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Background: To access selected excited states of nuclei, within the framework of nuclear density functional
theory, the quasiparticle random phase approximation (QRPA) is commonly used.

Purpose: We present a computationally efficient, fully self-consistent framework to compute the QRPA transition
strength function of an arbitrary multipole operator in axially deformed superfluid nuclei.

Methods: The method is based on the finite amplitude method (FAM) QRPA, allowing fast iterative solution
of QRPA equations. A numerical implementation of the FAM-QRPA solver module has been carried out for
deformed nuclei.

Results: The practical feasibility of the deformed FAM module has been demonstrated. In particular, we calculate
the quadrupole and octupole strengths in a heavy deformed nucleus **°Pu, without any truncations in the
quasiparticle space. To demonstrate the capability to calculate individual QRPA modes, we also compute low-lying
negative-parity collective states in '>*Sm.

Conclusions: The new FAM implementation enables calculations of the QRPA strength function throughout
the nuclear landscape. This will facilitate global surveys of multipole modes and 8 decays and will open new

avenues for constraining the nuclear energy density functional.
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Introduction. The response of the atomic nucleus to an
external perturbation provides valuable information about the
underlying nuclear structure and characteristics of the nuclear
force [1-4]. In addition to nuclear physics aspects, electromag-
netic excitations and transition rates have a profound impact
on r-process and stellar nucleosynthesis [5]. Theoretically, a
microscopic description of a system with hundreds of strongly
interacting fermions is a challenging task. Because exact
ab initio methods are still computationally out of reach for
open-shell, heavy systems, self-consistent mean-field models
rooted in nuclear density functional theory (DFT) are usually
employed when it comes to complex deformed nuclei [3,6].
The main ingredient of the nuclear DFT is the energy density
functional (EDF). Current EDF models have demonstrated
the ability to provide a fairly accurate description of nuclear
ground-state properties across the nuclear chart, despite local
deficiencies [6-9].

To access the excited states of nucleus in the framework of
nuclear DFT, one of the most straightforward and commonly
used methods is the linear response theory within random
phase approximation (RPA) or quasiparticle random phase
approximation (QRPA). Traditionally, the nuclear QRPA
problem has been formulated in a matrix form (MQRPA).
Due to large dimension of QRPA matrices, especially when
spherical symmetry is broken, fully self-consistent deformed
MQRPA calculations have become possible only recently
[10-19]. The large computational cost of deformed MQRPA
implies that various truncations of quasiparticle space must be
introduced. Such cutoffs, however, break the self-consistency
between the underlying Hartree-Fock-Bogoliubov (HFB)
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solution and QRPA, and may cause an appearance of spurious
states.

In order to circumvent various practical deficiencies of
MQRPA, a finite amplitude method (FAM) was introduced
as a way to compute multipole strength function. With FAM,
the QRPA problem is solved iteratively, avoiding costly
computation of the MQRPA matrix elements and a subsequent
diagonalization. It was first implemented for a computation
of the RPA strength function [20] and then applied to a
spherically symmetric QRPA [21]. In the work of Ref. [22]
the FAM-QRPA was extended to the axially symmetric case
within the Skyrme-HFB framework in harmonic oscillator
basis. The feasibility of FAM in the framework of relativistic
mean field models was studied for the spherical [23] and axially
symmetric [24] cases. Recently, FAM was also used together
with an axially symmetric coordinate-space HFB solver [25].

The FAM turned out to be a versatile theoretical tool with
a broad range of applications in addition to strength function
evaluations. For instance, it was demonstrated that it can be
used to compute the MQRPA matrix [26], individual QRPA
modes [27], sum rules [28], and B decay rates [29]. An
alternative to FAM to solve the QRPA problem iteratively
is the iterative Arnoldi diagonalization scheme, which solves
the QRPA equations in a reduced Krylov space [30]. This
method was also applied to superfluid systems and discrete
QRPA states [31,32].

The objective of this work is to extend the FAM to
the deformed case, allowing evaluation of QRPA modes for
operators of arbitrary multipolarity L K. This is an extension
of our earlier work [22] that was limited to K = 0.
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Theoretical framework. Our formulation of the FAM-QRPA
directly follows that of Ref. [22], where details can be found.
The FAM equations can be written as

(Ey + Ey — 0)Xp(0) + 8H 0 (0) = —F), (1)

(Ey + Ey + 0)Y, (@) + 8Hio(@) = —F5, (1b)

where F2° and F? are constructed from the external multipole
field f that perturbs the system, and X, (w) and Y, (w) are
the FAM-QRPA amplitudes at a given excitation energy w.
Furthermore, § H*(w) and § H*?(w) define the response of the
nucleus to the external field [22].

In the original formulation of the FAM, the induced fields
were calculated by taking a numerical derivative with respect
of a small expansion parameter 1: dh(w) = (h[p,,k;,i,] —
hlp.c.c*D/n,  8A(w) = (Alpy.ky] — Alp,k])/n,  and
SA(w) = (Alpy,ky] — Alp,k])/n, where p and «k are the
HFB particle density and pair density (pairing tensor),
respectively, and p,, p,, &y, and i, are the corresponding
FAM densities that depend on 7. In the K # 0 case considered
here, however, the coordinate-space fields 4, A, and ‘A must
be linearized explicitly in order not to mix densities with
different values of the magnetic quantum number K. Such
a linearization is possible since the oscillating part of the
density, proportional to 5, is assumed to be small compared to
the static HFB density. Due to this explicit linearization, the
expansion parameter 1 is no longer needed and the induced
densities are

o =+UXVT +vYTuT, (2a)
pr=+V*Xiut+uy*vT, (2b)
ke = —-UXTUT — v*yvi, (2¢)
ke =—-V'xvi—uyiuT, (2d)

where U and V are the usual HFB matrices, and the subscript f
indicates oscillating densities induced by the external field atop
of the static HFB density. The linearized fields are §h(w) =
hlos,kr,ke]l, SA(w) = Alpr,kf], and SA(w) = Alpr,i¢]. In
practice, for Skyrme-like EDFs, the explicit linearization is
required for the density-dependent fields.

In implementation of the new FAM module, we have
utilized the simplex-y (Sy) symmetry [33]. Consequently,
the basis states used are eigenstates of 3‘_\, operator corre-
sponding to eigenvalues of +i and —i; they can be written
as combinations of |+ ) and | — Q) states, where
is the projection of the single-particle angular momentum
along the z axis [34]. With a proper selection of the operator
f for the external field, basis states with opposite simplex
eigenvalues are not connected by the induced density matrix
pe. Ina K # 0 case, the density matrix has a block structure,
dictated by the operator f, corresponding to the selection rule
AQ =K.

In terms of FAM-QRPA amplitudes, the multipole strength
can be expressed as

dB F) _ —lImTr[f(UXVT +vYTuhl @)
dw T
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To guarantee that the FAM-QRPA solution has finite strength,
a small imaginary component is introduced to the excitation
energy w as w — w + iy [20]. Actually, the position of w
in the complex plane does not need to be limited to this
particular choice: By choosing a suitable integration contour
in the complex-w plane, discrete QRPA states or sum rules can
be obtained [27,28]. The strength functions were computed
with smearing width I' = 2y = 1 MeV.

The electric isoscalar (IS) and isovector (IV) multipole
operators are [2]

A A
% = es Z fix (),  fix = ZeIV,t;fifLK(ri), 4)

i=1 i=1

where 7; = %1 for neutrons and protons, f; x(r) = rt Y, ¢ (),
and ers and ey , are isoscalar and isovector effective charges,
respectively. As simplex y is considered to be a self-consistent
symmetry, one can replace

frx = fix = (fik + fr.-x)/vV2 — ko (5)

and assume K > 0 in the following. Indeed, for an even-even
axial nucleus, operators frx and f; _x produce identical
strength functions.

Our FAM-QRPA implementation is based on the DFT
code HFBTHO [35], which solves the HFB equations in
axially symmetric (transformed) harmonic oscillator basis
by assuming time-reversal symmetry. However, the time-odd
fields are fully considered in the FAM-QRPA calculation.
The iterative Broyden method of Ref. [36] is used to speed
up the convergence of the FAM-QRPA iterations. For the
direct Coulomb part, we use the same method as in the
version v200d of HFBTHO [35], generalized to the K # O case.
We benchmarked the new FAM code against the old FAM
module of Ref. [22] in the cases of monopole and quadrupole
modes with K = 0, and obtained perfect agreement. For the
negative-parity electric operators, the used coordinate mesh
also included the half-volume corresponding to negative-z
values.

We would like to stress that, unlike in the standard deformed
MQRPA, we do not impose any kind of truncation on the
quasiparticle FAM-QRPA space. The only cutoff (besides the
size of the harmonic oscillator basis) is the employed pairing
window used for the calculation of induced densities, in order
to keep self-consistency with respect to the underlying HFB
calculation.

The calculation of the FAM strength function can be
trivially parallelized by distributing parts of the strength
function over multiple CPU cores. To this end, we have
implemented a parallel MPI calculation scheme. In practice,
a computation of a typical strength function containing 192
w points with 20 oscillator shells, and without the reflec-
tion symmetry assumed, on a multicore Intel Sandy Bridge
2.6-GHz processor system, takes about 1000 CPU hours for a
single K # 0 IS or IV mode.

Results. In our illustrative examples, we have used two
Skyrme EDF parametrizations, SkM* [37] and SLy4 [38].
Both parametrizations have been found to be stable to linear
response in infinite nuclear matter [39].
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FIG. 1. (Color online) Isoscalar quadrupole strength in the pro-
late deformed configuration of *Mg calculated with SkM* EDF and
Nsh B 15

In a spherical nucleus, the strength function for a given
multipole L does not depend on K quantum number. This
offers a stringent test of our numerical implementation of
the FAM module. To this end, we computed the isovector
quadrupole strength for 2°0Q, with SkM* Skyrme EDF, in a
space of Ny, = 15 oscillator shells, by using mixed pairing
interaction with strength of Vo = —280MeV fm? and a quasi-
particle cutoff of 50 MeV. The setup of this calculation was
the same as in the MQRPA calculation of Ref. [12] to facilitate
comparison. We confirmed that the transition strengths of all K
modes coincide, and the results agree very well with those of
Ref. [12]. The relative differences between various K modes
in our calculations were typically at the level of O(1073) or
smaller.

Figure 1 shows the calculated isoscalar quadrupole tran-
sition strength in 2*Mg. The calculation was done by using
the same setup as in the case of 200, Here, we consider the
deformed configuration of **Mg with quadrupole deformation
B = 0.39. In this configuration, static pairing vanishes for
both protons and neutrons. Due to the deformation, strength
functions of different K modes differ. By comparing our results
with those of Ref. [12], we again find excellent agreement,
except for the spurious reorientation Nambu-Goldstone K = 1
mode that shows up just above w = 0. For more discussion of
spurious modes in FAM-QRPA we refer the reader to the recent
paper [40].

To demonstrate the performance of the new FAM module
for deformed heavy nuclei, we calculated the quadrupole and
octupole transition strengths in 2**Pu. The results obtained
with 20 oscillator shells are presented in Fig. 2, which
shows a typical pattern dominated by the presence of giant
quadrupole (GQR) and giant octupole (GOR) resonances.
In this case we used SLy4 EDF together with a mixed
pairing force with a strength of Vy = —283.45 MeV fm? with
quasiparticle cutoff energy of 60 MeV. The pairing strength
parameter was originally adjusted to yield the neutron pairing
gap of 1.23 MeV in '°Sn. The resulting HFB state had
deformation f = 0.28 and pairing gaps A, = 0.43MeV and
Ap = 0.32MeV.

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 92, 051302(R) (2015)

{(a) ISQ 240 K=0 —
0.06 ( ) Pu 7 J— |
— i B 2 J—
> 0.04r B=0.28 ]
A,=0.43 MeV
= 002} n |
o] E
© o0
0.06 K=q eeeesemees |
° [ J—
0.041 ]
0.02} ]
0
o v —
g K=1
"”E 02 K=2 1
o K=3
2 0.1 ]
8 -
E o = Rt G
©

10 15 20 25 30 35 40 45

® (MeV)

FIG. 2. (Color online) Isoscalar (a) and isovector (b) quadrupole
strengths, and isovector octupole strength (c) in 240py calculated with
SLy4 EDF and Ny, = 20.

Our calculations predict the K splitting of the multipole
strength due to deformation. For the IS-GQR, the splitting
follows the pattern predicted by phenomenological models
[41-43], i.e., for the prolate deformations the ISGQR energy,
increases with K. A similar hierarchy is predicted for [IV-GQR
and IV-GOR. The mean GQR energies shown in Figs. 2(a)
and 2(b) are consistent with the values predicted in the recent
time-dependent DFT calculations of Ref. [44] and the MQRPA
study of Ref. [15]. The latter work also contains predictions
for the octupole response in the neighboring nucleus 2*U. As
in Fig. 2(c), they predict a strong fragmentation of low-energy
and high-energy octupole strengths. The mean energy of the
high-energy IVGOR predicted in our work, around 28 MeV,
agrees well with the early predictions of Ref. [45]. Once
again, for the isoscalar quadrupole mode with K = 1, we find
a spurious state related to the rotational Nambu-Goldstone
mode. In addition, we have also tested that, by using a
stretched harmonic oscillator basis, the new FAM module can
be employed to compute the multipole strength in the fission
isomer of 2*’Pu.

To shed light on the spatial structure of induced transition
density, we show in Fig. 3 the induced proton and neutron
IVO transition densities in 2*°Pu, for all the K modes, at @ =
11 MeV. Owing to the isovector character of the mode, protons
and neutrons exhibit out-of-phase oscillations. Furthermore,
the spatial transition densities show a clear octupole pattern.
The transition densities cover a significant portion of the
nuclear volume; this reflects the collective character of the
mode.
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FIG. 3. (Color online) The imaginary part of the induced IVO
transition density pr at the excitation energy w = 11 MeV for protons
and neutrons in 2*°Pu. All K modes have been normalized in the same

way: Red (light gray) indicates the maximum (positive) value for each
mode and blue (dark gray) indicates the minimum (negative) value.
The white dashed line indicates the contour of p, + o, = 0.08 fm >
obtained from the HFB calculation.

Finally, we demonstrate the capability of the new FAM
module to compute the discrete QRPA modes. The samarium
and neodymium isotopes around A = 150 are known to exhibit
low-energy octupole modes. We have chosen an octupole-
stable isotope **Sm and calculated the low-lying octupole
vibrational states, using the same computational setup as for
240py, with exception of pairing strengths, which were tuned
to reproduce empirical proton and neutron gaps in >*Sm.
The ground-state quadrupole deformation predicted in HFB
was B = 0.32, and the pairing gaps were A, = 0.87 MeV and
A, = 0.67 MeV. The calculation was carried out by using the
contour integration technique of Ref. [27] and by applying
an external isovector octupole field to extract the individual
states. To confirm our results, we repeated the calculations
by using the isovector dipole (K =0 and 1) and isoscalar
octupole (K = 2 and 3) fields. Table I displays the isovector
octupole transition strengths and corresponding proton B(E3)
values. The K = 0,1, and 2 excited states carry the octupole
strength that is larger than 1 W.u., indicating their collective
nature.

Experimentally, two negative-parity rotational bands with
the band heads of J*™ =17, 921.3 keV, and J™ =1",
1475.8 keV, have been identified in '>*Sm. Those bands have
been associated with K™ = 0~ and 1~ octupole vibrations,
respectively. Although our calculation underestimates the
experimental excitation energies of these states, the B(E3)
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TABLE 1. Lowest octupole QRPA modes in **Sm predicted
in our deformed FAM calculations. Shown are the energy w;; the
IVO transition strength | (0] L“;;’ «|1)|%; and the corresponding B(E3)
value. The transition probabilities were computed through the QRPA

amplitudes (referred to as FAM-C in Ref. [27]).

K o O£ 1) 2 B(E3)
(MeV) (e2fm®) (W)
0 0.80 1.57 8.02
1 1.12 26.20 275
2 2.40 0.73 236
3 2.49 0.47 0.04

value of the K™ = 0~ state agrees well with the experimental
value B(E3;0;r — 37) =10(2) W.u. [46]. The excitation
energies of the lowest K™ =0~ and 1~ excited states in
134Sm are also presented in Ref. [16], and their values
obtained with MQRPA with SkM* EDF are higher than ours.
The translational spurious modes appear at v = 0.19 MeV
(K™ =07) and 0.17 MeV (K" = 17), and since the lowest
K7™ = 0~ collective state is close to the spurious mode, some
contamination due to the spurious components is expected.
We are in the process of implementing the prescription
proposed in Ref. [20] to remove the spurious components from
FAM-QRPA modes.

Conclusions. In this work we have introduced the FAM-
QRPA method suitable for calculation of an arbitrary multipole
strength function in axially deformed superfluid nuclei. The
method allows a fast calculation of the strength function
without any additional truncations in the quasiparticle space.
The method has been benchmarked in spherical and deformed
nuclei by comparing with earlier MQRPA calculations [12].
To demonstrate the applicability of the method to heavy
deformed nuclei, we calculated quadrupole and octupole
strength functions in 2**Pu. We also showed that the deformed
FAM module can be used to compute discrete QRPA modes.
Isoscalar octupole modes, contaminated with the spurious
center-of-mass excitation, can be also addressed, once the
procedure of Refs. [20,40] is implemented for the K # 0
channels.

Since the majority of nuclei are predicted to be axially
deformed in their ground states, the proposed FAM-QRPA
method is a tool of the choice to study the linear multipole
response across the nuclear landscape. Large-scale surveys
with the deformed FAM-QRPA approach can be carried
out very efficiently as the method is amendable to parallel
computing. Another useful application is in the area of
EDF optimization, where new experimental information on
multipole strength in deformed nuclei can be used to better
constrain the isovector sector of the effective interaction.
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