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Chapter 1

Introduction

Classification of natural science, it is due to scale. In order scale is large, the scale of the universe is
described in astrophysics, the scale of the earth is described in earth planetary science, the molecular
scale is described in biology, the atomic scale is described in the chemical, the nuclei scale is described in
nuclear physics and the smallest scale is described in particle physics. At present, there are fundamental
particle as the fermion which make up the matter, the boson which mediate the interaction. Further
fermions are classified into six quarks (u, d, ¢, s, t, b) and six leptons(e, ve, p, vy, T, V7). Boson are
classified into the gauge boson (v, W*, Z, g, G which is unconfirmed) and the Higgs boson H® which is
confirmed in 2012 [1, 2]. We believe that everything is made from the interactions of these fundamental
particles.

At recent years, people try the numerical calculation across the scale, because the connection between
different scale is not apparent. As a first step, we study the nuclear potential which is the input of nuclear
physics from quarks and gluons. In Standard model (SM), the origin of the nuclear potential is quarks and
gluons interaction, and dynamics of quarks and gluons is described Quantum Chromodynamics (QCD)
which is SU(3) Yang-Mills theory. Therefore we calculate QCD to estimate the nuclear interaction. In
fact, the perturbative QCD is successful in predicting the phenomena in high energy region, on the other
hand, it is difficult to calculate the QCD in low energy region. This is caused that the coupling constant
of QCD is large in low energy region called confinement, in contrast the coupling constant is small in high
energy region called asymptotic freedom. Therefore perturbative calculation is unreliable.

Lattice QCD is a powerful tool to calculate the QCD in non-perturbative region. To calculate in non-
perturbative region, Lattice QCD run the path integral numerically using the high performance computer.
For numerical calculation, Lattice QCD is described on Euclidian space-time which is discretized with
a finite lattice spacing a, and it is well defined. Quantum field theory in continuum space-time has
an uncountable infinite number of degree of freedom, on the other hand, Lattice QCD has countable
infinite number of degree of freedom. Since the momentum has the upper limit 7 which arises from a
finite lattice spacing a, it is not appear the ultraviolet divergence. So Lattice QCD is a theory that has
been regularized. In addition, the Lattice QCD calculation in finite volume, it is equivalent to quantum
mechanics that is finite degree of freedom, and we can calculate it. Of course the reality of space-time is
believed that it is continuos, we estimate the physical value in the limit of the continuum a — 0. Basically
input parameters in the lattice QCD are the hopping parameter x which corresponds to the quark mass
which is a input parameter of SM and the 8 which corresponds to the coupling constant in QCD.

The first principle calculation using the LatticeQCD, it can estimate the hadronic spectrum, the
condiments and chiral symmetry breaking, the properties of QCD finite temperature or density. The
hadron mass is single hadron quantity which is estimated from 2-pt correlator which is successful to predict
the physical mass. CP-PACS Collaboration studied the light hadron mass with quenched approximation
[3, 4] which is ignore the dynamical effects of the sea quarks, and PACS-CS Collaboration estimated in
2+1 flavor full QCD toward the physical point [5] which used nature of quark mass. Furthermore some
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simulation includes the effect of (Quantum electrodynamics) QED [6, 7], and 1+1+1 flavor full QCD +
QED simulation at physical point [8]. Because of the theory and computer development, Lattice QCD
can calculate the hadrons interaction that is estimated from 4-pt correlator. There are two ways as the
calculation of hadron interactions. One is the traditional approach called Liischer method [9], which
estimate the phase shift from the interaction energy which is measured in finite box. Other one called
HAL QCD potential method has been developed in recent years [10, 11]. It calculates the phase shift via
the nuclear potential which is calculated from the equal time Nambu-Behte-Salpeter wave function (NBS
wave function). This method can be applied not only to the nuclear potential [10, 11, 12] but also to
other interactions such as baryon-baryon interactions [13, 14, 15|, meson-meson interactions [16, 17], the
LS force [18, 19], the anti-symmetric LS force [20], and three-body force [21]. See [12] for a recent review
of this method.

Hyperons (baryons including strange quarks) are expected to appear in extremely high density such as
a core of neutron stars, so that the equation of state (EoS) in dense matters is affected. To determine the
EoS of neutron stars precisely, information on their interaction is necessary. Experimentally, however, it
is difficult to determine them due to the short lifetime of hyperons. Therefore, theoretical determinations
of hyperon interactions are crucially important. Indeed the HAL QCD method has been employed to
investigate hyperon interactions in various channels [13, 14, 15]. Considering the hyperon system, it
has an approximate flavor SU(3) symmetry between the mass of u, d, and s quarks. The flavor SU(3)
derives the irreducible representations (3 ®3® 3 =1® 8@ 8 @ 10). The 8 called octet baryon and the
10 called decuplet baryon. HAL QCD potential method investigations so far are limited to octet-octet
baryons interactions. Quiet recently, an octet-decuplet interaction has been investigated by the HAL
QCD method using the nucleon-Omega system, since only Omega is stable decuplet baryon under QCD
interaction. The result suggests an existence of the bound state in this system [22].

In this paper, we investigate interactions in the Omega-Omega system, which has the highest strangeness
among two baryon systems, as a first step to understand the decuplet-decuplet interaction. In the past
studies, there is a possibility that some decuplet baryons have a bound state. However, almost all decuplet
baryons are unstable due to decays via the strong interaction. An exception is the Omega baryon, which
is stable against the strong decays, so its interaction is suitable to be investigated. The quark model
predict which is used the quark model [23] the Omega-Omega interaction is strongly attractive [24]. It is,
however, still difficult to investigate the Omega-Omega interaction experimentally because Omega decay
via weak interaction. Therefore, the lattice QCD study for the Omega-Omega interaction is necessary
and important. As previously mentioned, it is difficult to estimate the Omega-Omega interaction in the
experiment, the model calculation has an ambiguity. So Chiral Quark Model model calculation [25] pre-
dicted the strong attraction [24] but the other model (Quark Disloc./Color-screen Model) did the weak
repulsive force [26, 27]. In addition, the lattice QCD investigation on the Omega-Omega interaction by
the Liischer method found the weak repulsion but with large errors [28]. They used two simulation using
two different volumes with L ~ 2.5 and 3.9 fm on anisotropic clover lattices at m, ~ 390 MeV with a
lattice spacing of as ~ 0.123 fm in the spatial direction and a; ~ as/3.5 in the temporal direction. Using
it, the estimate the scattering length a = 0.16 +0.22 fm in J = 0.

HAL QCD method study of the octet-octet system interaction about hadron-hadron, hadron-hyperon
and hyperon-hyperon, its qualitative nature of which is consistent with the results of the quark model. If
we believe the quark model results, it can expect that Omega-Omega simulation results in Lattice QCD
consistent with the qualitative results of the quark model which suggests that Omega-Omega interaction
is strongly attractive, but the results of Liischer method is not so strong interaction [28]. As mentioned
in the introduction, Since the Omega baryon is stable in QCD, the method has been used in the HAL
QCD Collab. can be safely applied.

This paper is organized as follows. In chapter 2, we explain the method to determine the nuclear
potential in lattice QCD. In chapter 3, for calculation of the Omega-Omega interaction, we show some
topics particularly Omega operator and spin and angular momentum projections. In chapter 4, we explain
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the Okubo-marshark decomposition [29] for decuplet-decuplet system in first order. In chapter 5 we show
the numerical simulation results and discussion, Finally we summarize this work in chapter 6.



Chapter 2

Nuclear Force in Lattice QCD

In this chapter, we show how to extract Nuclear potential from QCD. In quantum mechanics, we calculate
wave function by using the Schrodinger equation. In HAL QCD potential method, however, we inversely
use the Schrédinger equation to extract a potential. There are two important points.

e Can we extract energy independent potential?
e What is the wave function in QCD?

We first explain Lattice gauge theory. We then define an energy independent potential. Finally we explain
what kind of properties the wave function should have.

2.1 Lattice gauge theory

We consider actions in Lattice gauge theory. One of the guiding principles of our construction is the
requirement that in the limit ¢ — 0 the lattice action approaches the continuum form.

2.1.1 Gauge filed

The lattice formulation provides the only possible framework at present to study QCD non-perturbatively.
We consider a four-dimensional Euclidean space. In lattice QCD, we introduce gauge filed on a space-time
lattice(n, ).

Au(n) = A%n)T* € SU(N) (2.1)

where T% is N x N matrix and
Tt =0 (7Y =19, (2.2)
Te(TT?) = %5‘“’ [T, T = 4 febere (2.3)

is satisfied. We define link variable U(x, z + fia) as

~

Uy =Ula.z+jia) = expliagAu(n+5)), (2.4)

UTTL,,U, = U’n-l-[t,—,u) (25)

6
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where /i is unit vector of space-time. U, , is gauge transformed at V;, € SU(N) as

Unp — VaUn VI

n+fi’ (26)

We define gauge invariant object. We consider the product of link variables around an elementary
square, called the plaquette. Let this plaquette lie in the y — v plane. We then define U, (n)

Uuw(n) = Un WUpin UL U 2.7
Iz Ny P

n+v,u - n,v*
It is possible to write down the gauge action as
Sa = Z Btr[Un,uUn—w,vU;rwu,uUrt,u] = Z 2BRetr[Uu (n)], (2.8)
n,puFY n,u>v

where 8 = g%. 5 is the inverse of the coupling constant squared.

2.1.2 Dirac field

We introduce matter field. The matter part in continuum is written as

S = [ d'wi@)(D" + m)u(a), (2.9)

where D,, = 9, +1igA,. It is easy to show that Sr is invariant under the gauge transformation. We can
define Lattice action

1 - - _
SF - 5 Z[w/n’YMUn,p,wiLJrﬂ - w/n—l—ﬂ'yﬂUrt,,uw;l] + M Z w,nw;w (210)
. n
where ¢/, !, M are an dimensionless as v/,, = a%@/_}n,wg = a%wn,M = ma.
This naive lattice action, however, has a problem. We consider free case (VUn,u = 1) to show this
problem. This propagator becomes

—i ), Yusin(pua) + M

Gr(p) = . : 2.11
) = 0 s + 072 (21
The pole of the propagator is given by
sin?(pja) + M? = 0. (2.12)
When we consider the continuum limit (¢ — 0), the pole must satisfy
. _ Pua s Pp = Dy
sin(p,a) = - R . 2.13
(2u2) {—pua P =Dut g (249)

This shows that two possibilities appears for each direction u. Since a pole of the propagator is corresponds
to a particle in quantum field theory, one propagator describes 2¢ = 16 particles in four dimensional lattice
filed theory. This problem is called doubling problem.

In order to avoid this problem, we introduce the Wilson fermion action as

Sw = S¥ + Swillsons (2.14)

where Willson term Swyiison 1S given by
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ar -
Switeon =~ [ dzvD, (2.15)

The parameter r is constant and is called Willson parameter. Since the Willson term is proportional to
the lattice space a, it is vanishes in continuum limit. It is possible to separate physical particles and
doubler particles. We consider Willson action in momentum space as

Sw = D(p)li Y yusin(pua) + M +r 3 (1~ cos(pua) l(p). (2.16)

Iz 2

where M (p) behaves like a mass term.

M(p) =M + T‘Z(l — cos(pya)). (2.17)

Then the propagator for the Wilson fermion is given by
=i, Yusin(pua) + M(p)

Gr(p) = (o) + MG (2.18)

In a — 0 limit, M (p) behaves as

ma physical pole

M(p) = { ma + 2r |4 doublers ’ (2.19)

where || counts the number of 7’s for the doubler momentum. The mass in the physical unit thus
becomes

Mphys = M, (2.20)

27
Mdoubler = M + Z |(5| — OQ. (221)

All doublers decouple since they become infinitely heavy in the continuum limit. In this way the Wilson
fermion action can avoid the doubling problem.
We define the hopping parameter

1

K=———. 2.22
2(M + 4r) (222)

The Wilson fermion action is written as
Z %% K Z wn 'Y,LL n uwn-i-u + w(r + 'Yu) n—/i, #wn u]- (2'23)

The gauge action is
Sa =" BTt[UnuUntpnUly, Ul )= > 2B8ReTH[Uy(n)). (2.24)
n,uF#v n,u>v

We have used an improved Wilson fermion action in [30]. in our numerical simulations.
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2.2 Effective mass

To calculate the potential of the Omega-Omega system, we first determine the Omega mass in the simu-
lation set up. In this section, we show how to measure the effective mass in Lattice QCD. For simplicity,
we use the scalar field. The 2-point correlator is defined by

G(t) =) _(0]é(x)$(0)]0) (2.25)

T

where ¢ = 2°. Using completeness relation 1 =", _, f o) =k 2Ek |Ex(p)) (Ex(p)]

- ZZ/ 2y 2E [9(z) |Ex(p)) (Ex(p)| $(0)] 0)
_ Z Z/ 2mr)3 2Ek ‘e—im(ﬁ(o)eiﬁx |Ex(p)) (Ex(p)] gb((])) Q>

r k=0

_ Z Z/ 27)3 2E 0 ‘¢(0)eipx |Ex(p)) (Ex(p)] (;5(0)‘ 0>
=22 / (016(0) |B(p)) (Bx(p)] 6(0)] 0) ¢

x k=0

- Z Z/ 2m)3 2E | 6(0) [Ex(p))|? e~ Pe 1 (P)r0
- Z/dg (016(0) | Bx(p))|? e~ D053 (1)

—Z (0] ¢(0) By (0))|? e~ Fr (00, (2.26)

We take t = xg > 1 to extract the ground state contribution (k = 0) (excited states are suppressed
exponentially at large t).

CYoR <O! &(0) | Eo(p))|? e~ Fr(@)z0

IZ 2 ot (2.27)

where my, = Ej(0) is the mass of the k-th one-particle state and Z = (0| ¢(0) |Ex(p)). The effective mass
is defined as

G(t)
Glt+1)

We plot m(t) and fit the plateau to determine the mass mg. We show periodic boundary condition case

mo(t) = log (2.28)

Appendix A.

2.3 HAL QCD method

In this section, we show how to extract the potential. The potential method was originally introduced by
HAL QCD collaboration [10, 11].
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To show the basic concept of the non-local potential in a finite box with the size L x L x L. The
Schrodinger equation is given by

1
(V2 + Budinlr) = [ 470Gy, (229
where r is relative coordinate and p is a reduced mass
1 1 1
el I (2.30)

nHooomip M

2
where E, is the discrete energy eigenvalues £,, = S—Z {nln € Z,0 < n}. It’s important that the potential
U(r,r') is not depend on n. In general, we show that the energy independent non-local potential and
the energy depend local potential are equivalent. First we consider a Schrodinger equation used a local
potential.

1
(ﬂv2 + B ) (r) = V()i (r), (2.31)
where V,, is depend on n. We use the bracket
1
Va(r) = (En — (—EW))%(T) = (r|En — Ho|n), (2.32)
where Hj is a free hamiltonian (r |Hg|n) = —iVQLbn(r). The non-local potential can write
U(r,r") = (r|E, — Ho|7") (2.33)

= Z ((Ey, — Ho)|n) (n|n) (n/|1") (2.34)
-—Ejv )N, L (1), (2.35)

where Nn_ﬂll,
N, = (nn'). (2.36)

Since taking the sum of n and n', U(r,r’) is independent on n and n'. So, we was able to rewrite the
energy depend local potential to the energy independent non-local potential. Now we can define the energy
independent potential. Therefore, we can extract a general potential from the wave-function v, (r) .

2.3.1 Nambu-Behte-Salpeter wave function and phase shift

We discuss what is the wave function in QCD. In scattering theory, wave function must have the correct
phase shift in asymptotic state.We try to keep this property when we consider the QCD wave function.
We first introduce the equal time NBS wave function as
U,08508(7 1) = (0| Nos (2, t) N (y, 1) | Na(kn) Na(—kn); in) (2.37)
where 7 = & — ¢, o/ f'af8 are spin indices, (0] =ous (0] =in (0] is the QCD vacuum, [N (k,)Ng(—ky,);in)

is asymptotic in-state of two nucleon with the energy W,, = 2, /m2N + k2 and N(zx) is the local Nucleon
operator. Explicitly, we have

np(y) = e (ug (y)(C5)asds (y))d5 (y), (2.38)
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Pa() = e®(uf(2)(Crs) pods (x))u (), (2.39)

where C' = %40 is the charge conjugate matrix, a,b, ¢ are color indices.

One of the most important properties here is that the NBS wave function at large |7] in QCD has the
same asymptotic form of the scattering wave in quantum mechanics. We show asymptotic form of NBS
wave function in Appendix B.

2.3.2 How to measure Nambu-Behte-Salpeter wave function in Lattice QCD

In previous sub section, we define the NBS wave function as the wave function of QCD. In this subsection,
we explain how to measure the NBS wave function on the Lattice. Fig. 2.1 shows the image of the NBS
wave function on the lattice.

we start with the 4-point correlator

CnN(Z, 7.t to) = (0|ng(y, t)pa(x,t)Jpn(to)] 0) (2.40)

We insert the completeness relation system 1 =5 |m) (m|

=" (0Ing(y)pale) m) e P E=10) (m | 1, 0)

= Z Ape  Emt=t0) (7 — 7 m) + inelastic state (2.41)

where we define
Ap = (m|Jpn|0), (2.42)
V(@ — §,m) = (0[ng(y)pa(x)| m) . (2.43)

(& — ¢, m) is the NBS wave function. So the 4-point correlator includes the NBS wave function. Taking
the large t—tg, we can get the NBS wave function of the ground state, because excited states are suppressed
exponentially at large ¢ — #.

Here J,, is a source operator which creates the two-nucleon state. For example, the wall source is
given by

Ton(to) = [P5™ (to) 5™ (t0)], (2.44)
where p"2!! and 22! are Dirac-conjugate of p*! and n"2!', which are defined as
}}’an y=e “bc Zu (y,t0)(Cys) a(;Zd(; v, to) Zdﬁ v to), (2.45)
pgau =¢ “bc Zuﬁ x,t0)(Cvs 552% 7' to) Zu 2 to). (2.46)
Since p"al! and n"#! are not gauge invariant, we should fix the gauge. The wall source create only states

with zero total momentum.
On the other hand, the Gaussian source operator is given by

Jpn (1'07 t[)) = —Gaussian(l‘ tO) gaussmn (5307 to)]v (247>

«

~Gaussian — Gaussian

where p and 7n are defined as
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. _(w=mg)? _ W —2g)? _ ' —=q)?
G 1) = 275 e E g ) O T ) e o),
y y/ y// ( )
2.48
Gaussian abc —(x_xO)Q a —(x/_xO)Q by 1 —(x,/_x0)2 c "
Pa (wo.to) = () €™ 7 ul(m,to)(Cys)ps e 2 dy(al,t0) D> e 2 ub(a” k).
X x/ x//
(2.49)

When we calculate the NBS wave function on the lattice, we apply the projection operator to fix
quantum numbers at source and sink. We explain it in section 3.

Figure 2.1: Image of the NBS wave function on the lattice. We extract the information of the Omega-
Omega interaction at sink.

2.3.3 Time dependence method

We have described how to determine the NBS wave function in the lattice simulation, and it need large
t — to where excited states are suppressed. The signal-to-noise ratio, however, becomes worse at large
time [31]. The signal-to-noise ratio of the correlation for n-nucleons is

(%)n ~ et (2.50)

The signal-to-noise ratio becomes worse in the many-body system. This is a fatal problem to calculate
interactions between hadrons in lattice QCD.

Fortunately, there is a good method, called time dependence method [32], which avoids this signal-
to-noise problem to extract potentials. The time dependent method can derive the QCD potential without
ground state saturation. For simplicity, we ignore the spin indices and take ty = 0.

First, we define R-correlator as

R(t,r) =) Cnlr. 1) (2.51)

e—th
n
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where C),(r,t) is 4-point correlator, given by

Cp(t,r) = (0|N(x,t)N(y,t)J(0)]0)
- Z (0|N(z)N(y) |n) (n| J(0)| 0) e~ Ent

= ZAn'(?bn('r)e_E"t (252)

where 7 = ¥ — i, E, = 2y/m?% — k2,
! A, = (n|J(0)]0), (2.53)
¥(r) = (0[N (z)N(y)|n). (2.54)

Therefore

_ 1
R(t,r) = ZAnwn(r)e E”tm

— ZAn@Z)n(T)e_Wntv (255)

where W, = 2(y/m3% — k2 — mn).
Wy, have an identity

% — n o _ 2.56
(B = o= o) (256)
which can be shown as
%
w kn 2 1 — —
( ZL(mN)) :4mN(4m%+4ki+4m?V—8mN\/m?V+ k2)

2 =
=2my + —2 —2¢/m% + k2. (2.57)
my

We then perform a time derivative of R-correlator as follows

0 — W
—ER(t, r) = Zn: W (ki )ty (7)) Ape= W )t

%

_ ko Wka)? o o Wi

= zn:(mjv pro )i (7)) Ane
%

_ k3 1o A W)t

= zn:(mzv - m@)%( ) Ane (2.58)

—
We have used the identity W(?n) = n]z—% — W) 4 the second line.

Admpn

N
Finally we use Eq. (2.29), we can get the time-dependent Schrodinger-like equation

1 _, 0 1 02 , , o
— _— — —_— = . 2.
(mN v pri gy 8t2)R(t’ to, ) /dr U(r,r")R(t,to,r")dr (2.59)
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Via this equation, we can derives U(r,7") from R(¢,7). Since the R-correlator does not depend on the
energy, we can derive the potential without ground state saturation. A condition necessary for this
method to work is that t — ¢y should be large enough to suppress both inelastic contributions in the
two-Omega system and excited states in the single-Omega correlation function. In the non-relativistic
limit, the time-dependent Schrédinger-like equation is reduced to

1 5 0

(m—NV Q)R(t,to,r) = /dr’U(r,r’)R(t,to,r/)dr’, (2.60)

1 92

Ty o8 is corresponding to the relativistic effect.

since



Chapter 3

() — () case

3.1 Charge conjugation of the Omega baryon
We introduce to Omega baryon operator’s properties which is defined as
Qkyg(7) = €206 (CVky ) 919254, (T)Sga () 55 (). (3.1)

It’s not spin% baryon, so we need spin projection to spin % The operator is satisfied these properties

e spin (Lorentz symmetry)

e parity

e U(1) charge

e SU(3)gauge symmetry (singlet)

e flavor symmetry

In Omega baryon case, favor is only s quarks, spin :%, parity= —, U(1) charge is —1 and SU(3) gauge

symmetry is singlet. We will check the properties of Omega baryon operator. First, we check thate®“q,qpqe.

is gauge invariant.

b b
e? CQaQbQC — e CUaa’Qa’ Ubb’Qb’ Ucc’Qc’

ANV,
=det Us"" quqy g
AN
_ Eabc

Ga' Qv G (3.2)

Second, we check spin symmetry. we define quirks as

~(3)

where dot is complex representation in SL(2C). We show the ¢’ C is a similar transformation to the g.
The Lorentz transformation of ¢7 C' is

15
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=( €M 0"*). (3.4)

=( (s €H*). (3.5)

These transformation properties are equivalent, because these indices are same. Therefore the ¢ Cy,q is
a Lorentz vector. Finally we use spin projection from spinl@spin% operator (qTC'*ykq)q to spin% operator
Qs . We explain it in 3.1.1.

2

We can check parity= + in Omega operator.

q" Cveq = 4" 0C0q

= —¢"CY07kq
=q" Cygq (3.6)
We used following equation
q = Pq(z,t)P~" = 5oq(—a,1) (3.7)
qT = PQ(xat)TP = qT(_xﬂf)f}/g‘ = qT(_$7t)70 (38)
where C' is
c* =0, (3.9)
C=ivyp=-C'1=-0T=—-Ct  Minkowski, (3.10)
C=vy=-C'1=-0"=-C' Eucld. (3.11)

When we use only strange quarks, U(1) charge is —1 and flavor symmetry is satisfied.
Next we define anti-Omega operator.
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Qpyg(x) = Q10 = 12960 ((Crry)guga (550) T 552553)1(10) gag
= £1235 o (0, C)gagr 553 552 (561 ) (70) g
= 1296 0 (0T 70C ) gan (5T 70) gy 5527 (55T
= =290y (0 Vks C'0) gaan (SC3T’YO)953§§T(3ET)T)
= =296 o (Vs C1) gagr (5°170) g1, (552770) (0 (552 1))
= 5616203%’39(%1 0)9291522333 (Eﬁ)T

__ _ c3coc1 =C€3zC2 (gc1\ T
=€ 6ggg('7k10)9291sgésg2 (Sgl)

= —e®2G, 508 (502, C(550)T) (3.12)

To increase the statistics, we consider charge conjugation of the Omega baryon. The charge conjuga-
tion is define as

¢ — ¢anti = CA’¢CA’_1 = i’727nb* = C(E)Ta (3.13)

YT = (CyYpCHT = CyTCt = (c()D)T = vCT =yC, (3.14)
$ = CplrgCt = (Cp" OV 0 = (¥1n0)*C 1y = 47 C, (3.15)
O = O O = (G YT = (T )T = 01y, (3.16)

where C is operator of charge conjugation. Let’s try to charge conjugation in Proton and Omega.
For Proton case,

P, — C’Paé’_l = 6’6610263593,a(qgi)T(C%)ngq;gq;gé_l
= 56102635%704@(@%)Téil(c%)ng éq;zéiléq;géil
= e 5, G0 O (CY) g1, C(a2) T C(a5)
— 01295, G O (C) 010 C(@2) T (@2)T
= 01238y, G5 (150 gugs (2) T (@2)T
= 025, o ([@5) " (1:C) 0, 7275)"
— — e G, o (GET2 (150 gy (@)Y
(10)" = —35C = =C7s
= — e, (GG (C5) o (@) )T
_ Cw/(ﬁo/)T (3.17)

For Omega case, It is similar to Proton.
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Qpyg(z) = CACTH = Ce2%6, (5T (Crypy ) g1 905282 C 1

= 1236, o C(se)TCT1C(Ciy ) g1g, C 1 Cs2C 71 CsB O

= 125, 650t C (O )1 C(52) T O (553) T

= O, 50t (T, O gugo (52) " (553) "

= _05016203593 g( 22 ;ﬁ((WﬁC) )gzgl( le)T)T

= — 02950, 4(553552 (M1 C)gogn (55)T)T

= Ce20y, (56502 (11 O) gugy (551) )T

= —ng@;kl (3.18)
We used this relation (v,C)? = ~,C.

Now we have the rules of the charge conjugation in Omega baryon, we can increase statics of the

4-point correlator which defined as

Gaﬁuu;a’ﬁ’u’u’ (‘7:7 Y, t, I/, y/) = <0| T{Qau(l‘, t)Qﬂl/(yv t)ﬁa’/ﬂ (xlv O)Qﬂ’l/’ (ylv 0)} |0>
= 0(t) (0] Qapu(@, )50 (y, 1) Qo (2, 0) Qg (3, 0) 0)
= (=) (0] Qurpwr (2", 0)Qpr (¥, 0) Qe (2, 1) 0 (3, 1) 0) - (3.19)

For simplicity we consider ¢ > 0. To reduce noise we consider 4-point correlator

Gaﬁ,ul/;a’ﬁ’,u’l/ (.1‘, (7 l‘/, y,) = <0| T{Qa# (l’, t)QﬂV(yv t)ﬁa’,u' (xlv O)Q,B’V’ (ylv 0)} |0>
= (0] Qap (@, )80 (y, ) Qar (27, 0)Qp, (3, 0) 0) - (3.20)

Using the vacuum is invariance under charge conjugation (0| C = (0|, C~1|0) = |0).

Gaﬁuu;a’,@’u’l/’(x) Y, t, xla y/)
= (0] CQup(, 1), (y, 1) Qo (27, 0)Qr, (3, 0)C 71 |0)
= (0] CQup(, ) 071005, (3, ) CC Qi (27,0) CCQpr (', 0)C 1 |0)

= CaiClyj (0] Vg (2, )25, (4, )L, (2, 0)2%,(1/,0) [0) Carar Cz 0

= CaaCl3 (0] (O, (2, ~1)70)" (2, (4, ~1)70) @i (2, 017025 (', 0070 [0) Cavar Ciy

= (C10)aa(C0) g3 01 2, =), (51, =) (27, 0) 251, (4, 0)10) (0C) e (V0C) 35

= (C10)aa(C0) 53 0] Qasp (2, )23, (5. —) e (2, 0025, (5, 0) [0)* (10O a7 (10C) 1

= (C10)aa(C0) 53 (01 T{ Q% (2,002, (¥, 0)Qapu(z, )2, (y, =)} [0)" (v0C) o (0C) 31

= (C0)aa(C0) gGapuvsarprv (¥ 2,9, =) (0C )& (0C) g1 (3.21)

In 4th line we used these relation as
Qxz,t) = eH QN (2)e Hryy = (e HQ(x)e! )Ty = QF (2, —t)70, (3.22)
QT (z,1) = (! Q(z)e™M)T = QT (2)e = (e QT (2)y0etHy0)* = Q (2, —t)70. (3.23)

As aresults we can increase statistics, because we can calculate the 4-point correlator Goguvar g v (%, Y, t, ', y')
from back propagate Guguv;arg v (2, Y, 2y, —t)*.
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3.1.1 Quantum numbers of the two-Omega baryon system

We consider the quantum number with the Omega baryon as a local operator. This operator have the
total spin(.S), the orbital angular momentum(L), the total angular momentum(.J). The two fermion state
must change a sign under an exchange of them, while the asymptotic Omega-Omega state with given L
and S has a factor (—1)5TE+! by the exchange, so that we should have S + L = even. In table 3.1, we
show the combination of L and S such as to reproduce the conserved quantum numbers J in QCD. For
flavor structure, we consider only two-Omega baryon in initial and final state, because it doesn’t couple
another baryon in QCD. In this paper, we use the wall source, thus L = 0 in source. We can construct
only S = 0 state, because symmetry of Omega operator and wall source. We show it in Appendix C.
Hence we calculate only J” = 0% (L =0, S = 0) in which the bound state is the most expected.

P=+ P=—
J=0 180, 3Dg *Py, "Fo
J=1 5D 3py, "Ry
J=2 582, 1Dy, ° Dy, °Ga 3Py, TPy, 2 Fy, "Fy , "H»
J=3 5Ds, 5G3 "Ps, %F3, "F3 , "Hs
J=4 5Dy, 'Ga, PG4, °14 "Py, *Fy, "Fy, °Hy, "Hy, "K,4

Table 3.1: Condition of the quantum number in Omega-Omega system. Set of S, L change each other in
same cell, because Parity and J is conserved. It’s taking into account constraints due to Pauli principle.

Let us consider the total spin and the angular momentum projection to the J* = 07 state. We first
define spin 3/2 operator to perform total spin projection.

Qs 5 = —(YPT4Y)¢1 (3.24)
0y ) = J VAT 20)0) + (WD) (3.25)
1
g,y = VT Z0)0_y + (W) (3.26)
Qs s = Qr-y)p_s (3.27)

where I' = %(C’ﬂ:l:iC’yl), I'y = \_/—%073 are spin 1 di-quark operator, in non-relativistic limit. Linear
combining single-Omega operator, we construct spin 3, spin 2, spin 1, spin 0 states of two-Omega. These
state is given by

1
(QQ)30 = m(gg,%ggrg +3Qg’%Q%’_% +39%,—%Q%.% —I—Q%,_%Q%’%), (3.28)
1
()20 = 5(95 303 34+Q3103 1 —0s 1031 —Qs 305 3), (3.29)
272 27 2 272 27 2 27 2 22 27 2 272
1
(QQ)I,O = \/72>0(3Q%7%Q%7_% —Q%%Q%’_% — Q%_%Q%% +3Q%7_%Q%7%), (3.30)
1
(QQ)o0 = 5(93 3Qs 3 —0310Q3 _1+Qs 1031 —0s _3Qs 3) (3.31)
22 2 2 222 2 2 2 2 2°2 27 2 2°2

We derive it Appendix D.
Secondly, we consider a projection of orbital angular momentum using cubic group which show Ap-
pendix E. we employ the cubic group projection defined by
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d g
P*=2%N" D% (R)*R;, 3.32
J Z (R:) (3.32)

where a represents an irreducible representation of the cubic group, whose dimension is d,, R; is an
element of the cubic group and acts on 7 the sink operator. D®(R;) is the corresponding matrix in the
irreducible representation acting on spin components, and g is the order of the cubic group. We use A;
corresponding the L = 0 and the L = 4 state, but the L. = 4 component is small.

3.2 2pt-correlator and 4pt-correlator in Omega-Omega system.

We show wick contraction of the Omega-Omega system for calculating the effective mass and NBS wave
function. We need mass information to calculate Potential Eq. (2.59). We need 2pt-correlator to measure
the effective mass in Eq. (2.28). The Omega baryon operator and the anti-Omega baryon operator is
defined as

Qg () = 92 800 (Cy D gugo 551 ()2 ()53 () (3.33)

Qpyg(x) = —e82 0939 (V1 C) gagr Sgy (%) 3 ()51 () (3.34)

So 2pt time correlator is given as

G(t) = - Z <ng(t7 x)ﬁk’g’(ov 0)>
= Z £C1€2€3 C5CHCh 095904, (CVk1 ) grg2 (W, C gty <sg} (z)sg2 ()85 (x)Ezz (0)5;2 (0)52 (0)> ,  (3.35)

where factor —1 which does not contribute the physics is the definition of the anti-Omega operator. We
define s(&1) = 5! (x) and 5(§)) = 5;} (0). We calculate the bracket part
1

(s51 (@)s2 ()53 (2)507 (0)553 (0)5ch (0) ) = (s(61)5(€2)5(€3)(64)5(5)5(€1)
= (s(&1)5(£1)) (s(&2)5(62)) (s(&3)5(&3))
— (s(£1)3(1)) (s(&2)5(83)) (s(&)53(&2))
— (5(€1)5(&3)) (s(&2)5(£1)) (s(€3)5(£3))
+ (s(61)5(&3)) (s(£2)5(¢3)) (s(&)3(&1))
+ (s(£1)5(£5)) (s(&2)5(£1)) (s(£3)5(&5))
— (s(&1)5(&3)) (s(&2)5(&3)) (s(€3)5(£1)) (3.36)
Finally we get 2pt-correlator as
G(t) = D 2500001 (Coh Jonga (Vs Oy

[(5(61)5(£1)) ((s(62)5(£3)) (5(&)5(&3)) — (s(62)5(£3)) (5(&3)5(&2)

+ (s(€1)5(&)) (— (s(€2)5(£1)) (5(£3)5(&3)) + (5(£2)5(&3)) (s(£3)5(€1)))

+ (5(61)5(&3)) ((s(&2)5(€1)) (5(&3)5(&)) — (s(62)5(£2)) (s(&3)5(61)))]- (3.37)
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where (s(£)5(¢')) is the quark propagator from 0 to x. In this way, we can calculate the 2pt-correlator

quark propagators are given.

Next we consider 4pt-correlator defined as

Wk a6/ kyar k) (T)

(3.38)

We calculate the bracket part as

—~

~—r

—~

~—

—~

—~

~—r

—~

~—

—

N

(3.39)
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where (Q(z)35(£')5(£')5(¢')) is called “sub diagram” which is calculated

(Qar, (2)5(£5)5(63)5(61)) = €

= g71e (C’Wﬂ )g1g2

clczcg,(

~—

(e}

(&2)5(
- <8(€1)§(51)> (s(&2)5
— (s(&1)5(&3)) (s(&2)5
+ (s(&1)5(&3)) (s(€2)5
+ (s(61)5(&3)) (s(€2)5
(&1)5(&3)) (s(&2)

vl

91920093 <3(£1)3(£2)5(£3)
)

Q
w
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5(5)5(€,)5(£1))

(3.40)

The 4pt correlator has 6 s-quarks at sink and 6 s-quarks at source, thus the number of the contraction is
6! = 720, Using the symmetry of the quarks in sub diagrams, we can reduce the number of the contraction

6!/(3!3!) = 20. Due to this, there is 20 terms in Eq. (3.39).

For reduction of the computational cost, we consider momentum space using Fourier transform. We
note that we used FFTW library which is very fast using the butterfly computation in our simulation.

= ‘l/zq:f@e

= Z f(z)e
We can remove sum of  in the 4pt-correlator as q
= Z flx+7)g(x)
=2 Z 2.7l
v Z Z /a

iq-x

—1iq-T

zq x—l—'r ) ik

e 3(q + k)

=7 Zq: F(@)d(—q)e'".

As a results, we perform follow step for calculate the NBS wave function.

e calculate quark propagator
e contracted sub diagrams at sink part

e Fourier transform of sub diagrams

contracted diagram at source part

e inverse Fourier transform of diagrams

(3.41)

(3.42)

(3.43)

Finally we show the contraction of the diagram in source part in Fig. 3.1 and Fig. 3.2.
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Q(B)

Diagram of the Omega-Omega system at the first half of part.
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o) Q(B) Qi) Q(F) () Qip)
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Figure 3.2: Diagram of the Omega-Omega system at the second half of part.



Chapter 4

Okubo-marshark decomposition

We derive the general form of the baryon-baryon potential. There are several symmetries of the potential.
e Because of Probability conservation, potential have hermitian symmetry.V =V

e Energy-momentum conservation. Energy conservation demand that the potential does not depend
on time. Momentum conservation deduce the translation invariance of potential.

e Galilei invariance. We can use the center of mass momentum of the two-body system.
This is a general form of potential used translational symmetry and Galilei invariance
Va/BI;QB(F, v), (4.1)
where ¥ =711 —r5, U = 0] — v3.

e Flavor symmetry. For example 8 8 =27 1001038, 108 =358 D 103 27, 10 ® 10 =
282793510

N - >3 4 R
Va//g/:aﬁ(r, v, 51, 52) - Z V(R) (’I“, v, Sl, SQ) . Po(/ﬁ)/:aﬁ’ (42)
R
where Po(j?,:a 5 is projection matrix onto irreducible representation R, «, 8 are spin indices.

e T-symmetry. x «— x, p+— —p, S +— =S
e P-symmetry.x +— —x, p+— —p, S +— S
e Rotation symmetry. We consider rotation symmetry

Veargr:ap (11,72, 01,93) = Uy i (9)Upir (g)V&/B/:&B(g_lrI,g_lr_é, g oy, g_lv_é)U@a(g_l)UBﬁ(g_l),
(4.3)

where «, 3, d/, #'is spinor indices and U(g)is representation matrix for Spin% and spin% for g € SO(3).

e Particle exchange x +— —x, p +— —p, S1 +— Sy, if we consider a potential between same
particles.

The potential is constrained by theses conditions.

25
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4.1 Octet-Octet baryon

Okubo and Marshak derived the general form of the octet-octet baryon potential in the space of the
two-component spinors. It’s derived by [29].

4.2 Decuplet-Decuplet baryon

In this chapter we derive the Okubo-Marshak decomposition for decuplet-decuplet system. Note that
we show general form of potentials except 6th order 3rd and 4th term, Considering only Oth order of
derivative expansion.

As a strategy, we make SU(2) matrix for spin % Because of 4 x 4 matrix, We need 16 linearly

independent bases.

B0 g ... p(5) (4.4)

We can decompose spin of the potential by using these bases

Vigrap = Z 1743 Bc(:a 5’) (4.5)
i,j=0
SU(2) matrix for spin 3
0 v3 0 0 0 —iv3 0 0
g_LlfVv3 0 2 0 g L3 0 -2 0
21 0 2 o V3| 7 T2 0 2 0 —iVv3
0 0 V3 0 0 0 w3 0
30 0 O
Ifo1 0 O
3_ 2
=300 -1 o0 (46)
00 0 -3
These matrix satisfy this commutation relation as
(St 89] = ik gk, (4.7)
We make non-abelian traceless symmetric tensor for SU(2)
PO(S) =1, (4.8)
rY(§) = s, (4.9)
2N, a1 1
PY(S) = 5 (50,55} = 557, (4.10)
3) 3\ _ 2 1
PENS) = Ay 15 Biik — 15 Cist
1 - 3?2
where
1
AR = 3—(5’535’“ + 88*S7 4 §igigk 1 §igkSt 4 SkSigi + §F G g (4.12)
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Biik — ?2@1’]‘ A LU R L ) (4.13)
3
Cidk = Z(é”SlSkSl +okslgigl 4 5]"?5'1525'1) (4.14)
=1

Theses are base of Spherical harmonics which show Appendix F.
We can check traceless. Traceless of Pi(l) is trivial.

P is satistied

5P = 655 (51,57} - 52 5ij) =0 (4.15)
Pl(jgk? is satisfied
We check it.
— L 1— 3?2 L o .
iy P(S2) = 8 (AT + ~—2=2 (9] + 5] + a7 )
= A%k 4 3?2 - 2gk (4.17)
1 2 1 2 2 1 2
Ay = §(4S Sk +25;SKSi) = §(4S Sk +2(5° —1)Sk) = —5(1 — 35%)Sk (4.18)
So Eq. (4.16) is satisfied.
Therefore these are traceless. S; is satisfied
U(9)SiU(g™") = Rij(9)S;. (4.19)
Therefore P is transformed as
U POug) = PO, (4.20)
U@P UG = Raulg)Py”, (4.21)
2 _ 2
U@ PUG™) = Rilg)Ryp ()P, (4.22)
U(g)PS)U(g™) = Rir(9)Ryjr(9)Rie (9)PY (4.23)
The potential is imposed a rotation symmetry by using scalar product about spin indices %, j
Vargreas(F 8,91, 82) = > V™ (@ a) - (P (SONP  (S2). (4.24)
n,m=0
Origin of the spin indices in the V(n ml) e (7, ¥) are r; and V;. Finally, the potential have rotational

symmetry, because right hand side i is scalar.
These 16matrices are linear independence

e (-order: 1 matrix
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PO (4.25)
e Ist-order: 3 matrices
PV, PV, PV (4.26)
e 2nd-order: 5 matrices
2 2 2 2 2
P1(2)7P2(3)7P351)7P1(1)’P2(2) (4'27)
e 3rd-order: 7 matrices
3 3 3 3 3 3 3
P}, P, P, Pl P33, Pis), Pia) (4.28)

It is not enough, however in theses 16 matrices. Since we decompose the r dependent part, we need up
to 6th-order abelian traceless symmetric tensor for scalar product. We know traceless symmetric tensors
are base of the spherical harmonics which show Appendix F, therefore we can decompose the r dependent
part using the traceless symmetric tensors.

e 4th-order:

2 4
4
PZ-(J-,Q,(T) = (rirgriry— ——(rir0p + rirwdj+rirdjn +1jrw0u + 71100 +1%71063) + 5o 030kt + 0ikdj1 + 0udjk))
(4.29)
5th-order is not used, because order of spin is only even, but we show

e Hth-order:

5
Pz(Jk)mn(r) = (1577, mTn

- %(m-rjrkémn + 1T mOkn + TiTkTmOjn + 1Tk mOin + 73770 0km

+ 1Tk Ojm + 1Tk R 0im + Tirm ROk + im0k + TETmTR0i5)

+ é(n [050mmn + 6imOkn + 0indkm| + 75 [0ikOmn + OimOkn + dindkm| + Tk[0ij0mn + OimOjn + 0indjm]
+ rm[05i0kn 4 0ik0jn + dindjk] + rnl0ijOpm + Oik0jm + dimdjx]) (4.30)

e Gth-order:
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(6)

ijkmnl(7) = TrTETmTnTl

— ﬁ{rirjrkrménl + 17T Omt + T Okt + TR Tm TR0 + TR Tm TR 04

+ 1 TRTOmn + T TmT10kn + TiTRTmT10jn + TR mT10in 4 T TR 10k,

+ kTR 10m + TR 0im + TiTm 10k + T m TR0k + TETmT 71045

1
+ @(Tﬁﬂkm%l + 17 0knOmi + TiTi0mn 0kt + TiTkOjmOni + TiTk0jn0mi

+ 7rik0mn 051 + riTm0k0n1 + TiTm0jn0ki + TiTmO0kn 61 4+ TiTn0;k0m,
+ 7700 im0kt + TiTn0kmOji + TiT10k0mn + 73710 jmOkn + T5710kmOjn
+ rjrmé;méil + rjrnél-kcEml + TjT‘n(;im(skl + ’I“j?“n(skm(;il + Tj’l“léik(smn
+ rjrléimékn + TjTl5k;m5m + TkTm(Sij(snl + rkrméméjl + TkTmfsjn(Sil
+ rkrnéijéml + Tkrm(siméjl + Tan(Sjm(sil + TkT‘l(sij(;mn + rkrléimdjn
+ T’k"r’léjm(sm + rmrndijékl + T’anéik(sjl + TmT’n(Sjk(Sil + rmrléijékn
+ rmrléikéjn + Tmrl(Sjk(Sm + T’nTl(sij(Skm + anl(sik(sjm + anl(Sjk(Sim
1

693
+ 5ik6mn5jl + 5jk5im6nl + 0imOjndr + 6im6kn6jl + 6jk5in5ml

+ 5jm(5in5kl + 5km5in5jl + 5jk5il(5mn + 5jm5i15kn + 5km5il5jn) (4.31)

(0450kmOni + 0ij0kndmi + 0ij0mnOk + 0ik0jmOns + 0ik0jnOmi

These have useful reduction formula as

§'98" = (157,57 + 575" S°
= (ie* Sk + 57 5H) S
= %isijk[Sk, SY + 5752
= %iisijkek“Sl + 5752
=—6;S" + §758?
= (53 —1)9. (4.32)

Now that we are ready, we start to decompose a potential between decuplet baryon and decuplet
baryon.

e Polynnominal-degrees of spin matrices = 0, 2, 4, 6, because of T-symmetry.

T — —x, p— —p S — -5 7 — —i (4.33)

e Potential have symmetry of S; <— Ss, if we consider a potential between same particles. Now we
consider 2 — Q) system. Because of spatial reflection and particle exchange.

T —x, pD—D S1— S (4.34)

e Possible forms of potentials can be expressed as products of spin-matrix structure and coordinate
function structure, because a potential have rotational symmetry.
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—

Vargeas (70,91, 8) = > V™ (@ a) - (B (SONP (5)

n,m=0
’ order(index) ‘ spin-matrix ‘ coordinate function ‘
= =7
| 0 | L(PO(S)) + PO(Sy)) | Vo(r) |
= = e =
oy PGPS + PY(Sy) P (51) Ve, (r)dy
' 2 2 2
LPP(S) + P (S2) Vr(r) P (7)
N 3(P (S0P (55) + PP ()P (S1) | Veu(r)digd
gk [ S (PRAGDET (S) + PRS)P(1) | Ve P (7)o
Vo (r) PUL(7)
LR (SDHPL (53) + PL)(S3) P (51)) | Ve (r)dii0xidmn
2
6(i,7,k,l,m,n) Vi (r) P ()4()7>5k15mn
Vas (T)Pijkz(?)(smn
Vit (r) B i (7))

where upper index is spin-order and lower index is spacial index.

e Specific system for Oth order is

S(POE) + POGE)Volr) = Volr).

e In 2nd order, 1st one is

1 — — — —
S 0 HP ()P (S2) + P (S2) P (1)) Ve, (r)

=51 SQVC2 (r).

e In 2nd order, 2nd one is

—

Lp@@) (PO (E) PO () + PO(E) PO (55 Vir(r)

2 J

1 r2 i i
= 5 (riry = 5:04j) (155 + 5350 Vir(r)
2
= ((S1-7)(S2 1) = 5 51 - S2) V().

e In 2nd order, 3rd one is

30

(4.35)

(4.36)

(4.37)

(4.38)



CHAPTER 4. OKUBO-MARSHARK DECOMPOSITION

= (Ti']"j 362])(5{51, S{ 3J + {5275]} —_ 7'] )VT( )
VL P 5ij o 5
= (riry — o) (5051, 51} — LB + {85,854} - L5 Vi(r)
—, Tl ?
(7 81)? = -81" + (7 52)2 - ?522)%(74).

Since the traceless, another one is vanish as

SO HP B + PP BV, () = 0.

e In 4th order, 1st one is
%
(PSP (55) + P2 (S5) PP (51)) 58 Ve (r)

— =
= Pz(]2) (Sl)PZ(JQ) (52)VC4 (T‘)
1=

5522%')‘/04 (7)

= (381 STHS 811 - 151, 31 830,)Vou )

= (181,81} = 391%0) (5{%, 93} —
L i cig i i i 1
= (351518554 + S4S5} - 5 STV )
3
1 ; o1
= (3(51- S22+ Y Si(51- 5085 - S 515De, ()
=1
e In 4th order, 2nd one is
1
SPPEDPP ) + PP S)PS (S) PP (7)8uV (1)

_ pig2>(s71>p<2><£> <2>(?>VT4< )
_ (%{Sij SJ} Sl z])( {5'2,5'] %?gékj)(’l“ﬂ“k — §?25ik)VT4(T)

1 i i 1 i 1 1
= (351, STHSh, 51} - 583k, 81} — {81, 85V B3+ 5 830433 (rare — 5720 Vi (1),

Using follow relation

{S1,571{ Sk, S} = (SiS] + S{S1)(S5S% + S38%)
= (SISE(S1 - 85) + SISiSESS + Si(S) - S5)Sk + (St - 55)SiSh),

we derive the

31

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)
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(Z{SDS{}{SS’ S%} - ES%{SQC?SZ} {Slvsl }? + Sl zkg )(rirg — 5?25ik)VT4(T)
1, . .= = P j —>
= (1(5155(81- %) + 51819555 + Si(S) - 55)S5 + (51 - 55)515%)

1 1 1 1
— SS3SES} — 2 SiSE G+ 5580 ) (ramk — 5720V ()

= (@SN B + SIS - B
FESNE BT T+ (5 ST ST ) - LT 5
(P BB SPTEE - P SIB 58] + (5150 - 1818 RV ()
= GUTENT - S)E )+ ST T B)sh+ (7 ENEL- )75
+ B BT ENT - 5) - ST S - 5 (7 5?83+ 7B TS}
- ST B+ (51 SRV (), (4.44)

e In 4th order, 3rd one is

<P<3><s 5P (S5) + PO (S5) PV (81) P2 (75 Vi (r)

ijk ijk 1]
— (PSP (S5) + P (S5) PV (S1) P ><?>VT4< )
— (PO(SHPO(S5) + P (S5) P (S)) (rors — 725ij>vn<r>

= (((A9% 4 1_3?%(5@'5’“ + 6tk sT 4 57k GY) Sk (AR 4 1_3?%(5”5’“ + 659 + 678 SL)) S8 i ) Vi, (1)
- 1 15 1 191 1))°2 2 15 2 2 2))01)1il ) VT

py 1-352 = = — —
= (A7 rir; 85 + —2=H(T3(E1- 82) + 27 - 51)(T - 52))) + (S1 <= 82))Vi (1)- (4.45)

Using follow relation as

ATy 5% — %(SiSjS’“ + 55887 + 1SSk 1 §IgkST 4 Sk SiST 1 5 ST S Sk
1 5, = = = = = —> - = —>
= (7 S1)%(81 - 92) + (7 $1)(81- ) (7 - 81) + (81 - 52) (7 - $1)%). (4.46)

Therefore in 4th order 3rd one is
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(AF*rir; S5 + =L (PHET - 55) +2(7 - ST - 52)) + (1 = )V (1)
= (TS5 -5) + (7 5N(E - ST 5 + (51 (7 -5
L35 a3 5 27 - 57 - )
P2 BPE B+ (7 S)E ST B+ (B BT 5
. _1353?5 (P2(51 - 55) +2(7 - 51)(7 - 52)) Vi (r). (4.47)

e In 4th order, 4th one is

SRR BN PR S + PP ()P (50 PT Wa(r)
= L PR SHED (B P 7 )Valr)
1 _2), 2 5@, 72
= §Pij (S1) Py’ (S2) (rirjrr — 7(rirj5kl + 1701 + im0k + 77RO + 77048 + TRTI0:5)
+ z:(%% + 0ikdj1 + 0i05%) ) Vo (r)
- [%Pz(f)(Si))P,g?)(g)(rirjrkn)
+ ;Pi(jz)(s_)’l)P]g)(,@)(—;(rirjékl + iRl + riride + rirRda 4 v + TE1055))
+ ;ESQ)(ﬁ)PS)@)(Zl(%ém + Gikdji + 6udjn)) Vo (r)
= [P GOED G riryren)
+ % p}j@(ﬁ) p,gl2>(§§)(_?72(mk5ﬂ + 7181 + TR0 4+ 1iri0i) )
+ ;ag?><§>P;?>(§><f;<5ikaﬂ + dad;n))|Vo(r)
= LG T P - PG (e 7 7Y - 55
+ ;JDi(j?)(STl))P]g?)(g)(—??m(rirkéﬂ + rin Gk + 1iTR0a + 77110ik))
+ ;115.2)(?1)13,5?)(?2)(?(%@; + 8udji) | Vo r). (4.48)

Since complicated, is calculated by dividing each term.
1st term is

SGE BT - B T(HE, P, T - 5
S LAE I PG 7 e Ty - Ly - e (E, 7 B 7y - L)

= ﬁ((lS(?l . 7)2(?2 . 7)2 — 12(?1 . 7)257;272) _ 125—'1>27>2(§2 P 4 8§1>2§>22?>4), (4.49)
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2nd term is

51 U)( {Sé, Sz} 5225jk)7”i7"k)

= —§72((§{5{Si + 5187} -

= —;?2((5{5{,Si}
S570,)( (535 + S5} — SS38rim)
= —2?2((2{5{5;'5555 + 81875955 + 8515553 + Si5]S5S]}
— 1{sjsi + 515715281 — %s%aij{sgsg + 5589} + %S%S%&k)rirk)
? 881 7)( Sy )+ (81781 §2) (S 7)
+sf§> ? (S2-7)85 + (S1-7) (8- 7)(51- 92)}
—f? ) 52—7S1§> P 4 5152—”)

o

1;6—>2 9{§ ? ? ?2'7" +(?1'?)(?1'?2)(§2'?)
+Zs{(§>l v (?1-7)(?2'7)(§1-§2)}

C12(8 - 7282 — 1252(8, - ) + 4525272),

2—>2

)53 +

(4.50)

last term is
-4
%
So) (o 3
R (P. :

T 35 Vg (52))

AYe- - +ZSIT9> Sos

352

PGP
4

(5Zk5jl + 621(5]]{?)

)
(Sl)Pij

%???g).

(4.51)
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Therefore Eq. (4.48) is given as

GG 81 7Y L83, 7 5 P - 15

-2

+ 3 PR G So) (- (rirdn + riridy + rrida + rymidie))

+ ;P,-(]?)(S?)Pg)@)(gl(5ik5jl + 0udn))Vo(r)

= [ (18(5 1 PP(E5 - 7)? =128 P52 7%) 1252728, 7 + 85125, )
1 THOLE 1 (B P)(Es 7+ (81 P)(E1 - 80 (5a- )

3
+ 388 7) (S )+ (S0 ) (S 2 P)(S - 52}

—12(S 1 7)282 — 1282(F 5 - 72 + 4528272)

+ j;(;(?l S+ ﬁ; Si(S1- §a)8i - %?%?g)%(m. (4.52)
e In 4th order, 5th one is
S(PEENPI(E) + P (55 P (B0) P e r) (15
Using follow relation
P PGP = (7 507 - 57 - T(7 - SRS -5
+ (7551 )T 5) + (51 5)(T - 5)%)
- ?’552{74@ 53) — 572(r- S1)(r - 5a)}. (4.54)
Therefore Eq. (4.53) is given as
S(PREN P + PSP S P Wa(r)
L@ B - 7 BRE B + (7 EE ST B+ (B ST -5
LS B 57 s 50
L BT B (P BPG B+ (7 B)E BT B+ (BB B
- = 352 {T4(51- 55) — 57°(r - S1)(r - S2)} Vo (). (4.55)

. 2) . . .
Since PZ(]) is traceless, another is vanish as

1 — - — —
(PP SOPL (S2) + PP (Sa) B (51)8i6u Ve, (r) = 0. (4.56)
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e In 6th order, 1st one is

36

— 2 L . - 1— 2 L .
PENSHPSS) = (A7* + ffl (675 + %] + 7 1)) (A" + 135?2 (6755 + 65 + 57 53))
g 1— 2 L . g
= (A7" + 3?1 (67SF + 6% 5] + a7k s1)) AF*
. 2 .
— (AR 4 3? (67 5%)) A (4.57)
Since complicated, is calculated by dividing each term.
In first term is
Aldk ik 3,3' —(Si5ISF 4 SigkST 4+ §USiSk 4 §IShSE 4 SFSIST 4 SFST ST
X (S5S35% + SLSKST + S5515% + 595585 + SKS3S) + SKS)S3)
1, = = e = N S = = iy =
= 6((51 - 55)% + (S1 - S2)S5(S1 - S2)S7 + S7(S1 - $2)S5(S1 - S2)
L= =g = = N
+ Si(S] - 55)%S + SF(S] - S3)28% + SFSI(S] - S5)53.5%) (4.58)
In second term is
(67 SF)AFF = *51 (555555 + 959555 + 959595 + 555595 + 55555 + S5.55.55)
1 o, =
3 ~(4852(S1 - ) + 254(5) - 53) 1)
1 =5 = =
= S (4SE(S1 - 8) + 2(S3 - (51 )
1, =5 = = - =
= 5;(652°(51- 52) — (51 - 52) (4.59)
Therefore Eq. (4.57) is given as
— — 1 = = = = i = = = = =
PEISHPGS5) = S((51 - 52) + (51 - S2)S4(51 - S2)S + S{(51 - S2)8§ (51 - S0)
L= = = =
+ S5(S1 - S2)S] + ST(S1 - 52)%85
- = 1-352 = = =
+ S75{(S1 - 52)5355) + 701(6522(51 - S2) = (51 82)). (4.60)

e In 6th order, 2nd one is
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39 1-352

i 1— 2 Lo oo . 1.

= (A 4 Tl(awsf + 65T 4 57k 51)) (AYF 4 = 251955 4 61 ) 4 67k L)) (rirt — 5 726)
e 1-392 i 1382 NP

= (A* 4 Tl(awsf +6%7 4 57k GE)) (AR + T2<5“5§ + kS (it — 5?25@'1)

35

1— 2 Y i . "
5 (0UST S+ 6 S (A +

1-352

(0755 + oS!

= (47" +
1 g 1 1— 3?2 g o
— gAY - TSR (0] + 6 8))

1-352

i 1 —3?2 iy o . o , L 1 py
= (AP T2 (g) 4 o] + ) (AR TR0 o st — SR AYY)
— AUk plik il 1 *3§% siighk 4 sikgi | 5ikgi Akl
= Ay 27"7““‘?( 1t 1t DA r'r
1— 2 1= 2 1 2 L . o
RS EL SyrTe ﬁl (2 3@ )6k + 675 + 674 57) Shrr (4.61)

15
Lo vijk qijk 21 =357
- 5? AT" AL ?

In 6th order, 3rd one and 4th one, it is too complex to calculate, we can’t calculate in this paper.

E’

L6 6% 4 6787 4 57k 51) AR

4.3 Octet-Decuplet baryon

This section we consider octet-decuplet baryon system such as N — (). Now that we are ready, we start
to decompose a potential between decuplet baryon and decuplet baryon.

e Polynnominal-degrees of spin matrices = 0, 2,4, because of T-symmetry.

T — —x, p— —p S — -85 i— —i (4.62)

e Possible forms of potentials can be expressed as products of spin-matrix structure and coordinate
function structure, because a potential have rotational symmetry.

Va0, 51, 8) = 30 VM ) (P SONPT, (5) (463)
n,m=0
’ order(index) ‘ spin-matrix ‘ coordinate function ‘
Lo [ POs) | Ve(r) |
wig) PGPS Ve, (r)di;
() @ g @)=
P (52) Vi (r) P ()
=
o 132(3313(5 )P (1) Veu (r)0i50m
41,5, k, 1) Vi, (r )P( )( Vot
Vo) P7)

where upper index is spin-order,lower index is spacial index, ?1 is spin of octet baryon and ?2 is
spin of decuplet baryon. Specific system for Oth order is trivial.

Ve(r) (4.64)
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e In 2nd order, 1st one is

e In 2nd order, 3rd one is

7

PO PN (1) PO () Vi (r) =

Since Pz(f) is traceless, another one is vanish as
%
61']'Pi(j2)(52) =0.

e In 4th order, 1st one is
— =
P () P (S2) P (S1) Vi (r)

3S2

1
5725@)(141']'1: + 7(51152 + 5zk5] + 0;5.55)) STV, (r)

= (TZ'Tj -

332
15

1?2%’)(
1 — 352

1 -
ST20) (At 4+ (8,151 - 5o + 515 + S1.55)) Vi, (r)

= (7‘1‘7”]' -

35’2
15

2(81-7)(S2-7) -

1
= AyjeSy (rivy — 5 7%05) + (6,51 - S5 + 5183 +

(’I“ﬂ‘j —

1 2 50 =
= Ay St (rirj — 572517) 57251 - 52)) Vi, (r),

where A;jS¥(rirj — %72517) is given as

+5785))Vi, (r)

38

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

k
Aijksl (’r’ﬂ'j - -

W =
Y
52
o+ 4+
E e

W~ Wl

+
)

(4.70)

Therefore we obtain
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_>
PGPS (S) PV (S1)Vo(r)

—2
r
T(T’ﬂ’j(skl + rirkéﬂ + ?"ﬂ”l(sj‘k + Tjrkéil + rjrléik + Tle(Sij))
ﬁ
1 — 3552
15

= (rirjrer; —

X (A + (0555 + 0185 + 6;15%)) StV (r).

We use a property of traceless tensor. Eq. (4.72) is

_>
PO P (S5) P (S1) V()
72
T
1-— 35
172(5”52 + 5zk5] + 5]k52))SIVQ( )

— 7)2 k ;
1) 7 (Tirjsl + TZ‘TkS{ + TjT‘kSi)}Aijk

= (’I”iTjT‘le — (rirﬁkl + rirkéﬂ + Tjrkéil))

X (Aijk: +

= [{riryru(7 -

S
_)
—

+ {rirjre(7 - Sp) — 7Y 4+ rireST + rjreSt)}

1-— 3522
>< [—
15

where the first term and second term are reduced as

(81555 + 0iwS3 + 6j153) Vi (1),

39

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

—2
=7 : .
{nrjrk(? . Sl) — 7(7’57’55{6 —+ TZ'T’kS{ + Tjrksi)}Aijk
—2

— T(T’N’ij + TZ'TkS{ + T’kaSi)}

I
~l
2l
=l
L
~

|

‘ <
s
N
55

- Ss) + (5—>'1 . 52)(7> . S—>2)2),

(4.76)
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40
%
{n-rjrk(? . 5'—1§ — %Q(Tierf + rirkS{ + rjrka)
— _>2 . .
o L 1:;52 (51555 + 555 + 5,155
_>2
-t e AR AR RIS
1—35_’;2_}27—>_>% T = = =
=— {727 - ) (T - S)) — 7(7‘ (S1-55) +2(7 - S)(T - S9))}. (4.77)
Therefore Eq. (4.72) is
PP (S5) PV (51 Vo (r)
(7B B (SRS B+ (7SS (P B+ (5L BT B
—
L2399 G 57 - ) - (PS5 + 27 - 50T Sl
(7B B - (7 BPG- B+ (7S BT B + (BB B
—
- ?522{?4@ 55) = 5TAT - 5)(T - 52) ) Va(r) (4.78)

We have performed Okubo-marshark decomposition for Decuplet-Decuplet system except 6th order 3rd
and 4th term and Octet-Decuplet system.
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Numerical results

5.1 Simulation set up

In this study, we have employed two ensembles of gauge configurations called Set 1 and Set 2, both of
which were generated by 2+1 flavor QCD with the renormalization group improved gauge action and
non-perturbatively O(a) improved Wilson quark action. The Set 2 is larger volume than the Set 1. Our
calculation were performed in on renormalization group improved gauge action and non-perturbatively
O(a) improved Wilson quark action [30]. In Set 1, we used 700 gauge configurations generated by CP-
PACS and JLQCD Collaborations [33]. It's 8 = 1.83 (a = 0.12 fm) on the 163 x 32 lattice, whose
physical extension becomes L = 1.92 fm. The hopping parameters of Set 1 is k,q = 0.13760, ks = 0.13710
corresponding to m, = 875(1) MeV and mq = 2104(8) MeV. In Set 2, we used 399 gauge configuration
generated by PCAS-CS Collaborations [34]. It’s 8 = 1.90 (a = 0.09 fm) on the 323 x 64 lattice, whose
physical extension becomes L = 2.9 fm. The hopping parameters of Set 1 is k,q = 0.13700, k; = 0.13640
corresponding to m, = 701(5) MeV and mq = 1966(6) MeV. To improve statics we used full source (Set
1 is 32, Set 2 is 64) on different time slices per configuration and rotational symmetry Appendix E.

Set 1 Set 2
Lattice volume 1.950(30) fm  2.902(42) fm
Hopping parameters of ud quarks 0.13760 0.13700
Hopping parameters of s quarks 0.13710 0.13640
IS 1.83 1.90
Lattice spacing 0.1219(19) fm 0.0907(13) fm

Table 5.1: Lattice simulation set up of the Set 1 and Set 2.

5.2 Effective mass

For measurements the effective mass of the Omega baryon in full QCD, we use the sea quark mass
corresponding to the hopping parameter x,q = 0.13760, ks = 0.13710 kg = 0.13700, ks = 0.13640 and
We measure the effective mass from 2pt-correlator Eq. (2.28). The effective masses are carried out using
700 configuration in Set 1 and using 300 configuration in Set 2. Their errors are estimated by Jackknife
method. In this study we use the dirichlet boundary is always separated from the source by T'/2. So we
defined the effective mass

G(t)

m(t) = log Gi+1) (5.1)

41
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which shown in Fig. 5.1 and Fig. 5.2 with CP-PACS/JLQCD collaboration result and PACS-CS collab-
oration result [33, 34]. Our results is calculated by using the wall source, on the other hand, PACS-CS

collaboration results is used point and smeared sources.
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Figure 5.1: Effective mass at bin size = 1 in Set 1 with CP-PACS/JLQCD collaboration result.
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Figure 5.2: Effective mass at bin size = 1 in Set 2 with PACS-CS collaboration result.

5.3 NBS wave function

Let us show the Q — Q NBS wave function in Fig. 5.3 in the 'Sy channel at t — t; = 7,8,9 in Set 1
and at t — tg = 11,12,13 in Set 2. The wave function is normalized to 1 at the maximum distance by
multiplying an overall factor, so normalization factors are different for each times. The normalization
does not affect the potential because the potential is defined a ratio of the NBS wave functions. This
error is plotted using the jackknife method of bin size 1. At the short range, the amplitude of the NBS
wave function is small which is corresponding the repulsive core of the effective central potential. The
form of the R-correlator is same as NBS wave functions, because R-correlator are NBS wave functions
normalized by e2ma!

R(t,r) =) C;"g;? = ZAn(wn(r)e*Ent)ejm. (5.2)

n
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N O T T o

o2 b SN W— —— T —

r[fm]

Figure 5.3: Top; NBS wave function at bin size = 1in Set 1 at t —tg = 7, 8,9. Bottom; NBS wave function
at bin size = 1 in Set 2 at t — tg = 11,12, 13.
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5.4 Potential of the (2 — Q)

Shown in Fig. 5.4 are a part of the effective central potential with jackknife error at 'Sy channel in Set
1. We show the potential is derived as

1 1 92
(7V2 - g + 787)R(t7t077“) = /dT/U(T’ T’)R(tatoﬂ“/)drl- (53)

in section 2.7. We plot the laplacian part(%m—ljvsz), time derivative part (%(—% + ﬁg—;)}%) and the
total which is the effective central potential. The repulsive core is given by laplacian part and attractive
pocket is caused both laplacian part and time derivative part. From this figure we find that the error of
the time derivative part is larger than the error of the laplacian part because the time derivative part is
used higher time slice as

9 iy LD = 1=

ot 2 )

Fig 5.5 represents the effective central potential at t = 7,8,9 on Set 1, while Fig. 5.6 show the potential

at t = 11,12, 13 on Set 2. Overall structures of potentials are similar to those of NN potentials previously

obtained in the lattice QCD [10, 11, 12]. The effective central potential of the 2 —  has the repulsive

core at short range and strong attractive pocket at medium range. We observe that ¢ dependence is

negligible for the potential on the Set 2 but the potential at ¢ = 9 on the Set 1 differs a litter from others,

in particular at long distance. This t dependence of the potential on the Set 1 might be caused by the
finite size effect due to the smaller volume of the Set 1 (L/2 = 0.96 fm).

(5.4)
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Figure 5.4: The effective central potential for Omega-Omega at ¢t — typ = 12 in Set 2, we separately plot
Laplacian term(red), time derivative term(green) and total(blue).
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5.5 Fitting of the potential

To calculate the phase shift, the binding energy and the scattering length, we fit the potential in Fig. 5.5
and Fig. 5.6 using the several different functional forms. The Gauss + (Yukawa) function given by

—asr
V() =ae ™ +ag(1—e ") (E—), LmV(r) =a, (5.5)
T r—0
the Gauss + (Yukawa)? function given by
2 2 2 6_a5T 2
V(r) =a1e” " +az(l —e ") ), liII(l) V(r) =ai, (5.6)
T r—
the 2Gauss + (Yukawa)? function given by
o2 o2 —aer2\2 e 2 .
V(r)=ae " 4+ aze” ™" +as(l —e ") ), lim V(r) = a1 + as. (5.7)

r r—0

Table 5.2 show the results of the fitting in Set 1. Because of chisq/dof, Gauss + (Yukawa)? function is
better than Gauss + (Yukawa) function. In these functions, the long range part is mainly Yukawa and
(Yukawa)?functions. The fit gives a1 = 1.14(1) x 10°MeV,ap = 6.29(18) x 10fm2,a3 = —4.90(3.77) x
102MeV,ay = 2.26(71)fm %,a5 = 1.47(33)fm™! with x?/d.o.f = 0.31(0.16) at t = 8, where errors are
estimated by the Jack-Knife method with the bin size of 1 configurations.

Gauss + (Yukawa)

’ ‘ a1[MeV] ‘ as[fm 2] ‘ asz[MeV] ‘ ay[fm™?] ‘ as[fm 1] ‘ chisq/dof ‘
t=711.10(0.01) x 10 | 5.41(0.12) x 10 | —3.15(0.33) x 10% | 2.39(0.13) | 2.60(0.20) | 1.50(0.54)
t=28 | 1.11(0.01) x 10 | 5.34(0.21) x 10 | —3.26(0.53) x 10% | 2.32(0.23) | 2.52(0.32) | 0.57(0.32)
t=9 | 1.08(0.03) x 10% | 4.78(0.44) x 10 | —4.46(0.90) x 10? | 2.39(0.34) | 2.69(0.49) | 0.62(0.33)

Gauss + (Yukawa)?

’ ‘ a1 [MeV] ‘ as[fm™?] ‘ asz[MeV] ‘ ay[fm™?] ‘ as[fm™1] ‘ chisq/dof ‘
t=71]1.13(0.01) x 10° | 6.33(0.13) x 10 | —3.84(3.41) x 10% | 2.51(0.87) | 1.42(0.41) | 0.84(0.30)
t =28 | 1.14(0.01) x 10 | 6.26(0.18) x 10 | —4.90(3.77) x 10% | 2.26(0.71) | 1.47(0.33) | 0.31(0.16)

=9 | 1.22(0.02) x 10° | 6.04(0.35) x 10 | —6.00(2.93) x 10? | 2.40(0.36) | 1.51(0.33) | 0.43(0.26)

Table 5.2: Fitting parameters and chisq/dof at binsize = 1 in Set 1 .

For Set 2, we use the 2Gauss+(Yukawa)? type function whose chisq/dof is the smallest with chisq/dof =
0.50(0.35) at t —tp = 12. Table 5.3 show the results of the fitting in Set 2. We have adopted the 2Gauss +
(Yukawa)? function, which gives a; = 1.69(6)103MeV, ag = 1.24(3)10*fm 2, a3 = 4.44(68)10>MeV,
ay = 5.68(131)fm =2, a5 = —7.06(1464)10*MeV, ag = 6.25(577)10~'MeV, a7 = 3.43(30)MeV at t—ty = 12.
Using these function, we calculate the phase shift, binding energy and scattering length in next chapter.

2Gauss + (Yukawa)?

’ ‘ a1 [MeV] ‘ as[fm™2) ‘ az[MeV] ‘ ayg[fm~2] ‘ as[MeV] ag[fm™2) ar[fm™1) chisq/dof
t=11 | 1.86(0.11) x 10% | 1.16(0.11) x 102 | 2.53(1.19) x 10?2 | 1.73(1.24) x 10 | —2.88(3.00) x 10° 1.11(0.29) 2.12(0.50) | 0.55(0.32)
t=12 | 1.69(0.06) x 103 | 1.24(0.03) x 102 | 4.44(0.68) x 10?2 5.68(1.31) —7.06(14.64) x 10* | 6.25(5.77) x 10~! | 3.43(0.30) | 0.50(0.35)
t=13 | 1.63(0.29) x 103 | 127(0.14) x 102 | 5.23(3.13) x 102 5.26(2.02) —4.94(38.32) x 10° | 2.79(8.45) x 10~! | 3.72(1,01) | 0.64(0.46)

Table 5.3: Fitting parameters and chisq/dof at binsize = 1 in Set 2.
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5.6 Phase shift, Binding energy and Scattering length

To calculate the phase shift and binding energy of the OmegaOmega system, we solve the Schrodinger
equation in the infinite volume using the fitted potential in J¥ = 07 channel. From Eq. (B.11) we write
the Schrodinger equation

I(1+1)

530+ (K = == —mV (1)o(r) =0, (5.8)
where ¢(r) = ri(r). Initial conditions are ¢(0) = 0, %qb(r)bzo = 1. Let’s derive these initial conditions.
We assume lim, _,o(V — E) =0 and ¢ = Cr®. Eq. (5.8) is

(ala —1) =114 1))Cre=2 = 0. (5.9)

So o =1 + 1, —1. The regular solution at r = 0 is ¢ oc /1.

In Eq. (5.8), a radial wave function at asymptotic form as

_ B(=Fk)

= = 20 5.10

6() = LEERR (k) ~ BB (), Si(6)

where IA“Ll(i) is Hankel function, Fj(+k) is Jost function and d; is the phase shift. To obtain the S;(k) from
F(£k), we calculate ¢(r) and %(;S(r) numerically, and solve the follow equation at large .

( - ) ) ( A0 =P ) ) < Fy(+k) > (5.11)
ru(r) 25 Dy — 25 P kry )\ Fil=k)

Since the S-matrix diverges at some k, corresponding to the binding energy, we can determine an existence
of the bound state and its energy. Therefore we can estimate the phase shift and the binding energy.

As already explained, the phase shift and the binding energy can be extracted from lattice QCD by
solving the Schrodinger equation involving the present potential in an infinite volume. Fig. 5.7 and Fig.
5.8 show the phase shift in the center of mass energy F at t = 7,8,9 in Set 1 and ¢ = 11,12, 13 in Set 2.
The behavior of the phase shift in Set 1 (Fig. 5.7) suggests that the Q€2 system has a bound state. On
the other hand, the phase shift in Set 2 (Fig. 5.8) indicates that the Q) system has strong attraction at
low energy but bound state seems to exist only at t—tg = 12. At t—tg = 11 and 13, the attraction is not
strong enough to form a bound state.
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Figure 5.7: Phases-shifts of Q€2 scattering as a function of energy in the center of mass frame, obtained
from non-relativistic limit of lattice QCD in Set 1 in 'Sy channel at t — ty = 7, 8, 9.
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Figure 5.8: Phases-shifts of 2} scattering as a function of energy in the center of mass, obtained from
non-relativistic limit of lattice QCD in Set 2 in 1Sy channel at t — tg = 11,12, 13.
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We calculate the scattering length a and the effective range r. using the asymptotic form of the wave

function as

where k is related to the momentum. Table 5.4 show the scattering length a and the effective range 7. in
Set 1. The Set 2 can’t estimate the scattering length and the effective range due to large error bar.

1 1
keotd(k) = — + §rek2 + O(k%),

Gauss + (Yukawa)?

’ ‘ a~![1/fm)] ‘ Te[fm] ‘

=7]-1.3(0.6) x 1074 1.0(0.1)

=8| —9.8(5.3) x 107° 1.0(0.1)
=9 | —5.7(2.2) x 107° | 8.5(4.8) x 107!

Table 5.4: The scattering length and the effective range in Set 1 .
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Figure 5.9: the energy dependence of the 1/S in Set 1 at t — ¢ty = 7.
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Figure 5.10: the histogram of the binding energy in Set 1 at t —tp = 7.

To estimate the binding energy, we search the divergence point of the S-matrix which is generated from
bin sample of the fitted potential. Fig. 5.9 show the 1/S at the energy in ¢ = 7 which is the shallowest
binding energy. We find the divergence point at all bin sample in Set 1, it suggest 1Sy state of the Q€2 has
the bound state in Set 1 but, it’s have a large error bars. We show the histogram of the binding energy
at bin-sample in Fig 5.10. We show the binding energy in Table 5.5. These binding energies are very
shallow.

Gauss + (Yukawa)?
] | E[MeV] with symmetric error

=7 —0.96(1.06)
t=8 —1.77(2.23)
t=9 ~6.69(6.81)

Table 5.5: The binding energy with jackknife error using the Jack knife error at binsize = 1 in Set 1.

5.7 Effect of the periodic boundary in small volume

Because Set 1 is a small volume, we tried to fit the potential using effect of the periodic boundary as

V(i)=Y V(F+ Li). (5.13)

neZL3

We fit data by using V(r) and x?/d.o.f is reasonable. We compared in the potential, the effects of
boundary conditions are on the middle distance Fig. 5.11. The difference between the short distance, it
can not be determined whether the difference in the mass or the difference in cut-off. Finally, we show the
periodic boundary effect of the phase shift Fig. 5.11. We estimate binding energy E = 0.15(0.31) MeV,
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E = 0.44(1.01) MeV, E = 3.91(4.75) MeV at t —ty = 7,8,9 in bin size 1 analysis. There is still bound
state and, the binding energy is smaller than when it does not take into account the boundary conditions.

Gauss + (Yukawa) with periodic boundary condition

’ ‘ a1[MeV] ‘ as[fm 2] ‘ as[MeV] ‘ ay[fm 2] ‘ as[fm 1] ‘ chisq/dof ‘
t=17 ] 1.09(0.01) x 10° | 5.06(0.11) x 10 | —3.71(0.59) x 10% | 2.59(0.35) | 3.16(0.17) | 2.23(0.70)
t=8 | 1.10(0.02) x 10° | 4.98(0.20) x 10 | —3.80(0.46) x 102 | 2.53(0.33) | 3.10(0.22) | 0.93(0.44)
£ =9 | 1.05(0.04) x 10° | 4.28(0.44) x 10 | —5.16(0.04) x 107 | 2.65(0.54) | 3.24(0.37) | 0.91(0.38)

Gauss + (Yukawa)?with periodic boundary condition

] \ a1[MeV] | ap[fm™?] \ as[MeV] | as[fm™] | as[fm™"] [ chisq/dof |
— 7] 1.12(0.01) x 10° | 6.13(0.10) x 10 | —8.81(2.02) x 10% | 1.92(0.17) | 1.88(0.11) | 0.83(0.33)
t=8 | 1.13(0.01) x 10° | 6.06(0.17) x 10 | —8.72(3.15) x 102 | 1.93(0.26) | 1.83(0.18) | 0.40(0.24)
t=09 | 1.11(0.03) x 10° | 5.79(0.35) x 10 | —9.10(4.60) x 10% | 2.19(0.32) | 1.82(0.32) | 0.62(0.31)

Table 5.6: Fitting parameters and chisq/dof at binsize = 1 in Set 1 considering the periodic boundary
condition.
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Figure 5.11: Left:Gauss + (Yukawa)?V,(r) and Gauss + (Yukawa)? include the periodic boundary effect
Ve(r) in Set 1 at ¢t = 8. Right: We plot phase shift (k) from V.(r)and V,(r) in Set 1 at ¢t = 8.



Chapter 6

Conclusion

In this paper, we have investigated the Omega-Omega interaction in J = 0% channel with 2 + 1 flavor
dynamical QCD by using the HAL QCD potential method which derive the QCD potential from lattice
QCD. We used 2 simulation set up(Set 1 and Set 2). The effective central potential between Omega-
Omega has a repulsive core at short range and deep attractive pocket at middle range. We estimate the
binding energy and the phase shift by using the fitted potential, and we found the binding energy in Set
1(small volume) with large error bar. On the other hands, In Set 2(large volume), the Omega-Omega
interaction is strong attraction but we can’t estimate the bound state due to large error bar. Consequently,
Omega-Omega system is strong attractive and it’s in “unitary region” at low energy in these quark mass
regions.
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Appendix A

Effective mass with periodic boundary
condition

We explain that how to measure effective mass with periodic boundary condition. The periodic boundary
condition is defined as

(O) e = Z (n ‘(’)eiHT‘ n) (A.1)

n

The 2pt-correlator is defined by

(D@)SW)) oo = Y (n|¢()d(y)e™ T | n)

n

= (0l6@owe™]0) + 3 / L o (B oo Eulp)). (A2

Using completeness relation 1 = |0) (0] + >_,_, f o) =B 2Ek |Ex(p)) (Ex(p)]

) pbe = Z (n |o(@)e(0)e™ | n) = (0]6(x)6(0)e™ ] 0)

+§nj / (573';3,2}5 (En(p) |6(2)$(0)e 7| En(p)) (A.3)

> (0]6(2)(1)] 0) e = Z<0\¢ ) [0) (0] 6(0)e" ™| 0)
+ZZ/ s (E)[9(0) [0) 01 6(0)e | Eo)
+TT [ 5 (016(6) [E) ()| 600)e |0}

22 Z / 78 2]; / 2;;3 Q}En (Eap) |6(@) |EL () (EL()] 640" | Ealp)

(A.4)

Removing the disconnect term (n|OO|n) = (n]|00|n) — (n]0O10) (0] O| n)

connect —

95

)
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(n|00|n) = (n|00|n) - < |(9|0><0|(9!n>

=S5 [ oo (Eale) 600) 0) 01600 )

S [ s am, 0166 B0 (i) 600 o)
1 p 1 1 / iHT

DD [ / L o (B0 [660) L) ()| (000 | B

(A.5)

connect —

We show last term is vanish at large T becauseO(e~FT)

DRI [ s an | s () ) [ 0) ()| o000 | B2 )
1 dp 1

_ZZZ/ 2Ek/ 3} 3E, <En(p)

B Z Z Z/ 2m)? 2flﬂk / gfr];” 2;,1 (En(p) |6(0) [Ex(p)) (Er(p')| 6(0)] En(p)) e~ Pree i e BnT

Using wick rotation

PHBD [ s [ g (B |600) IEG)) (Bl 6(0)| () e e T

(A.6)

5 9(0)e | (1) (Eu(p)] 9(0)7 | B ()

Due to this this term is O(e~ 7). (another therm is O(e~ 2E"T))

22/ s (B [0(2) 0) 01 0(0)e | E.(p)
+2% [ 5 (01666 |Exs) ()| 600)e o)
_ZZ/ 27r32E ()
+ZZ/ d?"Q;Jk GO | GH) (Buls)] 60)e | 0)
=S [ G ) O 0160 i) e
+ZZ/ 21 32Ek (0) | E(p)) {Ex(p')] #(0)] 0) €5

_ Z Z/ 2m)3 2E (p) [¢(0) 0) (0] (0)| Er(p)) (eip%f” + e*ipnweiHnT).

e (0)e™” |0) (0] p(0)e T

En(p))
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Using wick rotation
EZEI/"2W32E 2 (9) 16(0) 10) (0 6(0)] B () (¢ + et B0
-iiim/"d3p (5)16(0) 0) (0] H0)] Ew(p)} (e 5" + eFrte=FrT)53(p)
-ZEI 25: 16(0)0) (0] §(0)] En(0)) (e~ ErteBnE 4 ePnteBnT )eBnd

Remain only n = 0 at large T

L1401 6(0) mo(0)) 2 (¢-matemoE 4 emotemmoF)e—mo

T

= 1 016(0) lmo O coshm ¢ — e

Finally we measure effective mass using cosh(mg(t — Z)) in periodic boundary condition.

2

57

(A.8)



Appendix B

NBS wave function and phase shift

In this appendix we derive the behavior of the NBS wave function which contain the information of the
phase shift at asymptotic region. First we introduce the phase shift in Quantum mechanics, Second we
introduce how to define the phase shift in Quantum filed theory, Finally we show asymptotic form of the
NBS wave function.

B.1 Phase shift in Quantum mechanics

In this chapter, we study how to define the phase shift in quantum mechanics. Considering the central
potential V' (r) where r = |F]. Let’s start from Schrdodinger equation

(V? + E)p(2) = A(r)y (), (B.1)
where
A(r) = ;L;V(r), = ;L;kz? (B.2)

We consider this equation in polar coordinates

d 2d L 1.d L?
A:72 [ S VN B.3
(dr) +7“d7" r2 r(dr) R (B.3)
where angular momentum operator is
0
L=—irf x —. B4
i o (B.4)
Figenvalue problem on angular momentum operator
LQYEm(a ¢) = l(l + 1)}/2171(97 ¢)7 (B'5)
where spherical harmonics Y, (6, ¢) is
mtlm|  [20 4+ 1 (1 — |m|)! |m| 1 .
Yim(0,0) =(—1)" 2 P"™(cos ) —=e"™?. B.7
The potential V' (r) does not dependent on (6, ¢)
[L,V(r)] =0. (B.8)
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Therefore angular momentum is conserved value. Additionally we take the input axis on the z-direction.
We assume the solution which is symmetric around z-axis

Y(7) =D CiRi(r)Yi(0, ). (B.9)

=0

The partial wave satisfy
do, 2d I(l+1) 9 B

(57 + 20— S Ar) + KR =0, (B.10)

We can rewrite this equation using R;(r) = w’y)

d (l+1
(e =MD A+ ) =0 (B.11)

First we assume the free system V' (r) = 0 for considering the plane wave which is not affected by the

potential.
d.o l(l+1)
N2 1 =0 B.12
(G =+ ule) =0, (B.12)
where we define p = kr. We know two Linearly independent solutions of this equation
. 1d gsinp
Ul l
Jilp) = (—-1)p'(——)— B.13
(p) = (=1)p( Sd p) ; (B.13)
mlp) = ()P EBP (B.14)
pdp” p
where j;(p) is called Bessel function and n;(p) is called Neumann function. Properties of these functions
are
. 1 . T
Jilp — 00) ~ ;Sln(p — 5[), (B.15)
1 T
n(p — o0) ~ - cos(p — 5[), (B.16)
o
i ~— B.1
(20 — 1!
n(p —0) ~ T (B.18)
where (20 — 1)!! = (22ll—:_11)” and 1!! = 0. The solution in Eq. (B.12)
etk — gikreost ZCljl(kr)Pl(cos 0). (B.19)

=0

e*% is the solution which is symmetric around z-axis and it is regular at p = 0, due to this we can perform
the partial wave expansion. We note that n;(p) is not regular at p = 0. To decide the value of Cj, we
consider the orthogonality of the Legendre polynomial

1
2
d 0)P, Py 0) = o . B.2
/1 (cos0) Py(cos )Py (cos ) T (B.20)
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Using the Eq. (B.19), we leads to the following relation

20+1 [* :
C’ljl(p):T+ 1d(COSQ)62pCOSQPZ(COS(9). (B.21)

We perform the integration by parts to the right-hand side using « = cosfl at p — oo
1 1 [t '

- — dxe'” Py (x). (B.22)
-1 wJa

The second term is O(%) at left hand side. Comparing the first term and Eq. (B.15), we can decide the
value of the Cj is

1
4 1 .
|z @) - —pa)

-1

Cp = (21 + 1)i". (B.23)

As a results, it is possible to determine the asymptotic form of the wave function at p — oo. Next
let’s consider Spherical potential V(r) # 0. Similarly the V(r) = 0 case, we perform the partial wave
expansion.

ZAlRl )Pi(cos 6) (B.24)
Asymptotic form of the R;(r) at »r — oo is linear combination

. 1 . T
Ji(p = 00) ~ ;Sm(p - 30, (B.25)

1
a(p = 00) ~ = cos(p - gm. (B.26)
The regular solution at r — 0 is linear combination sin(p — 5) and cos(p — §1)
Ru(r) ~ — sin(kr — 1+ &) (B.27)
I\7r Tr SIN(KT B 1)- .

where ¢; is phase shift. For §; = 0 at A(r) = 0, we add —%. In other words R;(r) = ji(kr) at A(r) =

Finally we check the role of the phase shift ¢; in scattering theory. For Eq. (B.24)

o = 1 . s
P(r) ~ ;(2[ + 1)A;P(cos H)H sin(kr — 51 + 1) (B.28)
=> 2+ 1)A1Pl(c089)2k [emilkr=31+0) _ gilkr—31+00)] (B.29)
=0
The plane wave coming incident is
e = (21 + 1)i' P(cos 0) — 5 k [ —ilkr=30 _ gitkr=30)], (B.30)
=0

The scattering wave which is spherical wave is a difference between the plane wave and the wave that has
passed through the potential. Asymptotic form of the scattering wave at r — oo is

(B.31)
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Using Eq. (B.29) and Eq. (B.30), we can decide A;e = i!. The wave that has passed through the
potential at asymptotic state is

[ —i(kr—351) _ e2i§l ei(krfgl)]

~ Y (2l +1)i"P(cosb
lz(:) + zlcos)ri

- 2% 3 @1+ 1) Picos )[(—1) e — e, (B.32)
=0

where Sj—e?® called S-matrix. We derive the f(6) in Eq. (B.31).

o0

k-2 i ikr
Y(r) —eF* ~ T > (21 + 1)Py(cos 0)(1 — Sy)e®
=0
> Sl —1 eikr
= 2(21 +1) 57k Pi(cosO)(1—5)) "
1=0
eikr
= FO° (B.33)
where
F(6) = (20 +1) fiPi(cos b) (B.34)
1=0
= ="l — . B.
fi 57k e’ o sin 0 (B.35)
The f(0) is corresponding to T-matrix and f; is partial wave of the f(6)
1
fi= 2/ d(cos0)f(0)P(cosb). (B.36)
~1
The total scattering cross-section is
do . ’
- = =) (20 + 1) fiPi(cos b) (B.37)
1=0
do
= [ —=dQ
7 / dQ

a4 1) [

=0

kQZ (20+1)]S; — 12

47r

=2 (21 + 1)(sin ;)% (B.38)

=0
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B.2 T-matrix and Phase shift in Quantum field theory

In this chapter we define the phase shift in quantum field theory by using the unitarily of the S-matrix.
The S-matrix and T-matrix are
S=1+1T. (B.39)

The unitarity of the S-matrix is
STS =1. (B.40)
Using Eq. (B.39) and Eq. (B.40), we can derive
T—T"=iT'T. (B.41)
Sandwiching the both sides in the final state and the initial state
1T Ji) = (FITV i) = i (FI TIT i) (B.42)

Using the completeness relation as

TN = (FIT iy =a) (1T [n) (n| T]3). (B.43)

n

For simplicity we consider the scattering system of the scalars for calculate the T-matrix Fig. B.1.

out kg = {E_p- FJ'
ky = (Ep, —k)
= E. Y in
s .
ke = (Eg, k)
ke = {Ep~ ﬁ.}

out

Figure B.1: The scattering system of the 2 scalar fields in center of mass system. The initial states are

ko = (Ek, k) and ky = (Ey, —k), the final states are k. = (Ep, p) and kg = (Ep, —p). Mass of the all scalar
fields are m.

—. —.

The initial states are k, = (Eg, k) and ky = (Ey, —k), the final states are k. = (E,,p) and kq =
(Ep, —p). The kq, ky, ke, kq are satisfied the on-shell. We define the T'(p, q)

< kekg |T| koky >= (27)* 6% (ko + kb — ke — ka)T(p, q) (B.44)

Using
(fl = ke, kal —,1d) = |kaks) , (B.45)

BPqrd®q
S0 0= | e g, Ine) (e (B.46)
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We can derive

LHS = (21)46% (ko + ky — ke — ka)(T (5, k) — TH (7, k), (B.47)
d*qid’ g
RHS =i kok ‘TT‘ Ik, ‘
; Z/ (2m)32E,, (2m)32E,, < el Qa2 >< quaz2 |T| kaky >

d3(]1d3Q2 2¢3/7 = 5 5
=i |~ (2m)283 (ke + kg — 1 — 3)O3 (@1 + B — ko — Kp)
[ Em

8(Ep+ Ep — Eq — E)0(Eg + Ey, — By, — Ep)TH (5, Q) T(q, k)

. L B
=i / 47521(277)253(% + kg — ko — kb)6(2Ey — 2E,)5(Ex + Ey, — By, — Eg,)T' (5, 9)T(, k)
q

[ dkd, k2 - - - - . I
- / TEZ(QW)%?’(’% + kg — ko — k)8 (2E), — 2E4)8(Ey, + By — Eq, — Eg,)) T (5, )T(q, k)
q

ik . -
= (2m)26% (ko + kp — ke — kd)m / dQ,TH(5, )T (T, k). (B.48)

We use the definition of the T'(p, ¢) at the 2nd line and using the polar coordinates at 4th line. Comparing
the both sides we derive

ik -
= dQ T (0, DT (4, k). :
s | AT E DT (B.49)

We divide the radial and angular direction using Spherical harmonics Y},,,(€2,) and complex represen-
tation Y, ().

T(p.k) - T' (. k)

00 !
T(Fq) =47y > Ti(k)Yim(2p) Vi () (B.50)
=0 m=-1

Spherical harmonics ¥;,,,(€2,) satisfy the orthonormal relationship

/ A% Y1 () Yirm () = 810 Oy (B.51)
Eq. (B.49) is
LA = 7)Y 5 Bin O VoW 8) — Vi @) T O, (B52)
where T1(7, k) = T(k, p). o
RIS = (40)* S 3 5 [ a0, [T 0¥ ) Vi () Vi () Ve ) (B.59)

i mm’
Comparing these equations, we can derive.

Ti(k) —Ti(k) =1 .
()~ Ti) = i TR R) (B.54)
It is possible to derive the Tj(k) which satisfy Eq. (B.54)
16mEy
Ti(k) = %e’él(k) sin 6, (k). (B.55)

It is the definition of the phase shift §;(k). In this section we can define the phase shift 6;(k) by using
only unitarity of the S-matrix.
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B.3 Asymptotic form of the NBS wave function

In this chapter, we derive the behavior of the NBS wave function at large ». NBS wave has the same
asymptotic form of the scattering wave in quantum mechanics, because NBS wave function has T-matrix
at asymptotic state, and the phase shift §; is the defined by T-matrix.

6

U(r = 00) ~ 2, sin(kr - %l +o(k) (B.56)

For simplicity we consider the scalar field, let us consider NBS wave function amplitude, defined by
W,5(r,t) = (0|me(x + 7, t)mp(z, t)| ke, a, kp, by in) (B.57)

Using completeness relation

X;out) (X;out
1—2/ |p,cout)<p,cout\+z| jout) (X; out] (B.58)

2Ex ’

we can divide the elastic wave function ¥°%s*¢ and the inelastic wave function yinelastic

w(,r) — welastic + winelastz‘c (B.59)
where
st @*p o
elastic _ Z / @n2m < 0|mg(x + 7, t)| P, by out >< p,b;out |my(z, t)| kya, —k, byin >, (B.60)
)= 2P0
4 . 1
ginelastic Z < O0mg(x 4+ 7, t)| X;out > —— < X;out |my(z,t)| ke, a, kp, by in > (B.61)
2Ex

X
and |X) is not 1 particle state. The < 0 |mq(z + 7,t)| 7, b; out > is

D xﬂ_a (0>e—iﬁ-(x+r)

< 0|mq(x +7,t)| P, b; D, b; out >

< Olma(0)| 7. b out > ¢ P @)

=< 0|U Una(0)U~'U| 5, b; out > e~ P (=+7)

= [ Z O e @) e~ ip0t, (B.62)

where Z is renormalized factor and we use Lorentz transformation U € SO(3 + 1) in 3rd line

olu~t =0, (B.63)
Ur(0) U~ = 7(0). (B.64)

FElastic part of the NBS wave function can rewrite

pelastic(p)y = \/ 7 / o 32p0 ¢PH(THT) gipot p, a; out |mp(x, t)| k,a,—k, bin > . (B.65)

Using NZH reduction formula Appendix G, we rewrite from the n-pt correlator to T-matrix.

< p,a;out |mp(x,t)] k,a,—k, bin >=< 0 |aout (D)o (2, )| k,a,—k, bin >
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+i/d4x1f;(x1)(D +m2) < O[T (ma(w1)mp(w, £)| F @, —F, by in > . (B.66)

The 1st term in Eq. (B.66) is free part. We use NZH reduction formula again.

< 0|T(mo(z1)m(z, t)| K, a, —k, b in > =< 0 ‘T(wa(xl)wb(x,t))ajn(z%’a) — E,byin >

=<0

@b (ko) T (a1 )y, )| — K by in >

- i/d4:c2fka (22)(0+ m2) < 0| Tl )m(e 1] (22))] — R biin >

(B.67)
Similarly this, we rewrite the 2nd term in Eq. (B.66)
< p,a;out |mp(x,t)] k,a,—k, byin >= —i/d4x1d4$2d4$3f;($1)fka(372)fkb(3?3)
x (O +m2)(Og +m?2)(0z +m?2) <0 ’T(?Ta(l‘l)ﬂb(l‘,t)ﬂ':;(:l?z)ﬂ'g(l‘g)) 0>, (B.68)

where [J; act only x;.

< p,a;out |7Tb($7 t)| Ev a, _Ev byin > = _i(_pz + m72r)
< O[T (ralp)mola)md )l (k)0 > (k2 + ) (—I +mi2)

efiq-x .
V- TP(p,q ka, k). B.69
”m?r—q2—i€ (paq a b) ( )
We note that T'(p, q, kq, k3) is half-shell (g is off-shell). Next we calculate the 1st term in Eq. (B.66)

< 0 aout(P)mo(a, )| Ky a, —k, by in >= \/Z:2k°(21)36° (7 — k)e 2. (B.70)
We substitute Eq. (B.69) and Eq. (B.70) for Eq. (B.65)

d3 eip-xe—iﬁ'?e—iq-r R
b T(p, 4, ka, k), (B.71)

elastic _ ik-(Z+7)—ikOt —ik-x
=Zr Zr .
v (™) ¢ ° + / (3m)32p0 m2 — ¢% —ie

-

where p = (po, p),kqa = (ko, k),kp = (ko, —/Z) are on-shell, but ¢ = ((2k — q)o, —p) is off-shell. As a results
elastic part of the NBS wave function is

d®p e

710 0, ko ), (B.72)

elastic —2ikot [ ik-7
=7 0
v (7) = Zne S / (2m)32po m2 — ¢% —

and inelastic part of the NBS wave function is

inelasti kot VZ:Zx — ePxT
yinelas ZC(T) =g “"0 Z SEx mgr — q2 — i&‘TX(px? q, kq, k‘b), (B73)
X
where ¢ = ((2k—qx)o, —Px). We assume ¢t = 0 and using ¢ = ((2k—q)o, —P), the total NBS wave function
is
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1/}(7,) _ welastic + winelastic

—2ikot ik d3p eiﬁf T inelastic
s

7 d3p e T - . )
— Zﬂ— ik-T H(7 k inelastic B.74
@ [ e B R+ e (B.74)

where H (p, k) is

_ = pot ko
H(p,k) = T(p; 4, ka, ks)- (B.75)
8poko
We can ignore the inelastic part below threshold, and divide the angle direction and the radial direction

using spherical harmonics Y,,(€,)

GelaHe — e S YFI 1, ) Vi () Vi (), (B.76)

I,m

where we define wlel“s”c for expand coefficient. Using

ez‘lzf _ eikrcos@ _ 47rzll]l(kr))/lm(9'r)m7 <B77>
lm
we can derive )
elasitc E o dpp 1 .
wl ( 7Fj - Jl(ka 7’) + (27_[_)347-(])2 k2 iEHl(p’ k)]l(pr) <B78>

The 1st term is a free part and the 2nd term is interaction part. We define the H (p, E) for radius direction

-

of the H(p, k)
H(p, k) = 47> Hy(p, k) Yion () Yion (). (B.79)
Im

Using spherical Bessel function.

< dpp? 1 .
/0 7 o i k)jpr)

472 p ie
1 d < dper 1 1 Hyp,k)
= —(kr)'(———) - B.80
( r)(k:rdkr) /_OO 47r2ip7’(p—k p+k) 2k ( )
The Hi(k,—k) is
Hy(k,—k) = (=1)'Hy(k, k), (B.81)

because

H(p, k) = 47 Hi(p, k) Yim () Vi ()

lm
=47 Z Hl(—p, k:)ng(pr)Ylm(Qk:)
m

= 47TZ(_1)ZHZ(_p7 k)Yim(Qp)Yim(Qk)a (B82)
im
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where Q_,, is the Qp at 0 — 7 — 0, ¢ — ¢ + 7. Using this relation, we can derive

/oodpp2 S Hy(p, K)ji(pr) = (k) + () |k, K) (B.83)

Considering the radius direction of the NBS wave function at r — oo using H;(k, k) = 4™ sin 6 (k)

(k) = Zeljlhr) + = Hilk, K)o (kr) + (k)]
ei(Sl
~ 7 -

sin(kr — %r + 1(k)). (B.84)

r



Appendix C

Omega operator in wall source at
non-relativistic limit

This section shows that omega operator vanish exception of the spin 0 state with wall source at non-
relativistic limit. The following examples are not applicable to other types of source. First we define
omega operator in wall source as

0= abcz C'Ykz Z—c //)’ (Cl)

xT

where a, b, ¢ are color indices. For simply, we ignore C’w€ which is not important.
The two-Omega wall source operator is then given by

QQE6abcea/blcl(z§a(x))(25b($/ ch // ZS Zsb’ Z ’(y//)) (C.Q)
T x’ " y’

TheS = 3 and S, = 3 operator vanish as

(@2 = e (g ) (5 (55 D0 ) (/N5 )

(L’”

- —a“b%a’b’c’@si’(y))(ZEg D5 ST @)Y 5 (@) 55 ()

<

y y/ y"! T 2! z!
= et (S s @) (S ) NS (S WS W) ()
x 2! 2! y y y"
= —(Q9)s3 = 0.

In second line, we use fermionic condition in exchanging two-Omega operators. In final line, we replace
spatial indices, because these indices are inner indices in wall source. Since operators with S = 2 and
smaller S, are obtained by applying the lowering operator S_ to this operator, such operators also vanish.
So the same conclusion is also indicated for different z-components. We thus conclude (29Q)3 g, = 0 for
S, =43,£2,4+1,0. We can proof S=2 5, =42,4£1,0and S =15, = £+1,0.

The S = 2and S, = 2 case is a little difficult for color. For simply we ignore x because of wall source.

Spin0 will not disappear because we can not replace operator as

68
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(C.4)
(C.5)
(C.6)

50f
50f
5ef

5be
5()6

5ad sae
5bd

5cd
5ad(5b65cf o 5bf5ce) _|_5ae(5bf(scd o 5bdé~cf) +6af(6bd5ce o 5beé~cd)'

def _

2,;.abcz,_:
=—(Q22)22=0

APPENDIX C. OMEGA OPERATOR IN WALL SOURCE AT NON-RELATIVISTIC LIMIT

We can proof

—

— ey
ln

— ey

In the final line, we exchanged two quarks at same color and spin as 5} 3
2

1 case.
This proof does not hold for the S = 0 and S, = 0 case, since the operator in this case is given by

S
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1 - L _ _ _ _
(Q)00==(Q3303 _3—Q3103 _1+0Q3 1031 —Q3 _3Q033)
’ 2 272 27 2 272 2 2 2 2 272 2 2 272
1 1
feabcsdef(33%sbls‘isd 18° 1sf1 — ﬁ—(s%sb 1+ s8¢ 1311)sclsd L 8¢ 13{ — 524850 5% s° 15{
6 32 23 "2 "2 —3 2z 32 —z2 33 "3 "2 3 22 2 "2 "2 3
1 1 1
— 2 (5% 451 sh)st (515 s 8% 1s0)sT, — V2shshst i o (sTs s 4571 80)s
\/522 222\/522 2 27 T3 2 2 T 242 2 T2 2 27 T3
b I d 1 b b I 4 d
+ V25" 150 186 (5% + 5T 189)s] + 2= (5501 5% 1sh)se = (51571 + 5 1s5)s]
2 24/2 2 2 2 27 3 \/5 2 2 2 2 24/2° 2 2 2 27 3
1
+s% 8P 1 sSsdsS sl 4 V2= (980 ) s sh)se ststsT
2 2 2 2 2 T3 \/i 2 2 2 2 2 2 2 T3
— 357, 8%, 5% 545 sT)
2 2 2 2 2 2
= 95957 555" 1555 (C.7)
2 2 2 2 2 2

We can’t exchange two quarks at same spin and color. Consequently, we can calculate only spin 0
state of Omega-Omega system in wall source.



Appendix D

N/ [OV)

Spin projection to spm operator

In the section we show spin projection, and we show summarized results at end of this section. For
spin projection from spinl@spin% to spin %, we construct di-vector operator in non-relativistic limit. In
non-relativistic limit, upper components of the quark correspond to spin%.

/]\
N
b= (D.1)
0
We use dirac-matrix in dirac representation, To project Q = —emegy, 9552 (521, C (35} )T in source part.
; 0 —io!
L— .
Oy = < —io? > < ot 0 ) (D-2)
—1
0 -1 1 i
Cy” = 1 Cy = ; (D.3)
1 —1
1 1
CH% = 1 1 C~3 = ! i (D.4)
-1 —1
So we can make spinl operator
1
spinl, z + 1 51/1(2'071 + CyH) (D.5)
spinl,z0  — ——hCy3 (D.6)

V2
1
spinl,z — 1 §¢(—icyl + Cy2)ep (D.7)

On the other hands, To project in sink part, we use follow matrix
-1 —i
V0 = i = . (D.8)

71
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-1 T

So we can make spinl operator

spinl, z + 1 %w(i’le — 72O (D.10)
1

inl, z0 — — 30 D.11

spinl, z ﬂwv 0 (D.11)

spinl,z — 1 %¢(—i710 — 20 (D.12)

Now we have spin1®spin% :spin%@spin% state. Next we perform projection to spin% state using
highest weight method. First we define the highest weight

'g,;’>=y1,1> ! 1>, (D.13)

22
where |S,S.) is spinS, spin z-component S, state. Lowering operator is

I_|j,m) =/ +m)(j —m+ Dh|jm—1). (D.14)

.. 3 .1
We can easy make spin states and spinj; states.

spin% states

33)-no )
3= inofid) e olh-d)
3-2)- fBn-of ) o)
§-3) -0

o1
spin; states

11 1 11 2 1 1
‘272>=—\/;!170>‘272>+\/;171>\27—2> (D-19)
1 1 2 11 1 1 1
S N il R N i -1 — = D.2
2 2> \@” >‘2’2>+\@”0>‘2’ 2> (D-20)

Finally we make spin3, spin2, spinl, spin0 states. The spin3 for S, = +3, +2,+1, 0.

3 1\|3 3 3 3\[3 1
l_]3,3)_\/6]372>_\/5‘272>’2’2>+\/§‘272>’2,2>

3,2) = é(’;» B;’>+ B§> ‘2;>) (D.21)
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1-3,2) =V10(3,1)
1 3 1\1|3 3 3 1\[3 1
——(2]2.=2)|2. 2 312 2V |12 2
7er2)23)+8la) )
1 3 1\ (3 1 3 3\|[3 1
il 2 V2 - 212 2V|2 =
R
1,3 1\(3 3 3 1\[3 1 3 3\|[3 1
31 = —(|2, -2} |22 312,22 2V ]2 2V 2 2
s = (205 + B )25 + 22 B3
- ]3,1) = V12|3,0)
1 3 3\|3 3 3 1\|3 1
VD)) B0 ]e)
3 1\|3 1 3 1\ |3 1
212,V 2, 2V 22,2 ) |2, -2
+\/§( ‘27 2>‘2’2>+ ‘2’2>‘2’ 2>)
3 1\ (3 1 3 3\|[3 3
a5 s ) 5
1

e S A A E RS AN E TS AT I AN I AR E AN AN
TR0 20 2/ 202 27 2/1(2°2 2°2/12° 2 2°2/12° 2
I ‘3’O> = \/ﬁ|37 _1>
1 3 3\[31 3 3\[3 1 3 1\[3 1
= — N e ) 212, =) |2, —=
) ) eae ) e 3) 5 )
31\ [3 1 31\ |3 3 3 1\[3 3
212 2V |2 _Z A N P e N P
+3( ‘2’ 2>|2’ 2>+‘/§‘2’2>‘2’ 2>)+‘/§‘2’2>‘2’ 2>)
1 [3 3\[31 31\ [3 1 31\ |3 3
1= —"—(|=. =2V |=Z. = Z 2y |2 = P N
=3 en) k) ) e e
I_|3,—1) = V103, —2)
1,13 3\[3 1 3 3\[3 1
= —(2]=. -V |=. —= e ) P
7oz a) k)3 3)
3 1\[3 3 3 1\[3 3
e W P 212 2y |2 2
) ) ha)e )

Sl-DE-D-DE-D

1_13,-2) = V63, -3)
sl 5) AP

|37 _2> =
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(D.22)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

(D.29)

(D.30)
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3 3\|3 3
|37_3>_'27_2>‘2a_2>
The spin2 for S, = £2,4+1,0.
1,3 3\|31 3 1\|3 3
2,2) = — (|2, 22,2 = |2, 2 ) |5, 2 D.31
2= (3 DR -3 ey (D.31)
1_]2,2) = 22,1)
1 3 1\|31 3 3\|3 1 3 1\|3 3 3 1\|31
S V] i O S | b G SR | G ) i SRR/ i i D.32
\/i(\f‘2’2>‘2’2>+ ‘2’2>'2’ 2> ’2’ 2>‘2’2> f‘2’2>‘2’2>) (B-32)
1,3 3\|3 1 3 1\|3 3
2, =—(= =)= —=)—|=—= )|z = D.33
20 = (2 B3 -5 -3) |55 ) (D.33)
The spinl for S, = £1, 0.
1,3 3\|3 1 3 1\|3 3
L) =—(z2)l=—=)—1|=—=)|= = D.34
L0 =53 530~ 3-3)|53) (D.34)
The spin0 for S, = 0.
113 3\|3 3 3 1\|3 1 3 1\|31 3 3\|3 3
=—(lz,=)|=—=)—1|=,=2) |z, —= ——=)l==)—-l=—-= )=z D.
10,0) 2('2’2>‘2’ 2> ’2’2>‘2’ 2>+‘2’ 2>’2’2> ‘2’ 2>’2’2>) (D-35)
Finally, we summarize the above results.
spin3 states
3 3\1/3 3
—|12.2V2 2 D.36
3= [25)[55) (D.36)
1,3 3\[31 3 1\[3 3
2)=—(=,=) |32 =)=z D.37
13,2) \/5( 272> 2’2>+‘2’2>'272>) ( )
1 |3 3\[3 1 3 1\|31 3 1\|3 3
3,1)=—(=,=) |z, —= 3=z )= = ——=)|= = D.38
B0 ==(55) [5-5) V353 ) [53) + 3 3) 53 (D.3%)
1 13 3\|3 3 3 1\|3 1 3 1\|31 3 3\|3 3
=— (=2 )|z, —= — =)=, —= — == )= = — === = D.
13,0) \/20(‘2’2>'2’ 2>+3'2’2>’2’ 2>+3‘2’ 2>'2’2>+‘2’ 2>’2’2>) (D-39)
1,3 1\|3 3 3 1\|3 1 3 3\|31
-1)=—(=,=2)|=,—= -, —=)lz,—= - —= )= = D.4
o= (55 3 -a) V35505 3) + o) [ars ) (D.10)
1 |3 1\|3 3 3 3\|3 1
3,-2) = — (|2, == ) |2, =SV |2, =2V |2, = D.41
== (550 53 ) + |33 ) 53 (D.41)
3 3\|3 3
-3)=|=,—= ) |=,—= D.42
-3 =[5 -3)]5-3) (D.42)
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spin2 states
1 13 3\[31 3 1\|3 3
2)=—=(=, =)=, =) —1=,= ) |=, = D.4
22 = (335 - |3 5) o) (D.43)
1 13 3\|3 1 3 1\1[3 3
=—(=, =)=, —=)—|=,—= ) |=, = D.44
=3 D5 -5 -5 (D.41)
1,13 3\ |3 3 3 1\|3 1 3 1\ (31 3 3\|3 3
==(=,=)|=,—= — =)= =)=z, == ) = =)= |=,—= ) |=, = D.4
12,0 2(‘2’2>'2’ 2>+2’2> 2’ 2> ‘2’ 2>‘2’2> '2’ 2>‘2’2>) (D.45)
1 13 1\[3 3 3 3\[31
-H=—(=,=)|=,—=)—|=,—= ) |=, = D.4
2-n= (3D - h-D ) (D.46)
1 13 1\|3 3 3 3\|[3 1
2= —(=,—=)|=,—= ) —|=,—= —— D.4
- =235 2 -3) - [5-3)[3 -3 ) (D.47)
spinl states
1 3 3\|3 1 3 1\ |31 3 1\|[3 3
= — — =) =,—=)—=2|=,= )=, = - ===, = D.4
= 0Bl ) 2a) a2+ ) s o8
1 3 3\|3 3 3 1\|3 1 3 1\[31 3 3\1(3 3
=—0B|=,=) =, —=)— == ) |=—=)—|=—=) |5, = - ===, = D.4
o= gl 2 e a) - eoa) ) ofn) ) o
1 3 1\|3 3 3 1\[3 1 3 3\[31
1,-1)=— — =) =,—=)—=2|=,—= ) |=,—= 3l=,—= )=, = D.50
R
spin0 state
1,13 3\ |3 3 31\ |3 1 3 1\[31 3 3\|[3 3
=—(l=,=)|=z,—=)—|=,= ) |=,—= - —=D)==)—l=,—=) == D.51
0,0) 2(‘2’2>’2’ 2> '2’2>‘2’ 2>+'2’ 2>‘2’2> ’2’ 2>'2’2>) (D-51)




Appendix E

Cubic group

For improve statical errors, we increase the statics using cubic group symmetry. In this section, we explain
the cubic group Oy which corresponding to the SO(3). First we define the projection operator. Second,
we show the representation matrix of the group SO(3) which is rotation in continuous space and Oy, which
is rotation in lattice space, because the projection operator include the representation matrix. We start
a orthogonality of the irreducible representation

g
a * 9
ZD;LV(RZ) DZ/V/(Ri) == jaéabéuuléyyl7 (E]_)

where a, b are irreducible representation indices, ¢ is label of the element, u, v are indices of the represen-
tation matrix, R is elements, D, (R) is a representation matrix, g is the number of elements and d is a
dimension of the irreducible representation. We define a character x as

X(Ri) = Tr{D(R;)}. (E.2)

The character has a orthogonality from the orthogonality of the irreducible representation.

g g

DOXUR)X(R) =YY DRy Dy (Ri)
o v

) %

g
= df(z ; 5ab6uy6u,u,

= g5ab (E3)

Using it, we define the projection operator P?

a da a *
Pt = " > D, (Ri)R;. (E.4)
7
Let us check the projection to
¢u:ca¢za+cb Zb+cc¢zc+...:an/ Zla/, (E.5)
a/

/ . . . . . .
where ¢},  is base of the irreducible representation and ¢* is coeflicient.
a
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gb Z /d Z Duaua Ra ¢ﬂa
_ anw;a ZZDgaua(Ri)* v, (R DL, ’,
1 dg a’
= Z Z c? ;diafsaa’(suaua/duavt’l/ (bV(ll/

="y, (E.6)

: a ra’
In 2nd line, we use R ¢, =3, D} w

We discuss about a character of the S O( ) in continuous space. Considering the similarity transfor-
mation of the spherical harmonic

/ ¢“ So P; is a projection operator.

!
R(e, B, = > DHot, 8,7 Vi (0, ). (E.7)
m/=—1
We perform the rotation to the spherical harmonics
l
R(0,0,0)Y3,(0,0) = > S €™ Y (0, 9), (E.8)
m/=—1
Representation matrix is
—ila
—i(l-1)«
DY(a,0,0) = : (E.9)
ei(l—l)a
ila
We can calculate the character

1 — i@ Sin[(l l)g]
l l —ila 2

a)=TrD(« = - = . E.
X (@) rD'(a,0,0) = e 11— oio N (g) (E.10)

We show the character of the SO(3) at each orbital angular momentum [ in Table E.1. Meaning of
symbols C,, are described later in cubic group.

y | E[6Cs]3C [8Cs]6C, |
[ [E[60 (3G [s0[60] Lo l0[5 [~ [% [«
] a H 0 ‘ 5 ‘ T ‘ %’r ‘ T ‘ lzg 2 | V2 0 1 0
=01 1 |1 ][ 1]1 =3 4]0 0 ]-1]0
— =2 |6 |-v2] 0 [0 |0
=13 1 | 1] 0 |1 2
- = 8] 00|10
=25 | -1 S 2
=3 7] 1] 1| 1| 1 =y 10| v2] 0 | -1]0
1T
e T T T 1o 1 =012 0 [0 [0 [0
=2 [M4[-v2[ 0 | 1 [0
=201 0 [ 0] -1]0

Table E.1: Character of a spatial rotation at angular momentum [ for Oy, group.
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Next we explain the Oy, which is rotation in lattice space. Op, has 48 elements (24 rotation and parity).
In Fig. E.1, we show Op, group elements which is is corresponding to a kind of rotation. Symbol of mC),
show that n is rotation of 2% and m is the number of rotation axes. For example, given the rotation
around axis A, there are 6 rotating 7 is called 6Cy which is corresponding to the number of vertexes. To
summarize below

™

e around A axis (3,m)

In rotation 7, there are the number of vertexes 6C}. In rotation 7, there are the number of half vertexes
3C3.

e around B axis (4)
In rotation 2%, there are the number of planes 8Cj.
e around C axis ()

In rotation 7, there are the number of sides 6C5.

The total of elements are 1 +6 +3 4+ 8 +6 = 24 in O group (include identity element). O ® I = Oy,
therefore Oj, has 48 elements, where I is parity. We show the character of the Oj at each dimensional
representations in Table E.2 and Table E.3 show the correspondence table of [ and Oj, group elements.

Figure E.1: Rotation in the lattice space. Around axis A: 6C4,3C%. Around axisB: 8C3. Around axis
CZGCQ.
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| irreducible\elements | E | 6C4 | 3C7 | 6C% | 8Cs ‘

Ay 1 1 1 1 1

Agg 1 -1 1 -1 1

E, 2 2 0 | -1

Tig 3 1 -1 A1 0

Tog 3 -1 -1 1 0

Al 1 1 1 1

Aoy 1 -1 1 -1 1

E, 2 0 | -1

Ty 3 1 -1 -1 0

Ty, 3 -1 -1 1 0

Ei, 2 2| V2 | V2] 0 0 1 |-1

Es, 2 2| —V2 | V2 0 0 1 |-1

Gs, 4 41 0 0 0 0 | -1 [1

E., 2 -2 V2 | —V2] 0 0 1| -1

E; 2 2| —v2| V2 | 0 0 1 |-l

Gg 4 -4 0 0 0 0 | -1 [1
irreducible\elements | [ 61C, ‘30h:3ICi 6oq = 61CY | 81Cs

A 1 1 1 1 1

Agyg 1 -1 1 -1 1

E, 2 2 0 -1

Ty 3 1 -1 -1 0

iy 3 -1 -1 1 0

Al -1 -1 -1 -1 -1

Ao, -1 1 -1 1 -1

E, -2 -2 0 1

ny -3 -1 1 1 0

iy -3 1 1 -1 0

By, 2 V2 | V2 0 0 1 -1

Es, 2 V2 V2 0 0 1 -1

Gs, 4] 0 0 0 0 1|1

E., -2 —V2 | V2 0 0 -1 1

E; -2 V2 | —V2 0 0 -1 1

G; -4 0 0 0 0 1 |-1

Table E.2: Character of Oy, group. g is parity even, u is parity odd, A is 1 dimension representation, F
is 2 dimension representation, 1" is 3 dimension representation, GG is 4 dimension representation and [ is
parity transformation.
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1=3 E,
=3 a,
2
1=0 Ay l:% E%GBG%
122 . TlT =l | B, 0B; 0G;
= oTh 5
1=3 AsdTr @ Ts ’ 1_121 E%@2G%
=1 | A eBelol =3 | By By 926y
; 1212—3 Ei ®2FE; ®2Gs
2 2 2
12175 EFi1 9 FEs ®3Gs
2 2 2
Table E.3: Correspondence table of [ and Oy, group elements.
Finally, we show the representation matrixes.
E
100
E=(010 (E.11)
0 01
6Cy
1 0 0 0 01 0 -1 0
C:=10 0 -1 Cay = 0 1 0 Ci,=[1 0 0 (E.12)
01 0 -1 00 0 0 1
1 0 0 0 0 —1 0 1 0
c;l=(0 0 1 Cy =01 0 cl=1-100 (E.13)
0 -1 0 10 0 0 01
8Cs
0 01
C;Cy=C,C,=C.Cp,=( 1 0 0 (E.14)
010
010
(CCy)? = (C,C)?* = (C,C)* =1 0 0 1 (E.15)
1 00
0 1 0 0 -1 0 0 -1 0
CyCy = 0 0 -1 C.Cy = 0 0 1 c;C.=10 0 -1 (E.16)
-1 0 0 -1 0 0 1 0 0
0o 0 -1 0 0 —1 0 0 1
C,C.)*=11 0 0 (C.C)*=| -1 0 0 (C.C.)*=| -1 0 0 | (E17)
0 -1 0 0 1 0 0 -1 0
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9Cs
1 0 0 -1 0 0 -1 0 O
c2=(0 -1 0 C;=| 0 1 0 c?’= 0o -1 0 (E.18)
0O 0 -1 0 0 -1 0 0 1
0 0 1 01 0 -1 00
C.C,C.=1 0 =1 0 C,C.C.={ 10 0 C.C.C,=| 0 01 (E.19)
1 0 0 0 0 —1 0 10
0 0 -1 0 -1 0
clctc.= 0 -1 0 c,'CcMC= -1 0 0 (E.20)
-1 0 0 0 0 -1
-1 0 0
c;le;ley,= o 0 -1 (E.21)
0 -1 0
We show representation matrixes for spinor.
1 27
S(Cn]) = 6.1‘]?(1&}#,/[’)/#,7,/]) Wil = _?ejkl
= eﬁfp(—i%ejkz [Ves 1))
LT
= 636]9(—@%([727 ¥3l, [v3s 11l [v1,72])) (E.22)

We consider the rotation around the Z-axis

= cap(—is- [( . —ioy >< y —igs >])
=i (7, )

saer(7 )

k
e—i%o3
_ ( . ) (E.23)
All representation matrixes can be made from Cyy and Cy..
1 1
vz v Vol
e~i027 0 % % 0 0
S(C4y) - 0 6_7;02% - 0 0 1 1 (E24)
V2 V2
0 0 I
V2oV2
1—i
o037 0 0 —2’ 0 0
S(C4z) = ( 0 6710’3% ) = 0 \0[ 1—i 0 (E25)
V2 A
0 o0 0o 4

3l
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1 i
G
5(Ci) = S(CYS(ECIS(CN=| ¢ 7 L (E.26)
V2 V2
For considering monovalent representation, we deal with %7‘( and %7? + 27 as a different. For example
1 1 —i 1 1 -1 1 1—4 0
c-m(L ) emhi ) emm(hhb) e
— -1 1 — — —-1/1 -1 — —1/1-1 0
er-c=2(1L 1) er-a-3(1 ) wer-a-2( 1)
(E.28)
Parity transformation is
S(I) =4
We show the all representation matrixes for spinor.
E x2
1 1
1 — 1
E = ] JE =— 1 (E.29)
1 1
604><2
1 i 1 1
I S 0 %5 5 0 0
Cup = O‘/5 \65 1 i C4y = \65 02 1 1 (E.30)
V2 V2 V22
0 0 -% % o o < L
2 V2 V2 V2
1—3
0o = 0 0
_ V2 ,
C=| o % i (E.31)
14i
0 0 0 5
1 i 1 1
7 ? 0 O —21 ? 0 0
= = 0 0 —= —= 0 0
(Cm)7:Cx_1: \65 \65 1 i (Cy>7:Cy_1: 6/5 \65 1 1 (E'32)
V2 2 V22
0 0 5 5 o o -+ L
2 V2 V2 V2
B o0 0 0
o 2 0 o0
(C.)' =0t = YR (E.33)
0 0 Nl 0
o 0 o0 =
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(E.35)
(E.36)
(E.37)

ooéﬁﬁOOL@%
I
—

e <2 @ miﬂ o o 1717_& o o 17_ﬁ17ﬂ

._172
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| I I
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(E.38)

803><2

(E.39)

(E.40)

.z
ool
_

o) e S e
00;2;200;2;2,1
— — — —

e

e
2+72 S O 1_
— |

e
|
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|
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e
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te

S
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e
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s o
e .
Sjes = e o

(E.61)
(E.62)

—
—

o o g © 8=
o o Lﬁziﬂ o o o mwﬁ
|

.z
1;@0 o o

=

S~

~_
_
|

)(C.)TC, = — ( -

(C2)(Ca)"Cy

(E.63)

—
o oIS
> o e
lkﬁz_iﬁo .
Joge o
N~—




Appendix F

Traceless symmetric tensor

We show that traceless symmetric tensors are base of the spherical harmonics. First we define the spherical
harmonics. In spherical coordinates, Laplace’s equation can be written as

9 .0
wwma¢pi§7wgﬁmna@yhgﬁwma@:m, (F.1)

where Vg is the Laplacian at 0, ¢ direction. To use the method of separation of variables, we can seek a
solution of the form

V(r,0,0) = R(r)F(0,¢), (F.2)
where F'(, ¢) is spherical harmonics. Laplace’s equation is written as

10 20 gL

2
— = 0. F.
o (P R() + 5 VEF(6,0) = 0 (F.3)
First term is only depend on r and second term is only depend on 6, ¢, Thus we can write
ViF = CyF, (F.4)
0,450
—(r*=—R = —CyR. F.5
or (r or (r)) oFt (F.5)
The unit vector in spherical harmonics is
N = sin 6 cos ¢e, + sin 0 sin ge,, + cos ge.. (F.6)

Let’s show that we can construct the traceless symmetric tensor. Such a power series can be written
as

F(a) = C + CMiy + CP ity + - OO iy frig gy + (F.7)

111420+

where repeated indices are summed from 1 to 3 (as Cartesian coordinates). F'(n) is satisfied Eq. (F.4).

(@

The symmetric mean that the tensors C; are symmetric under any reordering of the indices

i1%9+-1]
(@) _ D
CiliQ"'il - Cj1j2"'jl7 (FS)
where {j1,72, -+ ,j1} is any permutation of {i1,i2, -+ ,4;}. The traceless mean that if any two indices

are set equal to each other and summed, the result is equal to zero (except C© and C’i(l)). Firstly we
check CZ(BZ
harmonics.

., can be constructed the traceless symmetric tensor, secondly we show F(n) is a spherical

87
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The symmetric can check easily as
Fi = C iy = O = CPauny, (F.9)

thus C’i(j2 ) is symmetric. Now we show [ = 2 case, but we can apply to all [. We show C’Z(]2 ) can be

constructed traceless. If C’Z.(]-Q)

is not traceless
2
5i;C) =X #0. (F.10)
We can be constructed the traceless to redefine the C'(©) and Ci(;) as

1

oY =0 - 300\ (F.11)
CO =00 4 éx‘ (F.12)
It follow that C’l(jg) is traceless
5i;C =0 — écm =0. (F.13)
Finally, we can write
O 0+ cPiin; = 0O 0 + Py, (F.14)

so we can make the traceless symmetric tensor with no restriction on what functions can be expressed in
this form.
We show F'(n) is a spherical harmonics. We define

Fin)=cY

’iliz---ilnilni2 T nil‘ (F15)

Using a radial variable r» we can represent coordinate vectors
3 .
T=ra=) xé, (F.16)

i=1

where é; is unit vector. So we can define Fj(7) by

B =CY o xiaiy,x, =1 CY iy i, = T E(R). (F.17)

1192++1] $1%92-+7] l

Let’s show

V2E(T) =0 (F.18)
for all I. We check | =0,1,2,3 case. [ = 0,1 is a trivial

V2Ey(7) = v2e® =, (F.19)
V2R (7)) = Vv =0 (F.20)

In [ = 2 case,
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V2F2(7) = CZ-(;)VQSL'il'j

@9 9
Uz Oxy
= C,L.(j?)aik(éikxj + widj1)
— c}?@i}g(émékj + 0irdjk)
=2076; =0 (F.21)

because Cj; is traceless. In [ = 3 case.

V(T = C’Z.(;’,zvz:mxjxk
3 0

UK Qg Oy 7

®3)

(5imxjxk + CCi(Sjmwk + xixjékm)

CLY
= Cz(flz (5im5jm$k + 5zmxy5km + (51m(5]m$k + l’z(sjmékm + 6zmx]5km + wifsjmékm)
= 2C0) 8k + O + Sjxi) = 0 (F.22)

From Eq. (F.17) and Eq. (F.18)

o
Il
<

2o
4

T 9ogleSle
=
no

1 ..
+ 7,7%5(7)

—
=
[\

SRS
N>
3

(L E(0) + 5V Fi(h)

1Y E() + vt 22 E(R)

1
/S. ﬁw‘ = ﬁw‘ = ﬁw‘ =
o~

T2 Fy(n) + r' Vi F (R) (F.23)

—I(1+ 1)Ey(n) = V2F(n). (F.24)

Therefore, we have found the eigenfunctions Fj(n) and eigenvalues —I(I + 1) of the V2. So we show that
traceless symmetric tensors are base of the spherical harmonics.



Appendix G

NZH reduction formula

We derive the NZH reduction formula. NZH reduction formula is

ot (H)T(O) — T(O)ain (F) = (—p* +m?)T(¢' (p)O),
T(O)al, (5) — ab,(HT(O) = (—p* + m*)T(0 (p)),

(G.1)
(G.2)

where T is time order product andO is Heisenberg field. For asymptotic filed, we define Heisenberg field

which is renormalized as

L s@).

¢(z) = -

We define asymptotic filed as
¢' (¥ — £o0) = ¢*(a).
Time order product of the Heisenberg field is

T(¢(z1)¢ (x2) - ¢'(zn)] = ¢ (21)¢ (22) - - ¢ (20),

where 20 > 29 > ... > 2. We define the annihilation operator as

e—zk-x

Jr(z) = NS

Let’s start time order product of the fields

T[GGS(E)¢/($2> .. ¢/(xn)]x‘f:oo

0__ .
Ty=—00

It is possible to rewrite Eq. (G.8) to 2 patterns. First we consider asymptotic form

0

Tlaas (k)¢ (@2) - & (@) 5" = Gout(R)[¢ (w2)¢' (w3) - -~ &' (wn)] — T[¢/ (w2)¢ (3) - - - & (wn)] i

0_—_
T{=—00

90

(G.8)

k).
(G.9)
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On the other hand, Eq. (G.8) can rewrite as

0

Tlous ()6 (a2) -+ 0 )[4 = [ dadouli [ a(sitan)

0T (1) -+~ &' (xn)] — (G0 fi (2))T[ (1) - &' (xn)])]
/d 21 fi (@) 05T (21) - ¢ (wn)] = (B i (w) T (21) - & ()],

(G.10)
In the second line, Jy is act only zY. Using Klein-Gordon equation
0 fir(z1) = (V2 = m?) fi (a1), (G.11)
and perform the integration by parts, we can rewrite Eq. (G.10)
e 20=00 . *
Tl () & @)=, =i [ dorfile) O+ w2 o) o))l (G2
Comparison of Eq. (G.9) and Eq. (G.12), we can derive the NZH reduction formula
tout(H)T(0) = T(O)ain(p) = (—p* +m*)T(¢'(p)O). (G.13)
Next we lead a similarly Eq. (G.2). We define abs
ohF) = =i [ da(fu()00" (@) — (006 () (G.14)
e—ik~x
)= —————— G.15
folo) = e (G.15)

and time order product of the Heisenberg field is

Tlaas(k)d (x2) - ¢ (x5 = T (21)¢ (w2) - - S@n—1)]al, (k) — al, (R)T[d (1)¢' (x2) - - ¢ (wn1)].
(G.16)

Performing the same process, we can derive the NZH reduction formula as
tout(F)T(O) = T(O)ain(p) = (—p* +m*)T(¢' (p)O), (G.17)
T(0)al, (5) ~ abu(HT(O) = (=p* + m*) (O (p)). (G18)
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