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general conclusion of Chapter 3 is found to be not affected significantly by changes in the 

performance of the atmospheric tracer transport model used. 

 Additionally, I also considered a possible future case in which the random error 

associated with the current versions of XCO2 retrieval datasets (2 ppm; Sections 4.2.1 and 

5.2.1) is reduced by 50% through improvements in the retrieval algorithms (1 ppm). 

Figure A2 shows the annual mean URs obtained with the 50%-reduced XCO2 random 

error; the forward modeling uncertainty in this case was kept to 1 ppm. The average of 

the terrestrial URs for this case was 15%, and the maximum annual mean UR is found 

again in Region 29 and it exceeds 50% (53%). The overall high-low patterns of the UR 

distribution remains nearly the same as the above-mentioned forward modeling 50% 

error-cut case, but now many of the undersampled regions attain URs greater than 20-

25% (more toward blue color). The results shown suggests that the 50% XCO2 random 

error cut may lead to attaining greater annual URs than the 50% forward modeling 

uncertainty cut. 
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Figure A1. Left: annual mean UR attained with forward XCO2 modeling uncertainty 

reduced by 50% (0.5 ppm). Right: the same as Figure 3.5 (Chapter 3). Values shown are 

in %. 
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Figure A2. Annual mean UR attained with XCO2 random error reduced by 50% (1 ppm). 

Values shown are in %. 

 

 


