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We investigated the effects of temperature on the carrier formation dynamics in a small-molecular blend film, 2,5-di-(2-ethylhexyl)-3,6-bis-(5$$-n-
hexy-[2,2$,5$,2$$]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrolo-1,4-dione (SMDPPEH)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM). We spectro-
scopically determined the absolute numbers of donor (nD�) and acceptor (nA�) excitons per absorbed photon as functions of the delay time (t), in
addition to the relative number of donor carries (nDþ). We found that the carrier formation dynamics is independent of temperature at 300 and 80K:
the carrier formation time (τrise = 0.4 ps) is much faster than the decay time (τdecay ? 2.5 ps) of donor excitons. The temperature independence
strongly suggests that only excitons created near the donor–acceptor interface contribute to the carrier formation.

© 2015 The Japan Society of Applied Physics

O
rganic solar cells (OSCs) with bulk heterojunctions
(BHJs)1,2) are promising energy conversion devices
with flexibility. They have a low-cost production

process, e.g., the roll-to-roll process. The BHJ active layer,
which is usually sandwiched between a transparent indium
tin oxide (ITO) anode and an Al cathode, consists of phase-
separated nano-size domains of the donor (D) and acceptor
(A) materials. In this layer, photo-irradiation creates donor
(D+) and acceptor (A+) excitons within the respective nano
domains. The photo-created excitons are considered to
migrate to the D=A interface and separate into electrons
and holes. Time-resolved spectroscopy is one of the most
powerful tools for clarifying the carrier formation dynamics
in BHJ layers.3–14) The analyses of photo-induced absorption
(PIA) reveal the relative numbers of excitons (D+ and A+) and
donor carriers (D+) as functions of the delay time (t). For
example, the spectroscopy revealed that the carrier forma-
tion time (τrise ≈ 0.2 ps) is comparable to the decay time
(τdecay ≈ 0.3 ps)10) of A+ in poly[[4,8-bis[(2-ethylhexyl)oxy]-
benzo[1,2-b:4,5-bA]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-
hexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7)=PC71BM
blend film.15–17)

The nano-size domain structure of the BHJ layers is
advantageous for efficient charge formation and, in turn, high
power-conversion efficiency (PCE). The complex domain
structure of the BHJ layer, however, impedes the microscopic
observation of the charge formation process. For example,
scanning transmission X-ray microscopy (STXM) has
revealed significant fullerene mixing within donor-rich
domains.18–20) In addition, Hedley et al.21) reported sub-
structures of ∼10 nm within the ∼100 nm domains in PTB7=
PC71BM blend film. Here, we emphasize that the temperature
effect provides significant clues on the charge formation
process. For example, Moritomo et al.22) reported that the
carrier formation efficiency (ΦCF), which is defined as the
number of the photo-induced carriers per absorbed photon, is
independent of temperature in regioregular poly(3-hexyl-
thiophene) (rr-P3HT)=[6,6]-phenyl C61-butyric acid methyl
ester (PCBM) and PTB7=PC71BM blend films. The inde-
pendence of temperature strongly suggests that the exciton
dissociation should be treated using the quantum-mechanical

wave-packet picture, rather than the Marcus theory,23) in
which the charge separation is governed by the displacement
of surrounding molecules.

Among the donor materials, the oligothiophene-diketo-
pyrrolopyrrole molecule with ethylhexyl substituents
(SMDPPEH) is suitable for a detailed spectroscopic inves-
tigation on the charge formation dynamics because it shows
intense and sharp PIAs due to D+ and D+ in the infrared
region.12) In addition, the SMDPPEH=PC71BM BHJ solar
cell shows a high PCE of 3.0%, reflecting the intense absorp-
tion of SMDPPEH for relatively long wavelengths.24–26) In
our previous paper,12) we performed time-resolved spec-
troscopy in the SMDPPEH=PC71BM blend film at 300K and
derived the relative numbers of D+, A+, and D+ as functions
of t. However, the data points were too scattered to reveal the
carrier formation dynamics in detail.

In this paper, we investigated the effects of temperature
on the carrier formation dynamics in SMDPPEH=PC71BM
blend film. By comparing the absolute intensities of the PIAs
between the blend and neat films, we determined the absolute
numbers of the donor (nD�) and acceptor (nA�) excitons
per absorbed photon as functions of t. The improved data
acquisition and analysis reveals that the carrier formation
time (τrise = 0.4 ps) is less than the decay times (τdecay ≈
2.5 ps) of D+, indicating that the late decay component
(t ≥ τrise) does not contribute to the carrier formation process.
The independence of temperature and the low value of τrise
strongly suggest that only the excitons created near the D=A
interface contribute to the carrier formation process.

The SMDPPEH=PC71BM blend film was spin-coated
on quartz substrates using a chlorobenzene solution of
SMDPPEH:PC71BM of 1 : 1 by weight. Then, the blend
film was dried in an inert N2 atmosphere. SMDPPEH was
purchased from Sigma-Aldrich and used as received. For
comparison, we prepared spin-coated SMDPPEH (PC71BM)
films on quartz substrates using chlorobenzene (chloroform)
solution. The thicknesses of the SMDPPEH neat, PC71BM
neat, and SMDPPEH=PC71BM blend films were 39, 50, and
96 nm, respectively.

Time-resolved spectroscopy was performed in a pump–
probe configuration at 300 and 80K, the details of which are
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described in the literature.10) The blend film was placed
on the cold head of a cryostat, the temperature of which
was controlled using liquid nitrogen. As the light source,
we employed a regenerative amplified Ti:sapphire laser with
a pulse width of 100 fs and repetition rate of 1000Hz. The
400 nm excitation pulse was generated as second harmonics
in a β-BaB2O4 (BBO) crystal. The excitation intensity was
27–36 µJ=cm2. The frequency of the pump pulse was
decreased to half (500Hz) to obtain the “pump-on” and
“pump-off” conditions. A white probe pulse (800–1600 nm),
generated by self-phase modulation in a sapphire plate, was
focused on the sample with the pump pulse. The spots of
the pump and probe pulses were 5 and 3mm in diameter,
respectively. The transmitted probe spectra were detected
using a 256 ch InGaAs photodiode array attached to a 30 cm
imaging spectrometer. The spectral data were accumulated
for 20000 pulses to improve the signal=noise ratio. The dif-
ferential absorption spectrum (ΔOD) is expressed as �OD �
� logðIon=IoffÞ, where Ion and Ioff are the transmitted light
intensity with and without pump excitation, respectively. The
time resolution of the system was ∼0.2 ps.

Figure 1 shows ΔOD spectra of (a) SMDPPEH and (b)
PC71BM neat films. In the neat SMDPPEH film [Fig. 1(a)],
the broad absorption band at ≈1100 nm is ascribed to the PIA
due to D+. In the neat PC70BM film [Fig. 1(b)], the struc-
tureless absorption extending above ∼800 nm is ascribed to
the PIA due to A+. We confirmed that the spectral shape
remains unchanged even at 10 ps.

Figure 2 shows ΔOD spectra of SMDPPEH=PC71BM
blend films. At 300K [Fig. 2(b)], the ΔOD spectra show a
broad absorption band, the peak position if which shows a
red-shift from ∼1100 nm at 1 ps to ∼1200 nm at 10 ps. The
peak position at 1 ps (≈ 1100 nm) suggests that the spectrum
contains a considerable D+ component. The red-shift disap-
pears above 10 ps, and the spectral profile becomes inde-
pendent of t. Therefore, we ascribed the absorption band
(t ≥ 10 ps) to the PIA due to D+. In fact, the spectral profile of
PIA is similar to that of the electrochemical differential
absorption spectra of the SMDPPEH neat film.22) In the early
stage (≤10 ps) after photoexcitation, the PIA signal is con-
sidered to originate from the weakly bound state of electrons
and holes across the D=A boundary.27) A similar t-dependent
behavior of the ΔOD spectra is observed at 80K [Fig. 2(c)].

In order to reveal the carrier formation dynamics, we
decomposed the PIA (ϕexp) of the SMDPPEH=PC71BM blend

film into the PIA components due to D+ (�Dþ), D+ (�D�), and
A+ (�A�). We regarded the ΔOD spectra of the SMDPPEH=
PC71BM blend film (average between 8 to 10 ps), the
SMDPPEH neat (at 1 ps) film, and PC71BM neat (at 1 ps)
films as the basis functions �Dþ , �D� , and �A� , respectively.
The spectral weights, i.e.,CDþ ,CD� , andCA� , of the respective
components were determined so that they minimize the trial
function: F ¼ �i½CDþ�Dþð�iÞ þ CD��D� ð�iÞ þ CA��A� ð�iÞ �
�expð�iÞ�2, where λi denotes the respective wavenumbers.
The unit of �Dþ , �D� , and �A� is optical density. F, CDþ , CD� ,
and CA� are functions of t. We found that the average process
of �Dþ significantly improves the scattering of CDþ , CD� , and
CA� against t, which enables us to discuss the difference in τrise
of D+ and τdecay of D+ and A+. Figure 3(a) shows a proto-
typical example of the spectral decompositions at 300K. We
observed that the 400 nm excitation excites both D+ and A+.

To evaluate the absolute numbers of the donor (nD�) and
acceptor (nA�) excitons per absorbed photon spectroscopi-
cally, we need the absolute intensities of the PIAs per unit
density of D+ and A+. We assumed that one absorbed photon
creates one D+ (A+) in the SMDPPEH (PC71BM) neat film.
Then, the PIA intensity per unit density of D+ (A+) becomes
αexciton = 0.028 (0.002) nm2=exciton on considering the ab-

(a) (b)

Fig. 1. Absorption (OD) spectra and differential absorption (ΔOD) spectra
of (a) SMDPPEH and (b) PC71BM neat films at 300K. Downward arrows
indicate the excitation wavelengths. The data were replotted from Ref. 12.

(a)

(b)

(c)

Fig. 2. (a) Absorption (OD) spectra SMDPPEH=PC71BM blend film at
300K. Differential absorption (ΔOD) spectra of SMDPPEH=PC71BM blend
films at (b) 300K and (c) 80K. A downward arrow in (a) indicates the
excitation wavelength.

(a) (b)

Fig. 3. ΔOD spectra (open circles) of SMDPPEH=PC71BM blend film at
(a) 300K and (b) 80K, together with the spectral decomposition into PIAs
due to D+ (CDþ�Dþ), D+ (CD��D�), and A+ (CA��A�).
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sorption index. Then, nD� (nA�) can be calculated by αphoton=
αexciton, where αphoton is the PIA intensity of the D+ (A+)
component perunit photon density in the SMDPPEH=
PC71BM blend film. Note that we should convert the unit
of the D+ (A+) component from optical density to nm2=photon
by considering the excitation pulse energy and absorption
index.

In the upper panel of Fig. 4(a), we plotted the obtained
nD� and nA� as functions of t at 300K. In the lower panel of
Fig. 4(a), we plotted the relative number of nDþ . We plotted
adjacent averages in nA� because nA� significantly scatters
owing to the small coefficient (αexciton = 0.002 nm2=exciton)
between the PIA and exciton density. The solid curves are
results of least-squares fittings with the exponential function
Cð1 � e�t=�rise Þ for nDþ and Ce�t=�decay for nD� and nA� . In the
analysis of nDþ , we use a single exponential function without
distinguishing the two process, i.e., D+ → D+ and A+ → D+.
The obtained characteristic times (τrise and τdecay) and
amplitudes (C ) for D+, D+, and A+ are listed in Table I.
We found that τrise (= 0.4 ps) of D+ is comparable with
τdecay (= 0.4 ps) of A+, indicating that the A+ → D+ con-
version process is completed within ≈0.4 ps. We note that
τrise (= 0.4 ps) of D+ of the SMDPPEH=PC71BM blend film is
comparable to that (= 0.2–0.3 ps10)) of the PTB7=PC71BM
blend film. The sub-picosecond τrise observed in the BHJ
layer is ascribed to molecular mixing18–20) as well as the
nano-size domain structure.21)

Our careful analysis revealed that τdecay (= 2.6 ps) of D+ is
much greater than τrise (= 0.4 ps) of D+. The longer decay
time indicates that the late decay component (t ≥ τrise) of D+

does not contribute to the carrier formation process. In other
words, the exciton dissociation efficiency steeply decreases
with t. This is probably because the excess energy28) of
excitons, which is indispensable to compensate for the
coulombic binding energy between the electron and hole,
steeply decreases with exciton migration within the domain.
The excitons that reach the D=A interface after the long
migration have no excess energy to separate into electrons
and holes. Then, only the excitons created near the D=A
interface contribute to the carrier formation process. Such a
hot exciton picture is theoretically supported.29,30)

Now, let us proceed to the effects of temperature on the
carrier formation dynamics. Figure 4(b) shows nD� , nA� , and
nDþ as functions of t at 80K. The solid curves are results of
least-squares fittings with exponential functions. The ob-
tained τrise, τdecay, and C for D+, D+, and A+ are listed in
Table I. We emphasize that τrise (= 0.4 ps) of D+ shows no
temperature dependence, even though τdecay of A+ signifi-
cantly increased from 0.4 ps at 300K to 1.0 ps at 80K. The
effect of temperature on τdecay of A+ is understood in terms of
the thermally activated exciton diffusion.31) The fast τdecay of
A+ at 300K is ascribed to the fast exciton diffusion and
resultant additional recombination process at the trap state.
The temperature independence of τrise is well explained
if only the excitons created near the interface contribute to
the carrier formation process. In this case, τrise is hardly
influenced by temperature because the process is free from
activation-type exciton diffusion.

In summary, we spectroscopically clarified the effects
of temperature on the carrier formation and exciton decay
dynamics in SMDPPEH=PC71BM blend film. We found
that τrise (= 0.4 ps) of D+ is independent of temperature. The
temperature independence suggests that only the excitons
created near the D=A boundary contribute to the carrier
formation process.
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