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Abstract 

 

Graphene has attracted much attention in the field of nanoelectronics because of its unique electronic and 

geometric properties. A honeycomb network with atom thickness leads to massless electron/hole around the 

Fermi level that allow the material to be applied to high-speed electronic devices in the post-silicon era. On 

the other hand, electronic properties of graphene are fragile against the other foreign materials, such as metal 

electrodes and insulating substrates, because the electron system of graphene is distributed normal to their 

atomic network that intrinsically form interfaces with such foreign materials.  

High contact resistance between graphene and metal electrodes is one of the serious issues for designing 

graphene-based electronic devices. In addition to the high contact resistance, it has been experimentally 

reported that the resistance also depends on the metal species and the process conditions. Several theoretical 

studies reported geometries, electronic structures, and transport properties of interfaces between graphene 

and metal surfaces. Although much effort has been devoted to unravel the fundamental properties of 

interfaces, the comprehensive understanding has not yet been achieved. Therefore, this is motivating us to 

gain theoretical insight into the fundamental properties at the interface between graphene and metal 

electrodes for realizing graphene-based electronic devices. 

This fragility of electronic structure of graphene on the insulating substrates is another serious problem. 

Experiments have shown the degradation of the carrier mobility and the variation of the transport properties 

of graphene adsorbed on SiO2. The surface treatment of SiO2 even changes the electronic transport properties 

of graphene. From a theoretical perspective, several studies on the geometrical and electronic properties of 

graphene on SiO2 have been reported using first-principles methods. However, a theoretical study of the 

electronic transport properties of graphene on SiO2 has not been reported. 

In this thesis, we study electronic transport properties of armchair graphene nanoribbons (AGNRs) 

bridged between two Au electrodes using first-principles calculations. The transport properties sensitively 

depend on the ribbon width, even though the ribbon width reaches 12 nm. The variation of transport 

properties is ascribed to the detailed electronic structure of AGNRs, which sensitively depend on their width. 
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We have also found that the energy band structure and the symmetry of π states of the AGNRs play the 

important role for determining the transport properties. We also investigate transport properties of the hybrid 

structures of graphene/Ti electrodes. 

We also study the electronic transport properties of AGNRs on SiO2/Si using first-principles calculations. 

Models with channel lengths of 9.91 and 15.1 nm are examined and compared. We also investigate the 

differences in the electronic transport properties between OH- and O-terminated SiO2 surfaces. The AGNRs 

show p-type conducting properties on the SiO2/Si surfaces. Regardless of the channel length, the on/off 

current ratio is 10
5
 for the AGNRs on O-terminated surface. This ratio is consistent with recent experiments 

and smaller by factors of 10
8
 for the 9.91 nm channel length and 10

15
 for the 15.1 nm channel length 

compared to our results for freestanding AGNRs. For AGNRs on OH-terminated SiO2/Si, even smaller 

on/off ratio is obtained on the p side due to the interaction between the AGNRs and the OH groups of the 

SiO2 surface. 
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Chapter 1. Introduction 

 

  In this chapter, we firstly introduce fundamental characteristics of graphene in Sec. 1.1 and graphene 

nanoribbons in Sec. 1.2. We then present the problems of the graphene for device applications in Sec. 1.3. 

We finally indicate the objective and the framework of this thesis in Sec. 1.4. 

 

1.1. Graphene 

For future nanoelectronics, explorations of new nano-materials are promised in order to realize high-speed 

transistors, batteries, sensors, and high-frequency devices. Recently various two-dimensional (2D) thin film 

materials have attracted attention as the new nano-materials because of their unique and intriguing physical 

properties. The most fascinating point of them is an atom thickness, which enables us to control material 

properties by stacking heterogenous materials and to get clean interface without dangling bonds. As 

examples of the 2D thin film materials, we show geometric structures of graphene [1], h-BN [2, 3], silicene 

[4], transition metal dichalcogenides [5, 6, 7] in Fig. 1.1. We focus on the graphene in this thesis, because it 

has a lot of curious physical properties ascribed to a sp
2
 honeycomb network of carbon atoms. The graphene 

is also interesting in terms of the starting material of sp
2
 carbon allotropes, such as a fullerene (0D) [8], a 

carbon nanotube (1D) [9], and a graphite (3D) [10]. 

 

1.1.1. Fundamental characteristics 

Graphene is a two-dimensional sheet of sp
2
-bonded carbon atoms with a honeycomb network as shown in 

Fig. 1.2(a). The lattice parameter a of the unit cell is 2.46 Å and the C-C bond length is 1.42 Å. The graphene 

is a monolayer of graphite and its existence has been theoretically predicted for a long time [11, 12]. Geim et 

al. first succeeded to exfoliate graphene from highly oriented pyrolytic graphite (HOPG) using a scotch tape 

and reported their high career mobility [1]. Following the exfoliation, the graphene has been studied 

intensely for various applications owing to their unique physical properties. It has been demonstrated that 

graphene is applicable for a field effect transistor (FET), a spintronics, a high-frequency photo diode, a photo 
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transistor, a two-dimensional plasmon device, a terahertz laser, a transparent electrode, an optical intensity 

modulation, an optical pulse compression, a solar cell, and a storage battery. 

 

1.1.2. Physical properties 

For each carbon atom in graphene, 2s, 2px, and 2py orbitals are hybridized to make sp
2 

orbitals, which 

generate σ bands. The rest 2pz orbital, which is distributed normal to the atomic network, forms π bands and 

its electrons are called the π electrons. The electronic states around the Fermi energy in graphene are 

determined by the π electrons. The primitive unit cell contains two inequivalent carbon atoms belonging to 

sublattices of A and B. The existence of two sublattices causes the unique electronic states around the Fermi 

energy. Figure 1.2(c) shows the energy band structure of graphene using a first-principles calculation. We can 

find that the linear conduction and valence bands consisting of the π-electrons are crossing at the K and K’ 

points in the first Brillouin zone [Fig. 1.2(b)]. Electron hopping between the two sublattices leads to the 

bonding and the anti-bonding states at the Fermi energy and the K point. The K and K’ points are called the 

Dirac points. As a result, quasiparticles in graphene exhibit the symmetric linear dispersion relation 

approximated by 𝐸 = ℏ𝑘𝑣𝐹 as if they are massless relativistic particles with the Fermi velocity 𝑣𝐹 ≈

𝑐/300, where c is the speed of light. This character gives the high carrier mobility of graphene up to 100,000 

cm
2
V

-1
s

-1
. Thus graphene is expected to be applicable for the fast and low power consumption devices.  

In addition to the high carrier mobility, carriers in graphene can travel submicrometer distances (~300nm) 

without scattering, which is a favorable characteristic for quantum-effect and spintronics devices. Since 

graphene is highly sensitive to the environmental conditions because of its pure two-dimensionality, it is 

applicable to chemical and biological sensors. Graphene also shows uniform adsorption properties to lights 

of wide range of wavelength from a microwave to an ultraviolet due to the characteristic zero band gap 

property. The optical transmittance of a monolayer graphene is about 97.7 %. Graphene is a rare material 

with both the high transparency and the high electric conductivity. Thus, it could be applicable to the 

transparent electrodes. We can also observe peculiar quantum transport properties such as an absent of 

backscattering [13-15], an anomalous quantum Hall effect [16], and a Klein tunneling [17, 18], because 
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carriers in graphene behave like a 2D gas of massless Dirac fermions [19, 20]. Moreover, the high energy of 

the optical phonon originated from the strong and anisotropic sp
2
 bonding and the low mass of carbon atoms 

give graphene the high thermal conductivity. Graphene is also mechanically strong and flexible. 

 

1.1.3. Fabrication methods 

  The simplest method for obtaining graphene is the mechanical exfoliation from HOPG. In the method, 

graphite flakes are repeatedly peeled off with adhesive tape to cleave them in two and make them thinner and 

thinner. The flakes are deposited on an insulating substrate. The exfoliation method is suitable approach to 

know the physical properties of graphene itself, but alternative fabrication methods are essential for mass 

production of high-quality graphene for industrial applications.  

  One of the actively studied methods is a chemical vapor deposition (CVD) of graphene on the metal 

catalysts [21-25]. In this method, graphene is synthesized by introducing hydrocarbon gases such as 

methanol and ethanol on substrates with catalytic thin films or foils such as Cu, Ni, Co, and Fe. The carbon 

components are deposited on the metal surface through the chemical decomposition from the hydrocarbon 

gases by the metal catalysts. They are self-assembled to form the honeycomb network on the metal surface. 

Low-temperature growth due to using the metal-catalyzed reaction is consistent with the present 

semiconductor processes. The CVD is also powerful approach to obtain large-area graphene. However, the 

difficulty of controlling grain boundaries in the metal catalysts, which prevent epitaxial growth of graphene, 

is one of the disadvantages of this technique. It is also a crucial issue to transfer from the metal surface to the 

insulated substrate for the device application. The transfer process may affect the physical properties of 

graphene. 

  The thermal decomposition of SiC is another popular method of producing graphene [26-30]. When SiC 

substrates are annealed at high temperatures, only Si atoms desorb from the surface and the rest C atoms 

form graphene. The remaining SiC under the graphene can serve as a graphene substrate for electronics 

applications. The 6H-SiC and 4H-SiC, which have the six-fold rotational symmetry of lattice matching with 

the graphene, are usually used for this method. The fabricated graphene is epitaxial in essential owing to the 
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nature of the single crystal of SiC. The disadvantages of this method are the high cost of SiC and the high 

temperature process. 
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Fig. 1.1: Geometric structures of two-dimensional thin film materials. (a) Graphene, (b) h-BN, (c) silicene, 

and (d) monolayer of transition metal dichalcogenides. 
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Fig. 1.2: (a) Crystallographic structure of graphene. The red rhombus is the primitive unit cell. The gray 

sphere represents a carbon atom. The green and blue spheres in the primitive unit cell indicate the sublattices 

of A and B, respectively. (b) Reciprocal lattice of the primitive unit cell and the first Brillouin zone. (c) Band 

structure of graphene using a first-principles calculation. The EF is the Fermi energy.  
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1.2. Graphene nanoribbons 

  For semiconductor electronics applications of graphene, it is mandatory to control the energy band gap 

because graphene itself is a semiconductor with zero band gap. Various approaches have been proposed to 

open a band gap, such as a bilayer graphene under a vertical electric field [31, 32], an interaction with a 

substrate [33-35], a graphene nanomesh [36, 37], and graphene nanoribbons (GNRs) [38].  

The GNRs are narrow stripes of graphene. Methods such as lithography [38], etching [39], and unzipping 

carbon nanotubes [40, 41], and bottom-up approach [42] are used for fabricating GNRs. The electronic 

structures of the GNRs depend on the edge structures [43-45]. The GNRs have two typical edges, which are 

called as an armchair [Fig. 1.3(a)] and a zigzag edges [Fig. 1.3(b)] due to their characteristic shapes. The 

GNRs with zigzag edges (ZGNRs) are metallic owing to peculiar edge localized states with nonbonding 

molecular orbitals at the Fermi level arising from the boundary condition imposed on graphene. In contrast, 

the GNRs with armchair edges (AGNRs) are semiconducting with the width of narrower than 10 nm owing 

to quantum confinement normal to the ribbon direction. The band gap energies of AGNRs depend on the 

width of ribbon which are classified into three families in terms of the number of C2 dimer rows normal to 

the ribbon: N = 3m, 3m+1, and 3m+2, where m is an integer. For an integer m, AGNRs with the width of N = 

3m+1 has the widest band gaps among three families, while those with the N = 3m+2 the narrowest band gap. 

For example, the band gap is 1.1 eV for N = 6 (3m family of m = 2), 1.6 eV for N = 7 (3m+1 family of m = 2), 

and 0.2 eV for N = 8 (3m+2 family of m = 2), as shown in Fig. 1.4. Furthermore the band gaps are inversely 

proportional to N; for example, the band gap is 0.6 eV for N = 19. These values are obtained by 

first-principles calculations with a generalized gradient approximation (GGA), but a GW approximation, 

which includes the many-body effect, gives larger band gaps [46]. The strong dependences of electronic 

structures on geometries imply that atomically precise GNR fabrication will be necessary for electronic 

device applications. 
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Fig. 1.3: Geometries of (a) an armchair graphene nanoribbons (AGNRs) and (b) a zigzag graphene 

nanoribbons (ZGNRs). The black sphere represents a hydrogen atom terminating the dangling bond of the 

edge carbon atoms. The ribbon width N is the number of carbon dimer rows.  



9 

 

 

Fig. 1.4: Band structures of AGNRs with N = (a) 6, (b) 7, and (c) 8, which belong to the 3m, 3m+1, and 

3m+2 families, respectively, using the first-principles calculations. The Fermi energy is set to be 0 eV. 
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1.3. Problems for graphene-based electronic devices 

  One of serious problems for realizing graphene-based electronic devices [Fig. 1.5(a)] is the fragility of the 

electronic structure of graphene against foreign materials, such as metal electrodes
 
and insulating substrates. 

The electronic properties of graphene are significantly modulated by physical contact with surrounding 

foreign materials, because the electron system of graphene is distributed normal to their atomic network that 

intrinsically forms interfaces with such foreign materials. At interfaces between graphene and metal surfaces, 

the high contact resistance is one of the critical issues for realizing graphene-based electronic devices: It has 

also been experimentally reported that the contact resistance depends on the metal species and the process 

conditions. In addition to the metals, insulating substrates also affect the electronic transport properties of 

graphene. The problems about two types of the hybrid systems will be discussed in this thesis. 

    

1.4. Objective and framework of this thesis 

  In order to overcome the problems arising from interaction with the foreign materials, it is necessary to 

unravel the fundamental properties of the hybrid structures consisting of graphene and the foreign materials. 

In this thesis, we aim to provide the fundamental insight into the electronic and the transport properties of 

graphene in the hybrid structures using first-principles procedures. 

  The thesis is organized as following. In Chapter 2, we introduce the computational methods used in this 

study. All calculations are performed on the basis of the first-principles calculation methods. We employ the 

non-equilibrium Green’s function methods for the electronic transport calculations. In Chapter 3, we 

investigate the fundamental properties of the graphene bridged between two metal electrodes as 

schematically illustrated in Fig. 1.5(b). We show the computational results of the model of up to 12 nm width 

graphene nanoribbons and discuss the transport properties focusing on the ribbon width. In Chapter 4, the 

fundamental properties of the graphene nanoribbons on SiO2/Si as shown in Fig. 1.5(c) are examined. We 

discuss the variation of the transmission probability in terms of the channel length and the SiO2/Si surface 

morphologies. In Chapter 5, we summarize the thesis. 
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Fig. 1.5: (a) A schematic view of a graphene field effect transistor (FET). Structural models of (b) the 

graphene/metal electrodes and (c) the graphene/insulator employed in this thesis. The blue lines indicate the 

armchair edges of the AGNRs. 
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Chapter 2. Computational methods 

 

  In this chapter, we present computational methods used in this thesis. We describe the basis of the density 

functional theory (DFT) in Sec. 2.1. All calculations have been performed on the basis of the DFT. The DFT 

is one of the most computationally efficient first-principles methods to calculate atomic structures and 

electronic states of materials. We also explain the basis of the electronic structure calculations and the 

electronic transport calculations based on the non-equilibrium Green’s function (NEGF) method using the 

DFT formalism in Sec. 2.2 and 2.3, respectively. 

 

2.1. Density functional theory 

The Schrödinger equation of a many-electron system is quite complicated due to the antisymmetric nature 

of the wave function under the exchange of two electrons and the electron-electron interaction. We need a 

one electron potential to obtain the electronic states of the materials. For atoms and molecules, the 

Hartree-Fock (HF) method is widely used. The method assumes that the exact many-body wave function of 

the system can be approximated by a single Slater determinant. However, the calculation of the exchange 

potential makes it difficult to apply the HF method to the solids. Another method to gain a one electron 

potential is the DFT, where the ground state of the many-electron system can be determined by using the 

spatially dependent electron density. The computational cost of the DFT is quite lower than that of the HF 

method. Thus the DFT has become a very popular and successful quantum mechanical approach to solve the 

many-body problems in condensed matter physics. 

 

2.1.1. Born-Oppenheimer approximation 

The many-body Hamiltonian of a system composed of M-nuclei and N-electrons is divided into five main 

terms: 

 𝐻 = 𝑇𝑛 + 𝑇𝑒 + 𝑉𝑛𝑛 + 𝑉𝑒𝑒 + 𝑉𝑛𝑒 . (2.1) 

The first and second terms in Eq. (2.1) are operators for the kinetic energies of the nuclei and the electrons, 
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respectively. The third term represents the Coulomb interaction energy between the nuclei. The fourth term 

represents the Coulomb interaction energy between the electrons. The fifth term represents the Coulomb 

interaction energy between the nuclei and the electrons. The eigenenergy 휀 and eigenfunction 𝛷 of the 

total system described by the Hamiltonian in Eq. (2.1) are given by the solution of the following Schrödinger 

equation: 

 𝐻𝛷(𝐫1, … , 𝐫𝑁; 𝐑1, … , 𝐑𝑀) = 휀𝛷(𝐫1, … , 𝐫𝑁; 𝐑1, … , 𝐑𝑀), (2.2) 

where the many-body wave function 𝛷(𝐫1, … , 𝐫𝑁; 𝐑1, … , 𝐑𝑀) depends on the nuclear coordinates 𝐑𝑛 and 

the electron position 𝐫𝑖. Since nuclei are much heavier than electrons, we can assume the position of the 

nuclei is static during the motion of the electrons. This approximation is known as the Born-Oppenheimer 

approximation [47]. 

The separated electronic Hamiltonian 𝐻𝑒𝑙, which describe the motion of N-electrons in the external 

potential 𝑣(𝐫𝑖) derived from the fixed nuclei, is represented by 

 𝐻𝑒𝑙 = 𝑇𝑒 + 𝑉𝑒𝑒 + 𝑉𝑛𝑒 , (2.3) 

 𝑇𝑒 = −∑
ℏ2

2𝑚
∇𝑖
2,

𝑁

𝑖=1

 (2.4) 

 𝑉𝑒𝑒 =
1

2
∑

𝑒2

4𝜋휀|𝐫𝑖 − 𝐫𝑗|

𝑁

𝑖≠𝑗=1

, (2.5) 

 𝑉𝑛𝑒  = ∑𝑣(𝐫𝑖)

𝑁

𝑖=1

.    (2.6) 

Replacing the notation of Hel with H for simplicity, the Schrödinger equation of the N-electrons system is 

written by 

 𝐻𝜓(𝐫1,⋯ , 𝐫N) = 𝐸𝜓(𝐫1,⋯ , 𝐫𝑁).  (2.7) 

The DFT is explicated as the solving problem of the ground state of Eq. (2.7). 

 

2.1.2. Hohenberg-Kohn theorems 

The DFT is based on the two theorems proven by Hohenberg and Kohn in 1964 [48]. The first theorem 
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ensures that the charge density n(r) is a unique functional of the external potential v(r). The wave function 𝜓 

of the ground state is also uniquely determined by the n(r). The second theorem is a variational principle on 

expectation value of the Hamiltonian, which is the global minimum value of the universal functional of 

E[n(r)]. It follows that the energy E of the ground state is written by 

 𝐸[𝑛(𝐫)] = ∫𝜓∗𝐻𝜓𝑑𝐫  

  = ∫𝜓∗(𝑇𝑒 + 𝑉𝑒𝑒)𝜓𝑑𝐫 + ∫𝜓
∗𝑉𝑛𝑒𝜓𝑑𝐫  

  = 𝐹[𝑛(𝐫)] + ∫𝑣(𝐫)𝑛(𝐫)𝑑𝐫  ≥ 𝐸[𝑛0(𝐫)], (2.8) 

where F[n(r)] is represented as an universal functional of n(r) independent of v(r) and n0 is the charge 

density of the ground state. Thus the DFT is strict theory in terms of the ground state. If we know the 

functional form of 𝐹[𝑛(𝐫)], the energy of the ground state can be obtained by the charge density 𝑛0(𝐫). 

 

2.1.3. Kohn-Sham equations 

To utilize the Hohenberg-Kohn (HK) theorems for practical calculations on interacting electrons, Kohn 

and Sham mapped the problem of the system of interacting electrons onto a fictitious system of 

non-interacting electrons [49]: 

 𝐹[𝑛(𝐫)] =  𝑇𝑠[𝑛(𝐫)] +
𝑒2

2
∫
𝑛(𝐫)𝑛(𝐫′)

|𝐫 − 𝐫′|
𝑑𝐫𝑑𝐫′+ 𝐸𝑥𝑐[𝑛(𝐫)], (2.9) 

where the first term Ts is the kinetic energy of the system of the non-interacting electrons with the charge 

density 𝑛(𝐫), the second term is the energy of the electrostatic interaction (Hartree term), and the third term 

is defined as the exchange-correlation energy in which all many-body effects on interacting electrons are 

taken into account.  

The Kohn-Sham (KS) total-energy functional of a system of interaction N electrons is thus expressed as, 

 𝐸[𝑛(𝐫)] = 𝑇𝑠[𝑛(𝐫)] +
𝑒2

2
∫
𝑛(𝐫)𝑛(𝐫′)

|𝐫 − 𝐫′|
𝑑𝐫𝑑𝐫′ + 𝐸𝑥𝑐[𝑛(𝐫)] + ∫𝑣(𝐫)𝑛(𝐫)𝑑𝐫, (2.10) 

Based on the HK theorem, the ground state is determined by applying the variation principle with respect to 

n(r). 
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 𝛿 [𝐸[𝑛(𝐫)] − 𝜖 (∫𝑑𝐫𝑛(𝐫) − 𝑁)] = 0, (2.11) 

 
𝛿𝐸[𝑛(𝐫)]

𝛿𝑛(𝐫)
= 𝜖, (2.12) 

where 𝜖 is a Lagrange multiplier to specify the number of electrons. If we rewrite Eq. (2.12) using Eq. 

(2.10), 

 
𝛿𝑇𝑠[𝑛(𝐫)]

𝛿𝑛(𝐫)
+ 𝑣𝑒𝑓𝑓(𝐫) = 𝜖, (2.13) 

where 𝑣𝑒𝑓𝑓(𝐫) is defined as: 

 𝑣𝑒𝑓𝑓(𝐫) = 𝑣(𝐫) +∫
𝑛(𝐫′)

|𝐫 − 𝐫′|
𝑑𝐫′ + 𝑣𝑥𝑐(𝐫). (2.14) 

The 𝑣𝑥𝑐(𝐫)  is the exchange-correlation potential given by the functional deviation of the 

exchange-correlation energy 𝐸𝑥𝑐[𝑛(𝐫)] with respect to the charge density 𝑛(𝐫): 

 𝑣𝑥𝑐(𝐫) =
𝛿𝐸𝑥𝑐[𝑛(𝐫)]

𝛿𝑛(𝐫)
. (2.15) 

The Eq. (2.13) is an equation of non-interacting electrons moving in the effective potential 𝑣𝑒𝑓𝑓(𝐫), because 

𝑇𝑠[𝑛(𝐫)] corresponds to the kinetic energy of non-interacting electrons of the density 𝑛(𝐫). To express the 

electron density 𝑛(𝐫), Kohn and Sham adopted single-electron orbitals 𝜓(r) as follows: 

 

𝑛(𝐫) =  ∑|𝜓𝑖(𝐫)|
2

𝑁

𝑖=1

. (2.16) 

Using the 𝜓(r), the 𝑇𝑠[𝑛(𝐫)] can be replaced by following equation: 

 

𝑇𝑠[𝑛(𝐫)] =  ∑⟨𝜓𝑖(𝐫)|−
ℏ2

2𝑚
∇2|𝜓𝑖(𝐫)⟩

𝑁

𝑖=1

. (2.17) 

By substituting Eq. (2.17) in to Eq. (2.13), 

 [−
ℏ2

2𝑚
∇2 + 𝑣𝑒𝑓𝑓(𝐫)]𝜓𝑖 = 𝜖𝑖𝜓𝑖, (2.18) 

where 𝜖𝑖 is the eigenenergy of the electron, The Eq. (2.18) with Eqs. (2.14)-(2.16) is the KS equations. They 

should be self-consistently resolved because the wave function of the solution depends on the charge density 

defined by the summation of the squared wave function for occupied states. The problem of solving the 

ground state of the N-electrons system is interpreted as the simple one-particle problem under the effective 
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potential 𝑣𝑒𝑓𝑓(𝐫). The effective potential 𝑣𝑒𝑓𝑓(𝐫) is composed of the external potential 𝑣(𝐫) derived from 

the atomic nuclei, the electrostatic interaction potential, and the exchange-correlation potential 𝑣𝑥𝑐(𝐫), as 

shown in Eq. (2.14). The electron correlation effect is included in the KS equation. 

 

2.1.4. Local density approximation 

To solve the KS equation practically, we require the explicit expression for 𝐸𝑥𝑐[𝑛(𝐫)] and 𝑣𝑥𝑐(𝐫). In the 

local density approximation (LDA), the exchange-correlation energy Exc[n(r)] depends only on the local 

value of the charge density n(r) under the assumption of the homogeneous electron gas. Then the Exc[n(r)] is 

written by 

 𝐸𝑥𝑐[𝑛(𝐫)] ≈  ∫ 𝜖𝑥𝑐[𝑛(𝐫)] 𝑛(𝐫)𝑑𝐫, (2.19) 

where 𝜖𝑥𝑐[𝑛(𝐫)] is the exchange-correlation energy of one particle in the uniform electron gas with the 

charge density of n(r). Thus the exchange-correlation potential vxc is given by 

 𝑣𝑥𝑐(𝐫) =
𝛿𝐸𝑥𝑐
𝛿𝑛(𝐫)

= 𝜖𝑥𝑐[𝑛(𝐫)] +  𝑛(𝐫)
𝜕𝜖𝑥𝑐[𝑛]

𝜕𝑛
. (2.20) 

The exchange-correlation energy can be divided into the exchange and the correlation terms as follows: 

 𝜖𝑥𝑐 = 𝜖𝑥 + 𝜖𝑐 (2.21) 

The analytical representation of the exchange energy 𝜖𝑥 is derived from the exchange potential term in the 

HF approximation as follows: 

 𝜖𝑥 = −
3𝑒2

2
(
3

8𝜋
𝑛(𝐫))

1
3

. (2.22) 

The exchange potential corresponding to this 𝜖𝑥 is given by 

 𝑣𝑥(𝐫) = [
𝑑(𝑛𝜖𝑥[𝑛])

𝑑𝑛
]
𝑛=𝑛(𝐫)

  

  = −2e2 [
3

8𝜋
𝑛(𝐫)]

1
3
. (2.23) 

The exchange potential derived from the LDA includes the self-interaction between the identical orbitals, 

because it uses the term of the exchange interaction potential. The electrostatic and the exchange interaction 

in the identical orbitals should annihilate each other to be zero with respect to the orthonormalized orbitals. 
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The fact that the condition is not fulfilled in the LDA is considered to be one of the origins of the 

underestimation in the energy band gap. 

The correlation energy density 𝜖𝑐 cannot be represented by the analytical form, in contrast to the 

exchange energy density 𝜖𝑥. It is described by the parameterization for the correlation energy of the uniform 

electron gas as a function of the charge density. For examples, Ceperly and Alder numerically parameterized 

the correlation energy to be used in DFT calculations from quantum Monte Carlo calculations [50]. 

For the system with inhomogeneous electron densities, the generalized gradient approximation (GGA) is 

often employed instead of the LDA [51]. The GGA is the method to improve the LDA by introducing the 

gradient of the density. The exchange-correlation energy in the GGA depends on not only the electron 

density but also derivatives of the density, and it is given by 

 𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛(𝐫)] ≈  ∫𝑓[𝑛(𝐫), ∇𝑛(𝐫)] 𝑑𝐫, (2.24) 

where f is a function of the electron density and its derivative. The binding energies become better than the 

LDA owing to the including the gradient of the electron density. 

 

2.1.5. Hellmann-Feynman force 

  When each 𝜓𝑖 is an eigenstate of the Hamiltonian in the KS equation, the partial derivative of the KS 

energy functional with respect to the position of an ion gives the real physical force on the ion. The force 𝑭𝐼 

on an ion I is minus the derivative of the total energy 𝐸[𝑛(𝐫)] of a system with respect to the position of the 

ion 𝐑𝐼 as follows: 

 𝑭𝐼 = −
𝑑𝐸[{𝜓𝑖}, {𝐑𝐼}]

𝑑𝐑𝐼
  

  = −
𝜕𝐸

𝜕𝐑𝐼
−∑∫𝑑3𝑟 {

𝛿𝐸

𝛿𝜓𝑖(𝐫)

𝑑𝜓𝑖(𝐫)

𝑑𝐑𝐼
+

𝛿𝐸

𝛿𝜓𝑖
∗(𝐫)

𝑑𝜓𝑖
∗(𝐫)

𝑑𝐑𝐼
}

𝑖

. (2.25) 

where the first term on the right side is the force derived from the position dependency of the KS 

Hamiltonian, which is referred to as the Hellmann-Feynman force. If the H is the KS Hamiltonian, 

 
𝛿𝐸

𝛿𝜓𝑖
∗(𝐫)

= 𝐻𝜓𝑖(𝐫). (2.26) 

Hence Eq. (2.25) is rewritten by 
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 𝑭𝐼 = −
𝜕𝐸

𝜕𝐑𝐼
−∑{⟨𝜓𝑖|𝐻|

𝑑𝜓𝑖
𝑑𝐑𝐼

⟩ + ⟨
𝑑𝜓𝑖
𝑑𝐑𝐼

|𝐻|𝜓𝑖⟩}

𝑖

. (2.27) 

If each 𝜓𝑖 is an eigenenergy of the Hamiltonian H,  

 ⟨𝜓𝑖|𝐻|
𝑑𝜓𝑖
𝑑𝐑𝐼

⟩ + ⟨
𝑑𝜓𝑖
𝑑𝐑𝐼

|𝐻|𝜓𝑖⟩ = 휀𝑖
𝑑

𝑑𝐑𝐼
⟨𝜓𝑖|𝜓𝑖⟩ = 0, (2.28) 

resulting in only the Hellmann-Feynman force: 

 𝑭𝐼 = −
𝜕𝐸

𝜕𝐑𝐼
. (2.29) 

However, if we introduce some basis sets to represent the eigenstates, i.e.,  

 𝜓𝑖(𝐫) =∑𝑐𝑖𝜇𝜒𝜇(𝐫)

𝜇

, (2.30) 

where 𝜒𝜇 denote the basis set, the eigen energy 휀𝑖 is determined by the eigenvalue equation: 

 
∑𝐻

𝜇𝜇′
𝑐
𝑖𝜇′
 

𝜇′

= 휀𝑖∑𝑐𝑖𝜇′𝑆𝜇𝜇′
𝜇

, 
(2.31) 

where the Hamiltonian 𝐻𝜇𝜇
′

 and the overlap matrix 𝑆𝜇𝜇′ are defined as 

 𝐻
𝜇𝜇′

= ⟨𝜒𝜇|𝐻|𝜒𝜇′⟩, (2.32) 

 𝑆𝜇𝜇′ = ⟨𝜒𝜇|𝜒𝜇′⟩. (2.33) 

Since the 𝜓𝑖 is normalized, 

 ⟨𝜓𝑖|𝜓𝑖⟩ = ∑ 𝑐𝑖𝜇′𝑐𝑖𝜇
∗ 𝑆𝜇𝜇′ = 1

𝜇𝜇′

. (2.34) 

Using Eqs. (2.30)-(2.34), Eq. (2.27) is expressed as 

 

𝑭𝐼 = −
𝜕𝐸

𝜕𝐑𝐼
−∑{∑ 𝑐

𝑖𝜇′
∗ 𝑐𝑖𝜇(⟨

𝑑𝜒
𝜇′

𝑑𝐑𝐼
|𝐻 − 휀𝑖|𝜒𝜇⟩ + ⟨𝜒𝜇′|𝐻 − 휀𝑖|

𝑑𝜒𝜇

𝑑𝐑𝐼
⟩)

𝜇′𝜇

}

𝑖

. (2.35) 

The second term of this equation contains the derivative of the basis set with respect to the position of the ion. 

The contribution of this term to the force on the ion is called as the Pulay force [52]. 
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2.2. Electronic structure calculations 

As shown in the previous section, the DFT provides theoretical frameworks for obtaining the ground state 

total energy, the ground state electron density, and the optimized atomic structure. The electronic structure 

method based on a linear combination of numerical atomic local basis orbitals [53-58] and pseudo potentials 

[59, 60] is a possible way of extending the applicability of the DFT to large-scale systems, since the 

generalized eigenvalue problem with the resultant sparse matrices can be solved with the use of the low 

computational cost. 

 

2.2.1. Linear combination of atomic orbitals 

  In this thesis, the wave functions 𝜓𝜇 in the KS equation are expanded in terms of linear combination of 

pseudo-atomic orbitals (LCPAO) 𝜙𝑖𝛼 centered on the site τi by 

 𝜓𝜎𝜇
(𝒌)(𝐫) =

1

√𝑁
∑𝑒𝑖𝐑𝑛∙𝒌∑𝑐𝜎𝜇,𝑖𝛼

(𝒌)

𝑖𝛼

𝑁

𝑛

𝜙𝑖𝛼(𝐫 − 𝜏𝑖 − 𝐑𝑛), (2.36) 

where c is an expansion coefficient, Rn is a lattice vector, k is a Bloch wave vector, i is a site index, σ is a 

spin index (up or down), 𝜇 is an eigenstate index, and α is an orbital index. Considering the variation in the 

total energy of the system expressed by the KS wave function 𝜓𝜎𝜇
(𝒌)

 with respect to the coefficients c, we 

obtain the following KS matrix equation: 

 𝐻𝜎
(𝒌)𝑐𝜎𝜇

(𝒌) = 휀𝜎𝜇
(𝒌)𝑆(𝒌)𝑐𝜎𝜇

(𝒌), (2.37) 

where 𝑐𝜎𝜇
(𝒌)

 is a column vector consisting of the coefficients {𝑐𝜎𝜇,𝑖𝛼
(𝒌)

}. The Hamiltonian 𝐻𝜎
(𝒌)

 and overlap 

matrices 𝑆(𝒌) are given by 

 𝐻𝜎,𝑖𝛼𝑗𝛽
(𝒌) =∑𝑒𝑖𝒌∙𝐑𝒏ℎ𝜎,𝑖𝛼𝑗𝛽,𝐑𝒏

𝑛

, (2.38) 

 𝑆𝑖𝛼𝑗𝛽
(𝒌) =∑𝑒𝑖𝒌∙𝐑𝒏𝑠𝑖𝛼𝑗𝛽,𝐑𝒏

𝑛

, (2.39) 

where ℎ𝜎,𝑖𝛼𝑗𝛽,𝐑𝒏 and 𝑠𝑖𝛼𝑗𝛽,𝐑𝒏 are the Hamiltonian and overlap matrix elements between two basis 

functions 𝜙𝑖𝛼(𝐫 − 𝜏𝑖) and 𝜙𝑖𝛽(𝐫 − 𝜏𝑖 − 𝐑𝑛), respectively. The overlap matrix arises from the 

nonorthogonality of the pseudo atomic orbital (PAO) basis functions. 
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2.2.2. Pseudopotential methods 

  Most physical and chemical properties of atoms, molecules, and solid strongly depend on valence 

electrons. The core electrons are strongly bound to the nuclei and do not play a significant role in the 

chemical properties of atoms. In the pseudopotential method, core electrons around the atomic nucleus are 

replaced by potential functions with respect to valence electrons. By using pseudopotentials, we can 

calculate only the valence electron states without the calculation of the core electrons, whose computational 

cost is a vast amount. The pseudo potentials are generated for atoms of each element and they are used in 

combination. 

  In this thesis, we use the norm-conserving pseudopotentials [61]. The pseudopotentials, which have a 

same norm with the true valence wave functions, are constructed by forcing the pseudo wave functions to 

coincide with the true valence wave functions outside a given radius, designated the core radius. The charge 

densities obtained outside the core region must be also identical to the true charge density. Thus, the integral 

of the squared amplitudes of the real and pseudo wave functions over the core region must be identical. This 

condition is referred as “norm-conservation”. 

  The atomic properties of the element must be preserved, including phase shifts on scattering across the 

core. These phase shifts will be different for each angular momentum state. In general, the pseudopotential 

must be non-local with projectors for each angular momentum components l, m, as represented using the 

form: 

 𝑉 = 𝑉𝑙𝑜𝑐 +∑(𝑉𝑙 − 𝑉𝑙𝑜𝑐)𝑃𝑙,𝑚
𝑙,𝑚

, (2.40) 

where 𝑃𝑙,𝑚 are the projectors of the electronic wave functions on to the eigenfunctions of each angular 

momentum state, 𝑉𝑙𝑜𝑐 is the local part chosen arbitrarily. 

  The pseudopotentials are constructed using an ab-initio procedure. The true wave functions are calculated 

for a free atom by comparing with a given reference electron configuration, using an all-electron DFT 

approach. The resulting valence wave functions are then modified to remove the rapid oscillations in the core 

region under the norm-conservation constraint. The Schrödinger equation is then inverted to find the 
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pseudopotential which will reproduce the pseudo wave functions. This procedure produces a pseudopotential 

which may be transferred between widely varying systems. 
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2.3. Non-equilibrium Green’s function method 

In this thesis, we use a non-equilibrium Green’s function (NEGF) method for the first-principles electronic 

transport calculations. We summarized advantages of the NEGF method: (i) the source and drain contacts are 

treated based on the same theoretical framework as for the scattering region in terms of the coherent 

transport; (ii) the electronic structure of the scattering region under a finite source-drain bias voltage is 

self-consistently determined by combining with first-principles electronic structure calculation methods such 

as the HF and the DFT method; (iii) many-body effects in the transport properties, e.g., electron-phonon and 

electron-electron interactions, are included thorough self-energies; (iv) its applicability to large-scale systems 

can be anticipated basis functions in real space, resulting in computation for sparse matrices. Due to these 

advantages, the NEGF method has been successfully applied to calculations for the electronic transport 

properties of various systems. 

We present configurations of the system for the NEGF method and calculation procedures in Sec. 2.3.1. 

We explain the NEGF method on the coherent transport according to the Ref. [62] for equilibrium and 

non-equilibrium states in Sec. 2.2.2 and 2.2.3, respectively.  

  

2.3.1. Configurations and calculation procedures 

  We firstly set up a configuration of the system for the NEGF method in Fig. 2.1. The electronic transport is 

assumed to occur along the a axis under a two-dimensional periodic boundary condition imposed on the bc 

plane. The one-dimensional infinite cell consists of the central region denoted by C0 and the cells denoted by 

Li and Ri, where i = 0, 1, 2, …, ∞. All the cells Li (Ri) are arranged semi-infinitely and contain the same 

number of atoms with the same structural configuration. We consider a central region C consisting of C0, L0, 

and R0 to allow the relaxation of electronic structure around the interfaces between the leads (L0 and R0) and 

the scattering region (C0). Lead regions of L and R consist of Li (i = 1, 2, …, ∞) and Ri (i = 1, 2, …, ∞), 

respectively. Two conditions are also imposed: (i) The localized basis orbitals in the C0 overlap only with 

those in the L0 and R0. (ii) The localized basis orbitals in the Li (Ri) overlap only with basis orbitals in the 

nearest neighboring cells Li-1 (Ri-1) and Li+1 (Ri+1). Overlaps between the next nearest neighboring cells are 
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not allowed. The size of the unit cells for Li and Ri is adjusted with consideration for the specific cutoff radii 

of the localized basis orbitals to satisfy these two conditions. 

  We preliminarily evaluate electronic states of the left and right leads using conventional band calculations 

under the three-dimensional periodic boundary condition. The fine k-sampling along the a axis is required 

compared with the conventional band calculation to ensure consistency with the semi-infinity along the a 

axis in the calculation of the surface Green’s function. Then we perform self-consistent NEGF calculations, 

where the effect of the leads is taken into account as the self-energies. The unit cell of the bc plane in the 

leads is also assumed in the C region. Finally, the transmission and the current are evaluated by the Landauer 

formula [63, 64]. 
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Fig. 2.1: The geometric structure of the one-dimensional system for the NEGF method. It is compacted from 

three-dimensional system by considering the periodicity along the b and c axis. The infinite left and right 

leads of L and R are along the a axis. The central region C consists of C0, L0, and R0. The lead regions of L 

and R consist of Li (i = 1, 2, …, ∞) and Ri (i = 1, 2, …, ∞), respectively. 

  



25 

2.3.2. Equilibrium state 

In the equilibrium state with a homogeneous chemical potential in the system, the electronic structure of 

the system may be determined by the DFT as described in Sec. 2.1 and 2.2. The KS wave function in the 

system is expressed by Eq. (2.36), which is reprinted here, 

 𝜓𝜎𝜇
(𝒌)(𝐫) =

1

√𝑁
∑𝑒𝑖𝐑𝑛∙𝒌∑𝑐𝜎𝜇,𝑖𝛼

(𝒌)

𝑖𝛼

𝑁

𝑛

𝜙𝑖𝛼(𝐫 − 𝜏𝑖 − 𝐑𝑛). (2.36) 

Due to the periodicity along the b and c directions, the lattice vector 𝐑𝑛 and the Bloch wave vector k are 

given by 𝐑𝑛 = 𝑙𝑏𝒃 + 𝑙𝑐𝒄, where b and c are the lattice vectors, and 𝒌 = 𝑘𝑏�̃� + 𝑘𝑐�̃�, where �̃� and �̃� are 

the reciprocal lattice vectors, respectively. The summation over i and 𝛼 is considered for all the basis 

orbitals in the one-dimensional infinite cell, which indicates no periodicity along the a axis. Under the two 

conditions in Sec. 2.3.1, the Hamiltonian matrix and the overlap matrix given by Eq. (2.38) and (2.39), 

respectively, are written by a block tridiagonal form as follows: 

 𝐻𝜎
(𝒌)
=

(

 
 
 
 
⋱
⋱

⋱

𝐻𝜎,𝐿1
(𝒌)

𝐻𝜎,𝐶𝐿1
(𝒌)

𝐻𝜎,𝐿1𝐶 
(𝒌)

𝐻𝜎,𝐶
(𝒌)

𝐻𝜎,𝑅1𝐶 
(𝒌)

0

𝐻𝜎,𝐶𝑅1
(𝒌)

𝐻𝜎,𝑅1
(𝒌)

⋱

0

⋱
⋱
)

 
 
 
 

, (2.41) 

 𝑆(𝒌) =

(

 
 
 

⋱
⋱

⋱

𝑆 𝐿1
(𝒌)

𝑆 𝐶𝐿1
(𝒌)

𝑆𝐿1𝐶 
(𝒌)

𝑆𝐶
(𝒌)

𝑆𝑅1𝐶 
(𝒌)

0

𝑆𝐶𝑅1
(𝒌)

𝑆𝑅1
(𝒌)

⋱

0

⋱
⋱
)

 
 
 

, (2.42) 

where 𝐻𝜎,𝐶
(𝒌)

 (𝑆𝐶
(𝒌)

), 𝐻𝜎,𝐿1
(𝒌)

 (𝑆 𝐿1
(𝒌)), and 𝐻𝜎,𝑅1

(𝒌)
 (𝑆𝑅1

(𝒌)) are Hamiltonian (overlap) matrices of the channel (C), 

left lead (L1) and right lead (R1). The index of σ represents the spin degree of freedom. Hereafter, the indices 

σ and k are omitted for simplicity. The Green’s function is defined as 𝐺(𝑍)(𝑍𝑆 − 𝐻) = 𝐼, where Z is the 

complex energy. By using the block tridiagonal form of the Hamiltonian and the overlap matrices, the Green 

function of the C region 𝐺 𝐶 can be written by (p. 227, Ref. [65]) 

 𝐺 𝐶(𝑍) = [𝑍𝑆𝐶 −𝐻𝐶 − 𝛴𝐿(𝑍) − 𝛴𝑅(𝑍)]
−1, (2.43) 

with self-energies 𝛴𝐿 and 𝛴𝑅 defined by 



26 

 𝛴𝐿(𝑍) = (𝑍𝑆𝐶𝐿1 −𝐻𝐶𝐿1)𝐺𝐿(𝑍)(𝑍𝑆𝐿1𝐶   − 𝐻𝐿1𝐶), (2.44) 

 𝛴𝑅(𝑍) = (𝑍𝑆𝐶𝑅1 −𝐻𝐶𝑅1)𝐺𝑅(𝑍)(𝑍𝑆𝑅1𝐶   − 𝐻𝑅1𝐶), (2.45) 

where 𝐺𝐿(𝑍) and 𝐺𝑅(𝑍) is surface Green function of the L and R region, respectively. The effects of the 

semi-infinite L and R are included thorough the corresponding self-energies 𝛴𝐿(𝑍) and 𝛴𝑅(𝑍), whose real 

and imaginary parts give the shift and the broadening of the eigenenergy in the C region, respectively. The 

surface Green function is defined by 𝐺𝐿(𝑍) ≡ (𝑍𝑆𝐿 − 𝐻𝐿)
−1 and 𝐺𝑅(𝑍) ≡ (𝑍𝑆𝑅 −𝐻𝑅)

−1. The constraint 

that localized basis orbitals in the L0 (R0) within the C region overlap only with basis orbitals in the nearest 

neighboring cells L1 (R1) enables us to obtain the simple expressions of the self-energies in Eqs. (2.44) and 

(2.45). In order to practically calculate the 𝐺𝐶 given by Eq. (2.43), we introduce an approximation that the 

Li (i = 1, 2, …, ∞) regions are all equivalent to each other with respect to the spatial charge distribution, the 

KS Hamiltonian, and the relevant density matrix. They are calculated in advance by adopting the system of 

which unit cell is L1 and by using the conventional band structure calculation. The same approximation also 

applies for the Ri (i = 1, 2, …, ∞) regions. The assumption is asymptotically correct as the unit vector 

becomes larger, if the size of the unit vector along the a axis for the L0 and R0 regions within the C region is 

large enough. The approximation enables us to evaluate the surface Green function by the iterative method 

[66]. 

  When the Hamiltonian and overlap matrices associated with Eq. (2.43) are k dependent, the density matrix 

𝜌𝐑𝑛
(eq)

, where one of the associated basis orbitals is in the central cell and the other is in the cell denoted by 

𝐑𝑛 , is given by making use of both the retarded and advanced Green functions 𝐺𝐶
(𝒌)(𝐸 + 𝑖0+) and 

𝐺𝐶
(𝒌)(𝐸 − 𝑖0+) as 

 𝜌𝐑𝑛
(eq)

=
1

𝑉𝐶
∫ 𝑑𝑘3 (𝜌+

(𝒌) − 𝜌−
(𝒌)) 𝑒−𝑖𝒌∙𝐑𝑛

𝐵𝑍

, (2.46) 

with 

 𝜌±
(𝒌) =

𝑖

2𝜋
∫ 𝑑𝐸 𝐺𝐶

(𝒌)(𝐸 ± 𝑖0+)𝑓(𝐸 − 𝜇)
∞

−∞
, (2.47) 
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where VC is the volume of the unit cell, ∫𝐵𝑍  represents the integration over the first Brillouin zone, 0
+
 is a 

positive infinitesimal, and 𝜇 is a chemical potential. In case of the k-independent problem, Eq. (2.46) can be 

simplified into 

 𝜌(eq) = Im[−
1

𝜋
∫ 𝑑𝐸𝐺𝐶(𝐸 + 𝑖0

+)𝑓(𝐸 − 𝜇)
∞

−∞
]. (2.48) 

The Fermi-Dirac function 𝑓(𝐸 − 𝜇) is defined as: 

 𝑓(𝑥) = [1 + exp (
𝐸 − 𝜇

𝑘𝐵𝑇
)]
−1

, (2.49) 

where kB is a Boltzmann constant of 1.38 × 10−23 [m2kg s−2K−1] and T is an electronic temperature. The 

equilibrium density matrix is computed using the contour integration method with the Fermi-Dirac function f 

expressed by a continued fraction representation [66]. 

  The charge density in the C region is calculated by 

 𝑛(𝐫) = 𝑛(CC)(𝐫) + 2𝑛(sC)(𝐫) + 𝑛(ss)(𝐫), (2.50) 

where the suffix s is L or R. The charge densities 𝑛(CC)(𝐫), 𝑛(sC)(𝐫), and 𝑛(ss)(𝐫) are contributed from the 

basis functions located in the central, the lead and central, and the lead regions, respectively. Among three 

charge contributions, the charge densities 𝑛(sC)(𝐫) and 𝑛(ss)(𝐫) are calculated by the conventional band 

calculations for the leads and they are independent on the SCF iteration. The charge density in the C region is 

calculated by the equilibrium density matrix 𝜌(eq) given by 

 𝑛(CC)(𝐫) =∑𝜙𝑖(𝐫)𝜙𝑗
∗(𝐫)𝜌(eq)

𝑖,𝑗

, (2.51) 

where i and j are indices for the site, and 𝜙 is the basis function. The total charge density is obtained by the 

summation of the n(r) over the spin degree of freedom. 

  The Hartree potential in the C region is calculated under the boundary condition that the Hartree potential 

at the boundary between C and L1 (R1) regions is the same as that of the lead. The Hartree potential in the 

lead regions is calculated using the conventional band calculation before the SCF calculation using the Green 

function. The Hartree potential for the C region under the boundary condition is efficiently evaluated by a 

combination of the two-dimensional Fast Fourier Transform (FFT) and a finite difference method. The 

majority part of the Hartree potential is given by the neutral atom potential, which depends only on the 
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atomic structure and atomic species. The effect of the relaxation of charge distribution on the Hartree 

potential is taken into account by the remaining minority part of the Hartree potential 𝛿𝑉H, which is defined 

as the Coulomb potential for the 𝛿𝑛(𝐫), given by the Poisson equation: 

 𝛻2𝛿𝑉H(𝐫) = −4𝜋𝛿𝑛(𝐫), (2.52) 

where 𝛿𝑛(𝐫) is defined by the difference between the total charge density 𝑛(𝐫) given by Eq. (2.50) and the 

total atomic electron density 𝑛(𝑎)(𝐫) as follows: 

 𝛿𝑛(𝐫) = 𝑛(𝐫) − 𝑛(𝑎)(𝐫), (2.53) 

where 𝑛(𝑎)(𝐫) is calculated by superposition of each atomic electron density 𝑛𝑖
(𝑎)(𝐫) at atomic site i. The 

obtained Hartree potential 𝑉H is used as the second term in the right side of Eq. (2.14) and we can calculate 

the Hamiltonian and overlap matrices. 
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2.3.3. Non-equilibrium state 

  The density matrix in the nonequilibrium state of the C region is evaluated by 

 𝜌(neq) = 𝜌(eq) + ∆𝜌 , (2.54) 

where ∆𝜌 is defined by 

 ∆𝜌 =
1

2π
∫ 𝑑𝐸𝐺𝐶(𝐸 + 𝑖𝜖)𝛤𝑠1(𝐸)𝐺𝐶(𝐸 − 𝑖𝜖)∆𝑓(𝐸) 
∞ 

−∞

, (2.55) 

with 

 𝛤𝑠1(𝐸) = 𝑖[𝛴𝑠1(𝐸 + 𝑖𝜖) − 𝛴𝑠1(𝐸 − 𝑖𝜖)], (2.56) 

and 

 ∆𝑓(𝐸) = 𝑓(𝐸 − 𝜇𝑠1) − 𝑓(𝐸 − 𝜇𝑠2), (2.57) 

where s1 = R and s2 = L if μL < μR and s1 = L and s2 = R if μL ≥ μR. The Fermi-Dirac function f in Eq. (2.57) 

is defined by Eq. (2.49). The formula is based on two assumptions: (i) the occupation of the wave functions 

incoming from the L or R region still obeys the Fermi-Dirac function with the L or R chemical potential even 

in the C region; (ii) the states in the C region is in equilibrium in the energy range below the lower chemical 

potential (μL or μR). The imaginary part 𝜖  is used for smearing the integrand in Eq. (2.55) and its 

convergence was discussed in Fig. 3 [62]. It is necessary for a relatively large 𝜖 to avoid the numerical 

instabilities in the SCF iteration, but the large 𝜖 suffers the results such as the Mulliken population. The 𝜖 

= 0.01 eV is the best choice to compromise between the accuracy and efficiency for the discussed case in Ref. 

[62]. The careful choice of the 𝜖 is necessary especially for a system having spiky DOS in the integration 

range. The source-drain bias voltage Vb is defined by 

 𝑉𝑏 = (𝜇𝐿 − 𝜇𝑅)/𝑒. (2.58) 

We ignore the distortion of the wave functions by the applied electric field, which is called the Stark effect. It 

is easily incorporated by adding a constant electric potential Vb to the Hartree potential in the R region. The 

Hamiltonian matrices and the boundary conditions are replaced by adding the constant potential. The gate 

voltage 𝑉𝑔(𝑥) can be treated by adding an electric potential defined by the similar form of the image 

charges as follows: 
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 𝑉𝑔(𝑥) = 𝑉𝑔
(0)
exp [− (

𝑥 − 𝑥𝑐
𝑑

)
8

], (2.59) 

where 𝑉𝑔
(0)

 is a constant value corresponding to the applied gate voltage, 𝑥𝑐 is the position of the center of 

the C0 region, and d is the length of the unit vector along the a axis for the C0 region. 

After the SCF calculation converges in terms of the potential and the charge density, the spin- and 

k-resolved transmission 𝑇𝜎
(𝒌)(𝐸) is defined by  

 𝑇
σ

(𝒌)(𝐸) = Tr [𝛤𝜎,𝐿1
(𝒌) (𝐸)𝐺𝜎,𝐶

(𝒌)(𝐸 + 𝑖𝜖)𝛤𝜎,𝑅1
(𝒌) (𝐸)𝐺𝜎,𝐶

(𝒌)(𝐸 − 𝑖𝜖)]. (2.60) 

The spin-dependent transmission Tσ(E) is evaluated as the numerical integration of the 𝑇𝜎
(𝒌)(𝐸) over the 

first Brilloiuin zone: 

 𝑇σ(𝐸) =
1

VC
∫ 𝑑𝑘3𝑇𝜎

(𝑘)
(𝐸)

𝐵𝑍

. (2.61) 

The current I under a bias voltage Vb = (μL-μR)/e is evaluated by 

 𝐼 =  ∑
𝑒

ℎ
∫ 𝑇𝜎(𝐸)𝛥𝑓(𝐸)𝑑𝐸.
∞

−∞𝜎

 (2.62) 

This integration is performed in the energy window from 𝜇L to 𝜇R at the zero temperature (T = 0), because 

∆𝑓(𝐸) = 1 at 𝜇𝐿 < 𝐸 < 𝜇𝑅  and ∆𝑓(𝐸) = 0 at else E. At the finite temperature (T > 0), the energy 

window is smeared according to the Fermi-Dirac function. Thus we can consider the effect of the electronic 

temperature for the current. 
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Chapter 3. Graphene/metal electrode hybrid structures 

 

In this chapter, we investigate the electronic transport properties of the hybrid structures of graphene/metal 

electrodes. We firstly present a problem of high contact resistance between graphene and metal electrodes, 

and introduce the previous studies on the graphene/metal interfaces in Sec. 3.1. We then demonstrate the 

computational details and employed models in Sec. 3.2 and 3.3, respectively. In Sec. 3.4, we show results 

and develop discussions for the electronic transport properties of the hybrid structures of graphene/metal 

electrodes. Finally, we present conclusion of this chapter in Sec. 3.5. 

 

3.1. Introduction 

3.1.1. Contact resistance 

  High contact resistance between graphene and metal electrodes is one of serious problems for realizing 

graphene-based electronic devices. The small density of states (DOS) of graphene around the Fermi level EF 

limits the contact resistance. The charge transfer between graphene and metal electrodes results in large EF 

shift of graphene due to the small DOS of graphene. The EF shifts by 0.47 eV upon the charge transfer of 

0.01 electrons per carbon atom [68]. The charge transfer was experimentally reported as the shift of the Dirac 

point during the deposition of the metal nanoparticles on the graphene channel [69]. The anti-symmetric 

conductivity dependence on the back-gate voltage also supports the charge transfer [70-72]. The charge 

transfer region ascribed to the small DOS results in additional resistance produced by p-n junctions [73]. 

  We summarize two typical methods of experimental measurements of the contact resistance in Fig. 3.1. 

Figure 3.1(a) shows the four-probe method. The source-drain voltage Vsd includes the voltage drop from not 

only the channel but also the contacts. The contact resistance Rc is evaluated by 

 𝑅𝑐 =
1

2
(𝑅𝑡𝑜𝑡 − 𝑅𝑐ℎ × 𝐿/𝐼 ), (3.1) 

where 𝑅𝑡𝑜𝑡 is the total resistance measured between the source and the drain electrodes, and 𝑅𝑐ℎ is the 

channel resistance measured between the third and the fourth electrodes. Figure 3.1(b) shows the transfer 
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length method. The resistances between the nearest-neighbor electrodes are plotted as a function of each 

channel length. In the limit of a zero distance, the residual resistance corresponds with 2Rc if all the contacts 

are equivalent. The residual resistance can be found from the graph by extrapolating to the zero distance. 
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Fig. 3.1: Schematic views of two methods for the measurement of the contact resistance Rc. (a) Four-probe 

method. (b) Transfer length method. The gray and yellow rectangles represent the channel and the electrodes. 
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3.1.2. Experimental studies 

It has been experimentally reported that the contact resistance depends on the metal species [74-83]. 

Large variations have also been found in the contact resistance even within the same species. The contact 

resistivities measured by the four-probe method are 10
2
-10

3
 Ωμm for Ni electrodes, while they are 10

3
-10

5
 

Ωμm for Ti/Au and Cr/Au electrodes [74]. The Ti/Au electrode consists of the bottom layer of Ti with 10 nm 

thickness and the upper layer of Au with 20 nm thickness. The Ti is employed because of the strong binding 

to the insulating substrate and considered to be also attached to the graphene channel. The Au layer blocks 

the oxidation of the Ti layer. However, a lot of fundamental properties is still unknown such as the work 

function and the detailed electronic states in the interface between the alloys and graphene. Nagashio et al. 

also reported the contact resistivity of 50 Ωμm for the Au electrode using the resist-free metal deposition 

technique [77]. For the resist-free metal/graphene contacts, the DOS of graphene is maintained for the Au 

electrode, while it is largely modulated for the Ni electrode. The low contact resistivity for the Au electrode 

is ascribed to the increasing of DOS of graphene by the back-gate modulation. 

The electron-beam lithography is often utilized to form electrical contacts onto graphene. For examples 

[74], the contact metals were thermally evaporated on the resist-patterned graphene in a chamber with a 

background pressure of 10
-5

 Pa. To remove the resist residuals, the devices were annealed in a H2-Ar mixture 

at 300 ℃ for 1 hour. The electrical measurements were performed in a vacuum with a source/drain bias 

voltage of 10 mV and a gate voltage from -20 V to 40 V.  
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3.1.3. Theoretical studies 

Many theoretical studies reported geometries and electronic structures of interfaces between graphene 

and metal surfaces [84-100]. The stable structures of the graphene on various metal surfaces were examined 

using the first-principles calculations [84]. Metal species are classified into two groups according to the 

amount of the interaction with graphene. Al, Cu, Ag, Pt, and Au (Group I) weakly interact with graphene: the 

equilibrium spacing d between the graphene and the metal surfaces are 0.32-0.34 nm and the characteristic 

band structures of original graphene retain in the hybrid structures. On the other hand, Ti, Co, Ni and Pd 

(Group II) strongly interact with graphene: d are 0.20-0.23 nm and the band structures of the hybrid 

structures are strongly modified from the original structures, resulting in the absence of the linear bands. 

Transport properties have also been studied actively. Previous works are classified into three by the 

employed models in Fig. 3.2: (a) with left and right leads containing graphene and metals [101-103], (b) with 

one-side leads containing graphene and metals, and other-side containing only graphene [104-109], and (c) 

with left and right leads containing only metals, where there are graphene edges (graphene nanoribbon) [110, 

111]. In this thesis, we apply the model (c) to investigate the interface effect to the electronic transport in the 

realistic two-probe structure. For the model (c), it is found that the contact resistance of the Ni-graphene 

system is one order of magnitude lower than that of Cu-graphene using first-principles electronic transport 

calculations [110]. In Cu-graphene contact, the transmission spectra correspond with the band structures of 

the isolated graphene and only the symmetric states with respect to the Cu-s state contribute to transport. In 

Ni-graphene contact, however, the band structures are strongly modified from that of an isolated graphene 

due to the hybridization between the graphene π-orbitals and the Ni d-orbitals. It has been investigated the 

effect of contact area on the transport through the interface [111]. For the Cu electrode, the current increases 

at a low bias voltage as the contact area increases due to the charge transfer between the graphene and the Cu 

surface. For the Ni electrode, however, the current monotonically increases as the contact area increases due 

to the strong π-d hybridization. 

Although much effort has been devoted to reveal the fundamentals of the hybrid structures, the 

comprehensive understanding has not yet been addressed. Therefore, in this chapter, we aim to give 
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theoretical insight into the fundamental properties of the hybrid structures for advancing the interface science 

related with the two-dimensional thin films. We investigate the electronic transport properties of the 

graphene channels bridging two electrodes using the first-principles calculations. We examine armchair 

graphene nanoribbons (AGNRs) with over 10 nm width. Au (Group I) and Ti (Group II) are employed as the 

metal electrodes.  

  



37 

 

 

Fig. 3.2: Three models employed in previous works for the transport calculations. (a) Left and right leads 

containing graphene and metals, (b) one-side leads containing graphene and metals, and other-side 

containing only graphene, and (c) left and right leads containing only metals, where there are graphene edges 

(graphene nanoribbon). The dotted rectangles represent the leads, which correspond with L0 and R0 in Sec. 

2.3.  
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3.2. Computational details 

  For all calculations, we use the DFT code OpenxMX [53], which allows us to perform large-scale 

calculations on massively parallel computers [112, 113]. We use the GGA with Perdew-Burke-Ernzerhod 

functional form for describing the exchange-correlation energy among interacting electrons [51]. The 

electron-ion interaction is described by norm-conserving pseudopotentials [61] with partial core correction 

[114]. PAOs centered on atomic sites are used as the basis function set for expanding molecular orbitals [53].  

For geometry optimizations and energy band structure calculations, we use the PAOs specified by 

C6.0-s2p2d1, H5.0-s2p1, Au7.0-s2p2d2f1, and Ti7.0-s3p3d2. For examples, C6.0-s2p2d1 indicates the PAO 

of the carbon atom with the cutoff radii of 6.0 Bohr and with two s, two p, and one d components. Geometric 

structures of interfaces of graphene and metal surfaces are optimized under a repeated slab model with 13 Å 

vacuum spacing to exclude the effects arising from periodic images. The convergence criterion for forces 

acting on atoms is 0.1 eV/nm. 

For transport calculations, we employ the NEGF method under the finite bias voltage between two 

electrodes [62]. We use a smaller set of PAOs, i.e. C-s1p2, H-s1p1, Au-s1p2d1, and Ti-s1p2d1, to reduce the 

computational cost. Note that the reduced set of PAOs can maintain the quantitative and qualitative accuracy 

of the transport calculations. Figure 3.3 shows the comparison of the energy band structures of graphene on 

Au(111) surface modeled by the slab with four layers using the reduced set of PAOs (green lines) and the 

non-reduced set of PAOs (red lines). The energy shift of the Dirac point Δ𝐸𝐷 in graphene at the K point is 

0.34 eV for the reduced set and 0.37 eV for the non-reduced set. The cutoff radii are the same as those used 

in the band calculations. We use 151 k-points along the perpendicular to the transport direction. The 

electronic temperature is 300 K. 
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Fig. 3.3: Energy band structures of graphene on Au(111) surface slab with four layers using the set of PAOs 

specified by C6.0-s2p2d1, H5.0-s2p1, and Au7.0-s2p2d2f1 (green lines) and C-s1p2, H-s1p1, and Au-s1p2d1 

(red lines). The zero energy is set to the Fermi energy. 
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3.3. Models 

3.3.1. Equilibrium lattice parameters 

Before the calculation for the interfacial structures, we examine equilibrium lattice parameters of Au in fcc 

crystal, Ti in hcp crystal, and graphene (Table. 3.1). Our GGA results are found to be enough to describe the 

lattice parameters within 3 % errors from the experimental values. 

 

 

Table 3.1: Lattice parameters (in Å) of Au, Ti, and graphene. The “Other LCAO” and “Plane wave” are 

results within GGA. 

 

 Our calc. (GGA) Our calc. (LDA) Other LCAO Plane wave Exp. 

Au 4.17 4.06 4.18
a
 4.15

b 
4.08

c 

Ti: a 

  c 

2.93 

4.65 

2.86 

4.53 

2.99
f
 

4.75
f
 

2.93
e
 

4.65
e
 

2.95
c
 

4.68
c
 

Graphene 2.47 2.45 2.49
g
 2.47

d
 2.46

h
 

a
Reference [115]. 

b
Reference [116]. 

c
Reference [117]. 

d
Reference [78]. 

e
Reference [118]. 

f
Reference [119]. 

g
Reference [1209]. 

h
Reference [121]. 

  



41 

3.3.2. Interfacial structures of graphene/metal surface 

We optimize graphene adsorbed on Au(111) and Ti(0001) surfaces as shown in Fig. 3.4. The interface 

between metals and graphene is simulated by the repeated slab model consisting of four atomic layers of the 

metals and a single graphene sheet. A commensurability condition is imposed between lateral periodicities of 

graphene and that of the metal surfaces. Accordingly, the rectangle unit cell contains the 2x2√3 lateral 

periodicity of graphene and the √3x3 lateral periodicity of Au(111) surface and Ti(0001) surface. Since there 

are lattice mismatches between graphene and metal surfaces, the lateral lattice parameter of the Au(111) and 

the Ti(0001) surface is compressed by 3.23 % and 2.65 % from the equilibrium lattice parameter, 

respectively. The lattice constant a of graphene is 2.47 Å. The artificial lattice compression causes a slight 

change in the work function from 5.30 to 5.18 eV for the Au(111) surface. Compared the energy band 

structure of the compressed Au (111) [Fig. 3.5(b)] with that of equilibrium Au(111) [Fig. 3.5(a)], we have 

found that the energy of the unoccupied state extended throughout the surface [Fig. 3.5(c)] drops from 0.45 

eV to just above the Fermi energy because of the lattice compression. Under the optimum structure of both 

metal surfaces, one carbon atom is situated above the topmost metal atom and the other is on a bridge site 

[84]. 

The equilibrium spacing d between graphene and the topmost metal atom is 0.37 nm for the Au(111) 

surface and 0.20-0.22 nm for the Ti(0001) surface. The binding energy is evaluated by 

 𝐸𝑏 = 𝐸(G/M) − {𝐸(G) + 𝐸(M)}, (3.2) 

where E(G/M), E(G), and E(M) are the total energies of the graphene on the metal, the isolated graphene, 

and the isolated metal, respectively. Calculated energies 𝐸𝑏 are 0.016 eV/carbon atom on the Au(111) 

surface and 0.312 eV/carbon atom on the Ti(0001) surface. These results of d and 𝐸𝑏 indicate that the 

graphene is weakly and strongly bound to the Au(111) and Ti(0001) surfaces, respectively.  
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Fig. 3.4: (a) Top and (b) side views of the stable geometry of graphene/Au-fcc(111) interface. (c) Top and (d) 

side views of the stable geometry of graphene/Ti-hcp(0001) interface. 
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Fig. 3.5: Energy band structures of Au(111) surface simulated by the slab model with four-layers under (a) 

the equilibrium lattice constant of Au and (b) the compressed lattice constant to match the graphene lattice. 

(c) A wave function of the band pointed by arrows in (a) and (b) at the Γ-point. The yellow spheres represent 

Au atoms. 
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3.3.3. Electronic properties of graphene/metal hybrid structures 

Figure 3.6(b) shows the band structure of the graphene on Au(111). Even by forming the complex, the 

characteristic band structure of the isolated graphene [Fig. 3.6(a)] is kept on the Au(111) due to the weak 

interaction. The Dirac point of graphene shifts upward by ΔED = 0.37 eV. Thus holes are injected into 

graphene by the Au(111) surface. This p-type doping is mainly ascribed to the higher work function of the 

Au(111) surface (φM = 5.18 eV) compared with that of graphene (φG = 4.06 eV). The charge transfer between 

metal and graphene forms an interface dipole layer and a potential step derived from the dipole. To visualize 

the charge redistribution, we examine the difference of the electron densities Δn by the formation of the 

interface: 

 𝛥𝑛 = 𝑛M/G − (𝑛M + 𝑛G), (3.3) 

where 𝑛M/G, 𝑛M, and 𝑛G denote the electron densities of the graphene/metal hybrid structure, the clean 

metal surface, and the isolated graphene, respectively. Here the structures of the clean metal surface and the 

isolated graphene are assumed to be the same structures as the graphene/metal hybrid structure. Figures 

3.7(a) and 3.7(b) show isosurfaces of 𝛥𝑛 and plane-averaged 𝛥𝑛, respectively. We have found that the 

charge transfer mainly occurs in the interlayer region between the graphene and the topmost Au(111) layer. 

The charge accumulation just below the bottom layer of Au(111) is considered to be ascribed to the artificial 

electric field arising from the periodic boundary condition, as discussed details in Sec. 3.3.5. 

Figure 3.6(c) shows the band structure of the graphene on Ti(0001). Contrary to the Au(111) surface, the 

linear dispersion bands around the Fermi energy disappear owing to the strong π-d interaction. Electrons are 

injected into graphene by the Ti(0001) surface because of the small work function of the Ti.  
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Fig. 3.6: Energy band structures of (a) the isolated graphene, (b) the graphene on Au(111) surface, and (c) the 

graphene on Ti(0001) surface. The dotted yellow lines in (b) represent the band structure of the isolated 

graphene with the upward energy shift by 0.37 eV. 
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Fig. 3.7: (a) Isosurfaces and (b) plane-averaged electron density of Δn per unit cell for the graphene/Au(111) 

interface. The yellow and aqua isosurfaces in (a) denote the charge accumulation and depletion, respectively. 
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3.3.4. Discussion about the effect of different equilibrium interfacial spacing 

The calculated d and Eb in GGA and LDA for the Au(111) and the Ti(0001) are summarized in Tables 3.2 

and 3.3, respectively. The ΔED for the graphene on Au(111) is also shown in Table 3.2. The LDA gives 

smaller ΔED than the GGA due to the smaller d. As discussed in Ref. [84], the ΔED can be written as a 

function of the d as following (d0 is a constant): 

 𝛥𝐸𝐷(𝑑) = ±
√1 + 2𝛼𝐷0(𝑑 − 𝑑0)|𝑊𝑀 −𝑊𝐺 − 𝛥𝑐(𝑑)| − 1

𝛼𝐷0(𝑑 − 𝑑0)
, (3.4) 

where the sign of ΔED is determined by the sign of (𝑊𝑀 −𝑊𝐺 − 𝛥𝑐). The 𝑊𝑀 and 𝑊𝐺 are work functions 

of the clean metal surface and the graphene, respectively. The 𝛥𝑐 describes the short-range interaction, 

which is originated from the hybridization between the metal and the graphene states and vanishes 

exponentially with increasing d. For an energy range from -1 eV to 1 eV with respect to the Dirac points, the 

graphene DOS is described well by a linear function: 

 𝐷(𝐸) = 𝐷0|𝐸|, (3.5) 

with D0 = 0.09/(eV
2
 unit cell). By using a plane capacitor model, we can describe the charge transfer 

contribution to the potential step as 

 𝛥tr(𝑑) = 𝛼𝑁(𝑑)𝑧𝑑, (3.6) 

where 𝛼 = 𝑒2/ 𝜖0𝐴 = 34.93  eV/Å with A = 5.18 Å
2
 as the area of the unit cell, N(d) is the number of 

electron per unit cell transferred from graphene to the metal, and 𝑧𝑑 is the effective distance between the 

sheets of transferred charge on graphene and the metal. Under a thick contamination layer such as water and 

a metal oxide with the effective dielectric constant 𝜅, the parameter α is replaced by 𝛼/𝜅. 

The spacing between graphene and Au electrode sensitively affects the current density which is associated 

with the overlap of the wave functions between them. In the present calculation, the spacing between 

graphene and Au electrode is slightly overestimated because of the choice of GGA functional which could 

not reproduce the dispersive force. The van der Waals (vdW) forces play an important role in weakly bonded 

systems. Indeed, several previous DFT calculations with the vdW corrections showed the narrower optimum 

spacing d of 0.32-0.36 nm, whose variation is ascribed to the difference of the functionals [92, 93, 116]. The 

narrower d shifts the energy of the Dirac point downward. For examples, the ΔED = -0.05 eV is obtained at d 
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= 0.32 nm [116], while our GGA calculation results in the ΔED = 0.37 eV at d = 0.37 nm. The difference of 

ΔED in considering the effect of the vdW forces is mainly ascribed to the difference of d. 

 

 

Table 3.2: Calculated equilibrium spacing d and binding energy Eb between graphene and Au(111) surface, 

and the Dirac point shift ΔED by forming the complex. The d is defined as the distance in z direction between 

the carbon atoms of the graphene and the relaxed positions of the topmost Au layer. The Eb is evaluated as 

the energy per carbon atom to remove the graphene from the Au surface. 

 

 Our calc. 

(GGA) 

Our calc. 

(LDA) 

Plane wave 

(LDA) 

Plane wave 

(vdW correction) 

Exp. 

d (nm) 0.37 0.33 0.33
a
 

0.34
b
 

0.337, 0.335
d
 

0.357
b
 

0.377, 0.369, 0.321, 0.329
c
 

0.321, 0.322, 0.320
 d
 

0.5
e
 

Eb (meV) 16 52 30
a
 

31
b
 

~30
 d
 

38
b
 

47, 49, 80, 59
 c
 

~110
 d
 

- 

ΔED (eV) 0.37 0.06 0.19
a
 

0.26, 0.25
 d
 

0.21
b
 

0.08, 0.00, -0.16, 0.07
 d
 

- 

a
Reference [84]. 

b
Reference [92]. 

c
Reference [94]. (including various functionals of vdW corrections) 

d
Reference [122]. (including various lattice parameters) 

e
Reference [123]. 
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Table 3.3: Calculated equilibrium spacing d and binding energy Eb between graphene and Ti(0001) surface. 

The d is defined as the distance in z direction between the carbon atoms of the graphene and the relaxed 

positions of the topmost Ti layer. The Eb is evaluated as the energy per carbon atom to remove the graphene 

from the Ti surface. 

 

 Our calc. 

(GGA) 

Our calc. 

(LDA) 

Plane wave 

(LDA) 

d (nm) 0.20-0.22 0.19-0.21 0.21
 a
 

Eb (meV) 312 527 327
 a
 

a
Reference [84]. 
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3.3.5. Discussion about the effect of an artificial electric field 

  In our model of graphene on the Au(111) slab, the electrostatic potentials on the two sides of the slab are 

different at the cell boundary. In this model, thus, an artificial uniform electric field is introduced in the 

supercell in order to cancel the potential jump at the boundary under the periodic boundary conditions on the 

electrostatic potential.  

Figure 3.8(a) shows our model of the unit cell of graphene on the Au(111) surface. The potential gradient 

of 0.06 V/Å is found in the vacuum region indicated by an arrow in Fig. 3.8(b). This potential gradient 

corresponds with the existence of the artificial electric field in the vacuum region due to the periodic 

boundary condition. To check the effects of this artificial field on physics, we consider a new model of 

adding a reversal slab of graphene/Au(111) in the vacuum region as shown in Fig. 3.8(d). Figure 3.8(e) 

shows that the electric field is canceled each other and the flat potential is observed in the vacuum region of 

this new model. Almost the same band structures are found in our model with the artificial electric field [Fig. 

3.8(c)] and the new model without it [Fig. 3.8(f)]. The shift of the Dirac point ΔED is 0.37 eV for the former 

model and 0.36 eV for the latter model. We can conclude that the artificial electric field hardly affects the 

electronic structure in this case. 
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Fig. 3.8: (a) An unit cell of graphene on Au(111). (b) Potential along the z direction averaged in the xy-plane. 

It includes the Hartree and ionic potentials. (c) Band structure of the graphene on Au(111). (d)-(f) Same with 

(a)-(c) for the symmetric configuration of the graphene on Au(111), respectively. 

  



52 

3.3.6. Structural model for transport calculations 

Figure 3.9 shows a structural model for simulating transport properties of the hybrid structure that consists 

of Au electrodes and an AGNR. The AGNRs with a width W ranging from 2.7 nm to 12.1 nm are bridged 

between two Au electrodes with the contact length Lcon = 0.86 nm to elucidate the W dependence of the 

transport properties of AGNRs. All edge carbon atoms along the y direction are terminated by hydrogen 

atoms and the armchair edges are appeared in the contact region. Along the y direction, we impose the 

periodic boundary condition. N is defined as the number of C2 dimer rows along the ribbon direction (x 

direction). Both sides of the unit cell in the x direction are connected to semi-infinite leads, which are 

denoted as the dashed rectangles in Fig. 3.9(b). The relaxed geometry of 4-layers slab of the clean Au(111) 

surface is employed as the geometry of Au(111) surface both in the leads and the scattering region. The 

interlayer spacing between the AGNR and the Au electrodes is set to 0.37 nm, corresponding to the 

equilibrium spacing between graphene and Au(111) surfaces. For the AGNR/Ti hybrid structures, similar 

models are used as shown in Fig. 3.10. The interlayer spacing is set to their equilibrium spacing of 0.20-0.22 

nm. 
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Fig. 3.9: (a) Top and (b) side views of the AGNR/Au hybrid structure. The AGNR with the number of C2 

dimer rows N = 95 (W = 9.88 nm) is bridged between two Au electrodes with the contact length Lcon = 0.86 

nm. The blue solid rectangle in (a) indicates the unit cell of the model. The dashed rectangles in (b) indicate 

the unit cells of leads. The interlayer spacing d is set to 0.37 nm. Although both sides in the transport 

direction (x) are connected to semi-infinite leads in actual calculations, only atoms of the center region are 

given. The khaki, white, and orange spheres represent the carbon, hydrogen, and gold atoms, respectively. 
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Fig. 3.10: (a) Top and (b) side views of the AGNR/Ti hybrid structure. The AGNR with the number of C2 

dimer rows N = 95 (W = 9.88 nm) is bridged between two Ti electrodes with the contact length Lcon = 0.86 

nm. The blue solid rectangle in (a) indicates the unit cell of the model. The dashed rectangles in (b) indicate 

the unit cells of leads. The interlayer spacing d is set to 0.20-0.22 nm. Although both sides in the transport 

direction (x) are connected to semi-infinite leads in actual calculations, only atoms of the center region are 

given. The khaki, white, and aqua spheres represent the carbon, hydrogen, and titanium atoms, respectively. 
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3.4. Results and discussions 

3.4.1. Current densities for the hybrid structure of graphene/Au electrodes 

We calculate a current density I under the bias voltage Vb = (μL-μR)/e = 0.1 V, where μL (μR) is the chemical 

potential of the left (right) electrode, without a gate voltage. The channel length of 10 nm and the operating 

voltage of 0.75 V are expected for the Si-CMOS technology trend in 2020 according to ITRS2013 [124]. The 

IBM reported that the carbon nanotubes FET with the 9 nm channel can be operated in 0.5 V [125]. In this 

thesis, we employ the bias voltage of 0.1 V for more low energy consumption devices envisioned in the 

graphene FET in the future. 

Figure 3.11 shows the calculated current density I as a function of the ribbon width W for the AGNR/Au 

hybrid structure. The current density sensitively depends on the width of AGNR. The current density 

basically decreases with increasing the ribbon width. Furthermore, the current density rapidly oscillates with 

the number of C2 dimer rows N along the ribbon direction in the narrow ribbons: the current density of 

AGNR with dimer rows N = 3m+2 is lower than those with N = 3m and 3m+1. More interestingly, the current 

densities still depend on the N family in the wide ribbons (W ~ 12nm): they are 24.1 A/m for N = 99 (W = 

12.10 nm), 23.0 A/m for N = 97 (W = 11.85 nm) and 30.3 A/m for N = 95 (W = 11.60 nm). The facts indicate 

that the transport properties of ANGR with Au electrodes sensitively depend on the tiny difference in their 

atomic structures. Therefore, the current density variation and contact resistance variation are expected to be 

essential in AGNR-FET with Au electrodes. 

As mentioned in Sec. 3.3.4, by taking account the dispersive force into this calculation, the spacing 

between graphene and Au(111) surface will become narrower. The current is expected to increase. However,  

due to the weak interaction nature of the dispersive force, the quantitative nature of the current thorough the 

electrode and graphene is expected to retain even in calculations containing the dispersive force. 
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Fig. 3.11: Current density I as a function of the AGNR width W for the models of the AGNR bridged 

between two Au electrodes at a bias voltage Vb = 0.1 V. 
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3.4.2. Origin of N-family dependence 

To unravel the N-family dependence observed in current densities, we analyze transmission spectra T(ky, 

E) as functions of both wave number along the ribbon ky and energy E of AGNR with W ~ 4.5 nm (Fig. 3.12). 

The spin-dependent transmission coefficient Tσ(E) is defined as 

 𝑇𝜎(𝐸) =
1

𝑁𝑘𝑦
∑𝑇𝜎
𝑘𝑦

(𝑘𝑦, 𝐸), (3.7) 

where σ is the index of the spin (up or down) and Nky (= 151) is the number of k-points along the y direction. 

Using the Tσ(E), the current density I is evaluated by 

 𝐼 =
1

𝐿𝑦
 ∑

𝑒

ℎ
∫ 𝑇𝜎(𝐸)[𝑓(𝐸 − 𝜇L) − 𝑓(𝐸 − 𝜇R)]𝑑𝐸
∞

−∞𝜎

, (3.8) 

where Ly is the length of the unit cell of the model along the y direction. The Tσ(ky, E) around the energy 

integration range from 0 to 0.1 eV smeared with the electronic temperature in the Fermi-Dirac function gives 

the current density. We found the large Tσ(ky, E) within the integration range for AGNRs with N = 39 and 37, 

while the transmission is small within the range for the AGNR with N = 35. Indeed, the AGNRs with N = 39 

and 37 exhibit high transport properties while the AGNR with N = 35 is less conductive than the other two 

ribbons. Further analyses on the transmission spectra for the AGNRs with the other ribbon width corroborate 

the fact that the N-family dependence in the current densities originates from the transmission spectra in the 

integral region determined by the ribbon width or the number of dimer rows N. The transmission spectra 

reflect the characteristic feature of the band structures of the isolated AGNRs as shown in right panels of Fig. 

3.12. The energies are shifted upward by about 0.3 eV simulating the p-doping from the Au electrodes for the 

comparison with the transmission spectra. The transmission occurs at the particular ky and E at which 

electronic energy band emerges in graphene because of the weak interaction between Au and graphene.  

In addition to the band structure, the symmetry of π state of graphene also plays an important role in 

determining the transmission spectra. The isolated AGNR with N = 39 is a semiconductor with a band gap of 

about 0.2 eV as shown in Fig. 3.12(a). The highest occupied molecular orbital (HOMO) and the second 

highest occupied molecular orbital (HOMO-1) of the isolated AGNR at the Γ-point are located at the 

energies of 0.2 eV and 0 eV, respectively. By comparing the transmission spectra and the band structure, we 
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find that the HOMO give the small Tσ(Γ, E) while the HOMO-1 leads to the large Tσ(Γ, E). To clarity the 

difference of the two states, we show the wave functions of them in Fig. 3.13(a). The HOMO shows the 

anti-symmetric nature of their wave function with respect to the xz plane, while the HOMO-1 shows 

symmetric nature. On the other hand, surface electron states around the Fermi level of Au comprise s orbital 

of Au atoms possessing the symmetric nature with respect to the surfaces. Only the symmetric π state of the 

HOMO-1 hybridizes with the s state of the Au surface as shown in Fig. 3.13(b). We find that the π states with 

symmetric nature mainly contribute to the transmittance through the contact between Au and graphene. The 

symmetric π states of AGNRs appear alternately, resulting in the discrete and sparse transmission peaks. To 

examine the wave functions in the hybrid structures, we consider the clustered model of the AGNR bridged 

between two Au electrodes in Fig. 3.13(b). The model has finite size of the Au electrodes in the x-direction. 

The conventional band calculation is performed under the three-dimensional periodic boundary conditions 

with enough vacuum spacing. Although the electronic structure of the interface is different from that in the 

NEGF calculation due to the effect of the metal edges, the band structure and the wave function in the model 

are useful to understand the results of the transmission. 

We also find that the values of Tσ(ky, E) are fluctuated along the ky even in the same π state in Fig. 3.12. 

For examples, the Tσ(ky, E) derived from the HOMO of the AGNR with N = 39 [Fig. 3.12(a)] shows a value 

of about 0.3 at the α-point (ky = 0.05), while it is almost zero at the Γ-point. The fluctuation of Tσ(ky, E) is 

ascribed to symmetry change of the π state along the ky. The HOMO of the isolated AGNR at the α-point is 

still anti-symmetric [Fig. 3.13(a)], while the symmetric and well-hybridized wave function appears in the 

model with Au electrodes [Fig. 3.13(b)]. The symmetric s state of the Au surface can hybridizes with the 

symmetric component of the π state at any ky. Although the HOMO-1 of the isolate AGNR at the α-point is 

not symmetric, the symmetric character is found in the model with Au electrodes as well as the HOMO. Thus 

the symmetric π state at the Γ-point may become immiscible with the Au electrodes depending on the ky. 

Another fact obtained in Figs. 3.12 and 3.13 is that the band crossing may leads to the suppression of the 

Tσ(ky, E). The band repulsion is occurred at the crossing point of the bands of graphene and Au according to 
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the symmetry requirement. For examples, the repulsive band crossing shown as the blue circle in Fig. 3.13(b) 

results in the small transmission at the (ky, E) indicated by the blue arrow in Fig. 3.12(a). 

The same analysis is applicable to the other AGNR with different ribbon widths or the N family: the state 

possessing the symmetric nature with respect to the surfaces leads to the large transmission irrespective to 

the ribbon width or the number of dimer rows N. Figure 3.14 shows the transmission spectra of the hybrid 

structures and the band structure of the isolated AGNRs with N = 99, 97, and 95, where the ribbon width W 

are about 12 nm. Even in the ribbon with the width of 12 nm, the band structures and the symmetry of the π 

state of graphene determine the transport properties. 
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Fig. 3.12: Transmission spectra Tσ(ky, E) and band structures of the isolated AGNRs for the models with N = 

(a) 39, (b) 37, and (c) 35, which belong to the 3m, 3m+1, and 3m+2 families, respectively. The energies in 

the band structures of the isolated AGNRs are shifted upward by about 0.3 eV for comparison with Tσ(ky, E). 

Only the up-spin of the transmission is shown due to no spin-polarization. The chemical potentials of the 

left-side lead μL are set to 0 eV in Tσ(ky, E). The right color bar shows the value of Tσ(ky, E). The α-point is 

located at ky = 0.05 (cf. Γ: ky = 0.0, Y: ky = 0.5). 
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Fig. 3.13: Wave functions and band structures for (a) the isolated AGNR with N = 39 and (b) the clustered 

model of AGNR with N = 39 bridged between two Au electrodes. The solid rectangles in the left panel 

represent the unit cell. The α-point is located at ky = 0.05 (cf. Γ: ky = 0.0, Y: ky = 0.5). The real-parts of the 

wave functions are shown for the α-point. The band structure in (a) is same as in Fig. 3.12(b). 
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Fig. 3.14: Transmission spectra Tσ(ky, E) and band structures of the isolated AGNRs for the models with N = 

(a) 99, (b) 97, and (c) 95, which belong to the 3m, 3m+1, and 3m+2 families, respectively. The energies in 

the band structures of the isolated AGNRs are shifted upward by about 0.17 eV for comparison with Tσ(ky, E). 

Only the up-spin of the transmission is shown due to no spin-polarization. The chemical potentials of the 

left-side lead μL are set to 0 eV in Tσ(ky, E). The right color bar shows the value of Tσ(ky, E).  
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3.4.3. Origin of W dependence 

It is worth investigating how the current depends on the ribbon width in each N family. In all N family 

cases, the current density asymptotically decreases as the ribbon widens. In the case of the AGNR with the 

width of N = 3m, the current density oscillates within the family. Figure 3.15 shows the transmission spectra 

of the AGNR with N = 27 (W = 3.15 nm), N = 39 (W = 4.68 nm), and N = 99 (W = 12.10 nm). The large Tσ(ky, 

E) originating from the HOMO-1 state is not located in the bias range for N = 27, while the Tσ(ky, E) is 

observed in the range for N = 39, resulting in a higher current density in N = 39 than in N = 27. The Tσ(ky, E) 

in N = 99 is the smallest among N = 27, 39, and 99 within the integration range from 0 to 0.1 eV, although 

the band structures correspond with the transmission spectra. This smallest Tσ(ky, E) leads to the lowest 

current density in N = 99 among the N = 3m family. As described above, the variation of current density was 

observed even in the 12 nm ribbons. The energy interval of the π states associating with the transmittance is 

0.15 eV for the model with N = 99 as shown in Fig. 3.15(c). The larger energy interval than the integration 

range of 0.1 eV is likely to cause the variation of current density. Wider AGNRs will suppress the variation 

because the energy interval inversely decreases with increasing the ribbon width. 

The suppression of the transmission spectra in the wider ribbon is ascribed to the decrease of the wave 

function distribution of the state hybridizing with electrodes in the bridge region. Figure 3.16 shows the 

wave functions of the HOMO-1 states for N = 99 and 39 in the clustered model which is described in 

previous section. The distribution seems to be uniform in the ribbon with both N at the Γ-point as shown in 

Figs. 3.16(a) and 3.16(c). At ky = 0.07, however, the distribution decrease at the middle of the ribbon 

compared with the contact region for N = 99, while the uniform distribution throughout the ribbon is still 

found for N = 39. When the ky is changed, the π states of the ribbon in the contact region can modulate 

themselves in keeping the same symmetry with the electrodes by using the electronic state of the electrodes. 

On the other hand, the π states of the ribbon in the bridge region cannot use the states of the electrodes and 

they create the new states by using only the ribbon states, resulting in the less hybridization if the π states of 

the ribbon have different symmetries from the electrodes. As increasing the bridge region, the distribution of 

the wave functions becomes non-uniform along the ribbon [Fig. 3.16(b)]. 
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Fig. 3.15: Transmission spectra Tσ(ky, E) and band structures of the isolated AGNRs for the models with N = 

(a) 27, (b) 39, and (c) 99, which belong to the 3m family with W = 3.15, 4.68, and 12.10 nm, respectively. 

The energies in the band structures of the isolated AGNRs are shifted upward by arbitrary energies for 

comparison with Tσ(ky, E). 
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Fig. 3.16: Wave functions of the HOMO-1 state for the clustered model with N = (a)(b) 99 and (c)(d) 39. The 

ky is 0.0 (Γ) for (a) and (c), and 0.07 for (b) and (d). 
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3.4.4. Hybrid structure of graphene/Ti electrodes 

Figure 3.17 shows current densities for the Ti electrodes. For comparison, those for the Au electrodes are 

also shown. We found that the current densities for the Ti electrodes are about 10 times as large as those for 

the Au electrodes in all W (i.e. N) studied here. 

As shown in Fig. 3.18, the transmission occurs at a wide range of the energy eigenvalues E and the wave 

number along ribbon ky around those of the AGNR (Fig. 3.14) arising from the strong π-d coupling that 

substantially enhances the electron transfer through the Ti-graphene contact. For the Au electrode, on the 

other hands, the transmission peaks reflect the band structures and they alternately arise from the symmetry 

of the π state of the AGNRs as discussed in Sec. 3.4.2. The broad transmission spectra are observed at each 

ky for the Ti electrode, while the transmission peaks are discrete and smaller for the Au electrode, as shown 

in Fig. 3.19. We find that the contact resistance between graphene and metal electrodes decisively depends 

on the amount of the hybridization between them, which is determined by the energy location of metal d 

states with respect to the Fermi level. 

Figure 3.20 shows the difference of the projected density of states (PDOS) of graphene between near the 

contact area and the middle of the ribbon. The strongly hybridized electronic states are found in atoms 

labelled as A and B, which are in the ribbon near the contact area. However, the character of the isolated 

AGNR is recovered in an atom labelled as D, which is at the middle of the ribbon. The energy shift of the 

Dirac point is about -0.2 eV, indicating n-doping from the Ti electrodes. The PDOS of an atom labelled as C 

shows similar character to that of the atom D. For the narrower ribbons, the transmission spectra will be 

completely out of the character of the band structure of the isolated AGNRs by reflecting the completely 

mixed electronic states. In this wider ribbon (N = 95), the electronic state of the isolate AGNRs is observed 

in the middle of the ribbon, resulting in the transmission spectra at E and ky around the band structure of the 

isolated the AGNR. 
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Fig. 3.17: Current density I in a log scale as a function of the AGNR width W for the models of the AGNR 

bridged between Ti and Au electrodes at a bias voltage Vb = 0.1 V. 
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Fig. 3.18: Transmission spectra Tσ(ky, E) for the models with N = (a) 99, (b) 97, and (c) 95 for Ti electrodes.  
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Fig. 3.19: Transmission spectra Tσ(Γ, E) for the models with N = (a) 99, (b) 97, and (c) 95 for Ti and Au 

electrodes. 
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Fig. 3.20: (a) Left-hand half of the clustered model of the hybrid structure of graphene and Ti electrodes with 

N = 95. The carbon atom labelled as D is just the middle of the ribbon. (b) Projected density of states 

(PDOS) of the carbon atoms labelled as A, B, C, and D in (a). 
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3.4.5. Discussions 

In this thesis, we assume that GNRs are adsorbed on clean crystalline metal surfaces. The metal electrodes 

deposited by the electron-beam lithography are considered to be poly crystals. The high substrate 

temperature gives large grains of the metal crystals. The annealing may also develop the grain size. The local 

geometries in experimental seem to be similar to our models. However, a lot of impurities such as water, 

oxygen, and nitrogen are generally present at the interface [126]. The organic materials from the resist 

residuals may be one of the impurities [77]. Such surface contaminations modulate work functions of the 

clean metal surface, resulting in the variation of the ΔED in the weak interaction system such as the 

graphene/Au hybrid structure. The equilibrium spacing d will also be enlarged by the contaminations, also 

resulting in the variation of the ΔED as discussed in Sec. 3.3.3. The current densities may become quite 

different, when the shift is larger than the integration range of 0.1 V. 

The current densities in the graphene-Ti contacts with many adsorbates will be drastically decreased 

compared with our results, because the chemical interaction between graphene and metal could be weakened 

as increasing the concentration of adsorbates on the metal surface [77]. Due to the absence of the strong π-d 

coupling, the transmission will occur at the particular ky and E at which the electronic energy band emerges 

in the isolated AGNRs as in the case of the graphene/Au hybrid structures. 

Finally, we discuss the contact area effect on the transport properties. As reported in the previous works 

[74, 106], the current density is expected to depend on the contact area: In the case of Cu electrode [111], 

transmission spectra shift downward in energy with respect to the Fermi level due to the enhancement of 

electron transfer from the metal surface to the graphene with increasing the contact area. By the analogy with 

the Cu electrode, thus, the electron transfer from the graphene to the metal surface is expected to be 

increased with increasing the contact area. Furthermore, the transmission spectra shift upward with respect to 

the Fermi level. In the case of Ni electrode [111], the transmission increases with increasing the contact area 

due to the enhancement of the interfacial hybridization. By the analogy with the Ni electrode, the Ti 

electrode will exhibit a contact-dependent conductance which monotonically increases with increasing the 

contact area.  
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3.5. Conclusions 

We have studied the electronic transport properties through AGNRs with a width of up to 12 nm bridged 

between two Au and Ti electrodes using first-principles calculations. For the Au electrodes, we have found 

that the current densities sensitively depend on the ribbon width, even though the width reaches 12 nm. The 

symmetry of π state of the graphene ribbons as well as the band structure is important for determining the 

transport properties. These results suggest that the width of graphene material should be precisely controlled 

for designing the graphene-based FET devices with Au electrodes. For the Ti electrodes, on the other hand, 

the current densities are determined by only the modified electronic band structure of the graphene. Thus the 

contact resistance between graphene and metal electrodes decisively depends on the metal species. These 

results should be applicable to give a theoretical insight for transport properties of physisorbed and 

chemisorbed graphene on other metals.  
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Chapter 4. Graphene/insulator hybrid structures 

 

In this chapter, we investigate the electronic transport properties of the hybrid structures of 

graphene/insulators. We firstly present problems arising from the fragility of electronic properties of 

graphene on insulating substrates, and introduce the previous studies on the graphene/insulator interfaces in 

Sec. 4.1. We then demonstrate the computational details and employed models in Sec. 4.2 and 4.3, 

respectively. In Sec. 4.4, we show results and develop discussions for the electronic transport properties of 

the hybrid structures of graphene/insulators. Finally, we present conclusion of this chapter in Sec. 4.5. 

 

4.1. Introduction 

Graphene is normally supported on insulating substrates such as SiO2 in electronic devices in order to 

ensure process robustness and electrical reliability. The carrier mobility of suspended graphene can be up to 

200,000 cm
2
V

−1
s

−1
 [127, 128], while that of graphene on a SiO2 substrate is limited to 10,000 cm

2
V

−1
s

−1
 [1]. 

The on/off current ratio of freestanding GNRs is also degraded on SiO2. For example, freestanding GNRs 

exhibit a ratio of 10
4
 [129], while GNRs on SiO2 have a ratio of 10

1
 at a ribbon width W = 20 nm and a 

source-drain bias Vds = 0.5 V [130].  

The surface treatment of SiO2 also changes the electronic transport properties of graphene. The primary 

structures of silica surfaces are known to be silanol groups (Si–OH) and siloxane groups (Si–O–Si) [131]. 

The treatment of the SiO2 surface with O2 plasma after dipping in HF results in the silanol (OH-terminated) 

surface. The siloxane (O-terminated) surface is prepared by annealing the silanol surface in O2 gas to desorb 

H2O molecules. Silanol groups on the SiO2 surface degrade the mobility and shift the Dirac point of 

graphene, while graphene on the siloxane SiO2 surface shows the high mobility without the Dirac point shift 

[132]. 

From a theoretical perspective, several studies on the geometrical and electronic properties of graphene on 

SiO2 have been reported using first-principles methods. They showed that graphene is strongly bound to 

O-terminated SiO2 substrates with unsaturated O dangling bonds via the formation of covalent C–O bonds 



74 

[36, 133, 134]. However, on OH- and O-terminated SiO2 surfaces without dangling bonds, graphene is 

weakly bound to the surface [135]. On both OH- and O-terminated SiO2 surfaces, the energy band structure 

of freestanding graphene is almost preserved, but a small energy gap is formed at the Dirac point. Although 

no charge transfer between the graphene and either SiO2 surface is observed, inhomogeneous valence charge 

redistribution occurs in the interfacial region for the OH-terminated surface [136]. The charge redistribution 

indicates that the silanol group could be one of the main scattering centers on the SiO2 substrate and the 

carrier mobility in graphene can be suppressed by the presence of the OH groups on the SiO2 surface. 
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4.2. Computational details 

The computational details are almost the same as the last chapter. For geometrical optimizations, we use 

the PAOs specified by C-s2p2d1, H-s2p1, Si-s2p2d1, and O-s2p2d1. Real-space grid techniques are used 

with a grid cell length of lg = 0.13 Bohr in numerical integrations, and the Poisson equation was solved using 

FFT. We use the O(N) scheme based on a Krylov subspace method implemented in OpenMX [137]. The 

radius of cluster truncation and the dimension of the Krylov subspace are set at 1.1 nm and 1500, 

respectively. Geometries are optimized under a three-dimensional periodic boundary condition, and the 

convergence criterion for forces on atoms is 0.1 eV/nm. 

For transport calculations, we employ the NEGF method implemented in OpenMX. The PAO set is 

C-s1p2, H-s1, Si-s1p1, and O-s1p1. To examine the accuracy of the small basis set, we made a small unit cell 

model with graphene on SiO2/Si [Fig. 4.1(b)]. The graphene is compressed by 11% along the x-direction and 

expanded by 4% along the y-direction to match with the lateral unit cell of SiO2/Si. The energy band 

structure of the compressed graphene is shown in Fig. 4.1(c). The Dirac point in the compressed graphene is 

shifted to the Γ-Y direction from the Γ-point, where it is folded under the equilibrium lattice constant. 

Figures 4.1(d) and 4.1(e) show the energy band structures of graphene on SiO2/Si obtained using the large 

and small orbital sets, respectively. The large basis set provides quantitatively the same results each other in 

the geometry and electronic properties through our benchmark calculations. The Dirac point of graphene for 

the small basis set appears just 0.09 eV above that of the large basis set. The difference of Fermi velocity of 

the bands around the Dirac point is within 6% between the large and small basis sets. A larger lg = 0.30 Bohr 

is used in the real-space grid techniques. The accuracy of the large grid cell length (lg = 0.30 Bohr) is 

examined using the short-channel model with L = 0.86 nm as shown in Fig. 4.2(a). The model is composed 

of two units of the AGNR channel with N = 7 and the strained AGNR leads with N = 8. We calculated the 

current densities for the model at bias voltages of 0.5 V and 1.0 V using the NEGF method. The errors in the 

current densities are shown in Fig. 4.2(b). The obtained current density for lg = 0.30 Bohr is below 3% 

smaller than that for lg = 0.13 Bohr, which is the value employed in the geometric optimization. We 

concluded that the small set of PAOs and the large grid cell length lg = 0.30 Bohr are adequate to discuss the 
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transport properties of AGNRs on SiO2/Si. These treatments significantly contribute to reduce the 

computational cost.  
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Fig. 4.1: A small unit cell model with (a) graphene and (b) graphene on SiO2/Si in the equilibrium SiO2/Si 

cell. The dotted rectangle indicates the unit cell. The lattice of graphene is compressed by 11% along the 

x-direction and expanded by 4% along the y-direction to match the lateral unit cell of SiO2/Si. Energy band 

structures of (c) the compressed graphene using large basis sets, and graphene on SiO2/Si using (d) large and 

(e) small basis sets. The Fermi level is set at zero energy.  
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Fig. 4.2: (a) A short-channel model of AGNR with L = 0.86 nm to examine the relationship between the grid 

cell length lg and the current density. The model is composed of two units of the AGNR channel with N = 7 

and the strained AGNR leads with N = 8. (b) Errors in the current densities as a function of the grid cell 

length under bias voltages of Vb = 0.5 V and 1.0 V. 
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4.3. Models 

In this thesis, we study the electronic transport properties of AGNRs on SiO2/Si. The AGNRs with the 

number of C2 dimer rows N = 7 are chosen. We examine the SiO2/Si surfaces with OH and O terminations. 

We also investigate the transport properties of AGNRs on SiO2/Si with two channel lengths of L = 9.91 and 

15.1 nm. 

 

4.3.1. AGNRs 

Figure 4.3 shows freestanding AGNRs used for transport calculations. The channel of an AGNR with N = 

7 is sandwiched between semi-infinite leads. The calculated energy band gap of the AGNRs with N = 7 is 1.6 

eV, which is consistent with previous works [45, 138]. For simplicity, the leads were made of AGNRs with N 

= 8 whose lattice parameter is uniaxially elongated by 1.86 % along the ribbon in order to possess metallic 

electronic structure [138, 139]. All edge carbon atoms are terminated by hydrogen atoms. The channel length 

L is either 9.91 or 15.1 nm; these values were chosen based on their potential future application in 

graphene-based electronic devices. The geometric structure of the AGNR is optimized using the O(N) 

method except the atoms belonging into leads. 
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Fig. 4.3: A structural model of AGNRs for transport calculations. The yellow rectangle indicates a unit of 

AGNRs with N = 7. The length of the unit in the x-direction is 0.430 nm. The channels consist of 23 and 35 

units for channel lengths (L) of 9.91 and 15.1 nm, respectively. The dotted regions represent the unit cell of 

the leads, which are made of AGNRs with N = 8 whose lattice parameter is uniaxially elongated by 1.86 % 

along the x-direction. The gray and white spheres represent carbon and hydrogen atoms, respectively. 

  



81 

4.3.2. SiO2/Si 

Figures 4.4(a) and 4.4(b) shows SiO2/Si with OH-terminated (silanol) and O-terminated (siloxane) 

surfaces, respectively. The two models are chosen to correspond with the experiment of the electronic 

transport properties of graphene on SiO2 [132]. Here, we explain the details of the O-terminated SiO2/Si 

models shown in Fig. 4.4(b). The two layers of Si surface are oxidized. The SiO2 thickness is 0.45 nm, which 

is also considered as an equivalent oxide thickness for future devices. The SiO2 thickness from a few ten to a 

few hundred nm is commonly used in current experiments. The model in Fig. 4.5(a) shows a fully 

O-terminated surface structure without dangling bonds for a thin oxide film, as proposed in Ref. [140]. The 

model originally had 14 Si layers; however, we extracted six layers and terminated all edge Si atoms with 

hydrogen atoms, as shown in Fig. 4.5(b). We then optimized the geometry except the bottom two Si layers 

and confirmed that the model maintains the atomic structure with the errors in bond lengths within 1% and 

the bond angles equal to the original ones. The unit cell of the structure in the xz-plane is indicated by the 

dotted rectangle, which is also periodic along the y-direction. For transport calculations, the end of this 

structure is cut off on both sides in the x-direction and terminated by hydrogen atoms (Fig. 4.4). The models 

consist of 8.5 and 13.5 units of the original periodic SiO2/Si structure for L = 9.91 and 15.1 nm, respectively. 

The entire geometry of the model is also optimized using the O(N) method except the bottom two Si layers. 

The OH-terminated model of Fig. 4.4(a) is constructed by replacing each topmost oxygen atom in the 

O-terminated model of Fig. 4.4(b) with two OH groups. The silanol concentration of the model is 6.7 

OH/nm
2
, which almost corresponds to the highest concentration on the surface of amorphous silica [131] and 

the intermediate value between 9.6 OH/nm
2
 in Ref. [135] and 4.8 OH/nm

2
 in Ref. [136]. Only the atomic 

positions of the OH groups are relaxed. We identified the model in Fig. 4.4(a) as a metastable structure and 

confirmed that intense geometrical optimization easily overcomes the potential barriers; this causes the  

desorption of H2O molecules, resulting in an O-terminated surface [Fig. 4.4(b)]. 

Figures 4.6(a) and 4.6(b) show the electronic structures of OH- and O-terminated SiO2/Si, respectively. 

The calculated unit cell is indicated by the dotted rectangles in Fig. 4.4. Both the SiO2/Si models have band 

gaps of Eg = 1.5 eV. For OH-terminated SiO2/Si, some nearly flat band states are found in the band gap, 
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although the model has no dangling bonds; these states are localized around the OH groups on the SiO2/Si 

surface. The localized states might be ascribed to the not fully relaxed geometry for the OH-terminated 

SiO2/Si surface. Figure 4.6(c) shows the wave function of the highest occupied state, which is one of the 

nearly flat band states, at the Γ point. The electron affinity χ, which is defined as the energy difference 

between the vacuum level of the OH- or O-terminated side and the lowest unoccupied state, is 5.7 eV for the 

OH-terminated surface and 4.8 eV for the O-terminated surface. These values, Eg and χ, are closer to those of 

Si (Eg = 1.1 eV and χ = 4.05 eV) rather than those of SiO2 (Eg ~9 eV and χ = 0.95 eV). 

By comparing Fig. 4.1(d) with Fig. 4.6(b), we can find that the LUMO of the SiO2/Si band is occupied by 

the electron transfer from the graphene to the substrate. Since the main amplitude of the LUMO state is 

distributed on the Si-layer as well as other states of SiO2/Si around the Fermi level, the state is not expected 

to affect the transport properties of graphene.  
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Fig. 4.4: Models of SiO2/Si with (a) OH-terminated (silanol) and (b) O-terminated (siloxane) surfaces. The 

left edges are illustrated. The dashed rectangles indicate the unit cell of the periodic SiO2/Si structure. The 

blue and red spheres represent silicon and oxygen atoms, respectively. 
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Fig. 4.5: (a) Our slab model of SiO2/Si surface. (b) The original model of SiO2-Si-SiO2 in Ref. [139] whose 

geometry data is provided by Dr. T. Yamasaki. The dotted rectangles represent the unit cell. The gray areas 

indicate the fixed atom in the geometry optimization for each structure. 
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Fig. 4.6: Band structures of (a) OH- and (b) O-terminated SiO2/Si for the unit cell of the periodic structures 

shown as the dashed rectangles in Fig. 4.4. The Fermi level of each SiO2/Si model is set to 0 eV. (c) Wave 

function of the highest occupied state at the Γ point indicated by the arrow in (a). The yellow and cyan areas 

in the isosurfaces denote different signs of the states.  
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4.3.3. AGNRs on SiO2/Si 

AGNRs are adsorbed on SiO2/Si (Fig. 4.7). The spacing between the AGNRs and SiO2/Si was determined 

such that the total energy can be minimized in the model for the channel length of 9.91 nm. The geometries 

of the AGNRs and SiO2/Si were fixed to the optimized structures. The lateral configuration is randomly 

selected based on no site selectivity [135, 136] for graphene/SiO2 interfaces. The spacing between the 

AGNRs and the topmost atoms in SiO2/Si is 0.25 nm for the OH-terminated surface and 0.31 nm for the 

O-terminated surface. The spacing for the OH-terminated surface corresponds to the silanol density. The 

obtained value is intermediate between the values reported in Ref. [135] (0.29 nm) and Ref. [136] (0.22 nm). 

For the O-terminated surface, the spacing is almost the same as those reported in Refs. [135] and [136], 

being employed in the model for L = 15.1 nm. 
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Fig. 4.7: A model of AGNRs on SiO2/Si used for transport calculations (channel length L = 15.1 nm): (a) top 

and (b) side views. Although both sides in the transport direction (x) are connected to a semi-infinite AGNR 

in the actual calculations, only atoms in the center region are shown. In the y-direction, only atoms of the 

unit cell are shown, and they are actually repeated periodically. The details and enlarged figures of the 

AGNRs and SiO2/Si are presented in Figs. 4.3 and 4.4, respectively. 
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4.4. Results and discussions 

4.4.1. Effect of different SiO2 surface terminations to transport properties 

We investigate the transport properties of AGNRs with L = 9.91 nm on OH- and O-terminated SiO2/Si. For 

comparison, we also investigate the transport properties of freestanding AGNRs. The electronic structure is 

determined self-consistently using the NEGF method. Figure 4.8(a) shows the transmission spectra obtained 

at a bias voltage of 0 V in a linear scale for AGNRs on OH- and O-terminated SiO2/Si and freestanding 

AGNRs. All models have a transmission gap of 1.6 eV, which agrees with the energy band gap of AGNRs 

with N = 7. The transmission gaps for AGNRs on both SiO2/Si are shifted upward by 0.7 eV. Despite the 

upward shift of the electronic states of AGNRs no doping effect was found on graphene using the fully 

O-terminated SiO2 slab models [135, 136]. The hole doping to the graphene from our O-terminated SiO2/Si 

model may originate from the electron affinity level of SiO2/Si (4.8 eV) and the Fermi level of graphene (4.2 

eV). For freestanding AGNRs, the transmission is increased from 2 to 6 at almost regular energy ranges, 

indicating the quantum conductance. However, for AGNRs on both SiO2/Si, the energy range with a 

transmission of about 2 is narrower on the n side (around 1.6 eV). Moreover, the transmission shows discrete 

peak structures on the p side (below 0 eV). To highlight the difference in transmission gaps, the transmission 

spectra are also shown on a log scale in Fig. 4.8(b). The transmission spectra in the gap are very large for 

AGNRs on both SiO2/Si compared with freestanding AGNRs, especially in the energy region just above 0 eV 

for the model with the OH-terminated surface. 

To understand the transmission spectra, we first calculated the PDOS of each carbon atom in the AGNRs 

(Fig. 4.9). The lateral and vertical axes are the x axis in Fig. 4.7 and the energy relative to the Fermi level of 

the leads, respectively. For freestanding AGNRs [Fig. 4.9(c)], PDOS tails extend from the left side along the 

x axis; however, there is a clear gap of 1.6 eV in the middle of the channel around zero energy that 

corresponds well to the transmission gap. In contrast, for AGNRs on SiO2/Si [Figs. 4.9(a) and 4.9(b)], 

multiple gap states are formed throughout the channel, especially on the p side for the OH-terminated surface. 

These states cause the multiple spiky transmission peaks in the gap and limits the tunneling transmission. We 

also observe Schottky barriers at the interface between the p-type semiconductor of AGNR channel and the 
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metallic graphene leads, as shown in Figs. 4.9(a) and 4.9(b). These Schottky barriers at both sides appear to 

form many discrete peaks in the transmission spectra on the p side. 

To clarify the effect of the OH-terminated surface, we summarize the charge transfer for both of the 

SiO2/Si models in Table 4.1, which shows the values for the unit cell of the periodic SiO2/Si structure (shown 

as the dashed rectangles in Fig. 4.4) in the middle of the channel. For the geometry optimizations performed 

under periodic boundary conditions, the holes are injected into AGNRs from SiO2/Si. The number of injected 

holes by the OH-terminated surface is larger than that by the O-terminated surface. For the transport 

calculations (NEGF), AGNRs are connected to the leads, and the holes in AGNRs are decreased. The OH 

groups have nearly flat band states within the band gap [Fig. 4.6(a)], which contribute the charge transfer. We 

also examine the PDOS of carbon atoms in AGNRs and oxygen atoms in the OH groups of the 

OH-terminated surface [Fig. 4.10(a)], that of carbon and oxygen atoms for the O-terminated surface [Fig. 

4.10(b)], and that of a carbon atom of freestanding AGNRs [Fig. 4.10(c)]. We observe several PDOS peaks 

in the gaps of AGNRs for SiO2 surfaces. In contrast, any peaks are not observed in the gap for freestanding 

AGNRs. Peak positions of the carbon atom correlate with those of the oxygen atoms, indicating a substantial 

interaction between the AGNRs and the SiO2/Si surfaces despite the large spacing of about 0.3 nm. We also 

find large peaks around -0.5 eV and above 0 eV in the PDOS of the oxygen atoms in the OH groups; 

however, these peaks are not observed in the oxygen atoms of the O-terminated surface. These two peaks can 

be interpreted as the bonding and anti-bonding states originating from the interaction between the localized 

states around the OH groups in the unrelaxed geometry and the AGNRs. One of the peaks above the Fermi 

energy explains the larger transmission in the p side of the gap. 

Here, we discuss the current characteristics shown in Fig. 4.11. Our transport calculations do not include 

actual gate structures or gate electric fields. We model a gate-controlled current by integrating the 

transmission in Fig. 4.8 over the energy range of 0.5 eV with respect to the central energy, which is 

corresponding to average of the chemical potential in the left and right leads, of the integration region. We 

assume that a back-gate voltage produces a uniform voltage drop on the entire AGNR, including source and 

drain leads. It should be noted that the voltage drop is not identical to the gate voltage because both the 
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voltages are related through the quantum capacitance of the AGNR and the gate electrodes. The eigen values 

of the AGNRs on SiO2/Si are shifted downward by 0.7 eV from those of the pristine AGNRs. The currents 

are normalized to the AGNR width of 0.76 nm. The current in the p side (hole current) in AGNRs on both 

SiO2/Si is smaller than that in freestanding AGNRs. The Schottky barriers for AGNRs on SiO2/Si produce 

discrete transmission peaks on the p side, as described above; these discrete transmissions decrease the hole 

currents. However, the current in the n side (electron current) exhibits a steep rise for AGNRs on both 

SiO2/Si. The steep increase in the electron current is ascribed to the narrower energy range with a 

transmission of 2 on the n side, as observed at around 1.6 eV in Fig. 4.8(b). The on/off current ratios for the 

AGNRs on OH- and O-terminated SiO2/Si and the freestanding AGNRs are 10
4
, 10

5
 and 10

13
, respectively. 

Here, we define the maximum and minimum currents in Fig. 4.11(b) as the on and off currents, respectively. 

Since on currents do not depend on the substrate environments, the off currents limit the on/off current ratios. 

The small ratios (large off currents) for AGNRs on both SiO2/Si originate from the large transmissions in the 

gap, as shown in Fig. 4.8(b). The off current in the gap for the OH-terminated surface is larger than that of 

the O-terminated surface in the p side of the gap. This difference is ascribed to the large PDOS peaks on the 

p side for OH-terminated SiO2/Si. These results may explain the degraded mobility of graphene sheets on 

SiO2 with silanol groups [132]. 
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Fig. 4.8: Transmission spectra at a bias voltage of 0 V on (a) linear and (b) log scales for the AGNR on 

OH-terminated (OH) and O-terminated (O) SiO2/Si, and the freestanding AGNR (FS) with the channel 

length L = 9.91 nm. 
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Fig. 4.9: PDOS of each carbon atom in AGNRs with the channel length L = 9.91 nm for three models: 

AGNRs on (a) OH- and (b) O-terminated SiO2/Si, and (c) freestanding AGNRs. The lateral axis indicates the 

x position of the carbon atoms shown in Fig. 4.7. The left lead extends from x = 0 to x = 0.86 nm. Only the 

left half region is shown because of the symmetry between the left and right half regions. The vertical axis is 

the energy relative to the Fermi level of the leads. The right color bar shows the PDOS value. The Schottky 

barriers are found in the dotted regions in (a) and (b).  
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Fig. 4.10: PDOS (arb. unit) of a carbon (C) atom in AGNRs and an oxygen (O) atom of an OH group in the 

middle of the channel for AGNRs on (a) OH- and (b) O-terminated SiO2/Si, and (c) freestanding AGNRs. 
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Table 4.1. Charge transfer in units of elementary charge for AGNRs on (a) OH- and (b) O-terminated SiO2/Si. 

The methods O(N), NEGF, and ΔQ indicate geometric optimizations with periodic boundary conditions, 

transport calculations, and the difference between them, respectively. The values for the unit cell of the 

periodic SiO2/Si structure, which is shown as the dashed rectangles in Fig. 4.4, in the middle of the channel 

are given. 

 

Methods O(N) NEGF ΔQ 

Model (a) (b) (a) (b) (a) (b) 

AGNRs +0.519 +0.223 +0.408 +0.108 −0.111 −0.115 

OH group −0.389 - −3.251 - −2.862 - 

SiO2/Si −0.130 −0.223 +2.883 −0.111 +3.013 +0.112 

Total 0.000 0.000 +0.040 −0.003 +0.040 −0.003 
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Fig. 4.11: Current densities on (a) linear and (b) log scales for AGNRs on OH- and O-terminated SiO2/Si, 

and freestanding (FS) AGNRs. The transmission is integrated over the energy range of 0.5 eV to obtain the 

current for each energy value as the center. The current is normalized to the AGNR channel width of 0.76 

nm. The energy values for AGNRs on O-terminated SiO2/Si were shifted downward by 0.7 eV for 

comparison. 
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4.4.2. Channel length dependence of transport properties 

We examine the transport properties of AGNRs on O-terminated SiO2/Si and of freestanding AGNRs 

under two different channel lengths: L = 9.91 and 15.1 nm. Figures 4.12(a) and 4.12(b) shows the 

transmission spectra obtained at a bias voltage of 0 V of AGNRs on O-terminated SiO2/Si and of  

freestanding AGNRs, respectively. We could not find any pronounced difference between the transmission 

spectra of the models with the two different channel lengths. The energy intervals of the discrete peaks due to 

the Schottky barriers are 0.11 eV for L = 9.91 nm and 0.07 eV for L = 15.1 nm. The interval is found to be 

inversely proportional to L. To highlight the difference in transmission gaps, the transmission spectra are also 

shown on a log scale in Fig. 4.12(c). The transmission spectra in the gap decrease exponentially with L for 

the freestanding AGNRs. The minimum values of the transmission are 10
−16

 for L = 9.91 nm and 10
−24

 for L 

= 15.1 nm. However, for AGNRs on O-terminated SiO2/Si, the transmissions in the gap are independent of L, 

and multiple spiky peaks are also found in the gap, as discussed in Sec. 4.4.1. 

To understand the transmission spectra, we discuss the PDOS of each carbon atom in the AGNRs in Fig. 

4.9. The transmission gap can be seen as the potential barrier to tunneling from the left lead to the right lead. 

The height of the potential barrier is independent of L for freestanding AGNRs, because the band gap is also 

independent of L. However, the range of the potential barrier depends on L; the transmission gap decreases 

exponentially with increasing L for the freestanding AGNRs. In contrast, the simple assumption of the 

tunneling barrier is inapplicable to the AGNRs on O-terminated SiO2/Si; gap states are observed throughout 

the channel, generating the spiky transmission peaks. As a result, the transmission in the gap does not depend 

on L. The interaction between the AGNRs and the SiO2/Si surface affects the tunneling transmission 

regardless of L. 

Figure 4.13 shows the current evaluated in the same way as in Sec. 4.4.1. The on currents do not depend 

on L for the both model, but the off currents depend on L only for the freestanding AGNRs. The on/off ratio 

of freestanding AGNRs increases to 10
20

 at L = 15.1 nm due to the exponential decay of the tunnel 

transmission within the gap. For AGNRs on O-terminated SiO2/Si, however, the ratios of 10
5
 are independent 

of L arising from L-independent transmission spectra within the gap. Thus, we have found that the SiO2/Si 
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substrates limit the off currents of AGNRs. 

Electrical transport experiments on sub-10-nm GNRs on SiO2 have been performed [130]. The FET using 

GNRs with widths of 5 nm showed an on current of 2  and an on/off ratio of 10
5
 at a source-drain voltage 

of 0.5 V, which is the same value as the integration region in our current calculations. Although the GNR 

width is still wider than in our calculations, the on/off ratio is consistent with our results. The smaller on 

current is mainly attributed to the contacts with actual metal leads. 
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Fig. 4.12: Transmission spectra at a bias voltage of 0 V in (a, b) linear and (c) log scales for AGNRs on 

O-terminated SiO2/Si (green lines) and freestanding AGNRs (blue lines). The solid and dotted lines indicate 

the transmissions for the models with L = 9.91 and 15.1 nm, respectively.  
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Fig. 4.13: Current densities on (a) linear and (b) log scales for AGNRs on O-terminated SiO2/Si (green lines) 

and freestanding (blue lines) with channel lengths of 9.91 (solid) and 15.1 (dotted) nm. The transmission is 

integrated over the energy range of 0.5 eV to obtain the current for each energy value as the center. The 

current is normalized to the AGNR channel width of 0.76 nm. The eigen values of AGNRs on O-terminated 

SiO2/Si were shifted downward by 0.7 eV for comparison. 



100 

4.5. Conclusions 

We study the electronic transport properties of AGNRs with width corresponding with the number of C2 

dimer rows N = 7 adsorbed on OH-terminated (silanol) SiO2/Si and O-terminated (siloxane) SiO2/Si. We 

consider two AGNRs with two different channel lengths of 9.91 and 15.1 nm for the AGNRs on 

O-terminated SiO2/Si. The AGNRs on both SiO2/Si surfaces show p-type conduction. The number of injected 

holes by the substrate with OH is larger than that by the surface with O. The hole current in AGNRs on 

SiO2/Si is smaller than that in freestanding AGNRs due to Schottky barriers. The off current in AGNRs on 

O-terminated SiO2/Si is independent of channel length L due to the PDOS peaks within the band gap, 

although it exponentially decreases with increasing L for the freestanding AGNRs. The off current is even 

larger on the p side for the silanol SiO2. The OH groups with the unrelaxed geometry cause nearly flat band 

states around the valence band maximum of the AGNRs and are considered to increase the charge transfer. 

Thus, we find that the gap states originating from the interaction between the AGNRs and the SiO2/Si surface 

limits the off currents. We can conclude that for graphene-based electronic devices, it is important to control 

the surface structure of the insulating substrates.  
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Chapter 5. Summary 

 

One atom thickness of graphene is one of the greatest advantages utilizing them in nanoscale devices. It 

simultaneously leads to problems arising from the fragility of the fundamental properties of graphene against 

the other foreign materials, such as metal electrodes, and insulating substrates. In this thesis, we study 

electronic transport properties of AGNRs bridged between two metal electrodes and supported on SiO2/Si 

using first-principles calculations. 

We investigate the electronic transport properties of the hybrid structures of graphene/metal electrodes. 

The models consist of AGNRs width up to 12 nm bridged between two metal electrodes of Au and Ti. For 

the Au electrodes, the current densities sensitively depend on the ribbon width, even though the width 

reaches 12 nm. We have found that the energy band structure and the symmetry of π state of the graphene 

play the important role for determining the transport properties because of the weak interaction between the 

π state of graphene and the s state of the Au surface. These results suggest that the width of graphene 

materials should be precisely controlled for designing the graphene-based FET devices with Au electrodes. 

For the Ti electrodes, in sharp contrast, the strong π-d coupling modifies the electronic structure of graphene 

and substantially enhances the electron transfer through the Ti-graphene contact. As the results, the current 

densities for the Ti electrodes are about 10 times as large as those for the Au electrodes in the AGNRs with 

the ribbon width of about 12 nm. We have found that the transport properties of the hybrid structures of 

graphene/metal electrodes decisively depend on the amount of the hybridization between them.  

We also investigate the electronic transport properties of the hybrid structures of graphene/insulators. The 

models consist of AGNRs on OH- and O-terminated SiO2/Si with two channel lengths (L = 9.91 and 15.1 

nm). The AGNRs on both SiO2/Si surfaces show the p-type transport property. The hole current in AGNRs 

on SiO2/Si is smaller than that in the freestanding GNRs due to Schottky barriers. The off current for AGNRs 

on O-terminated SiO2/Si is independent of channel length L due to the PDOS peaks within the band gap. The 

off current is even larger on the p side for the OH-terminated SiO2. The OH groups have localized states 

around the valence band maximum of the AGNRs and are considered to increase the charge transfer. The gap 
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states originating from the interaction between the AGNRs and the SiO2/Si surface limits the off currents. 

Thus, for graphene-based electronic devices, it is important to control the surface structure of the insulating 

substrates.  

To obtain further theoretical insight for realizing the graphene-based electronic devices, we should employ 

more realistic model of the interface including effects of contaminations, annealing processes, and surface 

morphologies. In the future, we would like to develop the comprehensive understanding on the interfaces 

associated with the 2D thin film materials. 
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