1	Photodynamic Diagnosis Using 5-Aminolevulinic Acid in 41 Biopsies
2	for Primary Central Nervous System Lymphoma
3	
4	Tetsuya Yamamoto*, Eiichi Ishikawa, Shunichiro Miki, Noriaki Sakamoto, Alexander Zaboronok,
5	Masahide Matsuda, Hiroyoshi Akutsu, Kei Nakai, Wataro Tsuruta, and Akira Matsumura
6	
7	Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
8	
9	
10	*Corresponding author e-mail:
11	yamamoto_neurosurg@md.tsukuba.ac.jp (Tetsuya Yamamoto, MD, PhD)
12	

13 ABSTRACT

14	We evaluated the feasibility of 5-aminolevulinic acid (5-ALA)-mediated photodynamic diagnosis (PDD) in the biopsy
15	for primary central nervous system lymphoma (PCNSL). 5-ALA (20 mg/kg) was administered orally 4 hours
16	preoperatively. Forty-one biopsies obtained under PDD in 47 consecutive biopsies (46 patients) that were finally
17	pathologically diagnosed as PCNSL were evaluated. Positive fluorescence was observed in 34 of those 41 biopsies
18	(82.9%). An intraoperative pathological diagnosis (IOD) of suspected PCNSL was made in 21 of the biopsies with
19	positive fluorescence (61.8%). However, the 8 IODs in the remaining 13 biopsies (23.5%) were not correct (atypical cell,
20	4; high-grade glioma, 1; gliosis, 1; unremarkable, 2). In those 8 biopsies, PCNSL was confirmed by the final pathological
21	diagnosis. There was no difference in the mean Mib-1 labeling index between the biopsies with positive fluorescence
22	(86.5%) and those without (90.0%). IOD was not performed in 6 biopsies; however, 5 of those biopsies (83.3%) showed
23	positive fluorescence and were finally pathologically diagnosed as PCNSL. Use of PDD in biopsies for patients with
24	suspected PCNSL is a reliable way of obtaining specimens of adequate quality for the final pathological diagnosis and
25	may lead to improved diagnostic yield in the biopsy of PCNSL.
26	
27	
28	
29	Keywords: primary central nervous system lymphoma, 5-aminolevulinic acid, endoscopic biopsy, photodynamic
30	diagnosis
31	

 $\mathbf{2}$

32 Introduction

33	Photodynamic diagnosis (PDD) in neurosurgery for several types of brain tumors was first described by Moore and
34	colleagues [1]. While the PDD in their study was predominantly mediated by fluorescein, 5-aminolevulinic acid (5-ALA)
35	has been successfully applied for fluorescence-guided tumor resections, leading to the widespread use of this technique
36	in the neurosurgical field worldwide. In 5-ALA-mediated PDD, fluorescence is obtained on the basis of accumulation of
37	protoporphyrin IX (PpIX) in malignant tumor cells following oral administration of 5-ALA as a precursor of heme
38	biosynthesis. Proof of the benefit of 5-ALA-mediated PDD for glioblastoma was obtained by a randomized controlled
39	multicenter phase-III trial conducted by Stummer and colleagues, which showed statistically significant improvement in
40	the extent of tumor removal and 6-month progression-free survival after surgery, although the overall survival was not
41	prolonged [2].
42	
43	PDD using 5-ALA has also been applied in surgery for brain tumors other than glioblastomas, such as meningiomas,
44	pituitary adenomas, and metastatic tumors [3-5]. For instance, 94.0% (31 of 33) of meningiomas showed positive
45	fluorescence [3]. The sensitivity of 5-ALA-mediated PDD for pituitary adenoma was 80.8% (21/26) in endoscopy with
46	photodiagnostic filters and 95.5% (21/22) in the PpIX spectroscopy optical biopsy system [4]. Fifty-two of 78 pediatric
47	brain tumors (66.7%) showed positive fluorescence; they included high-grade gliomas (HGG), ependymomas, primitive
48	neuroectodermal tumors (PNETs), gangliogliomas, medulloblastomas, and pilocytic astrocytomas [6].
49	

50 Biopsy and subsequent pathologic confirmation are undertaken as the standard of care for PCNSL such as systemic

51	chemotherapy and radiotherapy. However, only a few PCNSL cases have previously been reported (a portion of a patient
52	cohort who received 5-ALA-mediated PDD), and the role and impact of PDD for PCNSL have not been established.
53	Minimizing the extent of surgery is essential for reducing the risks during brain tumor biopsies, while samples that are
54	adequate in number and quality are required to ensure the final pathological diagnosis. To evaluate the feasibility of PDD
55	during the biopsy strategy for PCNSL, we studied the rate of positive fluorescence and the relation between PDD and the
56	pathologic diagnosis of PCNSL.
57	
58	Patients and methods
59	This was a retrospective study on a portion of the data obtained from an institutional review board-approved
60	prospective study on PDD for intraparenchymal brain tumors (no. 89). The data collection included the preoperative
61	neuroradiologic diagnosis, PDD, intraoperative pathologic diagnosis (IOD), and final pathologic diagnosis. Forty-six
62	consecutive patients with a final pathologic diagnosis of PCNSL received 47 biopsies (open biopsy, 27;
63	navigation-guided endoscopic biopsy, 14; stereotactic biopsy, 6) at the University of Tsukuba Hospital between July 2003
64	and December 2013. Of those 47 biopsies, 41 were obtained under PDD and were included in this study. In the other 6
65	biopsies, PDD was omitted owing to the need for emergency surgery. In all 47 biopsies, the preoperative neuroradiologic
66	diagnosis was PCNSL.
67	
68	>Figures 1 and 2<

71	5-ALA (20 mg/kg; Cosmo Bio, Tokyo, Japan) was administered orally 4 hours preoperatively. After induction of
72	general anesthesia, the patient's head was fixed using a Mayfield or Sugita frame, and the navigation system
73	(StealthStation; Medtronic, USA.) was set up. For the endoscopic biopsies, a transparent sheath (7 or 10 mm in diameter)
74	with a removable inner tube (Neuroport; Olympus, Tokyo, Japan) was inserted through the burr hole until the front of the
75	target lesion was under the control of the navigation system; the lesion was further observed with a rigid endoscope
76	(EndoArm; Olympus). In the endoscopic biopsies, the lesion was gradually removed [7]. Open biopsy was also
77	performed under navigation-guided planning. After the skin incision and small craniotomy, a 12-Fr catheter tube was
78	inserted from the brain surface towards the target, and a 1.5- to 2-cm corticotomy, performed. In the stereotactic biopsies,
79	a Komai stereotactic frame or frameless neuronavigation was used, and the first target was set at the central or
80	near-central region of the enhanced mass, and 4 or more samples were collected around the first target and periphery of
81	the tumor for further pathologic diagnosis (Figs. 1 and 2). Samples were collected from at least 2 different biopsy targets,
82	and those with positive fluorescence were sent to the pathology department for IOD. If suspected PCNSL was diagnosed,
83	the remaining samples were kept for the final pathologic diagnosis. If IOD did not point to a diagnosis of suspected
84	PCNSL or if there were no samples with positive fluorescence, additional sample collection was decided upon by each
85	surgeon according to the potential risk in each case. The rates of positive fluorescence (strong or weak according to the
86	macroscopic observations) and the relation between PDD and the pathologic diagnosis were analyzed.
87	

89	The final pathologic diagnosis was PCNSL (diffuse large B-cell lymphoma) for all biopsies except for 1 failed
90	endoscopic biopsy after which the patient underwent an open biopsy and received a diagnosis of PCNSL. In 1 patient
91	who underwent repeated biopsies and who received corticosteroids during a previous hospitalization at another hospital,
92	the specimen obtained at the first biopsy showed weak fluorescence in the tissue suspected at the IOD as being
93	lymphoma cells. However, the final pathologic diagnosis after the first biopsy could not definitely confirm that it was
94	lymphoma tissue despite the presence of a few lymphocytes. Two weeks later, at the second biopsy, the surgical specimen
95	was strongly fluorescent, and PCNSL was pathologically diagnosed.
96	
97	>Figures 3 and 4<
98	
99	Positive fluorescence was observed in 34 of the 41 biopsies conducted under PDD (82.9%; Fig. 3). Strong
100	fluorescence was observed in 23 of those biopsies (56.1%), and weak fluorescence, in 11 of them (26.8%; Fig. 4). In 21
101	of the 34 biopsies (61.8%), an IOD of suspected PCNSL was made. In the remaining 13 biopsies, however, the IOD was
102	either incorrect (atypical cell, 4; high-grade glioma, 1; gliosis, 1; unremarkable, 2) or not performed (5). Thus, for all 34
103	cases, PCNSL was diagnosed at the final pathologic examination. Intraoperative diagnosis was not conducted in 6 of the
104	41 biopsies obtained under PDD. Five of them (83.3%) showed positive fluorescence and were diagnosed as PCNSL at
105	the final pathologic diagnosis. Fluorescence was not observed in 7 of the 41 biopsies conducted under PDD (17.1%). In 3
106	of those (42.9%), an IOD of suspected PCNSL was made. In the remaining 4 biopsies (57.1%), the IOD was either
107	incorrect (atypical cell, 1; high-grade glioma, 1; necrosis, 1) or not performed (1). There was no difference in the mean

108 Mib-1 labeling index between the tumor cells with positive fluorescence (86.5%) and those without (90.0%).

109

110 Discussion

111	5-ALA-mediated PDD has often been performed with tumor biopsy, and such a combination is advantageous
112	in facilitating diagnostic yield by distinguishing tumor-containing samples by use of fluorescence [7]. Although several
113	pathologic types of brain tumor were reported in the literature on fluorescence-assisted biopsy, it is difficult to estimate
114	the rate of positive fluorescence in PDD of PCNSL because of the limited number of such published cases. To the best of
115	our knowledge, only 11 PCNSL cases with biopsy or resection conducted under 5-ALA-mediated PDD have been
116	reported, and all of those showed positive fluorescence [4, 8-10]. Moriuchi and colleagues reported stereotactic biopsy
117	conducted under PDD for a PCNSL of the thalamus and for a pontine glioma to confirm the target tumor tissues [9].
118	Grossman and colleagues reported positive fluorescence in PCNSL of the fourth ventricular floor [8]. Eljamel and
119	colleagues reported 2 PCNSL with positive fluorescence [11]. Widhalm and colleagues found that all 16 samples taken
120	from 7 PCNSL cases showed positive fluorescence (strong, 14: weak, 2) [10]. In the present study, positive fluorescence
121	was observed in 34 of the 41 biopsies (82.9%), which is consistent with the findings of our previous biopsy report on 59
122	intraaxial tumor cases, which showed that 9 of the 12 PCNSL cases (75%) showed positive fluorescence [7].
123	
124	According to a recent review, fluorescence is observed in HGG patients with 91% sensitivity and 59%
125	specificity [12]. To date, the rate of positive fluorescence and the diagnostic yield of PDD for PCNSL have not been

126 established. This report is the first on a large series to confirm a relatively high (82.9%) fluorescence-positive rate in

127	intraoperative PDD for PCNSL. 5-ALA is metabolized intracellularly by tumor cells to form the fluorescent molecules of
128	PpIX after passing through the intact blood-brain barrier [13]. Although the mechanism of fluorescence in lymphoma
129	tissue is not fully understood, it has been reported that a proton-coupled folate transporter (the membrane transporter of
130	the folate analog methotorexate in lymphoma cells) also acts as a transporter of 5-ALA [14, 15]. Some reports have
131	indicated the correlation between the Mib-1-labeling index in glioma tissue and PDD fluorescence [16, 17]. However,
132	more than 90% of the tumors showed a high (>80%) Mib-1 labeling index in this series, and no relation was found
133	between the labeling index and positive fluorescence in PDD.
134	
135	>Figure 5<
136	>Figure 6<
137	
138	
139	In biopsies of intraparenchymal tumors with a preoperative neuroradiologic diagnosis of suspected PCNSL,
140	the number of samples obtainable per operation is limited to avoid postoperative complications. Therefore, it is useful
141	that the positive fluorescence in PDD suggests a high probability of lymphoma tissue in the samples collected. Given that
142	IOD is not routinely recommended, the application of 5-ALA PDD in brain tumor biopsies may be used to select cases
143	that require IOD; ie, those in which only vague or no fluorescence is observed [10].
144	
145	However, we observed fluorescence in some specimens that did not contain or contained a very limited

However, we observed fluorescence in some specimens that did not contain or contained a very limited

146	number of CD20-positive lymphoma cells (Fig. 5). It is known that the glial response, macrophages, and reactive
147	lymphocytic infiltrates are commonly found in brain tissue adjacent to the periphery of PCNSL [18]. Importantly, in
148	clinical and laboratory investigations, positive fluorescence was related not only to the tumor tissue but also to the
149	inflammatory cells, reactive astrocytes, gliosis, or the interstitial bulk flow of PpIX from the fluorescence-positive tissue
150	[19, 20]. The limitation of our report is the lack of a comparison with fluorescence-negative specimens, owing to the risk
151	of postoperative neurologic deficits that might result from collecting fluorescence-negative tissue, especially in the tumor
152	border or in normal tissue. According to the diagnostic reliability of positive and negative fluorescence of PDD in this
153	series, the true-positive and false-negative rate was 34/41 (82.9%) and 7/41 (17.1%), respectively. Although random
154	biopsy specimens from healthy brain tissue as well as from tumor tissue are required to determine true specificity and
155	sensitivity in conjunction with PDD, we did not collect such specimens in this study. In PDD, a positive fluorescence rate
156	is highly influenced by the diagnostic systems used, ie, photosensitizers, light source, charge-coupled device (CCD)
157	camera, measurement devices, and filters. The fluorescence-positive rate in the non-fluorescence specimens in this series
158	might have increased if the specimens had been spectroscopically analyzed.
159	
160	In contrast to the treatment for other brain tumors, biopsy and the subsequent pathologic confirmation is
161	undertaken as the standard of care for PCNSL and includes systemic chemotherapy with or without whole-brain
162	radiotherapy or intrathecal chemotherapy. Recently, a potential survival advantage after debulking surgery rather than
163	biopsy in patients with PCNSL has been reported [21]. In the German PCNSL Study Group-1 trial, a large randomized
164	phase-III study comprising 526 patients with PCNSL, the progression-free survival and overall survival were

165	significantly shorter in the biopsied patients than in the patients with subtotal or gross total resections [21]. Our results
166	show the potential utility of PDD in the biopsy procedure or surgical removal of PCNSL. Thus, attention should be paid
167	to the probability of positive fluorescence being unrelated to the tumor tissue in intraoperative PDD for PCNSL. There
168	have been reports of photodynamic therapy combined with PDD using second-generation photosensitizers such as
169	mTHPC and talaporfin sodium, those have superior quantum efficiency, phototoxicity, and depth of light penetration [22-
170	24].
171	
172	CONCLUSION
173	Positive fluorescence was observed in 34 of 41 biopsies (82.9%) obtained under photodynamic diagnosis for
174	PCNSL. PDD offers a high probability of positive tumor tissue fluorescence in patients with PCNSL. PDD of biopsy
175	samples in patients with suspected PCNSL is a feasible way to obtain accurate samples and may lead to improved
176	diagnostic yield in the biopsy of PCNSL.
177	
178	ACKNOWLEDGEMENTS
179	We would like to thank Flaminia Miyamasu (ELS, 2012) for the native speaker revision. This study was
180	supported in part by an SJFE (Japanese Foundation for Research and Promotion of Endoscopy) grant.
181	
182	Informed patient consent
183	The patients provided consent to the use of their medical records and specimens and to the publication of the study

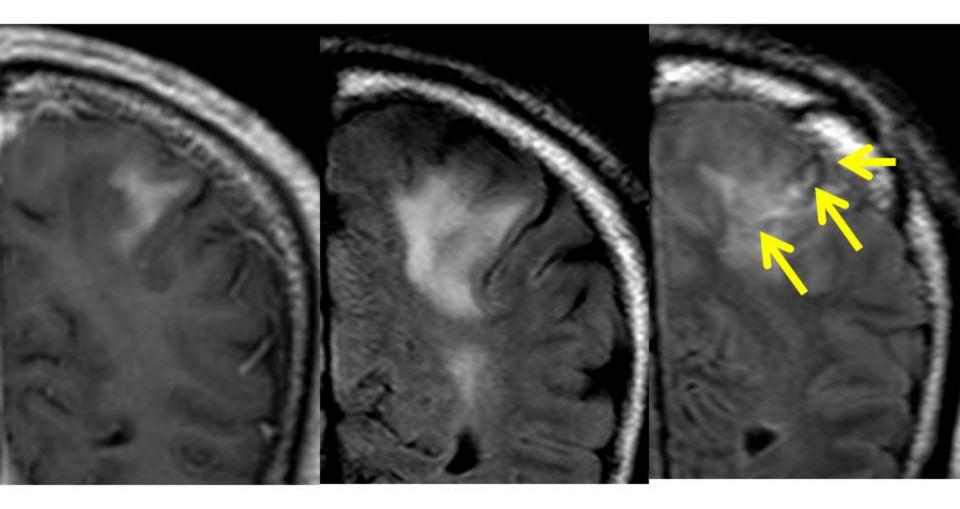
- 184 results.
- 186 Conflicts of interest
- 187 None.

190 **References**

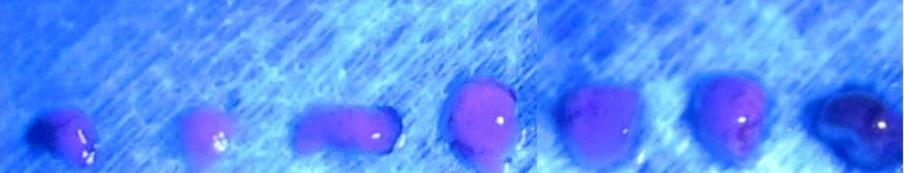
- 191 1. Moore GE, Peyton WT, French LA, Walker WW (1948) The clinical use of fluorescein in neurosurgery; the
- 192 localization of brain tumors. J Neurosurg 5, 392-398.
- 193 2. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with
- 194 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet
- 195 Oncol 7, 392–401.
- 196 3. Coluccia D, Fandino J, Fujioka M, Cordovi S, Muroi C, Landolt H (2010) Intraoperative
- 197 5-aminolevulinic-acid-induced fluorescence in meningiomas. Acta Neurochir (Wien) 152:1711-1719.
- 198 4. Eljamel MS, Leese G, Moseley H (2009) Intraoperative optical identification of pituitary adenomas. J Neurooncol. 92,
- 199 417-421.
- 200 5. Schucht P, Beck J, Vajtai I, Raabe A (2011) Paradoxical fluorescence after administration of 5-aminolevulinic acid for
- 201 resection of a cerebral melanoma metastasis. Acta Neurochir (Wien) 153,1497-1499.
- 202 6. Stummer W, Rodrigues F, Schucht P, Preuss M, Wiewrodt D, Nestler U, Stein M, Artero JM, Platania N,
- 203 Skjøth-Rasmussen J, Puppa AD, Caird J, Cortnum S, Eljamel S, Ewald C, González-García L, Martin AJ, Melada A,
- 204 Peraud A, Brentrup A, Santarius T, Steiner HH; For the European ALA Pediatric Brain Tumor Study Group (2014)
- 205 Predicting the "usefulness" of 5-ALA-derived tumor fluorescence for fluorescence-guided resections in pediatric brain
- 206 tumors: a European survey, Acta Neurochir (Wien) 156, 2315-2324.
- 207 7. Tsuda K, Ishikawa E, Zaboronok A, Nakai K, Yamamoto T, Sakamoto N, Uemae Y, Tsurubuchi T, Akutsu H, Ihara S,
- 208 Ayuzawa S, Takano S, Matsumura A (2011) Navigation-guided endoscopic biopsy for intraparenchymal brain tumor.

- 209 Neurol Med Chir (Tokyo) 51, 694-700.
- 8. Grossman R, Nossek E, Shimony N, Raz M, Ram Z (2014) Intraoperative 5-aminolevulinic acid-induced fluorescence
- 211 in primary central nervous system lymphoma. J Neurosurg. 120, 67-69.
- 9. Moriuchi S, Yamada K, Dehara M, Teramoto Y, Soda T, Imakita M, Taneda M (2011) Use of 5-aminolevulinic acid for
- the confirmation of deep-seated brain tumors during stereotactic biopsy. Report of 2 cases. J Neurosurg 115, 278-280.
- 214 10. Widhalm G, Minchev G, Woehrer A, Preusser M, Kiesel B, Furtner J, Mert A, Di Ieva A, Tomanek B, Prayer D,
- 215 Marosi C, Hainfellner JA, Knosp E, Wolfsberger S (2012) Strong 5-aminolevulinic acid-induced fluorescence is a novel
- intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev. 35:381-91.
- 217 11. Eljamel MS (2009) Which intracranial lesions would be suitable for 5-aminolevulenic acid-induced
- 218 fluorescence-guided identification, localization, or resection? A prospective study of 114 consecutive intracranial lesions.
- 219 Clin Neurosurg. 56:93-7.
- 220 12. Colditz MJ, Leyen KV, Jeffree RL (2012) Aminolevulinic acid (ALA) protoporphyrin IX fluorescence guided
- tumour resection. Part 2: theoretical, biochemical and practical aspects. J Clin Neurosci 19, 1611-1616.
- 13. Stummer W, Stepp H, Möller G, Ehrhardt A, Leonhard M, Reulen HJ (1998) Technical principles for
- 223 protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien) 140,
- 224 <u>995–1000</u>.
- 14. Desmoulin SK, Hou Z, Gangjee A, Matherly LH (2012) The human proton-coupled folate transporter: Biology and
- therapeutic applications to cancer. Cancer Biol Ther 13,1355-1373.
- 15. Takada T, Tamura M, Yamamoto T, Matsui H and Matsumura A (2014) Selective accumulation of hematoporphyrin

- derivative in glioma through proton-coupled folate transporter SLC46A1. J Clin Biochem Nutr 54, 26-30.
- 229 16. Ishihara R, Katayama Y, Watanabe T, Yoshino A, Fukushima T, Sakatani K (2007) Quantitative spectroscopic
- analysis of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence intensity in diffusely infiltrating astrocytomas.
- 231 Neurol Med Chir (Tokyo) 47, 53-57.
- 232 17. Stummer W, Reulen HJ, Novotny A, Stepp H, Tonn JC (2003) Fluorescence-guided resections of malignant
- 233 gliomas--an overview. Acta Neurochir Suppl 88, 9-12.
- 18. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The
- 235 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathol 114, 97-109.
- 236 19. Tsurubuchi T, Zoboronok A, Yamamoto T, Nakai K, Yoshida F, Shirakawa M, Matsuda M, Matsumura A (2009) The
- 237 optimization of fluorescence imaging of brain tumor tissue differentiated from brain edema--in vivo kinetic study of
- 238 5-aminolevulinic acid and talaporfin sodium. Photodiagnosis Photodyn Ther. 6, 19-27.
- 239 20. Utsuki S, Oka H, Sato S, Shimizu S, Suzuki S, Tanizaki Y, Kondo K, Miyajima Y, Fujii K (2007) Histological
- 240 examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med
- 241 Chir (Tokyo) 47, 210-213.
- 242 21. Weller M, Martus P, Roth P, Thiel E, Korfel A; German PCNSL Study Group (2012) Surgery for primary CNS
- 243 lymphoma? Challenging a paradigm. Neuro Oncol 14, 1481-1484.
- 244 22. Kostron H. Photodynamic diagnosis and therapy and the brain. Methods Mol Biol. 2010;635:261-80.
- 245 23. Zimmermann A, Ritsch-Marte M, Kostron H (2001) mTHPC-mediated photodynamic diagnosis of malignant brain
- tumors. Photochem Photobiol. 74:611-6.


247	24. Muragaki Y, Akimoto J, Maruyama T, Iseki H, Ikuta S, Nitta M, Maebayashi K, Saito T, Okada Y, Kaneko S,
248	Matsumura A, Kuroiwa T, Karasawa K, Nakazato Y, Kayama T (2013) Phase II clinical study on intraoperative
249	photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J
250	Neurosurg 119:845-52.
251	
252	
253	Figure Legends
254	Figure 1 Magnetic resonance images showing the region of the biopsy.
255	The Gd-enhanced T1-weighted image showed a diffusely enhanced tumor mass in the subcortical white matter (left),
256	which appeared as the superficial portion of the high-intensity region on the FLAIR image (middle). Surgical specimens
257	were taken from the FLAIR high-intensity region without Gd-enhancement, the Gd-enhanced region, and the cerebral
258	cortex region without abnormal intensity on the MRI image (right).
259	
260	Figure 2 Representative photographs of surgical specimens from the same patient as those shown in Figure 1.
261	Upper: Surgical specimens obtained from a 71-year-old man with left parietal PCNSL. The 2 specimens shown on the
262	right were obtained from the brain cortex, and the others, from the tumor and border regions. Lower: Positive
263	fluorescence was observed in all but 1 specimen, which was covered by a clot.
264	

265 **Figure 3** Profile of the 41 biopsies obtained under photodynamic diagnosis.


266 PDD photodynamic diagnosis, IOD intraoperative pathological diagnosis, NE not evaluated.

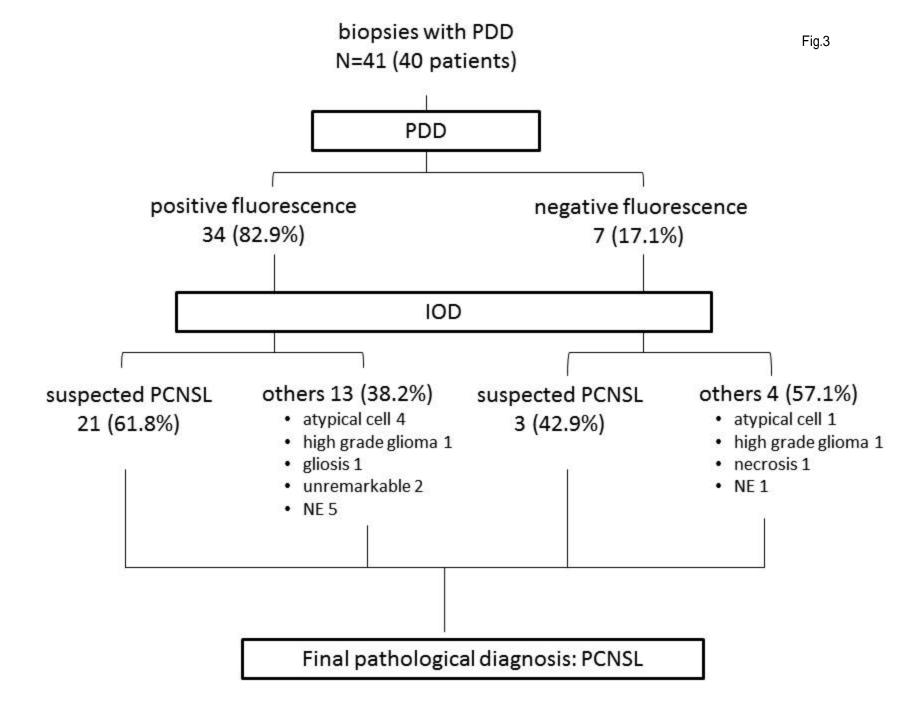

268	Figure 4 Positive fluorescence rates in 41 cases of primary central nervous system lymphoma (PCNSL). Positive
269	fluorescence was observed in 34 of the 41 biopsies (82.9%). Strong fluorescence was found in 23 biopsies (56.1%), and
270	weak fluorescence, in 11 biopsies (26.8%).
271	FL fluorescence
272	
273	Figure 5 Representative microphotographs (x200).
274	Upper : Specimens with hematoxylin and eosin (H&E) staining (left) and immunohistochemical staining using CD20
275	antibody (right), showing CD20-negative lymphocytes with no nuclear atypia infiltrating the cerebral cortex. Note that
276	this specimen with almost no B-cell lymphoma cells had positive fluorescence. Middle: Specimens from tumor tissue.
277	H&E stain (left) and Ki-67 stain (right), showing the typical angiocentric infiltration pattern of PCNSL cells with a
278	Mib-1 labeling index of 80%. Lower: Tumor cells expressed the pan-B-cell markers CD20 (left) and CD79a (right).
279	

Figure 6 Representative photograph of fluorescence of the specimen from tumor tissue.

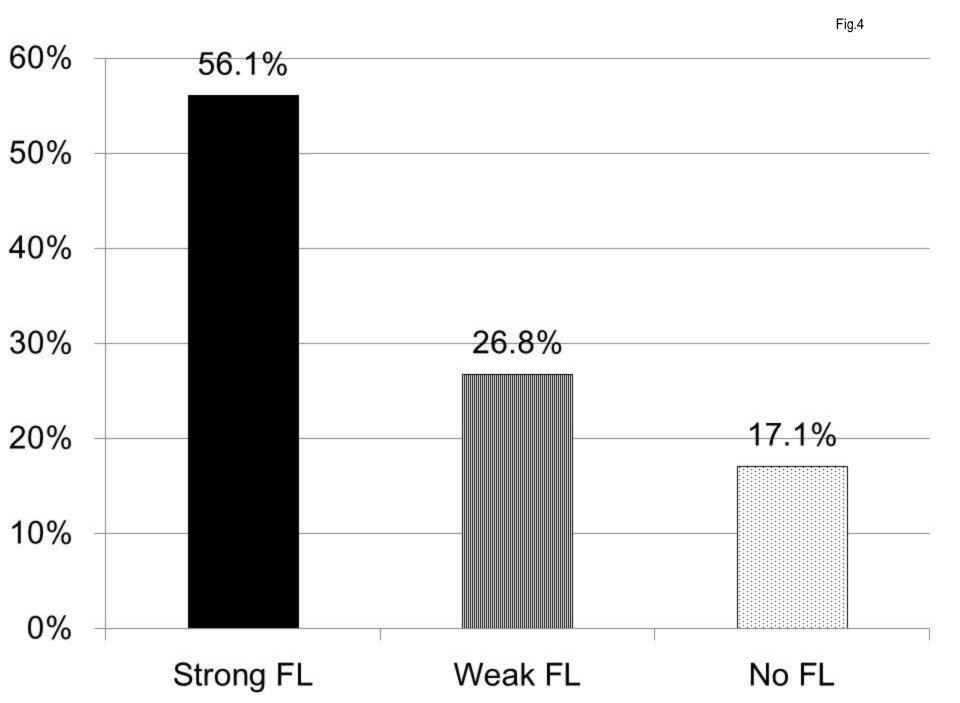


Fig.5

