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Preface

Supporting decision making in the real world is one of the central aims in developing precise de-
scriptive models to explain and predict real human behaviors. Particularly in the environment in
which many humans interact to one another, a decision maker must accurately predict or forecast
the others’ behaviors, and she or he must make rational decisions based on such reliable predictions.
While predicting how humans actually behave is a central interest in most social sciences, to design
explicit mathematical forecasting functions in such descriptive models is an extremely challenging
problem. The mathematical hardness in predicting actual human behaviors is a composite outcome of
each individual’s bounded rationality (e.g., cognitive bias and limited memory), and the interactions
among such biased individuals. Each human adopts idiosyncratic decision-making mechanisms that
are beyond the scope of the assumptions in simplistic normative models that discuss how each human
should behave. Then further complex social phenomena could emerge as such bounded-rational de-
cision makers interact to one another with limited information about other players. Considering such
complexity of the composite outcome and the practical inefficiency in postulating the functional forms
about each individual’s decision making mechanisms a priori, the author rather adopts experimental
approaches to construct statistical predictive models to describe the observed individual or collective
behaviors, by introducing highly-expressive probabilistic models whose parameters are fitted with
real-world datasets. While the attained statistical models lack parts of the explicit functions to predict
microscopic interactions, their predictive powers for the observed behaviors become close to those
with the true underlying system.

Throughout this dissertation, the author’s essential philosophy to obtain useful descriptive models
is to design and fit nonparametric machine learning models. Nonparametric models, which introduce
non-linear predictors with interpolating multiple basis functions, possess much higher explanatory
powers with lower bias than simple parametric or linear models. The functional flexibility in non-
parametrics can greatly help us predict or infer each individual’s behavior and the collective social
phenomena. While estimation of the parameters of such expressive models involves high variance
and over-fitting to the training data, recent advances in machine learning and data mining algorithms
allow for suppressing such estimation variance. By effectively fitting a nonparametric model with
searching for the optimal bias-variance trade-off, we attain the descriptive human behavior models that
have high generalization capabilities, and whose predictions are applicable for lots of out-of-sample
datasets. The direction of statistically constructing the descriptive models is promising because of the
recent emergence of very large datasets recording real human activities, which further incentivize us
to develop more accurate and computationally-efficient nonparametric machine learning algorithms.
Beginning with the basic enhancement and its underlying philosophy in stabilizing and accelerating
the nonparametric machine learning algorithms, the author develops new algorithms customized with
each application domain, in order to help make decisions with predicting the behaviors of other hu-
mans.



The author starts with his basic algorithmic contribution in stabilizing and accelerating nonpara-
metric density estimation. Density estimation, which is fitting of probability density function for
certain random variables, is one of the most essential machine learning tasks containing the conven-
tional regression and classification problems as its subsets. Unlike the fitting of the exponential family
including the well-known Gaussian distributions, a nonparametric density estimator enables the fit-
ting of any (e.g., multi-modal and heavy-tailed) probability density functions, with a unified manner
of using a mixture of multiple kernel functions. Yet nonparametric models usually involve high-
dimensional parameters and their fitting is easily trapped with poor local optima, because of the high
degrees of freedom in determining its structure. For attaining reliable estimates, the author exploits
convex optimization, which easily converges into the global optimum merely with gradient ascend-
ing or descending. Since optimizing all of the parameters in a nonparametric model is non-convex
in most cases, how to relax the fitting problem with a convex-optimization formalism is the essential
and practical issue that machine learning researchers must solve. The author realizes a fast and global
optimization algorithm for the nonparametric density estimation, with enhancing convex clustering to
fit the mixture weights while fixing the parameters in all of the kernel functions. The author introduces
a new algorithm to perform the convex clustering and sparse nonparametric density estimation where
the true objective is exactly optimized with much faster convergence, while the prior work adopting
an Expectation-Maximization (EM) algorithm with an approximate pruning exhibits very slow con-
vergence. The key idea in this study is a new style of the Sequential Minimal Optimization (SMO)
approach, inhering the measurement of similar kernel functions and an element-wise Newton-Raphson
method. The required number of iterations in the new estimator is drastically reduced because of its
accurate and fast pruning of many irrelevant kernels. The much acceleration achieved with the new
algorithm makes the sparse nonparametric density estimation applicable to large datasets that the prior
work could not handle, and helps application researchers concentrate on designing effective kernel
functions depending on the domains of the applications.

Then the author proceeds into the real application parts about the prediction and forecasting of
the behaviors of interacting humans. One application the author focuses on is the development of a
nonparametric travel-time prediction model, which properly captures the characteristics of interacting
vehicle traffic. In automobile transportation, travel time in one route is a composite outcome of the
interactions among heterogeneous drivers having their own routing decision mechanisms. Here the
interactions are mediated by the digraph structure of the road network, whose vertexes are intersec-
tions and whose edges are links between two intersections. Each driver’s routing decision is unified
as a risk-sensitive travel-time minimization, where each driver evaluates not the risk-neutral but the
risk-sensitive utilities for many possible routes with applying each driver’s own risk measure. Then
one essential information for simulating the complex traffic on the entire road network, or navigating
a car along the most desirable route based on the normative decision theory, is the probability den-
sity function of travel time for every link. Given the fact that the actual travel-time distribution has a
right-skewed heavier tail and depends on the location of each link, the author introduces a new non-
parametric conditional density estimation algorithm that precisely fits link-dependent non-Gaussian
distributions of travel time using real and large probe-car datasets. The new estimator fully exploits
the accelerated convex clustering algorithm that is executed twice inside the entire estimation, given
the required properties of kernel functions that must be customized with this application. Here each
kernel function, which is interpolated in the final convex clustering, is a mixture of gamma or log-
normal distributions whose fitting requires another convex clustering execution. Based on the fact that
one congestion diffuses from one link into its connecting links, the optimal mixing weights in the final
conditional estimates are given with a diffusion model involving the cascading of the interaction, using



a sparse link similarity matrix constructed from an approximate diffusion kernel on a link connectivity
graph. The high predictive accuracies about the travel-time distributions evidence the advantages of
the new nonparametric estimator, which adopts the fast and global optimization algorithms.

The last two chapters of this dissertation are spent for another important application designed for
economic decision making, which requires both of the descriptive modeling of consumer behaviors
and the normative optimization for firms to target such real consumers. For the purpose of marketing
implications, the proposed descriptive model explicitly deals with the microscopic behaviors by each
individual consumer, based on the author’s same philosophy of interpolating multiple kernel functions
but with a customized modeling and optimization algorithm adjusted in this domain. Here each con-
sumer’s response or purchase propensity is modeled as a composition of her or his own brand attitudes
with limited memory, and interaction factors stemming from word-of-mouth, herding, and common
biorhythms among humans. The idea of interpolating fixed-parameter kernels is extended for the de-
sign of the limited memory, which yields power-law forgetting curves depending on the types of the
stimulus events. Considering the computational efficiency in processing variable-interval continuous-
time event datasets, the author proposes an effective convex optimization algorithm to precisely fit the
event-dependent forgetting curves, which form staircase functions of elapsed time for approximating
the power-law decays. The author further introduces a three-step estimator for mining the hidden in-
teractions among consumers, whose records are not observable in the datasets. The fitted forgetting
curves provide clear and psychological interpretations about how each consumer perceives each type
of the event, and practical implications for firms who want to optimize their marketing investments.

The normative decision support for a firm to target consumers is realized with a new marketing-
mix optimization algorithm, which gives the optimal marketing budget allocation across various chan-
nels and target segments, along with the timing of each marketing action for maximum profit. This
last study focuses on the practical but normative decision making when the fitted descriptive consumer
models are assumed to be accurate. The goal in the normative marketing-mix optimization is the maxi-
mization of the expected revenue minus the total marketing cost in certain multiple periods. This profit
maximization is also constrained with the temporal dynamics about the states of each consumer, where
such states are essentially unobservable but can be inferred from the descriptive model fitted. The au-
thor introduces a new high-dimensional constrained linear programming formulation, which accounts
for both of the temporal dynamics constraints and the complex budget constraints across many peri-
ods, segments, and channels required in real marketing operations. Each segment of the consumers is
a discrete approximation of an underlying continuous state. Since the attained policy with the discrete-
segment approximation is not guaranteed to perform optimally in the true continuous-state system, a
continuous-state discrete-event simulation study about the forecasted impacts of the attained policy
is also investigated for further implications. This novel combination of machine learning, normative
optimization and simulation embodies one of the effective solutions for the ultimate goal targeted in
this dissertation, which is the decision making in interacting with other humans whose behaviors are
forecasted with statistical descriptive models.
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Chapter 1

Introduction

To accurately predict the behaviors of humans who interact with one another is an essential task in
many social science and decision making problems. While standard economists have regarded hu-
mans as rational optimizers having consistent objectives, experimental psychologists have clarified
the bounded rationality of the real humans and hence we do not have to always regard humans as op-
timizers. Instead, by adopting statistical descriptive models to predict the behaviors of interacting and
bounded-rational humans, effective decision making algorithms are derived as we see in the successes
of the existing marketing applications. Such statistical models need to possess fat tails and long-range
dependence, which are the main outcomes of positive feedback among the interacting humans. By
interpolating multi-scale basis functions, we introduce nonparametric descriptive models that yield
the fat tails and long-range dependence while also allowing for handling more complex functions than
the existing parametric functions. By manually fixing the basis functions to cover all of the required
scales determined in each application, we stably fit the interpolation weights with global convex op-
timization algorithms. By starting from the basic enhancement in fitting probability distributions, we
proceed into the applications of the proposed methodology for transportation and marketing problems.
For the marketing application, we also discuss a rational decision-making algorithm that exploits the
predictions provided by the nonparametric descriptive models.

The remainder of this chapter is organized as follows. Section 1.1 introduces the literature of deci-
sion making problems involving the interactions among humans. Section 1.2 addresses the examples
of the bounded-rational decisions by real humans, and justifies the adoption of statistical descriptive
models. Section 1.3 shows how positive feedback among the interacting humans occurs, and addresses
the power-law statistical properties of the resulting indicators for such interacting systems. While
power-law models have high predictive accuracies, direct statistical modeling of such power-laws be-
comes impractical for large datasets, as we explain in Section 1.4. As a computationally-efficient
alternative to the power-law models, Section 1.5 introduces our new methodology about the statistical
descriptive models that adopt the nonparametric mixtures of multi-scale basis functions. Section 1.6
briefly addresses our rational decision making approach to exploit the nonparametric descriptive mod-
els, and Section 1.7 summarizes this chapter with introducing the organizing structure of the remainder
in this dissertation.

1.1 Decision Making in Interacting Systems

Humans make their own decisions based on interactions with one another, and to accurately predict
the behaviors of such interacting humans is an essential problem to realize effective economic deci-
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sion making. One important aspect to classify decision making applications involving the interactions
among humans is whether or not the main decision maker is a part of the entire interacting system. In
transport economics, public policies such as road pricing (Small and Yan, 2001; Verhoef and Small,
2004) should be designed with careful assessments about how such policies impact to the entire traf-
fic, because each vehicle driver would change his own decision of selecting a route by responding to
the change of such policies. Given his own origin and destination points, each vehicle driver chooses
a proper route whose travel time has a desirable value of some statistics (e.g., expectation (hsin Wu
et al., 2004; Idé and Kato, 2009), Entropic Risk Measure (Föllmer and Schied, 2004), and Iterated
Conditional Tail Expectation (Hardy and Wirch, 2004)) yielded by a stochastic game against the other
drivers (Camponogara and Jr., 2003) to search for good roads that are not occupied by other cars.
Design of an effective transportation policy or system is hence a complex decision making problem
to control of interactions among lots of drivers, while the policy makers themselves are not the mem-
bers of the traffic system. In marketing, firms intend effective campaigns involving mass advertising
(Kumar et al., 2011; Naik and Raman, 2003; Naik et al., 2005; Raman et al., 2012) and personalized
promotions (Elsner et al., 2003; Abe et al., 2004; Tirenni et al., 2007b; Abe et al., 2009) in order to
stimulate the purchase decisions by consumers. Here word-of-mouth (Fudenberg, 1995), which causes
booming social trends, is a representative example of the interactions among the consumers. When
firms plan the optimal campaigns to yield high profits, each firm as the main decision maker is the
member of the entire market system in principle.

As we see in the examples of marketing, many of the social science problems are classified with
what types of interactions are incorporated or ignored in their predictions. One possible interpretation
of the marketing decision making is a stochastic game between the firm and each consumer (e.g.,
(Ching, 2010)), where the firm tries to find out campaigns yielding high profits by predicting how
each consumer perceives and responds to each campaign, and each consumer intends to maximize his
own satisfaction instead of naı̈vely responding to the high-profit campaigns. While the predictions by
consumers against the firms actually affect the observed economic activities, in practice these effects
have been ignored in most of the successful marketing decision-making algorithms such as optimal
direct mailing (Elsner et al., 2003; Abe et al., 2004), design of loyalty program (Tirenni et al., 2007b),
and credit assignment (Gómez-Pérez et al., 2009). These algorithms rather have focused on statistical
machine learning models to accurately predict the response probabilities or the response amounts
without regarding consumers as optimizers of certain objectives. By assuming every consumer to
obey this response model, effective marketing strategies to maximize the long-term profits are derived
based on Markov Decision Processes (MDPs) (Altman, 1999). Such MDP-based approaches have
been theoretically extended to incorporate the interactions among competing firms for shares (e.g.,
(Naik and Raman, 2003; Naik et al., 2005; Raman et al., 2012)). Here every firm tries to control the
total marketing costs and predict aggregate-level sales, with considering a stochastic game against the
competitors.

1.2 Bounded Rationality

Another important aspect to classify decision making applications is whether to assume the rationality
for each human. Let us consider the main reason behind the successes of existing marketing appli-
cations that have simply focused on statistical modeling of the relationship, between input stimuli
and output responses for each consumer. In many of the decision-making contexts including game-
theoretic situations, each player’s optimal choice from several alternatives tends to be very limited
such as the ones contained in Nash equilibria (Nash, 1951). Hence strictly assuming the rationality
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of consumers results in low degrees of freedom in predictive modeling, and loses prediction capa-
bilities when the actual consumers do not follow rational optimization procedures. Unlike the predic-
tions over-confidently relying on the rationality assumption, statistical input-output modeling carefully
deals with the actual observations about human behaviors, and hence whether each consumer is ra-
tional or irrational is determined based on the experimental evidences. If the statistical predictive
formulas cover very broad ranges of forecasting functions, such flexible models precisely fitted with
large-scale real datasets provide realistic and accurate predictions adjusted for each consumer’s char-
acteristics, such as his degree of rationality. To reinforce this implication from the successes of the
statistical approaches, this section provides several experimental evidences about the irrationality of
the decisions by real humans, based on the literature of experimental psychology.

There have been lots of debates about whether humans are rational or irrational. By starting from
the Von Neumann-Morgenstern utility theorem (von Neumann and Morgenstern, 1953) and Inde-
pendence from Irrelevant Alternatives (IIA) (Luce, 1959, 1977) as prerequisites for rational decision
making, standard economists and management scientists have developed normative decision-making
models, with which every decision maker is assumed to be rational by having a consistent objective
to be optimized and by protecting himself from intentional exploitation such as money pump (e.g.,
(Gustafsson, 2010)). Studies about normative models tell us how humans should behave, rather than
how they actually behave.

A representative framework to predict the behaviors of such rational humans is the random utility
maximization, with which each human has a consistent function to evaluate the attractiveness of an
option (e.g., product and service), and the scalar output of such function is called the utility of each
option. Econometric forecasts by regarding every consumer as a rational utility maximizer have been
adopted in lots of econometric applications, such as product design (Brownstonea et al., 2000), de-
mand forecasting (Train and Winston, 2007; B.D. Frischknecht and Papalambros, 2010), and various
marketing problems as summarized in (Chandukala et al., 2007). With the random utility maximiza-
tion framework, each human is assumed to choose an option having the maximum utility. The utility
of an option is a function of only its own attributes, such as costs and benefits, plus random noise
(e.g., Gaussian-distributed probit (Louviere, 1988) or Gumbel-distributed logit (McFadden, 1980)).
Because the utility of each option is independent from those of the other options, intentional manipu-
lations of the available options do not affect the decision criteria and hence the resulting decision by
the utility maximization becomes rational.

In contrast, behavioral economists and experimental psychologists have studied how humans ac-
tually behave, and have introduced descriptive models that predict the actual behaviors of humans
with high accuracy. Many of such descriptive models have been introduced for explaining irrational
decisions by humans, with modeling the bounded rationality (Simon, 1947) of humans having cogni-
tive bias (e.g., (Townsend and Ashby, 1983; Busemeyer and Townsend, 1993; Roe et al., 2001; Otter
et al., 2008; Scheibehenne et al., 2009)) and limited memories involving time decays. Prominent ex-
amples of the cognitive bias are the context effects including the similarity effect (Tversky, 1972),
the attraction effect (Huber et al., 1982), and the compromise effect (Simonson, 1989; Kivetz et al.,
2004). These context effects cause irrational decisions in choosing an option from the set of available
options, which is called the choice set. As shown in Figure 1.1, the attraction and compromise effects
cause reversal of preference orders, which makes humans vulnerable to intentional manipulations of
the choice sets.

Another prominent example of the irrationality is time-inconsistent decision making caused by
hyperbolic discounting (Ainslie, 1974; Thaler, 1981). Before understanding the property of hyper-
bolic discounting, let us first understand the fact that rational dynamic decision making is provided
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Attraction effect Compromise effect

Figure 1.1: Violation of IIA with the attraction (Huber et al., 1982) and compromise (Simonson, 1989)
effects. Options (A,B,C,D) are on a two-dimensional Pareto efficient frontier. For a market in which
A and D exist, introduction of option A−, which is absolutely inferior to A, shifts portions of shares
from D to A while A− is never chosen. In each choice set containing three options, the moderate
option obtains the highest share. Preference order for A and D, and that for B and C are reversed with
these context effects. Any non-linear utility function cannot explain this preference reversal, as long
as the attractiveness of each option is absolutely modeled with such option’s own attributes.

by exponential discounting of future payoffs. As illustrated in Figure 1.2, exponential discounting
yields time-consistent preferences in comparing multiple options, whose occurrence timings are dif-
ferent. Because of the time-consistency, any exponential discounter does have a gap between what he
chooses and what he plans in advance to such choice decision. In contrast, the discounting functions
actual humans have take power-law or hyperbolic discounting forms as illustrated in Figure 1.3. With
hyperbolic discounting humans discount the value of a future reward based on a power-law function
of the remaining time. Unlike the exponential discounting, hyperbolic discounting causes reversal of
preferences between small and larger rewards obtained in the near and distant futures, respectively.
This preference reversal makes humans’ decision making irrational, by producing a gap between what
he chooses and what he plans in advance to the choice decision. As well as in inferring the net present
value of the future reward, the power-law discounting also appears in forgetting the influences of the
past stimuli (Ebbinghaus, 1885; Wixted, 1990; Rubin and Wenzel, 1996; Wixted and Ebbesen, 1997)
as shown in Figure 1.4. Here the ratio between the strengths of two stimuli, which have different time-
stamps, becomes time-dependent. Such time-dependent relative influence yields time-inconsistent
prioritization of each past stimulus, which leads irrational decision making. The power-law forget-
ting is regarded as a result of interacting information exchange among the short-, mid-, and long-term
memories inside the same brain of a human, where only the important events survived in the short-term
memory are transferred into the mid-term memory (Benjamin et al., 2008).

Based on the observed violations of the rationality assumptions and the actual successes of the
marketing applications in the literature, instead of regarding humans as utility maximizers, we should
adopt more flexible descriptive models that adopt statistical approximations on predictive functions
whose inputs are the stimuli and information given to each human and whose outputs are the responses
and behaviors by the human.
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Figure 1.2: Time-consistent choice by exponential discounters. We have two decision makers (left
and right), and each of them is asked of choosing one option from two mutually-exclusive monetary
options A and B at some time t ∈ [0, 3). Each figure shows every option’s net present value as a
function of time. Option A is immediate and small $30 payoff at time t = 3, and option B is more
delaying but larger $80 payoff at time t= 9. For discounting the future payoffs, each of the decision
makers apply an exponential discounting function exp(−λ|t− tR|) where tR is the time-stamp of
obtaining each of the payoffs and λ is each decision maker’s own discounting rate. The left decision
maker, whose value of λ is high, prefers option A to option B at any time t<3. Hence the left decision
maker is myopic while his myopia is time-consistent. In contrast, the right decision maker having
a lower value of λ always prefers option B, and hence he is regarded as a time-consistent long-term
decision maker. As illustrated in these two figures, decision makers using the exponential discounting
schemes always have time-consistent preferences, and there is no gap between what they do and what
they plan in advance to the occurrence of each payoff.

1.3 Positive Feedback

In addition to the irrationality of human behaviors, positive feedback (e.g., (Zuckerman and Jefferson,
1996)) among such humans makes the predictions in interactive environments further challenging.
For example in finance, financial economists and statistical physicists have studied why stock markets
boom and bust, by modeling the imitation-based herding among investors (Bala and Goyal, 1998).
Here each investor is supposed to balance her/his own knowledge about the market or securities, and
the opinions from other investors (Blanchard and Watson, 1982; Roehner and Sornette, 2000). As de-
rived in the rational bubble model (Blanchard and Watson, 1983), even when each individual investor
having limited knowledge rationally imitates the investments by others, the irrational bubble occurs as
a collective behavior of the entire market system. The rational bubble model has been further extended
into the log-periodic model (Sornette et al., 1996; Feigenbaum and Freund, 1996), with assuming a
scale-free network among such investors. The log-periodic model is known to possess high predictive
powers particularly about the timing of the crash of the market price (Chang and Feigenbaum, 2006).
The philosophy to regard the trend following as one of the main causes of the critical phenomena,
such as the crash of the market price and huge congestion in traffic systems (Fosgerau and Fukuda,
2012), has been embodied as individual-level epidemic branching (Goffman and Newill, 1964) and in-
formation cascading (Bikhchandani et al., 2008) models. In marketing, such trend-following has been
regarded as the cause of long-run sales (Deschatres and Sornette, 2005; Crane and Sornette, 2008) that
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Figure 1.3: Hyperbolic discounting as a time-inconsistent decision making mechanism. The setting
of the choice is the same as that in Figure 1.2, while this decision maker uses a hyperbolic power-law
discounting function 1/(1 + λ|t−tR|). The left figure shows the net present values in the same period
as that of Figure 1.2, while the right figure provides a magnification when t≤3. If this decision maker
is asked of choosing option A or B at time t=0, then he will select the more delaying but large-payoff
option B. If the time of the question is t= 2.5, however, then he will select the immediate and small
option A by reversing his own preference. This preference reversal means a gap between what he
does choose and what he plans in advance to the choice decision, where he adopts long-term thinking
when payoffs do not occur in the near future, whilst changes to be myopic when the moment of reward
reaches. In general, hyperbolic discounting yields time-inconsistent preferences and makes decision
makers irrational.

decay over time only gradually, because of the repetitious word-of-mouth among consumers.
If we statistically analyze interacting systems inhering positive feedback, distributions and time-

series about the main indicators such as stock-price returns often exhibit heavier tails (e.g., (Man-
delbrot, 1963) and (Cont, 2001) for more stylized facts) than Gaussian distributions, and long-range
dependence (Cont, 2005; Deschatres and Sornette, 2005; Crane and Sornette, 2008; Filimonov and
Sornette, 2011). Hence many of the statistical models to predict the outcomes from interacting sys-
tems have parametrically incorporated fat-tail distributions (e.g., Student’s t-distribution (Blattberg
and Gonnedes, 1974) and generalized hyperbolic distribution (Eberlein et al., 1998)) and power-law
decays of the autocorrelation (Sornette and Ouillon, 2005; Filimonov and Sornette, 2011). For exam-
ple in predicting the time-series of volatility, the long-range autocorrelation represents the dynamic
interaction among investors, where the strength about the imitation among the investors persists while
varies over time. Such explicit power-law decay modeling has also been adopted in forecasting the
behaviors of consumers (e.g., Self-excited Hawkes conditional Poisson process (Hawkes, 1971) to
predict the sales of books and page-views of online videos (Deschatres and Sornette, 2005; Crane and
Sornette, 2008)).

1.4 Limitations of Parametric Power-Law Models

The direct parametrization of the fat tails or the long-range dependence via power-law functions, how-
ever, often results in insufficient predictive capabilities, poor local optima of the fitted parameters, and
computationally inefficient algorithms that cannot be applied for large datasets obtained in real ap-
plications. The main philosophy behind the existing statistical descriptive models, which incorporate
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Figure 1.4: Power-law discounting also appeared in forgetting the past events. The left figure shows
an observed forgetting curve in Ebbinghaus’s experiments (Ebbinghaus, 1885), that measured the
time-decaying ratio of subjects who remember nonsense syllables, such as “ZOF”, after their initial
exposition. The right figure provides a magnification of the left figure in the first 2 days. The red point
and line show the observed rate of forgetting and its corresponding curve, respectively. The green and
blue lines show exponential forgetting curves, based on the observation of the 2-day rate and that of
the 31-day rate, respectively. The low accuracy in approximating the red line by either the green or
blue line evidences that humans’ forgetting curves cannot be represented by an exponential discount-
ing function having the single discounting rate. Rather, the long tails or long-range dependence in
the actual forgetting curves should be modeled by a power-law function, or mixture of exponential
discounting functions having multiple heterogeneous scales.

fat tails or long-range dependence, is the fitting of certain power-law functions involving a limited
number of tuning parameters. In order to clarify the essences of the underlying computational prob-
lems, let us classify the fundamental limitations caused by directly formalizing or fitting of power-law
functions into three types: high bias, local optimality, and non-scalability. Here we provide a detailed
background for each of the three types of the limitations.

High bias. In typical decision-making tasks, we need to predict lots of heterogeneous indicators, such
as prices of many stocks in the market and individual-level responses for each of the many con-
sumers. Depending on the degree of bounded rationality and positive feedback, some indicators
obey certain power-law rules, while the others do not. When we always adopt simple power-law
formulas in predicting all of the indicators, the resulting predictive accuracies become low, par-
ticularly for some indicators that do not obey power-law rules and those involving other types
of complexities, such as non-monotonicity or multi-modality of the underlying functions. In
other words, parametric statistical models strictly imposing the power-laws have high bias that
limits the generalization capability in predictions. For avoiding such high-bias problems, we
rather should fit a broader class of statistical predictive models, which contain the power-law
functions as its subset. Such flexible models would adaptively yield both power-law and other
complex functions, depending on the actual nature of each indicator.

Local optimality. Statistical fitting of probability distributions, which is usually based on the maximum-
likelihood principle or Bayes’ theorem, involves optimization of the model parameters. The
class of probability distributions, whose parameter-fitting is guaranteed to be globally optimal, is
very limited. One representative class of such convenient distributions is the exponential family,
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whose fitting of the parameters becomes convex optimization (Liese and Miescke, 2008). Un-
fortunately, power-law distributions such as Student’s t-distributions are not contained in the ex-
ponential family, and their parameters must be fitted with non-convex optimization algorithms,
such as the Expectation-Maximization (EM) algorithms (Dempster et al., 1977; McLachlan and
Krishnan, 1997; Karlis, 2002). The fitted parameters with the EM algorithms could be trapped
in poor local optima, whose low qualities become crucially problematic particularly when the
number of the indicators to be predicted is large.

Non-scalability. This is a characteristic limitation of the autoregressive models for incorporating the
long-range dependence. To clarify the problem, let us consider an example of computing a
time-varying variable xt∈R at discrete time t, which becomes an explanatory variable of some
autoregressive model to provide a prediction at every time t. The explanatory variable xt is
determined by a series of the past stimuli st−1∈R, . . ., st−L∈R.

If the prediction is supplied by an exponential discounting whose per-time rate is λ > 0, then
xt =

∑L
`=1 exp(−λ`)st−` and we get a recurrence formula xt+1 =exp(−λ)(xt+st). This recur-

rence formula makes the autoregressive models computationally efficient, and excludes the ne-
cessity of remembering the past stimuli, even when many values in the series st−1, . . ., st−L are
non-zero. This memoryless computational efficiency known as the Markov property (Markov,
1954) is a great advantage of adopting exponential discounting in time-series prediction.

The hyperbolic discounting, however, does not yield a useful recurrence formula. One example
of the prediction with a hyperbolic discounting is formulated as xt =

∑L
`=1 st−`/(1+λ′(t−`))α,

where λ′ > 0 is another discounting rate and α > 0 is a power exponent. Due to the lack of
memoryless recurrence formulas, the computation of the variable xt requires to remember all of
the past stimuli. Even when we only store non-zero values of the past stimuli, the computational
complexity at each time t linearly grows with respect to the number of non-zero stimuli before
time t. This non-Markov property makes hyperbolic discounting inapplicable for large datasets,
despite its high predictability for the actual human behaviors.

All of these three limitations imply the necessity of an alternative methodology to design statistical
descriptive models, whose modeling capabilities are highly flexible, whose parameters are fitted with
global optimization, and whose explanatory variables are efficiently computed without the growth
of the computational costs, while such models still must be able to incorporate the fat tails and the
long-range dependence. One practical hint to satisfy all of the desirable properties is observable in
the well-known exponential-family distributions and exponential discounting functions, which have
limited predictive capabilities, but which enjoy the convexity of the optimization and the memoryless
Markov property, respectively. As shown in the next Section 1.5, we regard emulating the power-laws,
via an approximate combination of the useful exponential functions, as the key to realize the desired
statistical descriptive models.

1.5 Nonparametric Descriptive Modeling as the Main Methodology

As a new methodology to predict the behaviors of interacting humans with much higher accuracy than
the existing parametric models, we introduce nonparametric descriptive modeling that interpolates
multi-scale basis functions and whose interpolation weights are optimized with global convex opti-
mization algorithms. Given the evidences of bounded rationality, we follow the literature of statistical
functional approximations to directly predict the behaviors of humans, rather than strictly regarding
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humans as optimizers. Then we consider a class of nonparametric mixture models to formalize prob-
ability distributions or discounting functions, where the parametric fat-tail distributions or hyperbolic
discounting functions are contained as subsets of the proposed models. Statistical nonparametric mod-
els based on a mixture of local basis functions or their corresponding covariance functions, such as
Radial Basis Functions (Buhmann, 2003) and Matérn covariance functions (Minasny and McBratney,
2005), possess universal approximation capabilities (Hammer and Gersmann, 2003), which is the sta-
tistical consistency in fitting any non-linear functions (e.g., Support Vector Machines (Vapnik, 1995;
Platt, 1999), Relevance Vector Machines (Tipping, 2001; Bishop and Tipping, 2000), and Gaussian
Process Regression (Simon, 1979; Stein, 1999; Rasmussen and Williams, 2006)). By mixing basis
functions whose characteristic scales (e.g., variance and expected decay time) are heterogeneous, we
further enforce the nonparametric models to possess fat tails and long-range dependence, in addi-
tion to their universal approximation capabilities. The realization of all of the fat tails, long-range
dependence, and universal approximation capabilities makes our philosophy of the nonparametric de-
scriptive models applicable for many real-world prediction tasks, which involve the positive feedback
among the interacting and bounded-rational humans.

The idea of using multi-scale basis functions is derived from the fact that power-law distributions
and hyperbolic discounting are represented as infinite mixtures of exponential families and exponen-
tial discounting, respectively. Figure 1.5 illustrates how linear interpolations of exponential families
or exponential discounting functions yield fat tails or hyperbolic discounting, when we use the multi-
scale basis functions. For one example, Student’s t-distribution is an infinite scale-mixture of Gaussian
distributions whose variances obey an inverse-Gamma distribution (McLachlan and Krishnan, 1997).
For another example, an infinite scale-mixture of exponential discounting functions, whose expected
decay times obey an inverse-Gamma distribution, becomes hyperbolic discounting having the power-
law decay (Axtell and McRae, 2007). The main factors that impose the resulting functions to obey
limited parametric forms are the distributions to generate the multiple scales, i.e., the inverse-Gamma
distributions in the examples above. Hence a natural direction to relax the strict parametrics is to
replace the parametric distributions, such as the inverse-Gamma distributions, by more flexible non-
parametric ones including the empirical distributions (Shorack and Wellner, 1986) and kernel density
estimators (Silverman, 1986). For computational efficiency, we approximate the integral in the infinite
mixture with a summation using a finite mixture, where we prepare a large number of basis functions
for reducing the approximation errors.

The idea of the finite nonparametric mixtures further yields the stability in fitting the model pa-
rameters. To clarify the advantage of our philosophy, let us first take the density estimation problem,
which is the fitting of probability mass or density function of certain random variables. To solve
density estimation problems by using mixture models, machine learners have adopted the method-
ology to optimize both of the mixture weights and the basis functions, as with the EM algorithms
and variational-Bayes methods to fit Gaussian mixture models (Dempster et al., 1977; Blei and Jor-
dan, 2006). Yet these traditional mixture-model methods involve non-convex optimization and hence
could be trapped in poor local optima. Our alternative methodology is to fix all of the basis functions
during the optimization with only updating the mixture weights. This alternative optimization prob-
lem is convex, and we are able to obtain the global optimum of the model parameters simply by using
gradient ascending methods. Depending on each application domain, we manually design the basis
functions to cover all of the heterogeneous scales required in each application. This explicit design of
the basis functions guarantees to yield the fat tails and the long-range dependence, unlike the unstable
basis functions that are fitted with the traditional approaches without such guarantee. Remember that
the main reason of realizing the highly-expressive and stably-fitted models is the replacement of the
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Figure 1.5: Producing a power-law distribution and a power-law decay by mixing Gaussian distribu-
tions and exponential decays, respectively. The blue lines represent the probability density function of
a power-law distribution and the forgetting curve of a power-law decay, while the black lines represent
those of Gaussian distributions and exponential decays. Mixture of Gaussian distributions that share
the common mean while having different variances possess a fat tail to generate outliers. Mixture
of exponential discounting curves having the different expected decay times produces a power-law
discounting curve that declines quickly in short term while persistently survives in long term.

parametric mixtures, whose forms are limited, by the nonparametric ones having more flexible forms.
Our contributions in this dissertation contain both of the enhancement of the basis optimization

algorithm to fit the mixture weights, and application-specific designs of the basis functions. While the
optimization of nonparametric models having the fixed basis functions is convex, particularly in the
travel-time density estimation tasks required for modeling the vehicle traffic, the existing EM algo-
rithm does not provide a satisfiable convergence rate until reaching the global optimum. Hence we first
introduce an accelerated optimization algorithm to perform density estimation via the nonparametric
mixture model. Then we apply this accelerated algorithm for modeling the vehicle traffic, whose
travel-time distributions possess fat tails due to the positive feedback through a large road network.
The same philosophy of mixing multi-scale basis functions is also applied for a marketing problem
that requires predictions of the responses by many consumers, who exhibit hyperbolic discounting in
forgetting the influences of the events in the past. To specialize the algorithm for event prediction
tasks, we formalize the response event prediction as a Poisson regression problem with exploiting
the convex L1-regularization methods (Tibshirani, 1994), instead of directly using the general density
estimation algorithms. Modeling of the positive feedback by word-of-mouth is also discussed in this
marketing work.

1.6 Normative Decision Making exploiting the Nonparametrics

We also introduce a rational decision-making algorithm that exploits the statistical and time-varying
predictions about the behaviors of other humans. As an effective and real application example, we op-
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timize the marketing-mix investment decisions with assuming that our predictions about the responses
from consumers do not change the responses themselves. This assumption or ignorance of the opti-
mizing behaviors by consumers is based on the fact that consumers do not have complete knowledge
about the firms’ marketing strategies, and remember that such assumption has also been adopted in
the existing and successful marketing optimization approaches (Elsner et al., 2003; Abe et al., 2004;
Tirenni et al., 2007b; Abe et al., 2009). We derive an effective Linear Programming (LP) algorithm to
optimize the marketing-mix by solving a constrained Markov Decision problem, and experimentally
confirm the validity of the optimized marketing-mix policy by using a discrete event simulation (e.g.,
(Delaney and Vaccari, 1998)).

Here the philosophy of decomposing the power-law decay into the exponential decays having mul-
tiple characteristic scales plays the essential role in defining the finite-dimensional state vector required
in the Markov Decision Processes (MDPs). As the hyperbolic discounting corresponds to the dynam-
ics of humans who are influenced by the events they have experienced in the past, transitions among
the state vectors model the temporal dynamics about each consumer’s perception toward the sequence
of the marketing campaign events. Hence an optimized direct-marketing policy that is a complex
function of the state vector allows us for offering the most adequate campaign to each consumer with
chasing their time-varying mentality (e.g., loyalty and satisfaction). While our optimization problem
is high-dimensional due to the combination of many timings, many segments, and many actions, we
are able to obtain the global optimum of the marketing-mix policy because LP problem is convex and
we are able to use very fast LP solvers.

1.7 Summary and the Structure of the Dissertation

In this section we newly introduced the nonparametric descriptive modeling to accurately predict the
behaviors of interacting humans. The proposed models exploit mixtures of multi-scale basis functions,
whose interpolation weights are stably fitted with global convex optimization algorithms while whose
characteristic scales are manually chosen in order to suit each application domain. Thanks to the real-
ization of both the flexible functional modeling and the stable fitting, the proposed models successfully
incorporate all of the bounded rationality, positive feedback, and more complex functional structures
to model the input stimuli and output responses for each human. The philosophy of adopting multiple
scales to approximate the power-law functions also eases the implementation of a rational normative
decision making algorithm based on constrained Markov Decision Processes.

The remainder of this dissertation is organized as follows. Chapter 2 discusses the related work
more specific to each of the problem we discuss. Chapter 3 introduces the accelerated algorithm of
the nonparametric density estimation, whose outcome is exploited for modeling the vehicle traffic in
Chapter 4 via the travel-time density estimation. Chapter 5 introduces our marketing application to
exploit the nonparametric mixture model for predicting responses by consumers. Normative decision
making when we rely on the fitted descriptive models are finally addressed in Chapter 6. Chapter 7
concludes the dissertation.

We here comment on the style of mathematical notations in this dissertation. Due to the lots of the
parameters required in formalizing nonparametric mixtures, models or optimization problems in all of
these chapters involve many parameters and decision variables that waste lots of letters or symbols.
Hence every parameter or decision variable is independently defined in each chapter, i.e., vector x in
Chapter 3 has a different meaning from that of vector x in Chapter 4.
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Chapter 2

Problem Specifications and Related Work

In this chapter, we substantiate each of the specific mathematical problems and discuss the related
work. Many statistical prediction problems such as classification and regression problems are solved
with supervised learning algorithms, which are unified as conditional density estimation problems.
Hence stable and fast algorithms to perform density estimation greatly help us realize an effective
economic decision making, which includes transportation decision making requiring travel-time pre-
dictions. Among lots of density estimation algorithms, we focus on the enforcement of the convex
clustering (Lashkari and Golland, 2008) algorithm, which forms a probability density function as
a nonparametric mixture of basis density functions, and which adopts a global optimization of the
model parameters. Because the original EM algorithm for the convex clustering is inapplicable for
real applications due to its extremely slow convergence, we propose a new accelerated algorithm to
make the convex clustering applicable for the real applications including the transportation applica-
tion. Section 2.1 addresses the prior work of applying nonparametric or mixture models for density
estimation.

The original formulation of the convex clustering yields unconditional density estimators whose
resulting probability density functions are not conditional on input and explanatory variables. In con-
trast, many supervised learning and prediction tasks handle input variables that affect the distributions
of the output variables. As we show in Chapter 3, via a variable transformation, the convex clustering
algorithm is shown to be equivalent with Kullback-Leibler Importance Estimation Procedure (KLIEP;
Sugiyama et al. (2008)) that is a globally-optimal conditional density estimator, though the original
gradient ascending algorithm in KLIEP also exhibits the slow convergence (Sugiyama et al., 2008).
Hence our acceleration of the convex clustering algorithm automatically helps machine learners solve
many supervised learning problems, as well as our specific conditional density estimation problem to
model the vehicle traffic.

Section 2.2 surveys the travel-time prediction problems in modeling interacting vehicle traffic,
and clarifies how the nonparametric density estimators provide advantageous predictions over the
existing regression algorithms. A vehicle traffic is a complex outcome of interactions among the
drivers in a road network, and a rational route choice decision is a result of certain optimization
for the random travel-time associated with each route. One clear choice strategy is to minimize the
expected travel time via Dijkstra’s algorithm (Dijkstra, 1959), which requires a regression algorithm
that mainly predicts the mean of travel time (e.g., (Robinson and Polak, 2005; Idé and Kato, 2009;
Idé and Sugiyama, 2011)). In contrast, we focus on the fact that risks about travel time affect the
preference order among the routes (Noland and Polak, 2002), and risk-sensitivities are heterogeneous
among the drivers (Ulleberg and Rundmo, 2003; Chen, 2009). Because the main component required
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for such risk-sensitive route decisions is the probability density function of the travel time for every
link in a road network (Miller-Hooks and Mahmassani, 2000; Föllmer and Schied, 2004; Hardy and
Wirch, 2004; Osogami, 2011), we formalize a conditional density estimation problem that exploits
the accelerated convex clustering algorithm and whose explanatory variables are the identifiers of the
links. Our nonparametric-mixture models are able to naturally incorporate the fat tails that are caused
by rare but huge congestions.

Another important and practical application of the nonparametric descriptive modeling is the re-
sponse prediction in marketing. Here the multi-scale mixtures are applied for modeling the long-range
dependence of marketing-stimulus events that affect delaying responses and purchase decisions by in-
dividual consumers. Since the specific prediction task is formalized as a continuous-time event-spike
prediction involving a regression of time-varying response probability, With providing a survey of the
experimental facts and the existing approaches about the human memories and positive feedback, Sec-
tion 2.3 addresses our prediction problem as a statistical fitting of Inhomogeneous Poisson Processes
(IPPs) that predict the event spikes by incorporating both of the positive feedback and the long-range
dependence.

Optimal marketing-decision making that exploits the event-spike prediction model is implemented
as a constrained Markov decision problem, whose state is formed with historical sequence of events
each consumer has experienced, and whose action is the type of marketing campaigns to target each
individual consumer. Section 2.4 provides the literature of normative marketing-decision making
based on the constrained Markov Decision Processes (cMDPs), to maximizing the mid-term revenues
minus marketing costs. In addition to the advertising and direct-marketing applications using the
cMDPs or optimal control theory, algorithmic studies to handle risk-sensitive constraints in cMDPs
are relevant to our problem. The drawbacks in these existing approaches and directions in applying our
philosophy of nonparametric mixtures for each of the problems are discussed in Section 2.5. Section
2.6 summarizes this chapter.

2.1 Nonparametric Density Estimation

Density estimation is a representative machine learning task that is deeply related with clustering, and
solving the local optimality issue in clustering algorithms is an important problem. One way of group-
ing many data points into the less number of compact groups is to fit Gaussian mixture models, by
k-means (MacQueen, 1967; Anderberg, 1973; Forgy, 1965), Expectation-Maximization (EM) (Demp-
ster et al., 1977) algorithm, or Dirichlet Process Mixtures (DPMs) (Antoniak, 1974; Ferguson, 1983)
as a nonparametric Bayesian approach. Estimation in DPMs is done with variational approximations
(Blei and Jordan, 2006; Kurihara et al., 2007) or Markov Chain Monte Carlo methods (Ishwaran and
James, 2001; Walker, 2007; Papaspiliopoulos and Roberts, 2008). Optimizations in the k-means, the
EM algorithm, or the DPMs are non-convex and hence can converge into local optima, as shown in
Figure 2.1. Typical strategies to avoid the poor local optima are to execute the fitting many times with
random initializations, and Deterministic Annealing (DA) (Rose, 1998; Ueda and Nakano, 1998). In
some applications, however, we need a clustering method whose partitioning results are reproducible
and random initializations must be avoided in such applications. For example in marketing, clustering
has been used to segment customers while unreproducible and initialization-dependent clusters are
hard to be exploited in making effective customer-targeting strategies.

Existing clustering approaches that avoid the local optimality issue face the problems of computa-
tional inefficiency or unrobustness to noises. The convex clustering algorithm (Lashkari and Golland,
2008) we enforce is globally optimal while its convergence when using the EM algorithm is extremely
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Figure 2.1: Local optima in 4-means clustering examples. Symbols ’•’, ’N’, ’�’, and ’�’ represent
each sample’s cluster assignment. In comparing the quality of clustering, which is measured as the
log-likelihood of the fitted Gaussian mixture models, the assignment on the left figure is inferior to on
that the right figure.

slow. Other representative algorithms to attain the global optimum in clustering are spanning-tree cut-
ting (Zahn, 1971; Grygorash et al., 2006) and the mean-shift (Yang et al., 2003). Cutting the k-heaviest
edges of the Euclidean minimum spanning tree for vector data can yield the global minimum of some
loss function and can handle non-elliptic clusters. Yet, spanning-tree cutting is known to be sensitive
to the noises, where existence of a few tail samples between the clusters strongly affects the resulting
partitions. The mean-shift algorithm finds the local modes of a kernel density estimator and can also
detect non-elliptic clusters while automatically determining the number of clusters. Yet, it is essen-
tially an EM algorithm (Carreira-Perpiñán, 2007) that has the slow first-order convergence. Affinity
Propagation (Frey and Dueck, 2007) is similar to the convex clustering and also achieves the globally
optimal clustering depending on hyperparameter settings, while it is also computationally intensive
due to the quadratic computational cost per iteration to the number of data points.

2.2 Travel Time Distributions in Traffic Modeling

Conditional density estimation of travel time is an essential task in modeling and simulating vehicle
traffic realistically or navigating a car along the most desirable route. Automobile drivers are het-
erogeneous in that they tend to take different routes from a common origin to a common destination
(Small and Winston, 1999; Wardman, 2001; Small et al., 2005). This heterogeneity partly stems from
two facts about the distribution of travel time. First, drivers select their routes based not only on the
expected travel time but also on the variability or distribution of the travel time (Noland and Polak,
2002). Second, the sensitivity to the risk associated with the travel time depends on particular drivers
(Ulleberg and Rundmo, 2003; Chen, 2009). The effectiveness of traffic services such as personalized
route recommendation (Rogers and Langley, 1998), traffic simulation (Ossen and Hoogendoorn, 2007;
Barceló, 2010), and road pricing (Small and Yan, 2001; Verhoef and Small, 2004) heavily relies on
how well we can model such drivers’ heterogeneity.

The distribution of the travel time must be fitted for every link of a given road network with high
accuracy. Stochastic optimization can then find the optimal route that minimizes the value of a risk
measure that corresponds to a particular driver’s sensitivity to risk. Minimizing risk measures results
in diversified choices of routes, because the risk measures and their parameters vary among drivers,
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depending on the individual risk sensitivities. In particular, one can satisfy the needs of drivers who
want to avoid the risk of encountering large delays while allowing the increase of the expected travel-
time. There is a large body of work on stochastic optimization for route search (e.g., (Miller-Hooks
and Mahmassani, 2000)), and recent progress in risk-sensitive Markov decision processes (Osogami,
2011) allows us to find optimal routes with respect to a wide range of risk measures, including the
Entropic Risk Measure (Föllmer and Schied, 2004) and Iterated Conditional Tail Expectation (Hardy
and Wirch, 2004). The optimal route is found with dynamic programming based on the distributions
assigned for each link, where the value of the risk measure is computed solely from the probability
density functions of travel-time.

The literature of statistical travel-time prediction is limited to the Ordinary Least-Squares regres-
sion of only the expected travel-time, and thus risk-sensitive decisions cannot be properly derived from
the existing travel-time prediction algorithms. Because distributions of the travel time are supposed to
be functions of the geographic attributes of a route, which are represented as either two-dimensional
coordinates or road network structures, we are able to predict the expected travel time with regression
methods, such as the k-nearest neighbor method (Robinson and Polak, 2005), artificial neural networks
(Wen et al., 2005b,a; Yu et al., 2008; Zhu and Wang, 2009), support vector regression (Dong and Pent-
land, 2009), and Gaussian process regression (Idé and Kato, 2009; Idé and Sugiyama, 2011). Yet the
focus on the expected travel time, stemming from the Gaussian or log-normal parametric assumptions
about the distributions, limits the modeling capability toward the actual travel-time distributions that
are more complex than Gaussian or log-normal. For example, a small portion of extreme delays in traf-
fic jams yields heavy-tailed or multimodal distributions, which are never be Gaussian or log-normal
distributions.

2.3 Response Event-Spike Prediction in Consumer Behavior Modeling

Forecasting how marketing actions will impact consumers’ purchase decisions is one of the essential
issues in marketing investment decisions across multiple communication channels. Such predictive
models should be designed to carefully estimate the indirect effects of actions, in several intermediate
phases a consumer experiences before the final purchase decision. Each phase affects the evaluation of
the promoted products or services (Townsend and Ashby, 1983; Busemeyer and Townsend, 1993; Roe
et al., 2001; Otter et al., 2008; Scheibehenne et al., 2009) and updates the mental state of the consumer
(Cannon et al., 2002). Such stimulated consumers exhibit self-active responses such as call center
inquiries, web page browsing, and consumer-to-consumer information exchange known as word-of-
mouth (Fudenberg, 1995). Word-of-mouth often causes booming trends and its economic impacts
could become significant, because total amount of responses is simultaneously increased through co-
herent behaviors among consumers. Like the imitation-based herding of investors who cause boom
and bust in stock market (Bala and Goyal, 1998), each individual is supposed to balance her/his prior
knowledge and opinions from others (Blanchard and Watson, 1982; Roehner and Sornette, 2000), as
word-of-mouth matters particularly for unfamiliar but interesting new products (Berger and Schwartz,
2011). Thus, marketers are required to clearly understand the complex dependencies among market-
ing campaigns, responses, and word-of-mouth events where the propensity to convert is modeled with
both the individual and collective factors.

In estimating the dependency among marketing actions and responses by consumers, a crucial
problem to consider is how to adequately estimate the influences of the unobserved word-of-mouth, by
only handling sequences of observable event spikes. Figure 2.2 illustrates two types of the prediction
problems involving multiple types of event spikes. In both of these problems, outbound marketing
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Figure 2.2: Two types of our continuous-time event prediction problems. Using all or parts of the
stimulus and response events before time t, we aim to predict the occurrence of response events in
time [t, t+∆t) for each of the consumers. In predicting the occurrence of each consumer’s response,
we use either the past events of the same consumer (left) or the past events for a set of consumers
(right).

actions and observable responses are recorded as event spikes, where each event is associated with
a continuous time-stamp and a real-valued quantity such as a revenue amount. For predicting every
consumer’s response events in the future, we exploit either the past events of the same consumer
or the past events for a set of consumers. Predictive models for practical marketers are expected to
incorporate historical spikes as covariates to predict future response spikes. While observable on-
line word-of-mouth can be represented as spikes, off-line word-of-mouth among real friends are not
recorded in databases.

In the literature of predicting the responses by consumers, Inhomogeneous Poisson Processes
(IPPs) have provided accurate predictions of continuous-time event spikes. An IPP introduces a time-
varying intensity in the continuous-time Poisson processes and has widely been used for modeling
events on consumer activities (Chatfield and Goodhardt, 1975; Schmittlein et al., 1987; Wagner and
Taudes, 1986). It is well known that the impact of a stimulus decays over time (Deschatres and Sor-
nette, 2005; Crane and Sornette, 2008), and estimation of some common time-decaying curves can
be done with parametric approximations such as using probability density functions about a mixture
of gamma distributions (e.g., (Simma and Jordan, 2010)). Beginning from the pioneering work by
(Ebbinghaus, 1885), the nature of time decay in human memory has been observed as a power law or
hyperbolic discounting with respect to elapsed time (Wixted, 1990; Rubin and Wenzel, 1996; Wixted
and Ebbesen, 1997). The hyperbolic discounting possesses a long tail as a compound outcome of in-
teractions among the short-, mid-, and long-term memories of each human. Often with incorporating
such power-law time decay, IPPs have been widely used in predicting intermittent activities of con-
sumers (Chatfield and Goodhardt, 1975; Schmittlein et al., 1987; Wagner and Taudes, 1986), because
they can naturally model variable-interval sequences of event spikes.

IPPs have also been applied for modeling each consumer’s mental process in choosing a brand
or product from multiple options. Poisson race models (Townsend and Ashby, 1983; Otter et al.,
2008) incorporate intermediate phases to evaluate products and predict real human decisions with
high accuracy. A Poisson race model runs multiple IPPs in parallel, where each product is assigned
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one IPP whose parameters are functions of the product attributes (e.g., price). A spike generated by
each IPP represents not the final purchase, but a hidden trial to evaluate each product. The multiple
IPPs represent competition among the products, because each consumer chooses only the first product
whose number of trials exceeds a threshold value. The race to exceed the threshold originates from
Multiattribute Decision Field Theory (Roe et al., 2001; Scheibehenne et al., 2009), which has been
shown to successfully predict the context effects, such as the similarity effect (Tversky, 1972), the
attraction effect (Huber et al., 1982), and the compromise effect (Simonson, 1989).

In econophysics studies, IPPs yielding positive feedback have been used for modeling either the
persistent responses by a single consumer or word-of-mouth among multiple consumers. Since con-
sumers tend to boost their own activities, series of responses often exhibits positive autocorrelation,
called the “self-exciting behavior” (Hawkes, 1971; Sornette and Ouillon, 2005). For instance, time-
series about the total count of book sales or online video views exhibits long-range positive autocor-
relation (Deschatres and Sornette, 2005; Crane and Sornette, 2008). Self-excited Hawkes conditional
Poisson process Hawkes (1971) is useful to model such autocorrelation, with ideas of individual-level
epidemic branching (Goffman and Newill, 1964), information cascading (Bikhchandani et al., 2008),
and limited human memory. A long-range point process yields a heavy-tail distribution of interval time
between consecutive purchase events (e.g., Autoregressive Conditional Durations (Engle and Russell,
1998)), where inter-purchase time distributions provide some marketing implications (Allenby et al.,
1999).

2.4 Normative Marketing-Mix Optimization

The predictions of the response-event spikes conditional on the sequences of marketing-stimulus
events enable the assessment about the return on investment provided by a specific marketing-mix
policy. Rational marketing-decision making that exploits time-series predictions has been regarded as
an optimization problem to maximizing the mid-term revenues minus marketing costs. The underlying
common principle is to exploit discrete-state Markov Decision Processes (MDPs) (Altman, 1999) or
continuous-state optimal control theory (Bertsekas, 2000; Naik and Raman, 2003; Naik et al., 2005;
Raman et al., 2012; Chow and Pavone, 2013), where these two approaches are connected through
eigenproblem relaxations (Todorov, 2007, 2009). An MDP is a stochastic control process defined
with a set of states, a set of actions, state-transition probability matrix conditional on each action, and
stochastic immediate reward conditional on each pair of current state and action. MDPs and opti-
mal control in marketing are classified with whether to target individual consumers, whether to play a
stochastic game against competitors optimizing their own objectives, and type of action variables (e.g.,
boolean choice of direct mailing (Elsner et al., 2003; Abe et al., 2004), multinomial choice (Tirenni
et al., 2007b; Abe et al., 2009), integer-valued credit assignment (Gómez-Pérez et al., 2009), and real-
valued advertising and promotion budgets (Kumar et al., 2011; Naik and Raman, 2003; Naik et al.,
2005; Raman et al., 2012)). In most of the game-theoretic formulations, every firm tries to control the
total marketing costs with predicting aggregate-level sales and shares (Naik and Raman, 2003; Naik
et al., 2005; Raman et al., 2012) while ignoring the individual-level responses by each consumer. In
contrast, personalized targeting (Elsner et al., 2003; Abe et al., 2004; Tirenni et al., 2007b; Gómez-
Pérez et al., 2009; Abe et al., 2009; Kumar et al., 2011) aims to lead each individual consumer or
client company into high-profit states with controlling the aggregate-level budgets but usually ignor-
ing competitors. While the state of each consumer must be treated as continuous variables, in actual it
is approximated with a finite number of discrete states called the segments.

The normative optimization of the marketing-mix investments is algorithmically relevant to the
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cMDP-based approaches involving risk-sensitive constraints and target populations as decision vari-
ables. It is usual that Linear Programming (LP) or Dynamic Programming (DP) is used in maximizing
the expected cumulative reward in multiple periods, subject to certain bounds of the cumulative costs
as random variables (Borkar and Jain, 2010; Ruszczynski, 2010; Osogami, 2011, 2012; Elsner et al.,
2003; Abe et al., 2004; Tirenni et al., 2007b; Abe et al., 2009). We can classify such approaches into
one of two classes, depending on whether the cost bounds accompany only the expectation operators
(i.e., risk-neutral constraints (Borkar and Jain, 2010; Osogami, 2012; Elsner et al., 2003)) or more
general risk measures (i.e. risk-sensitive constraints (Ross and Varadarajan, 1989, 1991; Borkar and
Jain, 2010; Ruszczynski, 2010; Chow and Pavone, 2013)). Problems with risk-neutral constraints are
directly solved with either DPs (Piunovskiy, 2006; Chen and Blankenship, 2004; Chen and Feinberg,
2007) or LPs (Djonin and Krishnamurthy, 2007). In contrast, incorporating risk-sensitive constraints
has been a hot topic motivating the development of advanced algorithms, with roots in old telecommu-
nication problems (Ross and Varadarajan, 1989, 1991) to maximize the throughput of traffic subject
to constraints on delays. Imposing the constraints, not on the expected but on the realized delays,
has a similar flavor to our marketing problem addressing the realized marketing costs. For rational
decision making, the cMDPs should accompany time-consistent risk measures (Ruszczynski, 2010;
Osogami, 2011, 2012; Chow and Pavone, 2013), where (Chow and Pavone, 2013) provides an actual
implementation of such approach, based on the theory in (Ruszczynski, 2010). Directions to exploit
LP in solving cMDPs are useful when we optimize target populations, as the summation of action
probabilities. Optimizing budget over timing, segment, and channel for an airline company (Tirenni
et al., 2007b) is one example of the closest problems to ours and is also solved with an LP. Abe et al.
introduced another cMDP formulation (Abe et al., 2009) which solves an LP in each iteration of DP
with discretizing high-dimensional continuous states, while we cannot exploit their assumption that
the maximum or minimum budget remains unchanged for all periods in the future.

2.5 Discussion

Here let us discuss the common issue underlying in the limitations of many existing approaches. Both
of the transportation and marketing applications in the prior arts have adopted parametric models,
whose forecasting formulas need to strictly obey a limited class of predictive models, such as the
Gaussian-distributed regression of travel time and the hyperbolic-decaying IPP models. We regard the
limitation of computational powers as the main reason why these parametric models have been used,
despite the high discrepancy between the assumed and the true forecasting formulas. In the travel-time
prediction problem, the intention to realize the global optimality in fitting parameters limited the re-
gression algorithms to follow the Ordinary Least Squares principle, and the limited predictive powers
by the Gaussian or log-normal distributions are outcomes of the compromise to keep the computa-
tional efficiency. In the consumer-response prediction problem, even the simple parametric models of
emulating the power laws resulted in non-convex optimization and high computational costs in fitting.
Hence introduction of a nonparametric model, which has the more complexity than the parametric
models, was not sufficiently investigated in designing the covariates of IPPs. Therefore, the main and
direct direction to improve the predictive capabilities is a design of new forecasting formulas whose fit-
ting enjoys the global optimality with reasonable computational costs. Our principle of nonparametric
multi-scale mixtures is regarded as an effective instance to achieve these desirable properties. Among
the several globally-optimal nonparametric density estimation or clustering algorithms, the focus on
accelerating the convex clustering is positioned as an essential start point to make the nonparametric
approaches applicable for large datasets.
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In order to implement the entire algorithms, the adoption of the nonparametric models also neces-
sitates additional statistical algorithms the prior work has not incorporated, in both of the transportation
and marketing applications. For improving the predictive accuracies in the travel-time predictions, the
literature adopted certain interpolation strategies with assuming similar links or between similar routes
to have similar travel times. Replacement from the parametric Gaussian or log-normal distributions
into the nonparametric mixtures also requires modification or new introduction of such interpolation
strategies, which essentially emulate the propagation of traffic in a road network. The spiking na-
ture of response event predictions in marketing requires us to design an efficient representation of
the regression covariates, which both emulate the power-law decays in human memories and enjoy
computational efficiency. Such efficient covariates must yield high predictive accuracies, even when
the number of actual event spikes in training data is not sufficient. After designing an instance of
the efficient covariates, the high-dimensionality nature of the nonparametric models requires us for
implementing a special optimization algorithm to solve large-scale constrained Markov Decision Pro-
cesses. In practice, only linear-programming approaches are feasible to target thousands of segments
of consumers with incorporating complex budget constraints.

2.6 Summary

We reviewed the literature about nonparametric density estimation, traffic modeling, consumer-behavior
modeling, and rational marketing-decision making that must adequately consider interactions among
humans or among the multiple memories in one human. Ones of the crucial problems that have
made nonparametric mixture models inapplicable for solving the real decision making problems is
the local optimality and slow convergence. Accelerating the global convex clustering algorithm is
beneficial for modeling lots of the travel-time distributions to evaluate the risks of a travel in a real
road network. Such adequate risk evaluations yield both realistic simulation of the entire vehicle
traffic and rational and risk-sensitive route-choice decision making. In marketing as another impor-
tant decision making problem, one crucial component required in the rational marketing investment
decisions is a continuous-time predictive model based on the IPPs, to provide the occurrence probabil-
ity of a response event spike by each consumer, whose memory exhibits long-range dependence and
who causes booming trends through word-of-mouth. Here we need to model the long-term forgetting
curves depending on each type of the past events and the effects of the unobservable word-of-mouth,
by designing a specialized Poisson regression algorithm with following the same philosophy of non-
parametric descriptive modeling to achieve high generalization capabilities. The outcomes of such
accurate consumer-response models are finally used for rational marketing-decision making, where
the optimization algorithms are relevant to the risk-sensitive cMDPs.
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Chapter 3

Global Optimization in Sparse
Nonparametric Density Estimation

In this chapter we introduce an accelerated algorithm to solve a convex clustering problem (Lashkari
and Golland, 2008), whose parameter fitting yields the global optimum of the fitted probability density
function, and whose optimization objective is equivalent with that of a nonparametric conditional den-
sity estimation using the Kullback-Leibler Importance Estimation Procedure (KLIEP; Sugiyama et al.
(2008)). Hence our goal in accelerating the convex clustering algorithm is to make the globally-
optimal nonparametric mixture models applicable for large-scale real-world datasets, such as the
probe-car datasets introduced in Chapter 4.

Nonparametric density estimation, which is a statistical estimation of complex probability density
functions, is deeply related with the learning of mixture models such as the Gaussian mixture models.
In the fitting of Gaussian mixture models whose centroids and bandwidths remain unchanged during
the optimization, the negative log-likelihood to be minimized is convex with respect to the mixture
weights, and many of the optimal mixture weights become zero (sparse). For n data points, the
convex clustering utilizes n kernel distributions whose centers are the n data points themselves. The
underlying optimization in the convex clustering algorithms automatically chooses a subset of the n
kernel distributions whose cardinality is the number of clusters. The specified bandwidths essentially
determine the number of clusters, where narrow bandwidths yield lots of small clusters while wide
bandwidths result in a limited number of large clusters.

Though the global optimality in the convex clustering is quite appealing, we experimentally con-
firmed that the original EM algorithm provided in (Lashkari and Golland, 2008) requires thousands of
iterations to converge. The EM algorithm is especially inefficient when applied to the convex cluster-
ing, mainly because of the sparsity of the solution. In the EM algorithm, the computational complexity
varies in each iteration and is proportional to the number of non-zero elements in the mixture weights.
Also, the EM algorithm has a first-order convergence and the updates are small near the sparse opti-
mum. Thus, early pruning of the irrelevant kernels, which is a key to acceleration, conflicts with the
nature of the EM algorithm. The actual computational times are sensitive to the specified threshold of
the mixture weight.

Our acceleration technique exploits a fast pruning and an element-wise second-order optimiza-
tion. Instead of using a small threshold, we use a derivative-based conditional expression to accu-
rately judge whether or not a kernel can be trimmed off. By borrowing an idea from the Sequential
Minimal Optimization (SMO; Platt (1999)), we regard such judgment as choice of a pair of kernels,
and we utilize a nearest-neighbor method in choosing the pairs in each updating step. In optimizing
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the non-zero elements of the mixture weights, we use an element-wise Newton-Raphson method, in-
stead of the first-order EM algorithm. While our algorithm’s computational complexity per iteration
is the same as that of the EM algorithm, the combination of the fast pruning and the second-order
Newton-Raphson method drastically reduces the required number of iterations. The element-wise
unidimensional Newton-Raphson method instead of the standard multidimensional Newton-Raphson
method is essential, because inversions of Hessian matrices that increase the computational complexity
are successfully eliminated.

This chapter also provides an additional study to make the accelerated algorithm useful for many
types of datasets, by introducing an iterative algorithm to handle high-dimensional data and enabling
the model selection. For high-dimensional datasets, when the maximum-likelihood convex clustering
is performed with the true bandwidths of the clusters, meaningful clusters cannot be acquired because
many irrelevant kernels still remain active after the optimization. While using much larger bandwidths
than the true ones often gives some clustering, we observed that the estimated cluster labels are unsta-
ble and different from the true labels when the noises are high. In addition, from several bandwidth
settings, which clustering should be adopted is an open problem because the acquired mixture model is
an improper density estimate and likelihood-based model selection such as likelihood cross-validation
cannot be performed. We perform the convex clustering algorithm several times, where bandwidths
are initialized by large values and succeedingly updated by smaller values. Since the number of clus-
ters cannot be specified precisely in the convex clustering, practitioners often try multiple settings of
the initial bandwidths. The optimal clustering from the multiple results is chosen baed on an empirical-
Bayes method that selects appropriate bandwidths if the true clusters are Gaussian. The combination
of the repetitions of the convex clusterings and the empirical-Bayes model selection achieves stable
prediction performances compared to the existing mixture learning methods.

The main algorithms in this enhancement of nonparametric density estimation were first published
in (Takahashi, 2011, 2012). From the conference paper (Takahashi, 2011) in the proceedings of the
11th SIAM International Conference on Data Mining (SDM 2011), which is published by the Society
of Industrial and Applied Mathematics (SIAM), we reused formulations, figures, and implications
based on the permission for authors1. From the journal paper (Takahashi, 2012) in Statistical Analysis
and Data Mining, which is published by John Wiley and Sons, the author is permitted to reuse the full
article based on a custom contract 2 through Rightslink R© system of Copyright Clearance Center.

By beginning with the objective function of the convex clustering and its relationship with the
nonparametric conditional density estimation, Section 3.1 address how the original EM algorithm
in convex clustering exhibits slow convergence. Our fast pruning with Newton-Raphson updates is
introduced in Section 3.2. Section 3.3 introduces the problems when applying the convex clustering
to high-dimensional data, and the iterative refitting of the cluster parameters. While different initial
bandwidths result in different final clusters, the empirical-Bayes method in Section 3.4 gives a criteria
to choose the optimal one. Section 3.5 shows the experimental performances about the convergence
rates and the detectability of the hidden clusters. Section 3.6 discusses the general applicability of the
proposed algorithms in other tasks, and Section 3.7 summarizes this chapter.

1See the SIAM consent to publish https://www.siam.org/students/siuro/consent.pdf. Copyright
c© by SIAM. Unauthorized reproduction of this chapter is prohibited.

2The license number 3451120725708. Copyright c© 2011 Wiley Periodicals, Inc.
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3.1 Harmfully Slow Convergence in Convex Clustering

This section introduces the basics of the convex clustering algorithm. Section 3.1.1 addresses the
convex negative log-likelihood and the EM algorithm first introduced in (Lashkari and Golland, 2008).
Section 3.1.2 connects the objective of the convex clustering with that of the nonparametric conditional
density estimation via a variable transformation. Section 3.1.3 provides an experimental evaluation of
the learning speed with the EM algorithm, and discusses the reasons for the slow convergence.

3.1.1 Convexity in Minimizing Negative Log-Likelihood

A clustering of n data points is realized by maximizing the log-likelihood with which a mixture model
generates the n data points. By rewriting such optimization problem as a minimization problem, we
aim to minimize a negative log-likelihood of the data points. Let p (x|θ) be a probability distribution
of the d-dimensional vector x ∈Rd, where the vector θ represents the parameter of the distribution.
While this chapter only discusses the case when p (x|θ) is a Gaussian distribution, we allow for the
distribution p (x|θ) to belong a broader class of distributions, such as an exponential family whose
natural parameter is θ. Let m be a number of clusters and ∆m−1 be the simplex in Rm. Given a set of
n data points D={x1,x2, · · · ,xn}, let use minimize a negative log-likelihood

− log p (D|λ,θ1, · · ·,θm) = −
n∑

j=1

log

[
m∑

i=1

λip (xj |θi)

]
, (3.1)

where λ , (λ1, · · · , λm)> ∈∆m−1 is a vector of mixture weights, and θi is a distribution parameter
assigned for the cluster i. The standard mixture modeling adopts the fiting of all of the parameters
{λ,θ1, · · · ,θm}, which is a non-convex optimization problem in most cases.

We focus on the fact that the optimization only for λ on some fixed values of {θ1, · · · ,θm} is
convex (Csiszár and Shields, 2004; Lashkari and Golland, 2008)3. The value of the weight vector
λ, computed with gradient descending, hence converges into the global optimum. By using Jensen’s
inequality, we reach an iterative update rule as

λ
(t+1)
i ← 1

n

n∑
j=1

λ
(t)
i κij∑m

i′=1 λ
(t)
i′ κi′j

,

where λ(t)
i is the estimate of the weight λi at the tth iteration and κij ,p (xj |θi). By introducing the

auxiliary variables z(t)
1 , · · · , z(t)

n and η(t)
1 , · · · , η(t)

m , the update rules to be iterated are derived as

z
(t)
j ←

m∑
i=1

λ
(t)
i κij , η(t)

i ←
1
n

n∑
j=1

κij

zj
, and λ(t+1)

i ←η
(t)
i λ

(t)
i . (3.2)

Since ∀i, limt→∞ η
(t)
i = 1, we are able exploit the values of η(t)

1 , · · · , η(t)
m for the convergence test in

the optimization. The converged values of the parameters provide a hard clustering based on a Naı̈ve
Bayes rule with which the cluster that xj belongs to is maxi λ

(∞)
i κij .

Optimization using the update rules (3.2) provides an automatic determination of the number of
clusters. Based on the fact that many elements in the vector λ(t) , (λ(t)

1 , . . . , λ
(t)
m )> converge into

3The proof is simply given with Jensen’s inequality. For φ ∈ [0, 1] and λ, λ′ ∈ ∆m−1,
− log

ˆ

Pm
i=1

`

φλj +(1−φ) λ′
j

´

p (x|θi)
˜

≤−φ log
ˆ

Pm
i=1 λjp (x|θi)

˜

−(1−φ) log
ˆ

Pm
i=1 λjp (x|θi)

˜

.

24



zero as t→∞, we define a set of the indexes assigned positive weights, as At , {i;λ(t)
i > 0}. Let

π[i]∈{1, . . . , n} be an index assigned for each cluster i ∈ {1, . . . ,m}. The index π[i] is introduced
for the convenience for handling large-scale datasets, i.e., when n is on the order of millions, then we
set m � n and each π[i] is randomly chosen from {1, . . ., n} without duplication. For not so large
dataset, we simply set m=n and π[i]= i. By imposing xπ[i] to be the centroid (e.g., mean or medoid)
of cluster i, we regard the distribution p (x|θi) as a distribution around the exemplar xπ[i]. At each tth
step in iterations, we call the distribution p (x|θi) an “active” cluster distribution if i∈At, whose the
cardinality |At| represents the number of clusters.

A simple but effective choice of p (x|θi) is an isotropic Gaussian kernel
p (x|θi) ∝ exp

(
−‖x−xπ[i]‖22/

(
2σ2
))

, where ‖ · ‖2 denotes the L2-norm and σ2 is an isotropic
variance. The number of clusters after convergence strongly depends on the value of the isotropic
variance σ2. When σ2 is large, many elements of the weight vector λ become zero and we obtain a
sparse nonparametric estimate of the Gaussian mixture model. In contrast, a small value of σ2 results
in lots of small clusters.

When we update the parameters with (3.2), the computational complexity at the tth step isO(n|At|).
Since λ(t)

i =0 automatically yields λ(t+1)
i =0, a kernel trimmed off at the tth step never becomes ac-

tive. Therefore, for attaining an accurate and gloally-optimal estimate of the mixture model, the initial
values of the mixture weights are required to be dense, i.e., ∀i, λ(0)

i > 0. We simply adopt an initial-
ization such that ∀i, λ(0)

i ≡ 1/n. The computational complexity per iteration is first O(mn), while it
gradually decreases as the iterations proceed.

3.1.2 Equivalence with a Nonparametric Conditional Density Estimation

We show that the optimization objective in convex clustering is equivalent to that of a conditional den-
sity estimation problem via a variable transformation. Many supervised learning problems, including
classification and regression, are instances of conditional density estimation problems that fit p(ŷ|x̂),
where x̂∈RdX and ŷ∈RdY are the vectors of input and output variables, respectively. Given a set of
n input and output observations {(x̂1, ŷ1), . . . , (x̂n, ŷn)}, let us consider a weighted kernel estimate
of the conditional density

p(ŷ|x̂) =

∑m
i=1wiKX(x̂, x̂π[i])KY (ŷ, ŷπ[i])∑m

i=1wiKX(x̂, x̂π[i])
, (3.3)

where x̂π[1], . . . , x̂π[m] and ŷπ[1], . . . , ŷπ[m] are m(≤ n) random samples of the training data,
KX(·, x̂π[i]) and KY (·, ŷπ[i]) are kernel distributions of input and output variables, respectively. For
example, we would assume KX(·, x̂π[i]) and KY (·, ŷπ[i]) to be multivariate Gaussian distributions
whose centers are x̂π[i] and ŷπ[i].

The optimization of the mixture weights w =(w1, . . ., wm)> in (3.3), while KX and KY remain
unchanged, is essentially the same as that in the convex clustering. Kullback-Leibler Importance
Estimation Procedure Sugiyama et al. (2008) performs an optimization

max
w

n∑
j=1

log

[
m∑

i=1

wiKX

(
x̂j , x̂π[i]

)
KY

(
ŷj , ŷπ[i]

)]
subject to

n∑
j=1

m∑
i=1

KX

(
x̂j , x̂π[i]

)
wi = n,

(3.4)
which is derived as the maximization of an empirical approximation of the density ratio between the
joint distribution p(x̂, ŷ) and the marginal distribution p(x̂).
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Let us introduce a variable transformation λi , wi
n

∑n
j=1KX

(
x̂j , x̂π[i]

)
. Then Optimization (3.4)

is modified as

max
λ

n∑
j=1

log

[
m∑

i=1

λi

nKX

(
x̂j , x̂π[i]

)∑n
j′=1KX

(
x̂j′ , x̂π[i]

)KY

(
ŷj , ŷπ[i]

)]
subject to

m∑
i=1

λi = 1,

which adopts an equivalent objective to that of the convex clustering, when we set

κij =
nKX

(
x̂j , x̂π[i]

)∑n
j′=1KX

(
x̂j′ , x̂π[i]

)KY

(
ŷj , ŷπ[i]

)
.

3.1.3 Extreme Number of Iterations Required in the EM Updates

Despite the appealing global optimality and easy implementability of the EM algorithm using (3.2), we
experimentally confirmed that lots of iterations are required until the mixture weights become sparse.
(Lashkari and Golland, 2008) recommends a pruning of component i that satisfies λ(t)

i <10−3/n, for
reaching the sparse solution within finite time. Figure 3.1 demonstrates an experimental evaluation of
the learning rate when applying this thresholding rule for an artificial 2D dataset. For n data points,
even n iterations are not sufficient for pruning all of the irrelevant kernels.

We must note that the slow pruning of the irrelevant kernels is the nature of the EM algorithm.
Since EM algorithms to learn mixture models have first-order convergence (Redner and Walker, 1984;
Xu and Jordan, 1995), the update amounts become small near the optimum, which is a sparse vector
in our convex clustering problem. Hence the small updates nearby the optimum implies the prevention
of the pruning for irrelevant kernels.

An alternative approach to realize reasonable computational costs is to use a loose threshold,
which is larger than the recommendation10−3/n, but this naı̈ve acceleration does not provide adequate
clusters. In Figure 3.1, the updates of the mixture weights are not monotonic for the number of
iterations. The weight of a component grows in some iterations and shrinks in other iterations. Hence
pruning with a loose threshold involves a risk of trimming off the relevant kernels and makes the
optimizations unstable.

3.2 The Accelerations

To replace the slow and first-order EM algorithm combined with the heuristic thresholding, we intro-
duce a fast and second-order Newton-Raphson method supported by an exact pruning rule. A notable
property of the optimization objective in the convex clustering exists in its sub-problem focusing on a
pair of kernels. In optimizing the mixture weights only for such pair of kernels, we are able to exactly
determine whether or not the selected kernels should be pruned. We regard the idea of focusing on a
pair of kernels as similar to that in Sequential Minimal Optimization (Platt, 1999), which is originally
a fast optimization technique to train Support Vector Machines (SVMs; Vapnik (1995)).

While the original SMO train SVMs exploits the Karush-Kuhn-Tucker conditions (Kuhn and
Tucker, 1951) for picking up the pairs of kernels, we more carefully analyze the characteristics of the
pairs to be pruned. Our optimization strategy is implemented as a combination of fast pruning using a
derivative-based rule to determine whether or net one of the two mixture weights should become zero,
and fast updating to optimize the non-zero elements via Newton-Raphson updates. The element-wise
updating in our strategy successfully excludes the necessity of computationally-intensive evaluation
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Figure 3.1: Slow convergence of the EM algorithm when applying a thresholding rule λ(t+1)
i ← 0 if

λ
(t)
i < 10−3/n. 1,000 samples of R2 points are distributed from a 6-cluster Gaussian mixture model.

The centroids of the clusters are (1, 0)>, (−1, 0)>, (0, 1)>, (0,−1)>, (1, 1)>, and (−1,−1)>. Every
cluster has its mixture weight 1/6 and standard deviation 0.2, while we specified a learning bandwidth
σ := 0.3 in optimization. The top-left figure plots the numbers of the active clusters for each step of
the iterations, and we should confirm the fact that even 1,000 or 10,000 iterations are not sufficient for
reaching the convergence. The top-right figure shows the dynamics in updating the mixture weights
λ

(0)
i , λ

(1)
i , . . . , λ

(100)
i for several samples of the cluster indexes {i}. The updates are not monotonic,

because many of the mixture weights first increase and later decrease. The slow convergence can also
be confirmed in the bottom three figures, where the resulting partitions at 10, 100, or 1,000 iterations
are shown.

of the Hessian matrix that multivariate Newton-Raphson methods require to compute, and keeps the
computational complexity per iteration in our algorithm to be the same as that of the EM algorithm.
Based on a specific analysis to our problem, we use a nearest-neighbor method for choosing the pair
of kernels. The analysis in Section 3.2.1 clarifies a direction to accelerate the convex clustering. Sec-
tion 3.2.2 derives the fast and exact pruning conditions, and Section 3.2.3 addresses the element-wise
Newton-Raphson updating. Section 3.2.4 mentions several issues to be cared in implementing the
proposed algorithm.

3.2.1 Analysis for a Pair of Kernels

Let (i, i′) be a pair of components we focus on, and let us introduce a sub-problem of the entire
optimization (3.1) with fixing the mixture weight for every other component u 6= i, i′. We are able to
regard the values λ\i\i′ ,1−λi−λi′ and cj\i\i′ ,

∑
u6=i,i′ λup(xj |θu) as constants in optimization. By
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Figure 3.2: The three types of the shapes of the constrained negative log-likelihood with respect to
one mixture weight λi, by taking an example case when ∀u 6= i, i′, λu≡1/n. For the selected points
1, 2, 3, and 4 in the left-most figure, we provide the shapes of the negative log-likelihood functions,
by picking up pairs (i, i′) ∈ {(1, 2), (2, 3), (2, 4)}. The case when (i, i′) = (2, 4) is magnified in the
right-most figure, where the optimum is located in an intermediate point and does not correspond to
the sparse solution.

exploiting the fact that λi + λi′ ≡ 1−λ\i\i′ , we rewrite (3.1) by a unidimensional function fii′ (λi)
with respect to one scalar parameter λi∈ [0, 1−λ\i\i′ ].

An analysis based on the derivative of the unidimensional function yields an exact pruning rule.
Figure 3.2 shows three typical shapes of the function fii′(λi) depending on the choice of the pair
(i, i′). We are able to immediately set λi = 0 or λi′ = 0, when fii′(·) is monotonically decreasing
or increasing, respectively. A generalized fact is that when two kernels p (x|θi) and p (x|θi′) have
similar probability density functions, then only one of the pair (i, i′) becomes an active kernel and the
other should be eliminated in optimization.

3.2.2 Fast and Exact Pruning

By assessing the monotonicity of fii′(·), we derive a pruning condition for the irrelevant kernels,
whose computation is fast. Let us take the gradient of fii′ (λi) at λi =0, as

f ′i0i′ , ∂fii′

∂λi

∣∣∣∣
λi=0

= −
n∑

j=1

κij−κi′j(
1−λ\i\i′

)
κi′j+cj\i\i′

. (3.5)

If f ′i0i′ > 0, then fii′ (·) is monotonically increasing within [0, 1−λ\i\i′ ], and hence λi = 0 and
λi′ =1−λ\i\i′ . In the same way, we evaluate the gradient in another boundary, as

f ′ii′0 , ∂fii′

∂λi

∣∣∣∣
λi=1−λ\i\i′

=−
n∑

j=1

κij−κi′j(
1−λ\i\i′

)
κij+cj\i\i′

. (3.6)

If f ′ii′0<0, then fii′ (·) is monotonically decreasing within [0, 1−λ\i\i′ ], and hence λi =1−λ\i\i′ and
λi′ =0. If f ′i0i′<0∧ f ′ii′0>0 where ∧ denotes the logical product (“and” operator), then the optimum
of the parameter λi is an interior point in the interval [0, 1−λ\i\i′ ]. Note that there is no case such that
f ′i0i′>0 ∧ f ′ii′0<0, because fii′ is a convex function.

Let us defer the optimization for such non-zero values in Section 3.2.3 and keep on focusing on
the fast pruning. For each iteration, we update the mixture weights for all of the active components.
At the tth iteration, since the number of active components is |At|, the computational cost to evaluate
(3.5) and (3.6) is O (n|At|), which is the same as in the EM algorithm.
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One practical way to make the optimization efficient is supplied by a useful rule to pick up the
pair (i, i′). Our idea based on the analysis in Section 3.2.1 is is the choice of index i′ as one of the
neighbors of the index i. The optimum of the parameter λi or λi′ tends to be zero when p (x|θi) and
p (x|θi′) are similar. Hence taking pairs {(i, i′)}, such that i′ is a neighbor of i, increase the chances
to prune the irrelevant kernels. In advance of the main updating steps, we pre-compute a sequence
of indexes ε[i, 1], ε[i, 2], . . . , ε[i,m−1] such that ε[i, k] is the k-nearest neighbor of i, in terms of a
similarity measure (e.g., Euclid distance) for the space of the parameters (θi)m

i=1. For each step in
iterations, we set i′ = ε[i, k] with minimum possible k such that ε[i, k] is an active component. Also,
because i is eliminated with high probability when the weight λi is small, the pruning judgment based
on (3.5) and (3.6) is performed on the ascending order of λi.

3.2.3 Element-Wise Newton-Raphson Updating

Another essential technique to accelerate the updates is the second-order optimization of the non-zero
elements. For the unidimensional function fii′ (·), introduced in Section 3.2.2, the first-order and

second-order derivatives h(1)
ii′ , ∂fii′

∂λi
and h(2)

ii′ , ∂2fii′

∂λ2
i

are given as

h
(1)
ii′ = −

n∑
j=1

κij−κi′j

λiκij+
(
1−λ\i\i′−λi

)
κi′j+cj\i\i′

and

h
(2)
ii′ =

n∑
j=1

[
κij−κi′j

λiκij+
(
1−λ\i\i′−λi

)
κi′j+cj\i\i′

]2

>0,

respectively. We derive an element-wise Newton-Raphson update rule

λ
(t+1)
i ← λ

(t)
i − h

(1)
ii′ /h

(2)
ii′ ,

whose execution is stable thanks to the convexity of the function fii′(·). The computational complexity
per iteration to evaluate h(1)

ii′ and h(2)
ii′ for every index i ∈ At is also O(n|At|) that is essentially the

same as our fast pruning.

3.2.4 Implementation Notes

Let us complement the points in implementing the algorithm. By using matrix notations, we summa-
rized the new accelerated convex clustering algorithm in Algorithm 1 that introduces several auxiliary
variables for quick computations.

The vector z=(z1, . . . , zn)> caches the current value of
∑m

i=1 λiκij for every index j∈{1, . . . , n}.
In judging whether a component i should be pruned or not, a modified value of the summation∑m

i=1 λiκij for each j is calculated by setting λi = 0 or λi′ = 0. Because only λi and λi′ are
tried to be updated, always summing the values {λiκij} for all of i ∈ {1, . . . ,m} is inefficient. We
utilize the values of z and another vector v = (v1, . . . , vn)>, which caches the gradient values at the
corner λi = 0 or λi′ = 0.

The value of
∑m

i=1 λiκij is quickly computed when the modification λi = 0 or λi′ = 0 is applied,
as vj = zj − λiκij + λiκi′j or vj = zj + λi′κij − λi′κi′j , respectively. If the pruning condition is
satisfied, then we substitute each element of the vector v into that of the vector z. Otherwise, the
values of the vector v are ignored and the algorithm proceeds into the next step. For each kernel i,
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the calculations of the vectors v and z require O(n) computational costs. Hence the computational
complexity per iteration in Algorithm 1 is O(n|At|).

The repeating additions and subtractions for the vector z might integrate small numerical errors.
Before the pruning trials in each iteration, we recommend to re-calculate the vector z using all of the
active mixture weights and kernel values. This re-calculation only requires O(n|At|) and does not
essentially increase the computational complexity.

For high-dimensional data, we must care the fact that every value of the probability density func-
tion p(xj |θi) is low due to the exponential decay with respect to the dimension d. We are eas-
ily able to avoid the resulting underflow, by taking the logarithms of the densities. Using a value
lpj , maxi log p(xj |θi) that can be stably calculated, we use a normalized kernel matrix K = (κij)
such that

κij =
p(xj |θi)∑m
i=1 p(xj |θi)

=
exp

(
log p(xj |θi)− lpj

)∑m
i=1 exp

(
log p(xj |θi)− lpj

) ,
instead of the original kernel matrix K. The optimum of the mixture weight vector λ, with the
normalized kernel matrix K, is the same as that with the original kernel matrix K, because

arg max
λ

n∑
j=1

log
m∑

i=1

λiκij = arg max
λ

n∑
j=1

log
m∑

i=1

λiκij −

 n∑
j=1

lpj

 ,

and
(∑n

j=1 lpj

)
is a constant that does not affect the outcome of the optimization.

3.3 Bandwidth Choice and Iterative Refitting for High-Dimensional Data

This section discusses how to efficiently choose appropriate bandwidths of each cluster to yield highly-
predictive distributions. Our first heuristic introduced in Section 3.3.1 is a local Maximum-Likelihood
(ML) estimation of the adaptive bandwidths. The local ML estimation is an example of implementing
the multi-scale basis density functions to handle heteroscedastic data, while it is practical only for low-
dimensional random variables. For high-dimensional data, we show the fact that the mixture weights
acquired with Algorithm 1 are not sparse even when the correct bandwidths are used. Section 3.3.2
discusses the resulting inconsistency between the objective of clustering and that of density estimation,
even when we adopt the same convex clustering formalisms. With addressing the necessity of refitting
the cluster parameters, we discuss an annealing process to stably obtain clustering in Section 3.3.3.
Based on the consideration about the refitting, Section 3.3.4 introduces an iterative algorithm that
repeats convex clustering several times.

3.3.1 Local Maximum-Likelihood with a k-Nearest Neighbor Method

Real data exhibit heteroscedasticity, with both sparse and dense regions existing in the same dataset.
For such data, using a globally-common bandwidth for every kernel causes over-partitioning in the
sparse regions and under-partitioning in the dense regions, as shown in Figure 3.3. A natural improve-
ment is to incorporate adaptive bandwidths, where each cluster has its own local bandwidth.

Let σ2
i be an isotropic variance assigned for kernel i, whose center is the exemplar xπ[i]. We

consider a heteroscedastic sparse mixture model formalized as

p (x)=
m∑

i=1

λiN
(
x;xπ[i], σ

2
i Id

)
≡

m∑
i=1

λi√
2πσ2

i

d
exp

(
−
‖x−xπ[i]‖22

2σ2
i

)
,
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Algorithm 1 Fast Convex Clustering
input An (n×m) kernel matrix K =(κ1, . . . ,κm)

such that κi ,(κi1≡p (x1|θi) , . . . , κin≡p (xn|θi))
>

1: function λ̂ = FastConvexClustering(K)
2: λ(0)←(1/m,. . .,1/m)> and S←{1,. . .,m}
3: Allocate temporary variables v=(v1, . . . , vn)> and z=(z1, . . . , zn)>

4: for i=1 to m do
5: Sort the indexes (ε[i, 1], . . ., ε[i,m−1]) to satisfy ε[i, k] is the k-nearest neighbor of i.
6: end for
7: t←0
8: repeat
9: z←Kλ(t)

10: for i∈S (ascending order of λi) do
11: i′←mink ε[i, k] s.t. ε[i, k]∈S
12: v←z+λ(t)

i (κi′−κi).
13: f ′i0i′←−

∑n
j=1

(
κij−κi′j

)
/vj

14: if f ′i0i′>0 then
15: λ

(t+1)
i ←0, λ(t+1)

i′ ←λ
(t)
i +λ(t)

i′ , z←v
16: Remove i from S
17: else
18: v←z+λ(t)

i′ (κi−κi′)
19: f ′ii′0←−

∑n
j=1

(
κij−κi′j

)
/vj

20: if f ′ii′0<0 then
21: λ

(t+1)
i ←λ

(t)
i +λ(t)

i′ , λ(t+1)
i′ ←0, z←v

22: Remove i′ from S
23: else
24: h

(1)
ii′ ←−

∑n
j=1

(
κij−κi′j

)
/zj

25: h
(2)
ii′ ←

∑n
j=1

(
κij−κi′j

)2
/z2

j

26: λ
(t+1)
i ←λ

(t)
i − h

(1)
ii′ /h

(2)
ii′

27: λ
(t+1)
i′ ←λ

(t)
i +λ(t)

i′ −λ
(t+1)
i

28: z←z +
(
λ

(t+1)
i −λ(t)

i

)
κi+

(
λ

(t+1)
i′ −λ

(t)
i′

)
κi′

29: end if
30: end if
31: end for
32: t← t+1
33: until λ(t) converges
34: end function
output The converged mixture weight vector λ(t).

where Id is the d-dimensional identity matrix and N (·; µ,Σ) is the probability density function of
the multivariate Gaussian distribution whose mean is µ and whose variance-covariance matrix is Σ.

Let ξ be a rough value of the number of clusters. When we assume that the converged values of
the non-zero mixture weights, after the iterative optimization, are similar to one another, each of the
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Figure 3.3: An inappropriate partitioning of heteroscedastic data using only a single bandwidth. The
datasets in the two figures are the same, with low-density, middle-density, and high-density regions
located at the left, the center, and the right, respectively. The left figure shows a clustering with a single
bandwidth that is adjusted to the center clusters, where the low-density regions are over-partitioned
while the high-density regions are under-partitioned. As shown in the right figure, convex clustering
using adaptive bandwidths is able to provide a desirable partitioning and a probability density function.

cluster has about (n/ξ) members distributed around its centroid. Because each local bandwidth should
be determined with these (n/ξ) members, a local Maximum-Likelihood (ML) estimate of σ2

i is given
as

σ̂2
i =

1
kd

k∑
`=1

‖xε[i,`]−xπ[i]‖22, (3.7)

where k is a rounded integer of (n/ξ) and ε[i, `] is the `-nearest neighbor index for xπ[i].
Eq. (3.7) provides one practical implementation of the multi-scale basis density functions, which

target the modeling of multivariate data. The estimates with (3.7) adopt larger bandwidths in sparse re-
gions while smaller ones in dense regions, and hence realize appropriate modeling particularly for the
real datasets exhibiting fat tails. The distributions involving fat tails generate outliers, and the nearest-
neighbor distances around these outliers become large. By following the multi-scale nature in setting
multiple basis density functions, the local ML method realizes a natural adaptation to incorporate fat
tails.

3.3.2 Inconsistency between Clustering and Density Estimation

For high-dimensional data, the exemplar-based convex clustering does not induce sparsity of the mix-
ture weights, even when the correct bandwidths are used. Let µi ∈ Rd and σ2

i be the true centroid
and the bandwidth of the cluster the exemplar xπ[i] belongs to. When an exemplar xj belongs to
the cluster whose centroid is µi, the value of (‖xj−µi‖22/σ2

i ) obeys a chi-square distribution χ2(d),
whose degrees of freedom is the input dimensionality d. Since the mean and the standard deviation
of the chi-square distribution χ2(d) are d and

√
2d, respectively, probability mass of the distribution

χ2(d) is strongly concentrated around its mean value d, particularly when d is high. Then values of
the probability density functionN

(
xj ; µi, σ

2
i Id

)
become close to (2πeσ2

i )
−d/2 for any data point xj .

In contrast, when we assume µi = xπ[i], the value of the kernel κii = (2πσ2
i )

−d/2 is ed/2 times
larger than the true value. Let λ̂,(λ̂1, . . ., λ̂m)> be the converged value of the mixture weight vector
provided by Algorithm 1. Because of the extremely large multiplier ed/2, most of the elements in the
vector λ̂ remain positive in order to hold the ability to explain the training data D. Consequently,
the ML density estimation, which uses the correct bandwidths, does not produce meaningful clusters.
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due to the non-sparsity of the weight vector λ̂. In short, the approximation µi = xπ[i] to justify the
exemplar-based clustering is significantly inaccurate when the dimensionality d is high, and we need
an alternative approach to apply the convex clustering algorithm to cluster high-dimensional datasets.

We can slightly relax the curse of dimensionality by discounting the value of the kernel κii not
by strictly assuming µi = xπ[i] but by regarding xπ[i] as the closest point to µi. Focusing on xε[i,1],
which is the 1-nearest neighbor of xπ[i], we calculate the value of the kernel κij as

κij =



1√
2πσ̂2

i

d
exp

(
−
‖xε[i,1]−xπ[i]‖22

2σ̂2
i

)
if j = π[i]

1√
2πσ̂2

i

d
exp

(
−
‖xj−xπ[i]‖22

2σ̂2
i

)
otherwise,

(3.8)

where σ̂2
i is the local ML estimate introduced in Section 3.3.1. Since the squared 1-nearest neighbor

distance ‖xε(i,1)−xπ[i]‖22 in (3.8) is also influenced by the distribution χ2(d), the ratio ed/2 between the
values of κii and κij such that j 6= i is cancelled. While various modifications of distance structures
to set µi 6= xi can relax the curse of dimensionality, Eq. (3.8) is one of the simplest manipulations
that still guarantee the condition that xπ[i] is the closest point to µi.

Yet heuristic modifications of the distance structures do not fundamentally solve the problem.
Even when using (3.8), the differences among the squared distances {‖xj−xπ[i]‖22}i6=j largely fluc-
tuate on the scale of

√
2d. Hence the relative ratio among {κij}mi=1 involves multipliers of the order

exp(
√
d), which is highly volatile when d is high.

3.3.3 Using Large Bandwidths as an Annealing Process

One way to directly cancel the effects of the extremely-large multiplier exp(
√
d) is to multiply some

discounting factor to each of the squared distances. Let β (0 < β ≤ 1) be a relaxation factor for the
kernel distributions. Because exp(−β‖ · ‖22) ≡ exp(−‖ · ‖22)β , we consider a relaxed optimization

max
λ

n∑
j=1

log
m∑

i=1

λiκ
β
ij subject to

m∑
i=1

λi = 1. (3.9)

The optimum of λ in (3.9) becomes sparser as we use the lower value of β. Hence applying a low
value of β for the optimization (3.9) yields some clustering. At the same time, we should assess the
meaning of the fitted result for such relaxation to yield the clustering. Because the probability density
function with β 6= 1 is improper and different from the standard likelihood function, we should never
regard the fitted result as a density estimation, but only exploit it for clustering.

We note the similarity of (3.9) with the mixture learning via the Deterministic Annealing (DA)
(Rose, 1998; Ueda and Nakano, 1998), that solves an optimization problem

max
λ,θ1,...,θm

n∑
j=1

log
m∑

i=1

λβ
i p(xj |θi)β subject to

m∑
i=1

λi = 1.

In the DA, the hyperparameter β is called the inverse temperature. As β becomes close to zero,
the objective function gets more relaxed and the number of local optima becomes smaller. With
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introducing a latent probability qij with which the ith cluster contributes to the generation of the jth
exemplar, the DA-EM algorithm iterates update rules

E-step: qij ←
λβ

i p(xj |θi)β∑m
i=1 λ

β
i p(xj |θi)β

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}

M-step: λi ←
1
n

n∑
j=1

qij and θi ← arg max
θi

n∑
j=1

qij log p(xj |θi) for i ∈ {1, . . . ,m}.

The DA-EM algorithm first computes an optimum for a low value of β. Then the acquired optimum
becomes the initial parameter in a slightly harder optimization using higher β. The value of β is
gradually increased and we finally perform the original optimization with β = 1. The continuity of
the global optimum with respect to β is guaranteed.

While DA-EM algorithm is designed to reduce the number of local optima in the parameter space,
our relaxation reduces the number of local modes of the input space. When β is small, for many
settings of the mixture weights λ, the relaxed density

∑m
i=1 λip(x|θi)β has a less number of local

modes (peaks) in the input space Rd. Hence the convex clustering algorithm prunes the irrelevant
kernels that do not strongly contribute for the local modes, and relevant kernels are located near the
local modes of the relaxed density.

The analogy to link our approach with the DA tells us the limitation that the convex clustering
result with low β is not guaranteed to be a good clustering. In DA, the acquired local optimum using
β < 1 is not the final solution of the original objective and needs to move in harder optimizations
using higher β. Similarly, in the convex clustering, each mixture weight and relevant kernel fitted with
low β are not guaranteed to be optimal and relevant in modeling the original input density. The results
with low β should be used as initial values, as in the DA-EM algorithm. Figure 3.4 demonstrates a
fitting result with a low value of the inverse-temperature β, by projecting a high-dimensional dataset
into a unidimensional space. We should emphasize the importance of refitting the cluster parameters
in practice.

The difference between the proposed optimization and DA comes from the sparsity requirement.
Instead of (3.9), one can consider an optimization

max
λ

n∑
j=1

log
m∑

i=1

λβ
i κ

β
ij subject to

m∑
i=1

λi = 1. (3.10)

Optimization (3.10) is also convex when 0 < β ≤ 1, thanks to the concavity of xβ . When β < 1, the
first derivative of (3.10) always becomes infinite at the corner λi = 0, and this infinite derivative makes
the optimum of (3.10) always non-sparse. Consequently, using β < 1 is inappropriate for performing
clustering.

3.3.4 Repeating the Convex Clustering Algorithms

In refitting the cluster parameters, we repeat the convex clustering algorithms several times. One can
perform such repetitions without updating the kernel distributions, where a high value of β is applied
only for further pruning the irrelevant kernels. Yet the relevant kernels found with a low value of the
inverse-temperature β are often not close to the true cluster centroids, and hence we refit the centroids
and bandwidths as in the EM algorithm.
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Figure 3.4: Insufficiency of the fitted result using a low value of the inverse-temperature β. 1, 000
samples of 100-dimensional data points were distributed from an equally-sized 3-mixture of isotropic
Gaussian distributions, whose centroids are (−4, 0, . . ., 0)>, (0, 0, . . ., 0)>, and (3, 0, . . ., 0)>. Ev-
ery cluster’s covariance matrix is Id. We applied the accelerated convex clustering algorithm for this
dataset, by using the bandwidth I and β = 0.13. The figures show the values of the true or relaxed den-
sity functions for samples {x=(x, 0, . . . , 0)>}. The left figure superimposes the true log-probability
density function log p(x) and the fitted relaxed log-density log

∑m
i=1 λ̂ip(x|θi)β with a rescaling. The

right figure shows the relaxed log-density log λ̂ip(x|θi)β for each fitted component. While the convex
clustering algorithm captures the latent three components, the summed density is not three-modal in
the projected subspace, because the largest component dominates the value of relaxed density. In this
condition, the three clusters cannot be detected with the Bayes’ rule and refitting of both the mixture
weights and the kernel centroids are suggested.

Let u∈ {0, 1, 2, . . .} be the step number in the refitting process and σ̂(0)
i ← σ̂i, and κ(0)

ij ← κβ
ij .

Using Algorithm 1, we first compute the mixture weight as

λ̂
(u)

= arg max
λ

n∑
j=1

log
m∑

i=1

λiκ
(u)
ij . (3.11)

Then the latent cluster assignment probability is estimated as

q
(u)
ij ←

λ̂
(u)
i κ

(u)
ij∑m

i=1 λ̂
(u)
i κ

(u)
ij

for each j ∈ 1, . . . , n and i : λ̂(u)
i > 0. (3.12)

For cluster i such that λ(u)
i > 0, we refit the centroid x

(u)
i and the bandwidth σ̂(u)

i as

x
(u)
i ←

∑n
j=1 q

(u)
ij xj∑n

j=1 q
(u)
ij

and
(
σ̂

(u)
i

)2
←

d
(
σ̂

(u)
i

)2
+
∑n

j=1 q
(u)
ij ‖xj − xi‖22

d+ d
∑n

j=1 q
(u)
ij

. (3.13)

Using x
(u)
i and the bandwidth σ̂(u)

i , a new kernel matrix K(u+1) = (κ(u+1)
ij ) is given as

κ
(u+1)
ij = N

(
xj ; x

(u)
i , (σ̂(u)

i )2Id

)
. (3.14)

We repeat (3.11)-(3.14) in u = 0, 1, 2, . . . , until no more kernels are pruned. Experimentally, 5
iterations were sufficient because most irrelevant kernels are pruned in the first and second iterations.
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Algorithm 2 Convex Clustering Repetitions with Refitting the Cluster Parameters
input Set of training data points D={x1,x2, . . . ,xn}, rough number of clusters ξ, inverse tempera-

ture β.
1: function {qij , σ2

i } = FastConvexClustering(D, ξ, β)
2: u←0, k ← int(n/ξ)
3: for i=1 to m do
4: Calculate the nearest neighbor indexes ε[i, 1], ε[i, 2], . . . , ε[i, k]
5: (σ̂(0)

i )2 ← 1
kd

∑k
`=1 ‖xε[i,`]−xπ[i]‖22

6: for j=1 to n do
7: j′ ← (j = π[i]) ? ε[i, 1] : j, κ(0)

ij ← N
(
xj′ ; xπ[i], (σ̂

(0)
i )2Id

)
8: end for
9: end for

10: repeat
11: λ̂(u)←FastConvexClustering(K(u))
12: for i ∈ {1, 2, . . . ,m} s.t. λ̂(u)

i > 0 do

13: for j=1 to n do q(u)
ij ←

λ̂
(u)
i κ

(u)
ij∑m

i=1 λ̂
(u)
i κ

(u)
ij

end for

14: x
(u)
i ←

∑n
j=1 q

(u)
ij xj∑n

j=1 q
(u)
ij

,
(
σ̂

(u)
i

)2
←
d
(
σ̂

(0)
i

)2
+
∑n

j=1 q
(u)
ij ‖xj−xi‖22

d+d
∑n

j=1 q
(u)
ij

15: κ
(u+1)
ij ←N

(
xj ; x

(u)
i , (σ̂(u)

i )2Id

)
16: end for
17: u← u+1
18: until λ(u) converges
19: end function
output The converged cluster assignment probability {q(u)

ij } and cluster bandwidth {σ̂(u)
i }mi=1.

Algorithm 2 summarizes the iterative refitting procedures. We note that the design of refitting
algorithm is not needed to be the maximum-likelihood estimator. While Eq. (3.13) involves a regular-
ization term using σ̂(0)

i ≡ σ̂i, we are able to use more sophisticated Bayesian regularizations including
variational-Bayes method. Because we finally apply more precise empirical-Bayes regularization in
Section 3.4, here we made the refitting algorithm simple.

3.4 Empirical-Bayes Model Selection

As an example to automatically determine the number of clusters and resulting probability density
function, we discuss an automatic selection of the clustering by adopting the maximum marginal-
likelihood criteria. Different settings of the rough number of clusters ξ, as well as the inverse-
temperature β, result in different clustering results. When the desirable number of clusters is de-
termined a priori, then we can simply choose the corresponding result. Otherwise, we often need to
choose the appropriate clustering from several candidates. Since the resulting numbers of clusters are
different among the initial parameter settings, we need a clustering quality measure even when the
numbers of clusters are different among the results.

36



By following the tradition in Bayesian formalisms, we formulate and solve a maximization of the
marginal likelihood, for choosing the optimal bandwidths that provide accurate density estimation.
When the true clusters are isotropic Gaussian distributions, then the chosen number of active compo-
nents becomes close to the true number of clusters. The marginal likelihood function in our Gaussian
mixture model is derived in Section 3.4.1. Section 3.4.2 shows a closed-form empirical-Bayes estimate
that maximizes the marginal likelihood.

3.4.1 Deriving Approximate Marginal Likelihood

For a training likelihood function with a general Gaussian mixture model

p (D|Θ)=
n∏

j=1

m∑
i=1

φiN
(
xj ; µi, σ

2
i Id

)
where Θ , {φ,(φ1, . . . , φm)>,µ1, . . .,µm, σ

2
1, . . ., σ

2
m},

we take its lower bound with Jensen’s inequality as

p (D|Θ) ≥
n∏

j=1

m∏
i=1

[
φiN

(
xj ; µi, σ

2
i Id

)
qij

]qij

, q (D|Θ, {qij}) .

We regard q (D|Θ, {qij}) as an approximation of the data likelihood. The values of qij and σ2
i are

given as q(u)
ij and σ̂(u)

i in Section 3.3.4, respectively. We simply denote the converged values of q(u)
ij

and σ̂(u)
i by qij and σ2

i , respectively. In addition, we denote the converged value of the centroid x
(u)
i

by xi.
Let us place anm-dimensional symmetric Dirichlet distribution prior for the mixture weight vector

φ, and a heteroscedastic isotropic Gaussian prior for the centroid µi as

p(φ|α) =
Γ (α)

Γm(α/m)

m∏
i=1

φ
α/m−1
i and

p(µi|ωi) = N
(
µi;µ0, ωiσ

2
i Id

)
for each i ∈ {1, . . . m},

where α is a concentration hyperparameter, µ0 = 1
n

∑n
j=1 xj is the global mean among the n data

points, and {ω1, . . ., ωm} is a set of prior bandwidths. The entire prior takes a factorial form p(Θ|Ψ) =
p(φ|α)

∏m
i=1 p(µi|ωi) where Ψ = {α, ω1, . . . , ωm}.

The approximate data likelihood q (D|Θ, {qij}) is analytically marginalized with the prior p(Θ|Ψ),
because q (D|Θ, {qij}) is a product of exponential families. We obtain closed-forms of the approxi-
mate marginal likelihood q (D|{qij},Ψ) ,

∫
Θ q (D|Θ, {qij}) p(Θ|Ψ)dΘ and the posterior

q (Θ|D, {qij},Ψ) , q (D|Θ, {qij}) p(Θ|Ψ)/q (D|{qij},Ψ) as

q (D|{qij},Ψ) =

 n∏
j=1

m∏
i=1

q
−qij

ij

 Γ(α)
Γ(α+n)

m∏
i=1

Γ(α/m+ n̂i)
Γ(α/m)

·

m∏
i=1

[(
2πσ̂2

i

)− dbni
2 (1 + n̂iωi)

− d
2 exp

(
− n̂i‖xi − µ0‖22

2(1 + n̂iωi)σ̂2
i

)]
and (3.15)

q (Θ|D, {qij},Ψ) =
Γ (α+ n)∏m

i=1 Γ(α/m+ n̂i)

m∏
i=1

[
φ

bni+α/m−1
i N

(
µi;

µ0 + n̂iωixi

1 + n̂iωi
,

ωi

1 + n̂iωi
σ2

i

)]
,
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respectively, where n̂i ,
∑n

j=1 qij ≡ nλ̂i.
Eq. (3.15) is an unsupervised clustering quality score that enables a comparison among the clus-

tering results having different numbers of clusters. The fitness to the training data points is rep-

resented in the term
∏m

i=1

(
2πσ̂2

i

)− dbni
2 that expresses the total variances of the clusters. The term

Γ(α)
Γ(α+n)

∏m
i=1

Γ(α/m+bni)
Γ(α/m) is the marginal likelihood stemming from the mixture weights, and natu-

rally favors a low number of clusters thanks to the Dirichlet prior. For each cluster i, the term

(1 + n̂iωi)
− d

2 exp
(
− n̂i‖xi − µ0‖22

2(1 + n̂iωi)σ̂2
i

)
incorporates the prior loss in distributing its centroid from the

global mean. When there are many clusters, the penalty related with the Gaussian prior also increases,
as well as those related with the Dirichlet prior. For avoiding the numerical underflow, we should
take the logarithm of (3.15) and exploit the log-gamma function in implementing the evaluation of the
marginal likelihood.

While we are able to evaluate the logarithm of the marginal likelihood (3.15) by fixing the values
of α and {ωi}mi=1, optimization of these prior hyperparameters, as we show in next Section 3.4.2.
Therefore, the value of the clustering quality for each setting should be measured after the optimization
of the prior hyperparameters.

3.4.2 Closed-Form Empirical-Bayes Estimate

Empirical-Bayes method (e.g., (Robbins, 1956)), or type-II maximum-likelihood method, is a class of
Bayesian statistical estimation methods that select the prior hyperparameters maximizing the marginal
likelihood. For the concentration hyperparameter α, we compute the maximum marginal-likelihood
estimate

α̂ = maxα log
Γ(α)

Γ(α+n)
∏m

i=1

Γ(α/m+ n̂i)
Γ(α/m)

with a fast modified-Newton method (Minka, 2003).

Since we prefer a sparse optimum of φ, we adopt an initialization α=1, based on the fact that settings
such that α < m correspond to the preferences of sparse solutions. While we are able to globally
optimize the value of α by starting from several initial values, we confirmed that the optimum of α
is unique in many experimental cases. For the prior bandwidth ωi, the maximum marginal-likelihood

estimate is given as ω̂i =
(
‖xi − µ0‖2

dσ̂2
i

− 1
n̂i

)+

where (·)+ , max{·, 0}.

With computing each clustering’s best combination of the prior hyperparameters (α̂, ω̂), we com-
pare the maximized value of the marginal likelihood associated with each clustering. Then we compute
the point estimates of the mixture weights and the centroids, which are associated with the prior hy-
perparameters providing the best clustering. Since the posterior Dirichlet distribution’s mode often
becomes sparse while its mean is always dense, we adopt the Maximum A Posteriori (MAP) estimate
of the vector φ for obtaining the sparse estimate. Let n∗i , x∗

i , α∗, σ∗i , and ω∗
i be the values of n̂i, xi,

α̂, σi, and ω̂i corresponding to the best clustering. The MAP solutions of φ and µi are given as

φ∗i =
(α∗/m+n∗i−1)+∑m

i′=1

(
α∗/m+n∗i′−1

)+ and µ∗
i =

µ0 + ω∗
i n

∗
i x

∗
i

1+ω∗
i n

∗
i

.

The procedures to evaluate the maximized log marginal likelihood, and the corresponding MAP esti-
mates of the mixture weights and the centroids, are finally summarized in Algorithm 3.

Our model selection provides an appropriate number of clusters only when the true clusters are
isotropic Gaussian distributions. When each cluster is a non-Gaussian distribution, relatively many
kernels remain active to cover each cluster’s non-Gaussianity. We should also note that large noises
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Algorithm 3 Empirical-Bayes Model Selection with Maximum Marginal Likelihood
input Set of training data points D={x1,x2, . . . ,xn}, estimates of the bandwidths σ2

1, . . . , σ
2
m, and

cluster assignment probabilities {qij ; j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}}
1: function (L̂,A, {φ̂i, µ̂i; i ∈ A}) = EmpiricalBayes(D, σ2

1, . . . , σ
2
m, {qij})

2: µ0 ← 1
n

∑n
j=1 xj

3: L̂ ← −
∑n

j=1

∑m
i=1 qij log qij

4: for i = 1 to m do n̂i ←
∑n

j=1 qij end for
5: for i ∈ {1, 2, . . . ,m} s.t. n̂i > 0 do

6: xi←
∑n

j=1 qijxj

n̂i
, ω̂i←

(
‖xi−µ0‖22

dσ2
i

− 1
n̂i

)+

7: L̂ ← L̂ − dn̂i

2
log
(
2πσ2

i

)
− d

2
log (1 + n̂iω̂i)−

n̂i‖xi − µ0‖22
2(1 + n̂iω̂i)σ2

i
8: end for
9: α̂← maxα LDCM (α) where LDCM (α),

[
log

Γ(α)
Γ(α+n)

+
∑

i:bni>0 log
Γ(α/m+ n̂i)

Γ(α/m)

]
10: L̂ ← L̂+ LDCM (α̂)
11: for i s.t. n̂i>1− bα

m do

12: A ← {A, i}, φ̂i ←
(α̂/m+n̂i−1)+∑m

i′=1 (α̂/m+n̂i′−1)+
, µ̂i ←

µ0 + ω̂in̂ixi

1+ω̂in̂i

13: end for
14: end function
output Log marginal likelihood L̂, set of active kernels A, and empirical-Bayes MAP estimates
{φ̂i, µ̂i; i∈A}

might decrease the estimated number of clusters, because separating high-noise clusters are often not
beneficial in stabilizing the estimates of the cluster parameters. Even in such more challenging cases,
the resulting density estimate is highly accurate in forming the probability density function for test
data.

3.5 Experimental Evaluations

Our aims in experiments are three-fold. The first one is the evaluation of the acceleration, by compar-
ing the actual computational costs in the proposed algorithm with those in the original EM algorithms,
by using the same kernel parameters. The second one is the evaluation of our repetitious algorithm, by
seeing the influences of the initial bandwidths and the temperature settings in predictions. The third
one is to quantitatively evaluate the detectability of the hidden clusters, for inferring the practicality
of the proposed algorithms for real-world datasets. Section 3.5.1 presents the convergence rates using
artificial datasets. Section 3.5.2 examines the sensitivity to the initial bandwidths and temperatures.
Sections 3.5.3 shows the detectability of the hidden clusters, using higher-dimensional datasets.

3.5.1 Convergence Rate and Computational Time

We compared the convergence rate and the actual CPU time between the proposed and the original
EM algorithms. The CPU time was calibrated in a Debian GNU/Linux x86 64 PC with an Intel R©
XeonTM Processor 2.80 GHz and 16 GB main memory. Both the EM and the proposed algorithms were
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Figure 3.5: Experimental comparisons between the proposed method and the EM algorithm combined
with the thresholding rule λi ← 0 if λi < 10−3/n (Lashkari and Golland, 2008), for a dataset in-
volving a globally-common single bandwidth. The numbers of active components as the iterations
proceed, and the final partitions with the proposed method are shown. The horizontal lines to confirm
the convergence rates are the number of iterations (top), or CPU time (middle). We generated 1,000 or
4,000 samples in which the cluster distributions are the same as those in Figure 3.1. While the thresh-
olding rule gradually prunes each component, the proposed method achieves significant reductions of
the components in the first 10 steps. Since the centroid of each cluster is constrained to be one of the
observed data points and is slightly apart from the true center of the underlying density, a marginally
larger bandwidth than the true bandwidth, such as σ=0.3>0.2, yields a compact grouping.

implemented as JavaTM programs using the sparse matrix classes in Apache Commons Mathematics
Library version 2.24.

First we generated 1,000 or 4,000 data points in R2 from Gaussian mixture models as shown in
Figures 3.5 and 3.6. Figure 3.5 shows the behaviors of the learning algorithms when we adopt the com-
mon single bandwidth, while Figure 3.6 shows the results when we adopt the adaptive bandwidths,
respectively. For the results with the adaptive bandwidths, we attached several results with the local
ML estimation using the k-nearest neighbor method. Here we did not use the iterative refitting algo-
rithm and the empirical-Bayes model selection, because our focus is the evaluation of computational
costs.

In both of the single- and adaptive-bandwidth datasets, the combination of the fast pruning and the
Newton-Raphson method drastically reduced the required numbers of iterations. In practice, about 10
iterations were sufficient in both settings while hundreds or thousands of iterations were required in
the EM algorithm.

Let us complement the information about the CPU time. For easy comparisons, in all of the
4http://commons.apache.org/math/
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Figure 3.6: Experimental comparisons between the proposed method and the EM algorithm using
the same thresholding rule as that in Figure 3.5, when the bandwidths are adaptive. 1,000 or 4,000
samples of R2 points are distributed from a 6-cluster heteroscedastic Gaussian mixture model. The
mixture weight is 1/6 in each cluster. The standard deviation for each of the three clusters centered
at (−1,−1)>, (−1, 0)>, and (0,−1)> is 0.2. The standard deviation for each of the two clusters
centered at (−1, 2)> (2,−1)> is 0.1. The largest standard deviation assigned to the cluster centered
at (1, 1)> is 0.5. The results in the first 10 iterations are magnified.

results, the times to calculate the kernel matrix and nearest-neighbor indexes are not included in the
figures. Computations of the kernel matrices are required in both the single- and adaptive-bandwidth
settings. In the single-bandwidth setting, the proposed algorithm additionally needs to calculate the
nearest neighbor indexes based on the sorting of the kernel matrix elements. The computational costs
to calculate the kernel matrix were 1.07±0.07 seconds when n = 1, 000, and 15.15 seconds when
n = 4, 000. The additional costs to sort the elements were 1.81±0.05 seconds when n = 1, 000
and 20.34 seconds when n = 4, 000. Therefore, even when we consider the CPU costs of additional
sorting, the proposed algorithm is evidenced to work sufficiently faster than the EM algorithm. In
computing the adaptive bandwidths, since both of the EM and the proposed algorithms need the sorting
of the pairwise distances, the initialization costs are the same. The costs to sort the pairwise distances
and compute the adaptive bandwidths were 1.60±0.02 seconds when n = 1, 000 and 29.00 seconds
when n = 4, 000. The costs to calculate the kernel matrix were 0.77±0.02 seconds when n = 1, 000
and 13.44 seconds when n = 4, 000.

Next we evaluated the convergences when the dimensionality gets higher. Here we summarize
the properties of the higher-dimensional artificial datasets that are also used in the later experiments.
2,000 data points in Rd were generated from c-cluster heteroscedastic Gaussian mixture models in
which all of the mixture weights were 1/c. The c cluster centroids were distributed fromN

(
0, 52Id

)
and each cluster variance is the inverses of the values sampled from chi-square distribution whose
degrees of freedom is ν, and whose mean is σ2

0 . The scale σ0 determines the basic noise level of the
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Figure 3.7: Experimental comparisons between the proposed method and the EM algorithm the same
thresholding rule as that in Figure 3.5, when datasets are high-dimensional. The number of clusters
is c = 20 and the degrees of freedom to set the heteroscedasticity is ν = 5. In all of the settings,
the proposed algorithm outperformed the EM algorithm. When d = 500, the relative large number
of iterations needed for the convergence is caused by the difficulty of the pruning judgement, where
every kernel vector is similar to each other.

data while ν represents the degrees of heteroscedasticity, where lower values of ν make the datasets
more heteroscedastic.

By experimenting using several datasets, we illustrated the calibrated computational costs in the
initial convex clustering using large bandwidths in Figure 3.7. The proposed algorithm outperformed
the EM algorithm even when the dimensionality of the datasets is high. Note that refitting was not
applied in the results of Figure 3.7, while we briefly explain the computational costs of refitting. Since
the second convex clustering starts from the condition whose number of clusters is given by the initial
convex clustering, the computational costs in the second convex clustering is less than the initial con-
vex clustering. Usually, refitting the cluster parameters is more costly for high-dimensional datasets.
The essential computational complexity is O(nd|At|), where At is the set of active components at
tth iteration of the initial clustering. Remember that its order is still the same as that of the standard
c-means algorithm when c=At.

42



−20 −10 0 10−
20

−
10

0
5

10

(d, σ0) = (20, 1)
−20 0 20 40

−
40

−
20

0
20

40

(d, σ0) = (20, 20)
−50 0 50

−
40

0
20

60

(d, σ0) = (500, 1)
−50 0 50 100

−
40

0
20

60

(d, σ0) = (500, 20)

Figure 3.8: Example of the input density in the artificial datasets. Each figure shows a 2-dimensional
projection of an artificial high-dimensional dataset, based on a principal component analysis. Each
sample’s color and symbol represents its belonging cluster. For all of the datasets, the number of
clusters is c = 20 and the degrees of freedom to set the heteroscedasticity is ν = 5. Though we
perform both the proposed and the reference clustering algorithms without dimensionality reduction,
the setting σ0 =1 makes the separation of the samples too easy. Hence we should use noisier datasets
than in the prior work.

3.5.2 Dependence on the Initial Bandwidths

This experiment investigates how the prediction performances depend on the initial bandwidths, for
establishing a rule of thumb to reduce the computational costs in searching for the appropriate hyper-
parameters. The artificial high-dimensional datasets, which were introduced in Section 3.5.1, include
the information of the true cluster labels. Hence we were able to evaluate the detectability of these
hidden cluster labels with unsupervised convex clustering, for various settings of the rough number of
clusters ξ and the inverse temperature β. In addition, we studied the characteristics of the hyperpa-
rameter selection with the proposed empirical-Bayes method.

The detectability of the hidden clusters is measured as the Normalized Mutual Information (NMI)
between the estimated and the true cluster labels. For two disjoint sets Ψ =

{
ψ1, . . . , ψ|Ψ|

}
and

Ω =
{
ω1, . . . , ω|Ω|

}
, NMI between Ψ and Ω is given as

NMI(Ψ,Ω), 2I (Ψ,Ω)
H (Ψ) +H (Ω)

,

where

I (Ψ,Ω) =
1
n

|Ψ|∑
a=1

|Ω|∑
b=1

|ψa ∩ ωb| log
n|ψa ∩ ωb|
|ψa||ωb|

and H (Ω) = −
|Ω|∑
b=1

|ωb|
n

log
|ωb|
n
.

Higher NMI indicates a superior predictive performance. The factor 2/ [H (Ψ) +H (Ω)] to normalize
the entropy enables a comparison of clustering results having different numbers of clusters.

In generating the datasets, we took care of the basic noise level σ0. The reference value σ0 = 1
used in (Lashkari and Golland, 2008) makes the datasets unrealistically clean, as we show in Figure
3.8. Since we think more noisy data should be tested for assessing the predictive capabilities, we adopt
larger values of the noise level σ0.

We performed a grid search for the rough number of clusters ξ and the inverse temperature β. The
range of β was determined with the dimension d. Since the inverse temperature β was introduced to
relax the multipliers exp(d/2) and exp(

√
d) in Section 3.3.3, we set the minimum value of β by 1/d,

where β = 1/d makes most of the datasets be clustered into only a single or a few components. We
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prepared the candidates of β as β ∈ {d−1, d−0.9, . . . , d−0.1, 1}. The rough number of clusters ξ was
chosen from 10, 20, . . . , 100 and totally 10× 10 grid search was performed for each dataset.

As the value of the inverse-temperature β decreases, the influences of the absolute scale of the
local bandwidths are weakened, because every element of the kernel matrix has a similar value to each
other, while the relative ratio among the local bandwidths is still important. For the high-dimensional
datasets, because the squared distance ‖xj−µi‖22 becomes close to the mean dσ2

i , the local bandwidth
estimate σ̂2

i does not strongly depend on the number of neighbors determined with ξ. We conclude
that only the ratios among the values {σ2

i }mi=1 are meaningful, with expecting that ξ does not affect to
the performances so strongly as β.

Figure 3.9 shows contour plots of the NMI scores depending on the values of ξ and β, where the
refitting of the cluster parameters are incorporated. The initial convex clustering was performed with
10 iterations using the SMO. Because we tried the refitting 5 times and 10 iterations were involved in
the convex clustering after each refitting, 10 + 5 × 10=60 iterations were repeated during the entire
optimization. As we expected, the results were more sensitive to the inverse temperature β than the
rough number of clusters ξ, whereas sometimes ξ affected the performances with specific β.

The empirical-Bayes method gave almost the optimal clustering when the noise level is not so
high, while it tended to select more parsimonious models than the best models. When the noise
level is middle, the optimal β was around 1/

√
d, which is a scale of the squared distances after the

discounting in (3.8).

3.5.3 Unsupervised Classification

In this experiment, the detectability of the hidden clusters by the proposed algorithm was compared to
those by the reference algorithms. The proposed algorithm consists of the convex clustering, refitting
of the cluster parameters, and the empirical-Bayes hyperparameter selection. For each parameter
setting of the artificial datasets, 20 independent sets were randomly generated and we evaluated the
average performances among the 20 sets. The rough number of clusters was set as ξ = c and the
inverse temperature β was chosen from {d−1, d−0.9, . . . , 1} inside the fitting algorithm.

One reference method is the adaptive-bandwidth soft c-means algorithm using the DA, in which an
equally-sized Gaussian mixture model c−1

∑c
i=1N

(
x; µi,σ

2
i Id

)
is fitted. In the DA, the parameters{

µ1, σ
2
1, . . .,µc, σ

2
c

}
were optimized with regularizing the variances as σ2

i ≥ 0.01. In the inter-
nal steps in the DA, we maximized a relaxed log-likelihood

∑n
j=1 log c−1

∑c
i=1N ρ

(
xj ;µi,σ

2
i Id

)
,

where the annealing was performed first with ρ=0.1, second with ρ=0.5, and finally with ρ=1. We
also implemented another version of the soft c-means algorithm that repeats random initializations 20
times, and that picks the best clustering.

Another reference method is to fit the Dirichlet Process Mixtures (DPM) inferred with a variational
method (Blei and Jordan, 2006), where both of the bandwidths and the number of clusters were auto-
matically chosen. In applying the DPM for the datasets, we fit fully-parametrized Gaussian mixture
models

∑
i λiN

(
x; µi,σ

2
i Id

)
, and adopt the posterior mean values of the parameters

{
λi,µi,σ

2
i

}
i

for the post-processing hard-clustering. In the sampling scheme G|α,G0∼DP (α,G0) underlying in
each DPM model, we placed a vague hyperprior α∼Gamma(1, 1). For the mean µ and the covari-
ance matrix σ2Id of each cluster, a product measure N

(
µ; µ0, σ

2Id

)
Gamma(1/σ2; 0.1, 0.1) was

used as the base distribution G0. In the automatic choice of the number of clusters, we limited the
number of mixtures less than or equal to 150, for reducing the computational costs.

Figure 3.10 shows the comparison results, where the performance stability of the convex clustering
is prominent especially in predicting high-dimensional data points. Basically, performances by the
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Figure 3.9: Comparisons of the obtained Normalized Mutual Information (NMI) between the true and
the estimated cluster labels, among several setting of the prior hyperparameters. The black symbol
’N’ is located at the best hyperparameter to most predict the true labels, while the blue symbol ’•’ is
located at the hyperparameter chosen with the unsupervised empirical-Bayes method. The NMI score
was more sensitive to the inverse-temperature β than the rough number of clusters ξ, whereas the rough
number of clusters was also meaningful in partitioning high-noise data. For middle noise datasets,
the maximum marginal-likelihood hyperparameters achieved the highest NMI scores in many cases.
For high noise datasets, the empirical-Bayes method preferred parsimonious models having lower
numbers of clusters than those in the true densities. When the dimensionality is high, the optimal
hyperparameter tended to be located near β = 1/

√
d, which is the middle point for each x-axis.

DA or those by many random initializations were highly volatile. While the variances of the DPMs’
performances were smaller than those of the DA and random initializations, DPMs struggled to find
the true cluster structure in the underlying density, because of its nature to automatically determine the
number of clusters. In contrast, the exemplar-based nature of the convex clustering provided robust
detections of the underlying structures. While we utilized the true number of clusters as a rough
number of clusters ξ, we already confirmed that ξ does not so affect to the performance as to β. The
automatic selection with the empirical-Bayes methods were able to recover the true clusters in middle
noise conditions. The improvement in the high-noise condition would be the future work.

3.6 Discussion

Let us discuss the applicability of the proposed accelerated algorithms and the possible future work to
handle more complex datasets. Adoption of the locally-adaptive bandwidths is a multivariate exten-
sion of introducing the multi-scale basis density functions, for precisely handling data involving either
of much dense regions, much sparse regions, or outliers. Given the experimental high performance
of our algorithms, the combination of the acceleration by SMO and locally-adaptive multi-scale basis
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functions is expected to work much beneficially in predicting probability density functions of low-
or middle-dimensional variables, including the unidimensional travel time in the next Chapter 4. In
contrast, for extremely high-dimensional datasets, the k-nearest neighbor heuristic does not work well
due to the curse of dimensionality (e.g., (Radovanović et al., 2010)), and we need to combine effective
non-linear dimensionality reduction techniques, such as the random-forest-based features (Botsch and
Nossek, 2008; Vens and Costa, 2011). The inconsistency between clustering and density estimation,
which is addressed in Section 3.3.2, implies that incorporating the automatic model selection algo-
rithm, such as our empirical-Bayes method, does not completely solve the problem of the curse of
dimensionality, because most of the model selection algorithms rely on the generalization capability
of the fitted probability density functions. Rather we need another model selection criteria specialized
for clustering. Fortunately, solving the curse of dimensionality is not the main issues in the remaining
chapters of this dissertation, while it is still beneficial for solving more general machine learning and
decision making problems.

Because we treat large-scale datasets from Chapter 4, let us address how to choose the number
of initial kernels m. When we have datasets and the output variables are multivariate, we must admit
some randomness in the results. We should try to obtain stable results by taking more initial kernels
than the true number of clusters. The essence of the convex clustering exists in the process to choose
the relevant kernels from the given set of the kernels. While c-means algorithm directly samples the c
initial kernels, the convex clustering with m>c can choose the initial kernels more accurately. Hence
we recommend to set c<m�n when handling huge data. Actually, when n is huge, the probability
with which them subset includes the relevant kernels is high. Fortunately, in the travel-time prediction
problem in Chapter 4, this randomness problem does not occur thanks to a customized quantile-based
method.

When we focus on clustering problems apart from the main aim in this dissertation, specializing
the accelerated and empirical-Bayes density estimation algorithms for detecting non-spherical or time-
varying clusters is a considerable direction. This chapter addressed only the case when every cluster
is spherical, because our main aim in this dissertation is not the clustering but the acceleration of
nonparametric density estimation. Many of the high-dimensional clustering problems, however, need
to handle non-spherical clusters that are at least able to be detected by kernel k-means Dhillon et al.
(2004) or spectral clustering algorithms (Zelnik-Manor and Perona, 2005). A temporal extension of
such clustering problems is the stable fitting of hidden Markov models Beal et al. (2002); Siddiqi
(2007); Gael et al. (2008). Since some clusters can have the same emission distributions while have
different temporal dynamics Siddiqi (2007), many local optima exist in fitting a hidden Markov model
and identifying the true clusters is more challenging than the standard clustering problem. The value
of the globally-optimal clustering algorithm would be more prominent in these challenging tasks.

3.7 Summary

To realize an effective and globally-optimal algorithm to fit nonparametric mixture models, this chap-
ter introduced an accelerated algorithm for the exemplar-based convex clustering, which is an equiva-
lent problem with the nonparametric conditional density estimation. The proposed algorithm consists
of the fast pruning of the irrelevant kernels with exact conditions, and the element-wise Newton-
Raphson updating for optimizing the mixture weights of the relevant kernels. The algorithm is further
accelerated when we incorporate locally-adaptive bandwidths, which provide a multivariate extension
of the multi-scale basis density functions and which improve the predictive capabilities for data in-
volving either of much dense regions, much sparse regions, or outliers. In addition to the acceleration
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as the basis enhancement, extensions for handling high-dimensional data and enabling an empirical-
Bayes model selection have been discussed in the latter part of this chapter. The essence to handle the
high-dimensional data is the repetition of the convex clustering algorithms, which consist of gradual
decreases of the bandwidth parameters. Unlike the existing maximum-likelihood or Bayesian clus-
tering algorithms, the proposed algorithm does not depend on random initializations and yields stable
estimates that are the requirements in real applications.

While this chapter has been spent for the basic algorithmic enhancement using only the Gaussian-
distributed artificial datasets, in the next Chapter 4, we apply the accelerated convex clustering algo-
rithm for fitting many instances of travel-time distributions, which do not obey Gaussian distributions
in real vehicle traffic. Unlike the simple k-nearest neighbor methods used in this chapter, a custom
design of the basis density functions involving multiple characteristic scales plays the essential role in
predicting the fat tails, that exist in the real traffic data.
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Figure 3.10: Comparisons of the detectability of the hidden clusters in the higher-dimensional datasets.
Compared to other c-means type algorithms, the convex clustering with refitting exhibited stable per-
formances though the average performances were slightly inferior to the soft c-means, when d = 20.
The main reason of the bad performance in d = 20 and σ0 > 80 was the empirical-Bayes model selec-
tion, where parsimonious models were chosen to regularize the fitted density. Yet in other settings, the
automatic selection with the empirical-Bayes methods achieved higher scores in detecting the hidden
clusters. In the high-dimensional data (d=500), the proposed algorithm was prominently stable and
almost outperformed all of the other algorithms in all of the settings.
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Chapter 4

Nonparametric Vehicle-Traffic Prediction

Vehicle traffic is a complex phenomena caused by lots of interacting vehicle drivers through a road
network, and risks about the travel time for a specific route are the key factors for accurate prediction
of entire traffic and rational decision-making in route choice. When we have a probability density
function of travel-time for every link of the road network, optimal routes with respect to a wide range
of risk measures are found with stochastic optimization involving dynamic programming (e.g., (Miller-
Hooks and Mahmassani, 2000; Osogami, 2011)). As we already discussed in Section 2.2, many of
the travel-time prediction algorithms provide only the expectation by following the Ordinary Least
Squares principle, and cannot adequately model the actual distributions that possess fat tails stemming
from a small portion of extreme delays in traffic jams. We realize more accurate modeling of such
fat-tail distributions by using the accelerated nonparametric density estimators, whose algorithmic
details have been introduced in Chapter 3. Because we need to fit the distributions for all of the
links, to efficiently interpolate among the lots of the links is a key requirement in solving our specific
problem. With regarding the membership to each link as an explanatory variable for predicting the
distribution, we perform a conditional density estimation of travel time, whose training data consist of
the graph structure of the road network and travel-time samples contained probe-car datasets acquired
with Global Positioning Systems (GPS).

As well as the incorporation of the fat tails, the proposed nonparametric density estimator emulates
the positive feedback among the drivers through the road network. To represent the geometrical posi-
tive feedback that yields a similarity of distributions for close links, we design a nonparametric density
estimator called the spatial estimator, which interpolates certain probability density functions among
multiple links. These probability density functions to be interpolated are called the basis density func-
tions, which are assigned for parts of the links having several or more samples of travel time. By using
the accelerated convex clustering algorithm, we fit the basis density functions as mult-scale mixtures
of gamma or log-normal distributions, for yielding the fat tails. The interpolation among the basis
density functions improves the predictive accuracy particularly for the links having a limited number
of travel-time samples. The weights in the interpolation are provided by a combination of similarity
metric between any two links and absolute importance of each link. To emulate the propagation of
traffic in the road-network graph, we exploit a diffusion kernel (Kondor and Lafferty, 2002) to set the
similarity for pairs of links that are not directly connected. As an additional idea to realize the com-
putational feasibility for the real road network having the millions of links, we sparsify the diffusion
kernel by approximating the matrix exponential as a power of the matrix. The absolute importance of
every link is optimized also with the accelerated convex clustering algorithm, and hence the final esti-
mate adopts a nested structure of nonparametric mixture models, where the nonparametric gamma or
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log-normal mixtures are further mixed with another nonparametrics provided by the sparse diffusion
kernel. The fast convex optimization and the sparse matrix multiplication make the nonparametric
density estimation applicable for large probe-car datasets.

Considering the dependence of the traffic on time-zones, we give the final estimate by further
interpolating multiple spatial estimators to one another in the time domain, where one spatial estimator
is applied for the data of one specific timezone. Experimental results using real probe-car datasets
show advantages of the new nonparametric estimator, over parametric regression methods in the spatial
domain, and clarify benefits of the temporal interpolation.

Parts of this work were first published in (Takahashi et al., 2012) in the proceedings of the 12th
SIAM International Conference on Data Mining (SDM 2012), which is published by the Society of
Industrial and Applied Mathematics (SIAM). We borrowed the formulations, figures, and implications
from this publication, based on the permission for authors1.

Section 4.1 addresses the characteristics of our datasets and introduces the problem of density esti-
mation with a sparse nonparametric method. Sections from 4.2 to 4.4 mainly describe about the spatial
estimators, where Section 4.2 introduces the fitting of the basis density functions, Section 4.3 handles
the approximation of the diffusion kernel on a link connectivity graph, and Section 4.4 shows the final
optimization of the importance weights. The temporal interpolation of the multiple spatial estimators
is introduced in Section 4.5. Section 4.6 experimentally shows our method’s significant advantages of
the predictive accuracy over several existing regression methods. Section 4.7 discusses the possible
extensions or applications of the travel-time density estimation for realistic traffic simulation. Section
4.8 summarizes this chapter.

4.1 Road Network and Travel-Time Samples

This section describes the characteristics of our datasets, defines the density estimation problem to be
solved, and introduces the model of travel-time distributions. Section 4.1.1 explains how we prepared
the datasets from the original probe-car trajectories measured with GPS. For the density estimation
problem defined in Section 4.1.2, a nonparametric model of the relative travel-time distribution is
introduced in Section 4.1.3.

4.1.1 Properties of our Real Traffic Datasets

Our road network consists of the major roads of the Greater Tokyo Area in Japan. The road network
is represented as a digraph G = (V,E) whose node v∈V represents an intersection and whose edge
(u, v) = e ∈ E represents a link from an intersection u to another intersection v. The numbers of
intersections and links are |V |=1, 183, 358 and |E|=3, 290, 523, respectively. For every link e∈E,
we defined a standard travel-time τ (0)

e by dividing its length by its legal speed limit. The standard
travel-time is not the actual observation but a reference value in measuring the relative magnitude of
the actual travel-time.

The original probe-car dataset includes 58,584 trajectories of taxis, where each trajectory is given
as a sequence of two-dimensional GPS coordinates whose sampling intervals were 30 seconds. For
each sequence of the GPS coordinates, we applied a map matching algorithm based on (Newson and
Krumm, 2009), for obtaining a sequence of links and travel-time spent at each link. The total number
of travel-time samples is 3, 144, 669, and the number of links having at least one travel-time sample

1See the SIAM consent to publish https://www.siam.org/students/siuro/consent.pdf. Copyright
c© by SIAM. Unauthorized reproduction of this chapter is prohibited.
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Table 4.1: The numbers, N , of travel-time samples, and the numbers, |E+|, of links that have at least
one sample for each timezone.

HOUR N |E+| HOUR N |E+| HOUR N |E+|
0:00- 273,168 69,126 8:00- 149,906 47,400 16:00- 134,056 37,794
1:00- 185,567 53,018 9:00- 154,597 47,067 17:00- 174,748 43,074
2:00- 109,662 38,994 10:00- 131,383 42,445 18:00- 196,978 45,676
3:00- 49,821 25,620 11:00- 111,664 37,080 19:00- 162,816 41,468
4:00- 22,501 15,484 12:00- 129,148 41,569 20:00- 149,438 42,592
5:00- 24,433 16,189 13:00- 133,987 40,083 21:00- 169,125 47,856
6:00- 23,868 16,579 14:00- 128,288 37,594 22:00- 169,956 49,328
7:00- 62,753 30,025 15:00- 130,971 36,980 23:00- 165,835 47,297

is 187, 872. Every link-dependent travel-time observation was classified into one of the 24 hourly
datasets indexed as h ∈ {0, 1, . . . , 23}, where the dataset h = 0 contains samples from 12 a.m. to 1
a.m., the dataset h = 1 contains those from 1 a.m. to 2 a.m., and so on.

We perform the spatial estimation independently for every of the 24 datasets. For easier under-
standing of the spatial estimation algorithms, we omit the notation of the index h, until we introduce
the temporal interpolation in Section 4.5. Remember that every variable related with the travel-time
samples actually depends on the index h, even when it is omitted.

Here are our notations to describe the training data. An edge e ∈ E is assigned n[e](≥ 0) travel-
time samples τ (1)

e , τ
(2)
e , . . . , τ

(n[e])
e

2. We define a set of relative travel times Y[e],{y(1)
e , . . . , y

(n[e])
e },

where y(j)
e , τ

(j)
e /τ

(0)
e . E+ , {e;n[e]≥1} is the set of edges having at least one travel-time sample,

and N,
∑

e∈E n[e] is the sum of the numbers of travel-time samples.
Table 4.1 shows the sizes of our datasets for each timezone. We have relatively many samples at

midnight because people who miss the last trains tend to take taxis. Another peak at 6 p.m. is partly
caused by people who finish work.

Figure 4.1 shows the total number of travel-time samples observed in 24 hours for each link.
While we have a total of 3, 144, 669 travel-time samples, many links in suburban or rural regions
lack observations of their travel times. Hence efficient methods to interpolate the probability density
functions are crucial in the accurate fitting of many distributions.

4.1.2 Conditional Density Estimation of the Relative Travel Time

Here is the problem to be solved. Let Ye be a random variable to represent the relative travel time
spent by a car driving on a link e ∈ E. Our aim is to model and estimate the probability density
function of Ye as fe(y) for every link e ∈ E, given the set of training samples D= {Y[e]; e ∈ E+}.
After we fit the function fe(y), the distribution of actual travel time Xe , τ

(0)
e Ye is easily computed

by rescaling the density function fe(y). The main reason to focus on Ye instead of Xe is the accuracy
in interpolation. Because even the connected links have different values of the length and the speed
limit, it is natural to assume that similar links have similar distributions of not the absolute travel-time
but the driving velocity.

Before proceeding to mathematical modeling, we should study examples of histograms of the
relative travel-time. As in Figure 4.2, we confirmed that the modes of the density function fe(y) are
usually between 0 and 2. Some links have widely variable distributions depending on timezones.

2τ
(1)
h,e , τ

(2)
h,e , . . . , τ

(n[h,e])
h,e is the precise notation when the index h is not omitted.
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Figure 4.1: Heatmaps based on the total number of travel-time samples in 24 hours for each link. The
green, yellow or red points are located on the links that have at least 1, 10, or 100 travel-time samples,
respectively. The left figure shows the entire map while the right figure shows a magnified view for
the center of Tokyo.
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Figure 4.2: Examples of the histograms about the relative travel-time, where the number of bins was
automatically determined using Scott’s rule (Scott, 1992), and every vertical axis represents the ratio
between the respective bin’s and the total numbers of samples. For some links that have sufficient
samples of the travel time, we are able to roughly infer the shapes of probability density functions
without interpolation methods. The modes of the distributions are usually from 0 to 2. The distri-
butions assigned for the link “1049171” do not widely vary among the timezones. In contrast, those
assigned for the link “1539993” are more variable depending on the timezones, where the distribution
around 6 p.m. has a fat tail.

4.1.3 The Nonparametric Formalism for the Conditional Densities

Let us index all of the edges by e1, e2, . . . , e|E|. Let π[1], . . . , π[m] be m indices of edges that are
associated with basis density functions, and let us define a set of edges EΦ , {eπ[1], . . . , eπ[m]}. We
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model the distribution of the relative travel-time with a nonparametric form

fe(y) =
λ0ϕ0(y)+

∑m
i=1 λiKE(e, eπ[i])ϕi(y)

λ0+
∑m

i=1 λiKE(e, eπ[i])
, (4.1)

where Φ , {ϕ0, ϕ1, . . . , ϕm} is a set of basis density functions, KE(e, eπ[i]) is a similarity function
between the edges e and eπ[i], λ, (λ0, λ1, . . . , λm)> is a vector of link importance, and (·)> denotes
the transpose. A basis density function ϕi(·) needs to satisfy

∫∞
0 ϕi(y)dy≡1, and the link similarity

function KE(·, ·) must be non-negative. Eq. (4.1) resembles the nonparametric Nadaraya-Watson
kernel regression (Nadaraya, 1964; Watson, 1964) except that we add link-independent weight and
basis density function, λ0 and ϕ0(·). The terms λ0 and ϕ0(·) are introduced for defining fe(y) even
when ∀i ∈ {1, . . . ,m},KE(e, eπ[i])≡0.

The following three sections introduce our approaches to setting or estimating the parameters
(Φ, EΦ,λ). The formulations of the basis density functions and their estimates are discussed in Sec-
tion 4.2. Then Section 4.3 introduces our method to compute the kernel functionKE(·, ·) for each pair
of links. Finally, Section 4.4 describes the algorithm to optimize the vector λ given Φ and EΦ. As we
show in Section 4.4 and thanks to the property of the convex clustering formulations, the optimum of
the vector λ becomes sparse.

4.2 Fitting of the Basis Density Functions

The link-dependent basis density functions are fitted for the links that have at least two travel-time
samples. Based on the number of available travel-time samples, let us define sets of links E1 ,
{e;n[e]=1} and E2+ ,{e;n[e]≥2}. Because the link-dependent basis density functions ϕ1, . . . , ϕm

should be fitted for the links having multiple travel time samples, we set EΦ =E2+ and m= |E2+|.
Since the link-independent basis function ϕ0 is crucial for the links in E1, we fit the function ϕ0 using
the samples assigned for links in E1. The set of relative travel-time samples for fitting the function ϕi

is denoted by Yi, where

Yi =

{∪
e∈E1

Y[e] if i = 0
Y[eπ[i]] otherwise

.

Because the value of the relative travel-time is non-negative, Section 4.2.1 introduces parametric
gamma and log-normal distributions to model the basis density functions. Despite their simplicity and
stability in the fitting, we show that parametric basis density functions are not sufficiently expressive
to model the travel-time distributions. For more flexible modeling, we introduce nonparametric mix-
tures of gamma or log-normal distributions whose bandwidths involve multiple scales. The global
optimality in fitting such nonparametric mixtures is guaranteed with our convex clustering formalism.
Details in fitting the nonparametric basis density functions are described in Section 4.2.2.

4.2.1 Parametric Density Functions

Let us first consider instances of probability density functions, which call the parametric density func-
tions and for which we easily obtain the global optimum of the parameters. Since the maximum
likelihood estimation of an exponential family is done with convex optimization, we first consider a
usage of gamma distributions, which belong to the exponential family. Let Gam(·;α, µ) be the prob-
ability density function of a gamma distribution whose shape parameter is α and whose mean is µ.
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The basis density function ϕi for i ∈ {0, 1, . . . ,m} is given as

ϕi(y) = Gam(y;αi, µi) ,
ααi

i y
αi−1 exp(−αi

y
µi

)

Γ(αi)µαi
i

.

The maximum likelihood estimate of the basis density function ϕi is given by a convex optimiza-
tion based on the sufficient statistics

µi =
1
|Yi|

∑
y∈Yi

y and νi =
1
|Yi|

∑
y∈Yi

log y. (4.2)

While the value of µi is simply given as the empirical average, we obtain the shape parameter αi by
solving a non-linear unidimensional equation

log(αi)−Ψ(αi) = logµi − νi, (4.3)

where Ψ(·) is the digamma function such that Ψ(x), ∂ log Γ(x)
∂x . The solution of (4.3) is easily obtained

by Newton-Raphson methods.
Second we consider a log-normal distribution as another model of the parametric basis density

function. Let LN (; ν, σ2) be the probability density function of a log-normal distribution where

ϕi(y) = LN (y; νi, σ
2
i ) , 1

y
√

2πσ2
i

exp
(
−(log y−νi)2

2σ2
i

)
.

The location parameter νi is given with (4.2), while the scale parameter σ2
i is given as

σ2
i =

1
|Yi|−1

∑
y∈Yi

(log y−νi)
2 . (4.4)

Eq. (4.4) is an unbiased estimator of the variance for the logarithm of the relative travel-time.

4.2.2 Nonparametric Density Functions

To more flexibly model the basis density functions than the aforementioned parametric approaches,
we introduce a nonparametric form

ϕi(y) =
L∑

`=1

θi`ψ`(y), (4.5)

where each basis function ϕi is a linear interpolation of common (link-independent) fundamental
density functions ψ1, . . . , ψL. For the mixture weights, we define a vector θi ,(θi1, . . . , θiL)>. While
one could adopt link-dependent fundamental density functions possibly denoted by ψi1, . . . , ψiL, the
common fundamental density functions in Equation (4.5) can stabilize and accelerate the fitting. As
another merit, the common fundamental density functions make the predictive distribution in (4.1) at
most L mixtures of parametric distributions, which are more compact than those computed with the
link-dependent fundamental functions.

We stably fit gamma or log-normal distributions for the fundamental density functions ψ1, . . . , ψL,
using a quantile method, which corresponds to a nearest-neighbor method for uni-dimensional sam-
ples. Let us sort all of the N travel-time samples in {y; y ∈ Y[e], e ∈ E+} in the ascending order,
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Figure 4.3: Fitting the fundamental density functions ψ1, . . . , ψL (L = 6) for N marginal samples
of the relative travel-time. Given a bandwidth hyperparameter r, we prepare a set of sliding window
whose length cr,N,L is the rounded integer of rN

L . For each of the L windows located at 0%-, 100
L−1%-,

. . ., 100(L−2)
L−1 %-, and 100%-tile of the (N − cr,N,L +1) windows, we separately fit gamma or log-

normal distributions of the relative travel-time. Because the resulting fundamental density functions
possess larger variances in the tails of the mixture distribution, this quantile-based method is a practical
implementation of the multi-scale nonparametric mixtures.

as ys[1], ys[2], . . . , ys[N ]. Given a bandwidth hyperparameter r, let cr,N,L be the rounded integer of
rN
L . We obtain (N −cr,N,L +1) subsets of the samples Ys[t] = {ys[t], ys[t+1], . . . , ys[t+cr,N,L−1]} for
t ∈ {1, 2, . . . , (N−cr,N,L+1)}. Then the training set Y` to fit the function ψ` is chosen from {Ys[t]},
based on the equal-interval splitting of the index s[1], . . . , s[cr,N,L]. With the same manner adopted
in(4.2), (4.3) and (4.4), we compute the values

µ` =
1
|Y`|

∑
y∈Y`

y, ν` =
1
|Y`|

∑
y∈Y`

log y,

α` = argα [log(α)−Ψ(α) = logµ` − ν`] , and

σ2
` =

1
|Y`|−1

∑
y∈Y`

(log y−ν`)
2 .

The values (α`, µ`) are the parameters of the density function when ψ`(y) , Gam(y;α`, µ`), and
the values (ν`, σ

2
` ) are those when ψ`(y) , LN (y; ν`, σ

2
` ). Figure 4.3 illustrates the quantile-based

estimation of the fundamental density functions ψ1, . . . , ψL.
Let us comment on why we adopted the equal-interval splitting in fitting fundamental density

functions. Existing nonparametric methods that form the probability density function by using all
of the total N samples of travel-time are inapplicable for our problem due to its high computational
costs. One considerable way to reduce the number of basis functions without losing the high ex-
pressive powers of the nonparametric approaches is to randomly choose L (�N) instances of basis
density functions. The quantile method is a deterministic alternative to such random choice, where the
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influence of random-sampling noises is removed. Because mutually-exclusive choice of the training
samples for each fundamental density function results in over-fitting, we improve the generalization
capability by introducing the bandwidth-scaling hyperparameter r > 1. Consequently, the class of
functions expressed by a linear combination of the selected fundamental density functions is still
broad. In the later experiments, we set L= 100 that achieves both high explanation capabilities and
reasonable computational costs in optimization.

After the fitting of the fundamental density functions, for each i ∈ {0, 1, . . .,m}, we obtain the
maximum-likelihood estimate of the vector θi, by solving an optimization problem

max
θi

∑
y∈Yi

log

[
L∑

`=1

θi`ψ`(y)

]
. (4.6)

As we already discussed in Chapter 3, Optimization (4.6) is a convex clustering problem for which
we are able to attain the sparse and global optimum of the vector θi. We solve Optimization (4.6)
by using the accelerated convex clustering algorithm also introduced in Chapter 3. Remember that
the accelerated algorithm requires a metric to evaluate the similarity between two of the fundamental
density functions ψ1, . . ., ψL. Based on the fact that the output variable y is unidimensional in our
problem, we measure the similarity based on the first moment of each fundamental density function.

Since we can compute the global optima in fitting both the fundamental density functions and the
mixture weights, all of the nonparametric basis density functions are stably computed. The bandwidth-
scaling hyperparameter r is determined with a validation method whose details are explained in Sec-
tion 4.6.

4.3 Sparse Diffusion Kernel on a Link Connectivity Graph

Based on the original digraph of the road network, we design an undirected weighted graph which we
call the link connectivity graph, whose adjacency matrix is given in Section 4.3.1. The link connec-
tivity graph incorporates only the direct connections between links, while the basis density functions
could be interpolated to one another even among indirectly connected links. For such intrinsic interpo-
lations among the indirectly connected links, Section 4.3.2 introduces a sparse diffusion kernel whose
computation is more efficient than the standard diffusion kernel.

4.3.1 Link Adjacency Matrix

We design the link connectivity graph based on a consideration about the flows of traffic and direct
connections between links. Let xv ∈R2 be the location of an intersection v∈V and ∆(e),xv− xu

for e=(u, v) such that u, v∈V . The link connectivity graph GE is an undirected and weighted graph,
whose nodes are links and whose edges are connections between the links. Let us define an |E|-by-|E|
matrix A=(aij ; ei =(ui, vi), ej =(uj , vj)) as

aij =

{
1
2 + ∆(ei)

>∆(ej)
2‖∆(ei)‖‖∆(ej)‖ if ui =vj ∨ vi =uj

0 otherwise
, (4.7)

where ∨ denotes the logical “or” operator. Two links are connected if and only if the head of one link
is the tail of another link, because we consider movement of vehicles from one link to another link.
While we could connect two links that share heads or tails, physical influences between such two links
are not so strong as the relationships we consider.
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In addition, Equation (4.7) incorporates the cosine similarity between the directional vectors of
the links. When the directions of the two links are the same, the weight is one. Conversely, the weight
between the links having opposite directions to each other is set zero. Such design of weights is based
on the physical observation that a lane of road are often crowded while its opposite lane is not.

4.3.2 Sparse Approximation of the Diffusion Kernel

Diffusion kernel on an undirected graph (Kondor and Lafferty, 2002) is a widely-used metric to com-
pute the similarity between two unconnected nodes of the graph. Let D be a diagonal matrix such that
D = diag

(∑|E|
j=1 a1j , . . . ,

∑|E|
j=1 a|E|j

)
. We compute the negative of normalized graph Laplacian

matrix as H =D−1/2 (A−D) D−1/2. The diffusion kernel matrix is given as a matrix exponential

exp(βH)≡ lim
p→∞

(
I +

β

p
H

)p

,

where I is the identity matrix, β (> 0) is a diffusion hyperparameter, and the (i, j) element of the
matrix exp(βH) represents the similarity between the edges ei and ej .

The diffusion kernel matrix is interpreted as a transition-probability matrix of a continuous-time
Markov chain. For every row vector in the negative Laplacian matrix H , the sum of its elements
is zero. Hence H is regarded as the generator matrix of a continuous-time Markov chain, whose
diffusion time is represented as the hyperparameter β.

Unfortunately, evaluating the exact value of the matrix exponential exp(βH) is computationally
infeasible. Though the generator matrix H is sparse, the matrix exp(βH) becomes dense in general.
Since our generator matrix H is extremely large as 3, 290, 523-by-3, 290, 523, accurately computing
and storing all of the elements of exp(βH) is unrealistic in our limited computing environment.

To approximately compute the diffusion kernel matrix within the feasible computational cost and
memory, we instead calculate a power of the matrix H . Assume that the traffic in a link only affects
those in its close links. Then the hyperparameter β should be set by a small value and we are able to
use an approximate kernel matrix

K (β, p)=
(

I+
β

p
H

)p

=
p∑

q=0

p!βq

q!(p−q)!pq
Hq, (4.8)

where p is a resolution hyperparameter in discretizing the time in the Markov chain. The (π[i], j)
element of the matrix K (β, p) gives the link similarity KE(eπ[i], ej) in (4.1).

Due to the limited memory in computation, we adopt p = 8 and choose β from {1, 2, 3, 4, 5}.
Since the sum of each row vector of

(
I+ β

p H
)

is one,
(
I+ β

p H
)

is a transition-probability matrix
of a discrete-time Markov chain, and K (β, p) is also a transition-probability matrix whose duration
time is p. Because the amount of the travel-time samples is limited, we calculate the (π[i], j) element
of the kernel matrix K (β, p) only for each pair (π[i], j) satisfying eπ[i] ∈ E+ and ej ∈ E. We
save the computational cost by calculating c>Hq instead of fully computing Hq, where c is an |E|-
dimensional sparse vector whose ith element is one if ei ∈ E+ or zero otherwise. After caching the
values of c>H, c>H2, . . . , c>Hp, we compute each of the link similarities depending on the value
of the hyperparameter β.
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4.4 Optimization of the Absolute Importances of Links

This section describes the optimization algorithm for the vector of link importance λ in (4.1), after the
basis functions are fitted and the approximate diffusion kernel matrix is computed. By following the
principle of the Kullback-Leibler Importance Estimation Procedure (KLIEP; Sugiyama et al. (2008)),
Section 4.4.1 introduces the objective in optimizing the link importances. Considering the fact that the
original KLIEP cannot be directly applied due to its computational inefficiency for our datasets, Sec-
tion 4.4.2 discusses the application of the accelerated convex clustering algorithm for our optimization
problem.

4.4.1 KLIEP for Travel-Time Distributions

Our statistical problem is a conditional density estimation of the relative travel-time y, conditional on
each link e. When we count a pair (e, y) as one sample in the estimation, the optimization of the link
importances is formalized as

max
λ

∑
e∈E+

∑
y∈Y[e]

log

[
λ0ϕ0(y)+

m∑
i=1

λiKE(e, eπ[i])ϕi(y)

]

subject to
∑

e∈E+

∑
y∈Y[e]

[
λ0+

m∑
i=1

λiKE(e, eπ[i])

]
= N. (4.9)

In addition to Optimization (4.9), we evaluate the outcomes by solving anther optimization prob-
lem

max
λ

∑
e∈E+

1
n[e]

∑
y∈Y[e]

log

[
λ0ϕ0(y)+

m∑
i=1

λiKE(e, eπ[i])ϕi(y)

]

subject to
∑

e∈E+

1
n[e]

∑
y∈Y[e]

[
λ0+

m∑
i=1

λiKE(e, eπ[i])

]
= |E+|. (4.10)

In Optimization (4.10), each travel-time sample is reweighed so that the total number of samples
belonging to the same link becomes one. The difference between the outcomes by (4.9) and (4.10) is
evaluated in the later experiments.

For convenience, in this chapter, the optimization objectives (4.9) and (4.10) are called the Type 1
and Type 2 objectives, respectively. Whether to adopt the Type 1 or Type 2 objective depends on what
kind of the characteristics in vehicle traffic we want to accurately model. Links having many travel-
time samples are actually favored by many drivers. Hence the Type 1 objective is appropriate for
predicting typical traffics, because it heavily weighs the predictive capability to the links that are well
often chosen by drivers. On the other side, the data sparseness especially in rural areas is not due to
the nature of the traffic, but due to our limited capability in collecting the automobile samples. Hence
the Type 2 objective that equally weighs every link is reasonable when we want to rigorously evaluate
the generalization capability even for the rural links. In the later experiments, instead of selecting
either of the Type 1 or 2, we test two types of the prediction tasks where predictive capabilities of our
nonparametric estimators are compared with the existing regression methods on both of the objectives.
Measure to evaluate the predictive performances depends on the choice of the objective, as we show
in Section 4.6.
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Both of Optimizations (4.9) and (4.10) yield the sparse optima of the vector λ. While one can
compute the optimum simply with gradient ascending, such naı̈ve optimization is known to run very
slowly (Sugiyama et al., 2008). Since the vector λ is about 30,000-dimensional in our problem, we
need an accelerated algorithm in solving the optimization problem (4.9).

We here complement the reason why we adopt a two-step procedure for optimizing the link-
importance weights. Equation (4.1) consists of a linear combination of the basis density functions
that are the linear combinations of the fundamental density functions. While we could consider a
single optimization where Equation (4.1) is replaced with another equation that is solely a linear
combination of the fundamental density functions, such expansion makes the computational cost very
high. The bi-linear modeling using the sampling of the L fundamental density functions is an outcome
of considering the computational feasibility. Fortunately, the models fitted with the bi-linear principle
still successfully predict the real vehicle traffic with high accuracy, as we show later in Section 4.6.

4.4.2 Transformation of the KLIEP into Convex Clustering

To accelerate the optimization, we transform (4.9) or (4.10) into an optimization in convex clustering.
LetKE(e, eπ[0]) ≡ 1 for convenience. For the Type 1 objective, we introduce a variable transformation

φi ,
λi

N

∑
e∈E+

∑
y∈Y[e]

KE(e, eπ[i]),

and a normalized density function

κi(e, y),
N ·KE(e, eπ[i])ϕi(y)∑
e′∈E+

n[e′]KE(e′, eπ[i])
.

For the Type 2 objective, we set

φi ,
λi

|E+|
∑

e∈E+

∑
y∈Y[e]

KE(e, eπ[i]) and κi(e, y),
|E+| ·KE(e, eπ[i])ϕi(y)∑

e′∈E+
KE(e′, eπ[i])

.

We are able to easily compute the values of κi(e, y) for e ∈ E+ and y ∈ Y [e], when the ba-
sis density functions ϕ0, ϕ1, . . . , ϕm and the link similarity function KE(·, ·) are given. Then the
optimization problems (4.9) and (4.10) are respectively modified into

Type 1: max
φ

∑
e∈E+

∑
y∈Y[e]

log

[
m∑

i=0

φiκi(e, y)

]
subject to

m∑
i=0

φi =1, and (4.11)

Type 2: max
φ

∑
e∈E+

1
n[e]

∑
y∈Y[e]

log

[
m∑

i=0

φiκi(e, y)

]
subject to

m∑
i=0

φi =1, (4.12)

where φ , (φ0, φ1, . . . , φm)>. Since Optimizations (4.11) and (4.12) have the equivalent forms to
those in the convex clustering, we utilize the accelerated convex clustering algorithm also in optimiz-
ing the link-importance weights.

Note that the SMO in the accelerated convex clustering algorithm requires the information about
which functions {κi′(e, y)} are regarded as the neighbors of the function κi(e, y). Here we introduce
a sparse vector wi∈R|E| such that w>

i =
(
κi(e1, y

(1)
e1 ), . . . , κi(e1, y

(n[e1])
e1 ),
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Figure 4.4: Time-dependent travel-time samples for some of the links. The horizontal axis repre-
sents time-stamp and the vertical axis represents the relative travel-time. While samples on the link
“1153023” are covered for almost all of the timezones, those on the link “1418272” are lacking in the
afternoon. In addition, we can confirm outliers resulting in heavy-tails of the travel-time distributions,
in the link “1153023”.

. . . , κi(e|E|, y
(1)
e|E|), . . . , κi(e|E|, y

(n[e|E|])
e|E| )

)
. Then we compute the neighborhood indices by comput-

ing the inner product w>
i wi′ . The nearest neighbor computations are not required for all of the pairs

{(i, i′)}, because we eliminate the pairs whose inner products are zero by caching the auxiliary vari-
ables to indicate which elements of each vector wi are positive.

4.5 Incorporating the Dependence on Each Timezone

Our spatio-temporal estimator interpolates the multiple spatial estimators to one another in the time
domain. To efficiently incorporate the timezone-dependent nature of the travel-time distributions, we
first take care of the amount of samples for each timezone. If drivers select a link during daylight
times but do not select such link at night, travel-time distributions become significantly heterogeneous
among the 24 timezones, and samples of the travel-time are observed only for parts of the timezones.
Figure 4.4 shows examples of the amount about the travel-time samples in different timezones, where
the shortage of available samples suggests the inefficiency of fitting the distributions independently for
each link. The missing travel-time should rather be inferred by exploiting the neighboring links within
the same timezone, while the degree of the spatial interpolation should depend on each timezone.

Section 4.5.1 shows how we model the spatio-temporal travel-time distributions, with introducing
a timezone-dependent spatial interpolation. We first fit the spatial estimators independently for all of
the timezones h ∈ {0, . . . , 23}, and then interpolate them to one another with a temporal similarity
function between two time-stamps. Section 4.5.2 addresses a truncated von Mises kernel as the con-
crete form of the temporal similarity. Though we have datasets observed in only one day, it is natural
to assume that the characteristics of traffic are cyclic, because traffic properties of the same hours are
similar even among different days. The truncated von Mises kernel allows us for reflecting such cyclic
nature of the human behavior, and its sparseness reduces the computational costs in interpolation.
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4.5.1 The Spatio-Temporal Distribution

Our spatio-temporal model of the travel-time distribution is given as follows. Assume that we have
already performed the spatial estimation for every timezone h ∈ {0, . . . , 23}. Based on the actual
dependence on the timezone index h, we re-notate each spatial model as

fh,e(y) =
λh0ϕh0(y)+

∑mh
i=1 λhiKh,E(e, eπh[i])ϕhi(y)

λh0+
∑mh

i=1 λhiKh,E(e, eπh[i])
,

where each variable (·)h· corresponds to the variable (·) in which the index h was omitted in Sections
from 4.1 to 4.4. The probability density function of the relative travel-time y conditional on link e and
time-stamp t is given as

fe(y|t) =
∑H−1

h=0 KT (t, th)fh,e(y)∑H−1
h=0 KT (t, th)

,

where th is the time-stamp associated with each timezone h, KT (·, ·) is a similarity function between
two time-stamps, and H=24. Since one dataset indexed with h belongs to an hour [h, h+1), we set
t0, t1, . . . , t23 as the intermediate time-stamps 0:30, 1:30, . . ., and 23:30, respectively.

4.5.2 Truncated Von Mises Kernel to Represent a Cycle

Let ρ(t) ∈ [0, 2π) be the angle to represent a time-stamp t during one day. For example, ρ(0 : 00)=0,
ρ(1 : 00) = 1

12π, and ρ(23 : 00) = 23
12π, respectively. A natural way to incorporate the circularity of

the human behaviors is to adopt von Mises kernel (Evans et al., 2000) function

KT (t, th) ∝ exp [ξ cos (ρ(t)− ρ(th))] (4.13)

where ξ is the concentration hyperparameter to determine the degree of interpolation. Since we prefer
a sparse version of (4.13) for efficient computation, we introduce a truncated similarity function as

KT (t, th) = [exp [ξ cos (ρ(t)− ρ(th))− ξ]− ε]+ , (4.14)

where [·]+ , max{·, 0} and ε is a threshold hyperparameter fixed as ε = 0.01 in this chapter. Note
that the value of the kernel is standardized as KT (th, th) = 1− ε in (4.14), for easily setting the
magnitude of the threshold hyperparameter ε. The operator [·]+ makes the similarity exactly zero
when two time-stamps are distant, and reduces the computational costs in interpolation. We determine
the concentration hyperparameter ξ with cross-validation or hold-out methods.

Because of the nature of the cosine function, Equation (4.14) incorporates cyclic patterns of human
behavior. While we only deal with the diurnal patterns, one can easily incorporate longer-term cycles
such as the dependence on each day of week and month, if having multi-day probe-car datasets. When
we incorporate the longer-term cycles, the new similarity function would be an additive or a multi-
plicative combination of equations derived from (4.14), with multiple concentration hyperparameters.

4.6 Experimental Evaluations

The main aims in this chapter’s experiments are to compare our methods with parametric regression
methods, and to assess what types of the basis density functions make the predictions highly accurate.
Section 4.6.1 provides the settings in the experiments and explains how we measure each of the per-
formances. Since it is not trivial how to apply the existing regression methods for our datasets, we
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describe the procedures of the reference regression methods, which adopt the Ordinary Least Squares
principle, in Section 4.6.2. The main results are provided in Section 4.6.3 where our estimator using
the nonparametric basis density functions yielded the best performances. We also confirmed certain
improvements by introducing the temporal interpolation, especially when we rigorously evaluate the
generalization capability of each model. In Section 4.6.4, we visualize which links possess travel-time
distributions that are significantly different from simple parametric distributions.

4.6.1 Settings and Performance Metrics

For each hourly dataset, we perform 10-fold likelihood cross-validation where the entire dataset is
randomly split into an 80% training dataset and a 20% test dataset in each of the 10 trials. In choosing
the hyperparameters, we maximized the average log-likelihood for the validation subset that is 20% of
the training dataset, based on a fitted model using the remaining 80% subset of the training dataset3.
After the best-score hyperparameters are chosen, the final model is fitted for the entire training dataset
and the performance for the test dataset is evaluated.

The main task is to compare our nonparametric estimators with the existing regression methods
independently for each hourly dataset. In the main task, a model fitted with the training dataset whose
hour is h is applied for the test dataset of the same hour h. The additional task is to evaluate the
improvements with the temporal interpolation introduced in Section 4.5. In this additional task, we fit
the spatio-temporal model using all of the training datasets h ∈ {0, 1, . . . , 23}, and then evaluate the
predictive performance of the fitted model for each hourly test dataset.

Here are our notations to discriminate each dataset, where the timezone index h is omitted. Using
the same manner in the training dataset D = {Y[e]; e ∈ E+}, we denote the test dataset by D∗ =
{Y∗[e]; e∈E∗

+}. In the hyperparameter optimization, the entire training dataset D is randomly split
into the training subset D̃ = {Ỹ[e]; e ∈ Ẽ+} and the validation subset D̃∗ = {Ỹ∗[e]; e ∈ Ẽ∗

+}. The
number of travel-time samples for a link e is represented with n∗[e] in the test dataset, ñ[e] in the
training subset, or ñ∗[e] in the validation subset. We also define N∗ ,

∑
e∈E n

∗[e], Ñ ,
∑

e∈E ñ[e],
and Ñ∗,

∑
e∈E ñ

∗[e].
We adopt two types of cross-validation criteria that match with the Type 1 and Type 2 optimization

objectives introduced in Section 4.4.1. Let f̃e(y) be a density model fitted for the training subset D̃.
We first choose the hyperparameters such as the diffusion parameter β and the bandwidth-scaling
parameter r, by maximizing the validation log-likelihood per sample

Type 1: L(D̃∗|f̃) =
1

Ñ∗

∑
e∈ eE∗

+

∑
y∈ eY∗[e]

log f̃e(y), or

Type 2: L(D̃∗|f̃) =
1

|Ẽ∗
+|

∑
e∈ eE∗

+

1
ñ∗[e]

∑
y∈ eY∗[e]

log f̃e(y).

The bandwidth hyperparameter r was chosen from {1, 1.5, 2, 2.5, 3}, and the diffusion hyperparameter
β was chosen from {1, 2, 3, 4, 5}.

In the full spatio-temporal model, we simplified the hyperparameter selection procedure because
the cross-validation of the three hyperparameters (β, r, ξ) is computationally intensive. First, for each
hourly dataset, we fixed the values of (β, r) with the same ones as in models without the temporal

3Ones who favor rigorous hyperparameter optimization would use multiple-fold cross-validation. Yet in our preliminary
experiments, one trial was sufficient to choose appropriate hyperparameters because of the large amounts of the samples.
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interpolation. Then we only search for the best value of ξ from {1, 3, 10, 30, 100, 300}. Since ξ=100
provided the best performance for most of the datasets, we show the predictive performances when we
used the concentration hyperparameter ξ=100.

Using the optimal hyperparameters selected, we fit the final model fe(y) using the entire training
dataset D. The test-set log-likelihood per sample is given as

Type 1: L(D∗|f) =
1
N∗

∑
e∈E∗

+

∑
y∈Y∗[e]

log fe(y), or (4.15)

Type 2: L(D∗|f) =
1
|E∗

+|
∑

e∈E∗
+

1
n∗[e]

∑
y∈Y∗[e]

log fe(y). (4.16)

Our performance score is the average of Equation (4.15) or Equation (4.16) among the random 10
folds, and a high score is the evidence of good performance.

We regard our performance measurement as an approach of evaluating the generalization capa-
bility for the links that lack the observations of the GPS trace. In the cross-validation, links having
only a few travel-time samples are often eliminated from the training subset. Hence we perform an
out-of-sample prediction for the link that has no sample but is close to some links having travel-time
samples. As a result, the generalization capabilities are more rigorously measured when we adopt the
Type 2 objective than when we adopt the Type 1 objective. It remains an open problem to evaluate for
the link whose neighboring links never have travel-time samples.

4.6.2 Parametric Models as Reference Methods

As the reference regression methods, we selected the k-nearest neighbor regression and the Nadaraya-
Watson kernel regression based on the Ordinary Least Squares principle. In both methods we regressed
the logarithms of the relative travel-time, and fit log-normal distributions of travel-time. While we
also tried Gaussian process regression, its costly matrix inversion and determinant evaluation were
impractical for our datasets.

We implemented a k-nearest neighbor regression as the simplest predictor, whose spatial structure
is not based on the link connectivity but based on the Euclidean distance between the two-dimensional
locations. Let us define the location of a link e= (u, v) as x(e) = 1

2(xu +xv), where xu,xv ∈ R2

are introduced in Section 4.3.1. Let Ek(e) be a set of k-nearest-neighbor links calibrated with the
Euclidean distance from the location x(e). The travel-time distribution for the link e is determined
with the set of samples {y ∈ Ye′ ; e′∈Ek(e)}.

The relative travel time is modeled by a log-normal distribution fe(y)=LN (y; νe, σ
2
e) such that

νe =


ν0+

∑
e′∈Ek(e)

∑
y∈Ye′

log y

1+
∑

e′∈Ek(e) n[e′]
for Type 1

ν0+
∑

e′∈Ek(e)
1

n[e′]

∑
y∈Ye′

log y

1+|Ek(e)|
for Type 2

and

σ2
e =


σ2

0+
∑

e′∈Ek(e)

∑
y∈Ye′

(log y − νe)2

1+
∑

e′∈Ek(e) n[e′]
for Type 1

σ2
0+
∑

e′∈Ek(e)
1

n[e′]

∑
y∈Ye′

(log y − νe)2

1+|Ek(e)|
for Type 2

,

where the stabilization parameters ν0 and σ2
0 are given in (4.2) and (4.4). The hyperparameter k was

chosen from {1, 2, . . . , 10}, and k=7 was optimal in many cases.
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Another reference method is the Nadaraya-Watson kernel regression that incorporates the link con-
nectivity graph as the spatial structure but assumes the relative travel-time to be log-normal distributed.
We give

νe =


ν0+

∑
e′∈E+

KE(e, e′)
∑

y∈Y[e′] log y

1+
∑

e′∈Ek(e)KE(e, e′)n[e′]
for Type 1

ν0+
∑

e′∈E+
KE(e, e′) 1

n[e′]

∑
y∈Y[e′] log y

1+
∑

e′∈Ek(e)KE(e, e′)
for Type 2

and

σ2
e =


σ2

0+
∑

e′∈E+
KE(e, e′)

∑
y∈Y[e′](log y−νe)2

1+
∑

e′∈Ek(e)KE(e, e′)n[e′]
for Type 1

σ2
0+
∑

e′∈E+
KE(e, e′) 1

n[e′]

∑
y∈Y[e′](log y−νe)2

1+
∑

e′∈Ek(e)KE(e, e′)
for Type 2

,

where the link similarity function KE(·, ·) is based on the approximate diffusion kernel whose diffu-
sion hyperparameter β is chosen from {1, 2, . . . , 5}.

4.6.3 Evaluation Results

First, we mention the comparisons between our nonparametric estimators and the existing parametric
regression methods, without the temporal interpolation. Figures 4.5 and 4.6 show the Type 1 and
Type 2 scores based on the 10-fold likelihood cross-validation, where our nonparametric estimators
outperformed other methods for all or many of the hourly datasets on the Type 1 or Type 2 objective,
respectively. The necessity of tuning the importance weight for each link was confirmed with the worst
performances provided by the Nadaraya-Watson regression having uniform weights. In the parametric
basis density functions, models with log-normal distributions slightly outperformed those with gamma
distributions. Since the difference between the mixture of gamma distributions and that of log-normal
distributions was small, we think that both of the nonparametric estimators are sufficiently flexible to
model the relative travel-time for every link.

On the Type 2 objective that rigorously evaluates the generalization capabilities in the rural re-
gions, performances of the nonparametric estimators become relatively worse during the night time.
Since our training samples are more limited at night than in daylight time, we regard the over-fitting of
the nonparametric method as the main reason of the worse performances. Yet the nonparametric esti-
mators are totally the most outperforming methods for our large-scale datasets, and the nonparametric
nature of our methods is still evidenced to be beneficial on severe valuation criteria.

We should also report an insight in the hyperparameter optimization for the spatial estimators. In
many cases, the setting (r, β) = (1.5, 3) or β = 5 was optimal for the nonparametric or parametric
basis density functions, respectively. The optimal interior value, as the best trade-off point between
the smoothness and the flexibility, was found only with the nonparametric approaches.

Second, we show the improvements provided with the temporal interpolation for models using the
nonparametric basis density functions. Since our nonparametric basis density functions were shown
to provide the good performances, our next aim is to evaluate the full spatio-temporal model that
extends the nonparametric spatial estimators. For the Type 1 and Type 2 objectives, Figures 4.7 and
4.8 respectively show the comparisons among the models, depending on whether or not the temporal
interpolation is incorporated.

In both of the Type 1 and Type 2 objectives, the temporal interpolation improves the generalization
capability of our nonparametric estimators, while improvements in the Type 2 objective are higher than
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Figure 4.5: Type 1 average test-set log-likelihood for each hourly dataset based on the 10-fold cross-
validation. The horizontal axis denotes the hour of a day, and the lengths of error bars are two standard
deviations. The method “Euclid-kNN” is the k-nearest neighbor regression using the Euclidean dis-
tance, “Nadaraya-Watson” is the Nadaraya-Watson regression using the diffusion kernel, and methods
named “CDE(·)” are our conditional density estimators. Methods using the nonparametric basis den-
sity functions, which are given as mixtures of gamma or log-normal distributions, achieved the highest
prediction performances for all of the 24 datasets.

those in the Type 1 objective. The temporal interpolation is effective particularly when we rigorously
evalute the generalization capabilities, and when we predict the travel-time in the rural regions.

4.6.4 Visualization of the Special Links

We consider that a link is special if the fitted travel-time distribution is quite different from the simple
parametric distribution. For the fitted probability density function fe(y), let ge(y) be its approximation
by a single parametric distribution, where the approximation is done with a moment matching. To
compute the distance between the distributions fe(y) and ge(y), we use the Cauchy-Schwarz (CS)
divergence measure (Prı́ncipe, 2010) defined as

CS(f, g|e)=− log

∫
y fe(y)ge(y)dy√∫

y f
2
e (y)dy

∫
y g

2
e(y)dy

,

which is the cosine similarity between the two probability density functions. The CS divergence is zero
if and only if fe(y) and ge(y) are the same, and becomes large when fe(y) and ge(y) are dissimilar.

We calculate the CS divergence in case of the mixture of gamma distributions. Since every link
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Figure 4.6: Type 2 average test-set log-likelihood for each hourly dataset based on the 10-fold cross-
validation, where meanings of each model, axis, and error bar are the same as in Figure 4.5. While
models with the nonparametric basis density functions become worse in nighttime, they are still most
outperforming in many of the datasets during daylight timezones.

has at most L instances of gamma distributions, we rewrite the distribution as

fe(y) =
L∑

`=1

we`Gam(y;α`, µ`)

where the coefficientswe1,. . ., weL are computed with (4.1) and (4.5) in such a way that
∑L

`=1we` =1.
By matching the first and second moments, we set the density function ge(y)=Gam(y; α̃e, µ̃e) with

µ̃e =
L∑

`=1

we`µ` and α̃e =

[
L∑

`=1

we`
α`+1
α`

(
µ`

µ̃e

)2

−1

]−1

.

The CS divergence is calculated as CS(f, g|e) = 1
2 log f2

e −log fege+ 1
2 log g2

e , where

f2
e =

L∑
`=1

L∑
t=1

we`wetα
α`
` ααt

t

Γ(α`)Γ(αt)µ
α`
` µ

αt
t

Γ(α`+αt−1)(
α`

µ`
+
αt

µt

)α`+αt−1 ,
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Figure 4.7: Performance improvements with temporal interpolation, when we adopt Type 1 average
test-set log-likelihood with 10-fold cross-validation. Both “TCDE(·)” and “CDE(·)” use nonpara-
metric basis density functions, while the temporal interpolation is incorporated only in “TCDE(·)”.
“CDE(·)” is the same model as that in Figure 4.5. In the temporal interpolation, we choose the
concentration hyperparameter ξ = 100 based on the held-out method. For the 21 datasets such that
h 6∈ {0, 8, 16}, models with the temporal interpolation outperformed those without the temporal inter-
polation. For the datasets h∈ {0, 8, 16}, models with the temporal interpolation yielded statistically
indistinguishable performances with those without the temporal interpolation.

fege =
α̃eαe

e

Γ(α̃e)µ̃eαe
e

L∑
`=1

we`α
α`
`

Γ(α`)µ
α`
`

Γ(α`+α̃e−1)(
α`

µ`
+
α̃e

µ̃e

)α`+eαe−1
,

and g2
e =

Γ(2α̃e−1)α̃e

22eαe−1Γ2(α̃e)µ̃e
.

Figure 4.9 plots the special links whose travel-time distributions are quite different from their
approximates. The special links tend to be located in the urban regions, because many travel-time
samples are needed for fitting the probability density functions having complex shapes. The special
links, however, are not concentrated in specific areas inside the urban region, because risks of encoun-
tering extreme delays also exist outside the center of Tokyo. In terms of the difference among the
hours, the special links in midnight are more dispersed than those in daylight hours, probably because
many samples are available (see Table 4.1) and persons who missed the last trains often ride taxis for
a long time.

Let us finally comment on one future scenario to exploit the visualization of the special links. In
the risk-sensitive routing algorithms, the values of the risk measures such as Iterated Conditional Tail
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Figure 4.8: Performance improvements with temporal interpolation, when we adopt Type 2 average
test-set log-likelihood with 10-fold cross-validation. Both “TCDE(·)” and “CDE(·)” correspond to the
same models as those of Figure 4.7, except that Type 2 objectives are adopted in the training. Models
with the temporal interpolation outperformed those without the temporal interpolation, for all of the
hourly datasets. In addition, on the Type 2 objectives, the additional improvements provided by the
temporal interpolation are larger than those for the Type 1 objectives.

Expectation strongly depend on the particular quantiles of the travel-time distributions. Thus, when the
distribution has multiple modes or a heavy tail, small variability in tuning each driver’s risk-sensitivity
parameter strongly affects the computed values of the risk measures and would dramatically change
the chosen routes. Visualizing the complexity of the distribution is beneficial in assessing the details
of the route choice.

4.7 Discussion

Let us discuss the possible directions based on the high experimental performances achieved by the
proposed models. As long as we have large-scale probe-car datasets, we expect that the remaining
margin of additional performance improvement is not so high, even when we further improve the
nonparametric density estimation algorithms. In contrast, travel-time prediction by using only limited
amount of datasets would require characteristically different approaches. When we model the traffic
of countries that do not have a good infrastructure of GPS, we instead need to use counting records
about the numbers of vehicles staying for each link. When we regard the numbers of vehicles as
training data, we are able to perform nonparametric density estimation about the number of vehicles,
as well as regression modeling from the number of vehicles into the travel time. Such new travel-time
prediction methods would become keys to simulate the real traffic in many developing countries, while
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12 p.m.- 6 p.m.- 12 a.m.-

Figure 4.9: Examples of the special links whose travel-time distributions are significantly different
from their exponential-family approximations, using the magnified view for the center of Tokyo. The
blue-colored points specify the locations of the links having top-1% highest CS divergence scores,
in terms of the dissimilarity between the nonparametric travel-time distribution and its parametric
approximation. The special links exist in broad regions, while those in midnight are more broadly
scattered than those in daylight hours.

our estimation algorithms are specialized for the Greater Tokyo Area that has a mature infrastructure
of automobile transportation.

When we adopt the current high-accuracy estimates of the travel-time distributions, the remaining
component we need to develop is a new data-mining algorithm to perform whole traffic simulation.
One of the essential tasks to make the simulation realistic is the fitting of the risk-sensitivity parameters
for every of the individual vehicle drivers. Like the choice modeling we discussed in Section 1.2, we
need to formalize a descriptive route choice problem whose available options are lots of the traveling
routes associated with the fitted travel-time distributions. How to model the bounded rationality of
each vehicle driver, by comparing the normative choice with that of the descriptive models, is an
important study to clarify the microscopic mechanism of each driver to cause the complex macroscopic
behavior of the entire traffic system. In addition, since the reality of the found insights depends on
the accuracy of map matching, preparing multiple datasets by several map matching algorithms would
provide more robust information, even when the same trajectories of probe-cars are used.

4.8 Summary

This chapter introduced an application of our nonparametric mixture modeling for transportation de-
cision making, which exploits travel-time distributions conditional on both the link of a road network
and timezone. In order to fit the distributions for huge number of links and to reflect the positive
feedback in a road network, we designed a nonparametric density estimator of the relative travel time,
which is called the spatial estimator specific to one timezone. Then the full spatio-temporal estimates
are provided by interpolating multiple spatial estimators to one another in the time domain. Every
spatial estimator interpolates the nonparametric basis density functions among close links, where each
basis density function is a link-dependent mixture of link-independent fundamental density functions
modeled as gamma or log-normal distributions. The quantile-based heuristics to set the fundamental
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density functions makes the resulting basis density functions involve multiple scales of the relative
travel time. The fitting of the mixture weights for such nonparametric basis density functions are ef-
ficiently done with the accelerated convex clustering algorithm. In contrast, the interpolation among
the multiple basis density functions, for reflecting the positive feedback, is done with the combination
of a sparse diffusion kernel to emulate the traffic propagation, and each link’s global importance to
be optimized also with the accelerated convex clustering algorithm. Because of the flexibility and the
global optimality in the fitting, our nonparametric estimator outperformed the parametric regression
methods for all of the datasets classified with timezones. The temporal interpolation using the trun-
cated von Mises kernels were shown to improve the predictive performances, particularly when we
rigorously evaluate the generalization capability for the links located in the rural regions.

This study for transportation decision making has proved the benefits of our nonparametric mixture
modeling to predict the fat tails as a result of the positive feedback. In the next Chapter 5, we proceed
into another social-science study that involves the nonparametric mixture modeling of the long-range
dependence, by taking the marketing decision making as a practical application example.
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Chapter 5

Nonparametric Consumer-Response
Prediction

Modeling how marketing actions in various channels influence or cause consumer purchase decisions
is crucial for marketing decision-making. Marketing campaigns stimulate consumer awareness, in-
terest and help drive interactions such as the browsing of product web pages, ultimately impacting
an individual’s purchase decision. The delaying impacts of the marketing campaigns, which accom-
pany the changes of each individual consumer’s mental state, are statistically observed as long-range
dependences between the marketing-stimulus events and purchase events. In addition, some suc-
cessful campaigns stimulate word-of-mouth and social trends by causing positive feedbacks among
consumers, and such collective behavior of consumers result in concurrent and correlated responses
over a short term.

To model both of the long-range dependence among the events each individual consumer expe-
riences, and the positive feedback among interacting consumers, we propose a new continuous-time
predictive model for time-dependent response rates of each consumer. The proposed model follows
the literature of using the Inhomogeneous Poisson Processes (IPPs; Chatfield and Goodhardt (1975);
Schmittlein et al. (1987); Wagner and Taudes (1986)), and our philosophy of the nonparametric multi-
scale mixtures is applied for modeling the total influence from all of the past events the same individual
has experienced, which we refer to as the individual factor. For both of the computational efficiency
and high predictive accuracy, the individual factor is regressed with staircase functions that correspond
to nonparametric mixtures of step functions involving multiple activation periods. An illustration of
such staircase functions is provided in Figure 5.1, where multiple lengths of the sliding windows han-
dle the nature of time decay in human memory. As in Poisson Network (Rajaram et al., 2005) and
Piecewise-Constant Conditional Intensity Model (Gunawardana et al., 2011), we formalize a Poisson
regression problem whose total log-likelihood is given as a sum of finite numbers of log-likelihood
terms. The piecewise-constant features, which give the staircase functions in predictive formulas,
make the likelihood maximization efficient, as well as efficiently approximating the time-decaying
human memories.

The individual factor is also regarded as an outcome of the interaction among the multiple memo-
ries. As we discussed in Chapter 2, time decays in human memories obey power laws and hyperbolic
discounting with respect to elapsed time (Wixted, 1990; Rubin and Wenzel, 1996; Wixted and Ebbe-
sen, 1997). Such power laws are the compound outcomes of the interactions among the short-, mid-,
and long-term memories of each human, because an important event that has survived in the short-term
memory is transferred into the mid-term memory, in which the survival probability gets higher than in
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time
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Figure 5.1: Examples of time-varying log-intensities approximated with staircase functions. Each
blue-colored bar represents one spike by a stimulus or response event. Each red-colored curve ap-
proximated with a stack of rectangles is a dynamic log-intensity of response. Impacts of a marketing
action typically decay over time like the curve on the left, while the spike by a purchase could give
the curve on the right. Because a consumer who satisfied immediate demands waits for a while until
the next purchase, the short-term impact can be negative while the mid- or long-term impacts become
positive thanks to customer satisfaction.

the short-term memory. By nonparametrically fitting many types of heterogeneous staircase functions
whose shapes depend on the type of each event, we are able to precisely predict how each of the mar-
keting advertising communications stimulates short-term and mid-term memories of consumers. Note
that long-term memory could be incorporated in principle, but is actually represented as the bias term
due to the limited length of real time-series datasets.

In modeling the positive feedback among consumers, a crucial problem specific to our datasets
is how to adequately estimate the influences of the unobserved word-of-mouth, by only handling se-
quences of observable event spikes. One straight formulation for incorporating word-of-mouth is to
model hidden social graphs with Ising models (e.g., (Ravikumar et al., 2010)), graphical Granger mod-
els (e.g., (Lozano et al., 2009)), Poisson network or continuous-time Bayesian networks (Nodelman
et al., 2002). These graph-based approaches, however, suffer from the lack of training data due to
usual rareness of word-of-mouth as a consequence of low coupling strengths for most pairs of con-
sumers. In our preliminary experiments, graph-based approach to detect existences of edges resulted
in the pruning of most edges and underestimation of word-of-mouth effects. In addition, graph-based
algorithms essentially have quadratic computational costs to population of consumers, and hence they
are computationally inapplicable for lots of consumers.

For the stability in estimation, we regard the positive feedback among the interacting consumers
as calibrated by aggregating the frequencies of the response events. As we illustrate in Figure 5.2, the
aggregation of the response frequencies is done for each group of the consumers that are expected to
mutually interact with one another. We refer to each of the aggregated frequencies as a collective fac-
tor, which is formalized as another multi-scale mixture to reflect the time-decaying nature of the posi-
tive feedback. Here one additional challenge is how to automatically detect such mutually-interacting
groups over which the response frequencies are summed. Our key idea in this automatic grouping is
the clustering of residuals in time-series regression. Using the initial estimate of the Poisson regres-
sion without the collective factor, we compute a time-series of regression residual that is the difference
between the expected and actual frequencies of response. We finally fit group-dependent Poisson re-
gression models whose feature variables contain both the individual factors and the aggregate response
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Figure 5.2: Stabilizing the fitting by aggregating the frequencies of response events. In the left figure,
the limited number of spikes per one consumer makes the estimation of interaction unreliable. In
contrast, the aggregation of the response frequencies among many consumers are robust indicators
of social trend, and the detection of the interaction becomes more resistant to the over-fitting. The
aggregation should be done within a group of consumers who are interacting to one another.

frequencies each detected group supplies. Because the centroid of each cluster represents a hidden but
common trend that is unpredictable merely from the same individual’s experiences, our collective-
factor modeling handles the mutual interaction more robustly than the graph-based approaches using
pairs of individual consumers.

High predictive accuracy of the proposed approach is empirically validated by using real-world
data provided from an online retailer in Europe. The main outcomes of this work were first published
in (Takahashi et al., 2013), from which we borrowed the formulations, figures, and implications based
on the permission for authors1. Section 5.1 introduces the piecewise-constant Poisson regression
without the collective factor, and Section 5.2 extends the model to contain the collective factor. Section
5.3 gives experimental results on real-world datasets provided from an online retailer, and these results
become the basis of the generalizing discussion in Section 5.4. Section 5.5 summarizes this chapter.

5.1 Poisson Regression with the Individual Factor

This section introduces basic concepts and notation of our continuous-time regression problem for
predicting future response events from the past events. Section 5.1.1 identifies the several sub-tasks
required for continuous-time probabilistic event prediction. In Section 5.1.2, we introduce an algo-
rithm for computing vector time-series of mental states for each consumer. In Section 5.1.3, we intro-
duce a piecewise Poisson log-likelihood when all consumers share the same parameters, and discuss
a Maximum A Posteriori estimation of the parameters.

5.1.1 Continuous-Time Response Regression

We first introduce basic notations for event sequences. There are KR types of response events such as
purchase orders and browsing of web pages, andKS types of marketing stimulus events such as e-mail
promotions. KS is usually the number of marketing-communication channels. We define each event
e with a triplet (k[e], t[e], v[e]), where k[e] ∈ {1, 2, . . . ,KR +KS} is an index to represent the type
of the event, t[e]∈R is a continuous time-stamp, and v[e]∈R is the amount of stimulus or response.
Event e is a response event when 1≤k[e]≤KR, or is a stimulus event when KR+1≤k[e]≤KR+KS .
For every consumer indexed as i∈{1, . . ., n}, we have a sequence of events (ei1, ei2, . . . , eiEi) whose
length is Ei. Since only the purchase events involve real-valued response amounts, v[e] is the sales
revenue if e is a purchase event, or v[e] is 0,1-valued otherwise (e.g. web-browsing).

1See the IEEE copyright and consent form http://www.ieee.org/documents/ieeecopyrightform.pdf.
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As in Figure 2.2, using all or parts of the stimulus and response events before time t, we wish to
probabilistically predict whether a response event of type k ∈ {1, . . . ,KR} occurs in right half-open
interval [t, t+∆t). Let xi(t) ∈ RdX be a vector to represent the mental state of consumer i at time
t, which is called the state vector and which is determined with the events before time t. A random
variable Yik(t, t+∆t) represents the number of type-k responses by consumer i in period [t, t+∆t),
and consumer i’s response probability at time t is assumed to be a function of the state vector xi(t)
for every response-type k. When ∆t is sufficiently small, the value of Yik(t, t+∆t) is either one or
zero and all of the elements in the state vector xi(t) are constant over the period [t, t+∆t). Hence we
model the time-varying occurrence probability of type-k response as

P (Yik(t, t+∆t)≥1)=∆t exp
(
bk+w>

k Φ (xi(t))
)
, (5.1)

where Φ : RdX → RdΦ is a high-dimensional mapping function applied to the state vector xi(t), bk is
a bias term, and wk∈RdΦ is a vector of regression coefficients. The mapping function Φ incorporates
non-linear relationship between the state vector and the logarithm of the response probability. For
convenience, we define a function of time t as

zik(t) = lim
∆t→0

log
P (Yik(t, t+∆t)≥1)

∆t
, (5.2)

which is called the log-intensity function. The log-intensity function zik(t) is the logarithm of the
time-varying intensity in our inhomogeneous Poisson processes.

We will now introduce the “data mining” tasks required to realize the stochastic response-event
prediction. We first need to design an efficient algorithm to compute the state vector xi(t) adequate
for realizing high predictive accuracy. We then need to estimate the vector of coefficients wk for
every response-type k, while introducing an effective mapping function Φ. The training data is a set
of observed sequences {(ei1, ei2, . . . , eiEi)}ni=1. Once all of the parameters in (5.1) as well as the
algorithm to compute the state vectors are specified, the impacts of any marketing-action sequence
can be forecasted by iterating the computation of the state vectors and simulation of the next response
for every consumer.

5.1.2 Variable-Interval State Vectors

Since humans have limited memory and tend to forget inessential information, the intensity of any
given spike necessarily decays over time. The state vector xi(t) needs to be designed to effectively
model the time-decaying intensity, where each event-type k can have a different magnitude of intensity
and decay-time.

Modeling the intensity with piecewise-constant features corresponds to an approximation with
staircase functions, as shown in Figure 5.1. For a type-k′ spike to consumer i, let f (k)

ik′ (τ)∈R be its
impact to the future type-k response, after time τ has passed since the time of the type-k′ spike. We
model f (k)

ik′ (τ) as
f

(k)
ik′ (τ) =

∑
h∈H

β
(k)
ik′hI(τ < h),

where I(·) denotes the indicator function, H = {h1, · · · , h|H|} is a set of allowed window lengths
whose multiple characteristics scales are prepared for incorporating the long-range dependence, and
β

(k)
ik′h ∈ R is a weight for a pair of type k′ and window length h. Note that, given the maximum
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Two windows and two channels piecewise-constant values of the
state Time alignment

Figure 5.3: The variable-interval time-series of state vectors. A blue-colored bar represents an event
spike and each dashed and green-colored bar represents a “terminator” of a stimulus associated with
one window. In the left-most figure, we shown an example in which two types of windows #1 and
#2 are applied to each of the two stimulus channels A and B. As the center figure clarifies, each
element of the state vector is incremented or decremented at the time of a stimulus or a terminator,
respectively. The right-most figure shows a time-series of four-dimensional state vectors given by the
time alignment, when the two windows and the two channels are all combined. The state-vector time-
series is piecewise constant with varying time intervals. At each change point, at least one element of
the state vector varies with a jump.

window-length hmax , max{h ∈ H}, the intensity at time t with (5.3) is solely computed with the
events in period [t−hmax, t).

When the impacts by multiple events are additive, the log-intensity function becomes

zik(t) = const.+
∑

e:t[e]<t

f
(k)
ik[e](t− t[e])

= const.+
∑

e:t[e]<t

KR+KS∑
k′=1

∑
h∈H

β
(k)
ik′hI(t[e] ≥ t−h). (5.3)

Here the state vector xi(t) is defined as the sum of the indicator functions over pairs of type k′

and length h, so that Equations (5.2) and (5.3) are identical if Φ(x) = x. The set of weights {β(k)
ik′h}

corresponds to the vector wk. The idea behind the state vector computation is illustrated in Figure
5.3, where we primarily calculate a variable-interval sequence of each element of the state vector
separately, by picking up only the relevant spikes. We then take time-alignment among all of the
elements and generate a sequence of the state vector, capturing those time-stamps in which at least
one element changes. The overall procedure is summarized in Algorithm 4.

Let us make a few remarks on the structure of our model when the mapping function Φ is non-
linear. A degressive mapping function for each element of the state vector would represent diminishing
returns of stimuli within the same type. Higher-order (e.g., quadratic) terms would represent synergy
or cannibalization among different types of stimuli.

5.1.3 Piecewise-Constant Poisson Regression

In each variable interval identified by Algorithm 4, we show the likelihood function of the associ-
ated Poisson regression. Let [ti0, ti1), [ti1, ti2), . . ., [ti(Ti−1), tiTi) be the sequence of right half-open
intervals of length Ti, such that values of xi(t) do not vary within t ∈ [ti(j−1), tij) but do change at
t= tij .
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Algorithm 4 Computing state-vectors for consumer i
input Set of event-type and window-length pairs R = {k, h} with index π[k, h], event sequence

ei ,(ei1, . . . , eiEi)
output State-vector sequence {[ti(j−1), tij),xij}Ti

j=1

1: function{[ti(j−1), tij),xij}Ti
j=1 =GenStateV ec(R, ei)

2: for k=1 to KR+KS do
3: ek := ()
4: for j=1 to Ei do
5: if k[eij ]=k then ek := (ek, eij)
6: end for
7: end for
8: for all (k, h)∈R do
9: (t′kh1, . . ., t

′
khTkh

, xkh1, . . ., xkh(Tkh−1)):=UniS(h, ek)
10: u[k, h] := 1
11: end for
12: ti0 := −∞, xi0 :=0d, j := 1
13: repeat
14: xij := xi(j−1)

15: tij := min{t′khu[k,h];∀(h, k)} s.t tij>ti(j−1)

16: for all (k, h)∈R do
17: if tij = t′khu then
18: (π[k, h]-th element of xij) := x′khu[k,h]

19: if u[k, h] < Tkh then u[k, h] := u[k, h]+1
20: end if
21: end for
22: j := j+1
23: until tij = max{t′khu[k,h];∀(h, k)}
24: end function
25: function (t′1, . . ., t

′
2E , x1, . . ., x2E−1)=UniS(h, e)

26: Sort (t[e1], v[e1]), (t[e1]+h,−v[e1]), . . . , (t[eE ], v[eE ]),
(t[eE ]+h,−v[eE ]) as (t′1, v

′
1), . . ., (t

′
2E , v

′
2E) with the ascending order of time

27: x0 := 0
28: for j=1 to 2E do xj := xj−1 + v′j
29: end function

Consider the case when t ∈ [ti(j−1), tij). Since the state vector is constant, xi(t) ≡ xi(tij), the
value of the log-intensity is also constant, zijk , w>

k Φ (xi(tij)). Let yijk be the observed frequency
of type-k response, and τij , tij−ti(j−1). The discrete-time likelihood for consumer i’s responses is

(∆t exp(zijk))
yijk [1−∆t exp (zij)]

“

τij
∆t

−yijk

”

,

and the continuous-time (∆t→ 0) limit of its logarithm is

const.+ yijkzijk − τij exp (zijk) . (5.4)

Eq. (5.4) is nothing but the unnormalized log-likelihood of a Poisson distribution whose outcome is
yijk and whose mean is τij exp (zijk).
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Based on (5.4), the predictive log-likelihood of the entire type-k response sequences is given by
summing a finite number of terms. For a time-series set of the variable-interval state vectors and
response frequencies Dk ,{(τi1,xi1, yi1k) , . . . , (τiTi ,xiTi , yiTik)}ni=1, the data log-likelihood is

L (Dk|Θk) =
n∑

i=1

Ti∑
j=1

`
(
yijk; bk+w>

k Φ (xij) , τij
)
, (5.5)

where `(y; z, τ),yz−τ exp (z) and Θk ,{bk,wk,Φ} is the set of parameters and mapping function.
The parameters (bk,wk) are optimized with an L1 regularization. Since Eq. (5.5) is concave with

respect to the variables (bk,wk), we are able to perform a global optimization

max
bk,wk

[L (Dk|Θk)−nC0‖wk‖1] , (5.6)

where ‖ · ‖1 denotes the L1-norm and C0 is a regularization hyperparameter. The L1 penalty term
encourages sparse estimates as in the Lasso regression (Tibshirani, 1994). We apply coordinate-wise
updating for solving Optimization (5.6). In each iteration the objective is approximated with the
sum of a quadratic function and the L1 norm, and then the update is done paying attention to the
indifferentiable points in the L1 norm.

5.2 Introducing the Collective Factor

This section extends the model to contain the collective factor for modeling word-of-mouth and trend
following, and addresses the estimation of mutually-interacting groups. Section 5.2.1 shows the limi-
tation of aggregate-level prediction when only the individual-factor is incorporated, and evidences the
existence of inter-consumer dependence in our dataset. The high dispersion of the actual responses,
which is addressed in Section 5.2.1, suggests the benefits of detecting correlated groups, which is done
with the clustering of the regression residuals as in Section 5.2.2. Section 5.2.3 introduces our final
estimator to handle both the individual and collective factors, with exploiting the detected groups.
Design of mapping functions and collective state is briefly provided in Section 5.2.4.

5.2.1 Over-Dispersion in Aggregate-Level Prediction

Using the estimates (bk = b̂k,wk = ŵk) given by solving Optimization (5.6), we are able to predict
the sum of the response frequencies for all of the consumers. Assume that each consumer responds
independently from one another2. Since sum of Poisson random variables also obeys a Poisson distri-
bution, the total response frequency from all consumers in period [t, t+∆t) obeys a Poisson distribution
whose mean is

∆t
n∑

i=1

exp(zik(t)) ≡ ∆t
n∑

i=1

exp
(
b̂k+ŵ>

k Φ (xit)
)
. (5.7)

The minimum time-granularity of our dataset, whose details are provided in Section 5.3, is 1 day.
Hence we are able to evaluate the validity of the assumption of the independence among different
consumers, by using daily total responses over all consumers. Figure 5.4 shows an example of the
actual and predicted frequencies of the total purchase orders, where we fit the parameters (̂bk, ŵk)

2In the real world, responses among many consumers are still correlated even when word-of-mouth does not exist,
because firms tend to send the same campaigns to similar customers.
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Figure 5.4: High dispersion from the sum of individual predictions. In the left figure, the vertical
axes represent the daily frequencies of the purchase orders, where we omitted the absolute values for
confidentiality reasons. The black dashed and blue solid lines specify the actual and the predicted
values, respectively. The green solid lines represent the 0.5%- and 99.5%-tiles when Poisson distribu-
tions are assumed. While the predicted mean is reasonable with its somewhat conservative estimate,
since the actual frequency is out of the confidence intervals in many days, rejection of the indepen-
dence assumption is naturally implied. The right figure represents the autocorrelation of the regression
residuals with respect to the days to represent the lags. The significant autocorrelation evidences the
predictability of the residuals, which could be provided with mutual-interaction information among
consumers.

using 10,000 consumer samples. In Figure 5.4, the actual frequency is over-dispersed against the
confidence intervals. Because the standard deviation of a Poisson distribution is the square root of its
mean, models whose aggregate-level prediction obeys a Poisson distribution much underestimate the
variances of the total responses, particularly when the number of consumers is large. In addition, the
statistically-significant autocorrelation of the regression residuals suggests the predictability of such
residuals with autoregressive models, while the events for the same individual cannot more improve
the predictability.

5.2.2 Clustering of the Residual Time-Series

The remaining autocorrelation in the aggregate level suggests a feedback between the total past re-
sponses summed over many consumers and the future response by each individual consumer. While
simply incorporating the total responses as explanatory variables would improve the predictability, we
intend to retrieve richer information by exploiting the large number of consumer samples. The residual
in each individual’s response prediction cannot be more regressed within the same individual’s past
events but could be regressed with other consumers’ responses.

Let τ̃ be a unit time-length in aligning the entire period. We fix τ̃ to be 1 week in this paper,
and introduce common time periods [t̃0, t̃1), . . . , [t̃H−1, t̃H) where t̃j− t̃j−1 ≡ τ̃ . Let ỹijk be the total
frequency of type-k responses in period [t̃j−1, t̃j) by consumer i. Then we define a residual variable

rijk , ỹijk −
∫

etj

et(j−1)

exp
(
b̂k+ŵ>

k Φ (xit)
)
dt, (5.8)

where the integral in (5.8) is actually given with a finite number of terms stemming from the piecewise-
constant features. We define an H-dimensional residual time-series vector for each consumer i, as
rik ,(ri1k, . . . , riHk)

>.
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Figure 5.5: Time-series associated with 4 example clusters, whose members are inferred to share
the common trends. In the left-most and the center figures, the vertical axes represent the weekly-
smoothed actual and predicted values of the total response frequencies summed over the members
belonging to each cluster. The right-most figure shows the residual which is the difference between the
actual and predicted frequencies, where the center dashed line represents the zero frequency. Because
persistent biases are confirmed for the residuals of some clusters, cluster-dependent autoregressive
modeling is implied to improve the prediction capability.

We assume that consumers having similar residuals follow common social trends, and hence clus-
tering of the residual vectors {rik}ni=1 provides groups of mutually-interacting consumers. For m
mutually-exclusive sets of consumers {Sc ⊂ {1, . . . , n}}mc=1, we expect significant mutual interaction
existing between any pair of consumers in the same group Sc.

While any clustering algorithm may be applied, we adopt m-medians clustering (Jain and Dubes,
1981) for robustly obtaining the groups against the outlying peaks. Figure 5.5 provides an actual
example of the clusters for the same 10,000 consumers in Figure 5.4, where the actual, predicted, and
residual time-series are plotted with the 1-week time granularity.

5.2.3 Heterogeneous Model with Mutual Interaction

The detected clusters in Section 5.2.2 are exploited in the final Poisson regression with heterogeneous
parametrization. Our log-intensity function incorporating the collective factor is given as

zik(t) = bc[i]k+w>
c[i]kΦ (xi(t))+

m∑
c′=1

θ>
c[i]c′kΨ (zc′(t)) ,

where c[i] represents the cluster index for consumer i, zc(t)∈RdZ represents cluster c’s collective state
modeled with the total response frequencies, Ψ : RdZ → RdΨ is another high-dimensional mapping
function applied to the collective state vector zc(t), bck is a bias term for cluster c, wck ∈ RdΦ is a
vector of individual factors and θcc′k is a vector of coupling strength between the clusters c and c′.

Because the minimum time granularity is τ0 =1 [day], we introduce a daily sequence of common
time-periods [t∗0, t

∗
1), . . ., [t

∗
T ∗−1, t

∗
T ∗), and rewrite the data log-likelihood as

L (Dk|Θ∗
k) =

n∑
i=1

T ∗∑
j=1

`

(
y∗ijk; bc[i]k+w>

c[i]kΦ
(
x∗

ij

)
+

m∑
c′=1

θ>
c[i]c′kΨ

(
zc′j

)
, τ0

)
, (5.9)

where y∗ijk is the frequency of type-k response by consumer i in period [t∗j−1, t
∗
j ), x∗

ij ≡ xi(t∗j−1),
zcj ≡ zc(t∗j−1), and Θ∗

k ,
(
{{bck,wck, {θcc′k}mc′=1}mc=1,Φ,Ψ

)
. In order to attain the final estimate,
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we maximize another penalized objective

L (Dk|Θ∗
k)−

n

m

m∑
c=1

(
C1‖wck−ŵk‖1+C2

m∑
c′=1

‖θcc′k‖1

)
, (5.10)

with respect to the parameters
(
{{bck,wck, {θcc′k}mc′=1}mc=1,

)
, given the regularization hyperparam-

eters (C1, C2). The objective (5.10) involves a multi-task learning aspect because sharing of the
coefficients among clusters are encouraged. Maximization of (5.10) is a convex optimization problem
and hence we are able to obtain the global optimum.

5.2.4 Feature Designs

Here are notes on designing the collective states and the mapping functions. For each of the collec-
tive states {zc(t)}mc=1, we contained the past 1-day, 2-day, 4-day, and 1-week response frequencies
summed over group c by following our philosophy of multi-scale basis functions, and hence dZ =4m.
We utilize a sub-linear mapping function Φu : R→R as Φ(x1, . . . , xd)=(Φ1(x1), . . . ,Φd(xd))> and
Ψ(z1, . . . , zdZ

) = (Φ1(z1), . . . ,ΦdZ
(zd))>. Following the prior art (Rajaram et al., 2005), we adopt

Φu(x)=log(1+x/h(u)) where h(u) is the length of sliding window associated with the u-th feature.
When the input of the function Φu is a frequency of events, Φu handles the marginally diminish-

ing return of the same stimuli. Due to the intensive overall computational cost, presently we omitted
quadratic terms to represent synergy or cannibalization. Degressive functions performed well empiri-
cally, and we leave the development of an efficient algorithm for handling higher-order terms as future
work.

5.3 Experimental Evaluations

We perform validation experiments with large real world datasets, which are supplied by an online
retail company in Europe, and whose characteristics is introduced in Section 5.3.1. For intuitively
evaluating the correlation between the predicted response intensity and the actual occurrence of the
response events, we introduce an evaluation metric called the “Continuous-Time Area-Under-Curve”
(CTAUC) in Section 5.3.2. The first experimental results in Section 5.3.3 evidence the benefits of
containing many events to form the individual factor, and provide some example shapes of the fitted
log-intensity functions, which are valuable outcomes for marketing implications. The second exper-
iment in Section 5.3.4 clarifies the additional advantages yielded by the collective factor. In all of
the experiments, we split the entire datasets into training and test datasets, using the middle date in
the entire periods as the dividing point. Hyperparameters were chosen by a hold-out method to fur-
ther separate the training datasets into two subsets. The regularization hyperparameter C0 in (5.6) is
chosen from {10−5, 10−4, . . ., 102}, while we adopted a grid search to choose (C1, C2) in (5.10) for
C1∈{1, 10, 102} and C2∈{1, 10, 102, 103}.

5.3.1 Individual-Level Datasets

We use individual-level daily records of marketing-action and response events for 2 years from 2009
to 2011. We have 3 datasets, where each dataset contains about 2 million events, including about 900
thousands browsing events and about 60 thousands purchase events produced by 30,000 customers.
There are KS = 10 types of responses, including 1 type of purchase order and 9 types of browsing
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Figure 5.6: Principle in computing the CTAUC. The line segments show the predicted response in-
tensity and the red-colored bars are actual response events. Each response event could occur in the
terminal time of a right half-open interval, because occurrence of the response changes the following
intensity. In the right figure, the CTROC curve is composed with the permutation of the periods based
on the descending order of the response intensity.

events reaching a commerce web-cite. The 9 types in classifying the browsing are based on the referral
links from various external pages. The number of marketing-action channels is KS =5, including e-
mail promotions and other message materials.

For each of the (10+5) event types, we prepared |H|=9 types of the multi-scale window lengths
including 1 day, 2 days, 4 days, 1 week, 2 weeks, . . ., and 32 weeks for the individual state vectors.
Elements of the state vector corresponding to the purchase events contain both the frequency of pur-
chase and the real-valued sales amount. Hence the input dimensionality is dX =15× 9+9=144. Due
to the finite length of the entire periods in the datasets, we do not predict the responses in the first 32
weeks during which we cannot have the correct values of the states. Still the events in these first 32
weeks are incorporated in the states used for the prediction for time stamps after 32 weeks from the
first date.

5.3.2 Performance Metrics

Here we employ two types of predictive performance metrics. The first is a Continuous-Time Area-
Under-Curve (CTAUC), for calibrating the correlation between the predicted response intensities and
actual occurrence of the response events. The second is an average log-likelihood which devides Eq.
(5.5) by the total length

∑n
i=1(tiTi−ti0).

Remember that the state vectors and their corresponding response intensities are constant in certain
time periods. We permute these periods with the descending order of the response intensities. We then
compute what fraction of the actual response events are covered in the periods that are assigned high
intensities, as the Continuous-Time Receiver-Operator-Characteristics (CTROC) curve. The CTAUC
is the ratio between the area under the CTROC curve and the overall sum of the periods. We con-
sequently compute the total CTAUC by assembling all of the time periods for all of the consumers,
where the permutation is done only with the intensities and not with the ID of each consumer.

5.3.3 Basic Performances Achievable with the Individual Factor

We first validated the advantage attained by incorporating multiple types of events as covariates, and
confirmed the detection of event-dependent time-decaying curves. Here the predictive accuracy on
the final purchase order is evaluated without the collective factor, and hence the fitted model is a
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Figure 5.7: Comparing performances for the inclusion of covariates. The left-most and center figures
show the CTAUC and average log-likelihood for each test dataset, respectively. The right-most figure
shows the actual CTROC curves in the first dataset. For all of the 3 datasets, the model containing all
types of events as the covariates is most outperforming, where over-80% of the actual responses are
covered in the top-20% high-intensity periods.

variation of Piecewise-Constant Conditional Intensity Model (Gunawardana et al., 2011). Then we
also inspected the fitted log-intensity functions to obtain insights on the nature of effects yielded by
various types of marketing actions.

Figure 5.7 exhibits the results for three types of models whose covariates are controlled for com-
parison. The first model emulates the self-exciting IPPs that include auto-correlation only among
the events of the same type, where we included only the past purchase events in the state of the
first reference model. The second model emulates regression methods to directly predict the im-
pacts of marketing actions, without considering intermediate phases. Here the state contains both the
marketing-stimulus and purchase events, but does not contain browsing events. The third model is the
proposed model containing all types of the events as its covariates. The results in Figure 5.7 evidence
the significant advantage in predictive accuracy with handling many types of events in modeling.

Figure 5.8 exhibits several example “shapes” of the fitted log-intensity functions. Note we omit-
ted the absolute values due to confidentiality considerations. Insights are obtained from these relative
magnitudes as a function of the elapsed time and event type. As expected from the hyperbolic dis-
counting theory, we are able recognize the long-term tails in the intensity. These fitted shapes evidence
the high predictive capability of the proposed nonparametrics to fit such long-term tails, without di-
rectly imposing strict power-law parametrics.

As demonstrated in Figure 5.8, marketers must consider whether a marketing action stimulates
the direct purchase that could later become self-exciting, or intermediate consumer activities that are
equally, and sometimes more, self-exciting. Visualization of the time-varying intensity helps decision
making in such a complex environment, and precisely-fitted intensity functions enable quantitative
forecasting of outcomes in the presence of a large variety of marketing stimuli.

5.3.4 Gains Obtained with the Collective Factor

We next validated the additional advantage attained by incorporating the collective factor. Figure 5.9
exhibits the comparisons among the collective-factor models with m∈{1, 16, 64} and the individual-
factor only model. While the model withm=1 incorporates only the total response frequency without
clustering, the basic performance gain by adding the collective information is the most significant.
Gains by adding residual clustering depend on the response-type labels, but we can confirm many-
cluster models are outperforming for considerable portions of the labels, in terms of log-likelihood.
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Figure 5.8: Examples of nonparametrically fitted log-intensity functions, when type-kf response event
is predicted from a past type-kp event. It is seen that purchase events are strongly self-exciting, and
influence by a purchase experience is larger than those by exogenous marketing stimuli. Sending a
rich catalog of products does not impact in short-term, but yields certain outcomes in the longer-term.
In contrast, an e-mail strongly stimulates purchase in short-term but its negative longer-term impact
is striking. Graphs in the second row are for the intermediate responses named ‘direct load’. These
are browsing events without any link from other pages or e-mail. Even when the embedded web-links
are ignored by customers, an e-mail has long-term positive impact to the direct load events, which in
turn have positive impact on the final purchase and exhibit high autocorrelation. Hence, the long-term
marginal return of an e-mail is seen to be the compound outcome of its negative direct impact and
positive indirect impact involving a chain of self-exciting direct load events.

We infer that log-likelihood’s more sensitivity to the predictability of rare word-of-mouth effects is the
main reason of the relative advantages. While the numbers of clusters are fixed for easy comparisons,
automatic choice of the number of clusters such as Dirichlet Process Mixtures (e.g., (Blei and Jordan,
2006)) would enhance the acquired gains. Choice from the variety of possible penalty terms in multi-
task learning is also a considerable additional work.

5.4 Discussion

Given each of the validated significances about the explanatory variables used in the IPP regression,
we discuss what are the essential approaches to make our continuous-time IPP model practical in
many marketing decision-making problems. As shown in Section 5.3.3, accurate modeling of the in-
dividual factor was shown to significantly contribute for the performance improvements. Therefore,
having richer structure of the state vector xi(t) and the mapping function φ is a key to further improve
the predictive capabilities. Because there would be more types of marketing stimuli and responses in
the entire marketing operations, efficient design of the non-linear mapping function φ, which accom-
panies an efficient dimensionality reduction to handle lots of the event types, is a practical direction
to improve the quality of the model. We consider that efficient implementation of such non-linear
mapping functions would be provided by random forest (Breiman, 2001) or boosted regression trees
(Freund and Schapire, 1997; Schapire and Singer, 1998; Friedman, 1999).

We regard time-dependent and robust modeling of the collective factor as other essential parts to

83



 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10

C
T

A
U

C

index of the response type

Individual
m=1

m=16
m=64

-0.001

 0

 0.001

 0.002

 0.003

 1  2  3  4  5  6  7  8  9  10

ga
in

 o
f a

vg
. t

es
t l

og
-li

ke
lih

oo
d

index of the response type

m=1
m=16
m=64

Dataset #1

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10

C
T

A
U

C

index of the response type

Individual
m=1

m=16
m=64

-0.001

 0

 0.001

 0.002

 0.003

 1  2  3  4  5  6  7  8  9  10

ga
in

 o
f a

vg
. t

es
t l

og
-li

ke
lih

oo
d

index of the response type

m=1
m=16
m=64

Dataset #2

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10

C
T

A
U

C

index of the response type

Individual
m=1

m=16
m=64

-0.001

 0

 0.001

 0.002

 0.003

 1  2  3  4  5  6  7  8  9  10

ga
in

 o
f a

vg
. t

es
t l

og
-li

ke
lih

oo
d

index of the response type

m=1
m=16
m=64

Dataset #3

Figure 5.9: Label-dependent performances for each collective-factor model. Because the scales of log-
likelihood are different among each response-type label, the relative gains of the test log-likelihood
from the individual-factor model are shown. Simple feedback with m = 1 successfully works in
many labels, while many-cluster models sometimes outperform others, particularly in terms of log-
likelihood.

derive further useful implications. For more microscopic implications, we should let the structure
of interactions be richer than that of the current model. The current cluster-based model assumes a
block-diagonal adjacency matrix to represent the interaction among consumers, given the limitation
of the amount of training data. Therefore, new estimation algorithms that are more resistant to the
over-fitting will allow us for introducing more numbers of model parameters, that result in lower bias
and higher generalization capabilities. One essential nature to be modeled is the non-stationary of the
interactions among consumers, where the coupling strengths among consumers are low in most of the
entire days, while suddenly get higher in a few days. A new parametrization of such non-stationary
covariance structures, whose estimation is robust against the lack of training data, is the most crucial
component for deriving feasible viral-marketing strategies.
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5.5 Summary

This chapter introduced a novel continuous-time IPP model for marketing decision-making, in order
to predict response spikes as compound outcomes of marketing actions and self-exiting consumer ac-
tivities. The proposed model incorporates both of the individual and the collective factors, which are
the total influence of the past events one consumer has experienced and the influence of the positive
feedback among interacting consumers, respectively. The individual factor is implemented as an inter-
polation of the staircase functions that are nonparametric multi-scale mixtures of step functions, and
provides clear psychological interpretation about how each of the marketing-communication events
affects the future responses by each individual. The collective factor, for handling social word-of-
mouth and trend-following effects, is formulated with the aggregation of the frequencies about re-
sponse events within each mutually-interacting group of consumers. The detection of each group is
automatically done with clustering of time-series regression residuals, and the aggregated frequencies
are again processed with another nonparametric mixture also involving multiple scales. High predic-
tive accuracy of the proposed approach is empirically confirmed using real-world datasets, and the
fitted intensity function for each event-type is seen to provide actionable marketing insights.

As well as predicting the impacts of certain marketing-campaign strategies, we exploit the fitted
parameters in the proposed model for rational marketing-decision making. As we have seen in this
chapter, the staircase approximation of the time-decaying curves yields the finite-dimensional state
vector of each consumer, and we are able to consider the optimal marketing decision making depend-
ing on each of these state vectors. The next Chapter 6 provides an approach of normative marketing
decision making that is based on constrained Markov Decision Processes, when we are able to as-
sume the correctness of the fitted parameters and the insensitivity of consumer behaviors against our
decision making process to optimize the targeting rules. Given the experimental evidence that most of
the predictive capabilities are provided by the individual factor, we focus on the interactions among
multiple memories while accepting a compromise to ignore the influences of the positive feedback
among consumers.
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Chapter 6

Normative Marketing-Mix Optimization
Using the Nonparametric Forecasts

The nonparametric descriptive model introduced in Chapter 5 enables the forecasts of the total re-
sponses in the future, based on discrete event simulation whose input and output are sequences of
marketing-stimulus and response events for each individual, respectively. Such forecasting process
is embodied as sampling from marked point processes (Jacobsen, 2006), which involve the predic-
tion of response amounts, as well as the per-time occurrence probability discussed in Chapter 5. As a
real-world example of exploiting the nonparametric forecasts for normative and rational decision mak-
ing, this chapter introduces a marketing-mix optimization algorithm. Marketing-mix optimization and
budget allocation, which also accompany a finely detailed execution plan to target each of the many
individual consumers, are ones of the essential requirements in today’s complex marketing planning
processes. A rational strategy to target individual consumers is realized as a state-based policy used in
constrained Markov Decision Processes (cMDPs), across various channels and target segments, along
with the timing of each marketing action. For feasibility of the executions in real operations, we define
every segment of consumers, which we call the Micro Segment (MS), by discretizing the continuous
state-vector space introduced in Chapter 5. Here the multi-scale nature of the sliding windows, which
were used in defining the state vectors, again plays an essential role in deriving an efficient MS-based
marketing-mix policy. With assuming the accuracy of the nonparametric descriptive model, we solve a
multi-period optimization problem for marketers to obtain the maximum mid-term profit with leading
each consumer’s dynamic state into the desirable directions. One essential assumption in this appli-
cation is that consumers are not adversarial, i.e., they do not act against our optimizing strategy but
simply follow the input-output relationship predicted by the nonparametric models.

As we illustrate in Figure 6.1, the decision variables in our optimization problem consist of the tar-
get population for every triplet of a timing, a segment of consumers, and a marketing-communication
channel. In each of the marketing-communication channels such as e-mail and tele-marketing chan-
nels, we are able to target every individual consumer with some execution costs. While the standard
MDPs provide the optimal probability of each action for each segment, in the context of marketing
decision making with budget constraints, we optimize the number of consumers (Abe et al., 2004;
Tirenni et al., 2007b; Abe et al., 2009) targeted with each action, because the total marketing cost is a
non-decreasing function of the number of targeted consumers.

One specific issue to generate executable policies is to properly incorporate a set of constraints
imposed in real marketing operations. Targeting of many customers requires an appropriate planning
of the marketing costs, in advance to the execution of contact operations. The discrepancy between
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Figure 6.1: Target populations as the decision variables in marketing decision making. Every cell
in the table is conditional on a triplet of a timing, a segment of consumers, and a marketing-
communication channel. Before the beginning date of the entire period (e.g., 1 year), we must plan
the target population and its resulting budget amount for all of such triplets. The entire marketing cost
is a function of such set of the target populations.

Figure 6.2: Structure of the complex budget constraints visualized as tables. For example, in the
first half of 2014, the total e-mail and direct-mail budget spent for the GOLD and SILVER Strategic
Segments (SSs) must not exceed $400,000. Another example of the budget constraint is imposed
for the annual budget for the GOLD SS, whose maximum is $1M. The optimization algorithm must
comply with all of these budget constraints involving complex combinations of the timings, segments,
and channels.

the planning and execution dates necessitates a careful design of the optimization algorithm. Contact
executions and budget planning are often done by different decision makers, where the targeting rules
should be designed based on detailed profiles of consumers whilst their budget support must satisfy
higher-level financial constraints over multiple executions. As shown in Figure 6.2, each of the re-
quired budget constraints is given as the maximum, or sometimes the minimum, of the costs summed
across multiple time-stamps, segments, and channels whose combination often becomes complex due
to the organizational structure of marketing departments. We must remember the fact that interest of
most marketers is not limited to a single run of optimization but includes a What-If analysis, which
runs the optimization processes numerous times with changing segmentation criteria and budget con-
straints.

We provide a framework to fairly evaluate how constraints and segmentation criteria affect the
resulting policies and their economic impacts. As illustrated in Figure 6.3, the approximation of the
original continuous state vector by the discrete MS motivates us to separate the process of optimizing
the policy from that of simulating its impacts. To the best of our knowledge, the expected revenue gains
in all of the cited literature heavily rely on the estimates of MDP parameters. Since the accuracy of
the predicted revenue depends on segmentation, profit by some segmentation and its resulting policy
cannot be directly compared with those by others. Profits should rather be forecast with a unified
simulation system whose setting is independent from the segmentation and optimization processes.
Such separation allows for both usage of finely detailed sales prediction and effective simplification
of the marketing-mix policy with high interpretability. Figure 6.4 summarizes our unified framework
that combines machine learning, cMDP-based optimization, and discrete event simulation, for both
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Figure 6.3: Marketing-stimulus (e-mail and direct-mail) and response (purchase and browsing) event
spikes having continuous time-stamps, and an inferred sequence of Micro Segments (MSs) from these
events. The true forecast of the individual-level sales should be based not on erroneous MS-level
estimates, but on simulating every response event spike. In contrast, optimal targeting with an MS-
based policy is justified for the purpose of operability and interpretability.

optimizing the policy and predicting its impacts. The final forecasts provided by a continuous-state
simulation system, whose model parameters are precisely fitted with the machine learning algorithm,
are more accurate than those by the approximately optimized objective based on the discrete MSs.

Our algorithmic contribution in solving the cMDPs is a new LP formulation to efficiently opti-
mize the target population with satisfying budget constraints over multiple periods. In an MDP, each
segment’s population in the future is not deterministic but stochastic, where the dynamics is captured
by an equality on the expected population for each segment in consecutive time points. The key ideas
for efficiently optimizing such stochastic population is to introduce slack variables to represent the
differences between the realized and expected populations, and to handle the state dynamics of MDP
as probabilistic flow constraints. Then we solve a soft optimization problem that is completely linear
in the target populations and the slack variables. This linearization enables the usage of very fast LP
solvers and allows us for handling a large number of segments, channels, and many budget constraints
in a unified interface.

Main formulations and experimental results in this chapter were borrowed from (Takahashi et al.,
2014). Section 6.1 overviews the entire system and introduces the notations about our decision vari-
ables and the related variables behind the main optimization. The main solving of our LP problem
is introduced in Section 6.2. In actual computation, before the solving of the LP, we need to sta-
tistically estimate the coefficients in the main objective and constraints. Section 6.3 summarizes the
whole procedure for such parameter estimation, which consists of the fitting of the simulation model,
discretization of the state space, and the computation of the coefficients associated with discrete MSs.
Section 6.4 introduces a case-study using a real-world dataset provided by an online retailer in Europe,
for clarifying the characteristic aspects of the optimized policies and the associated revenue gains.
Section 6.5 discusses considerable extensions of our What-If analysis framework to more precisely
emulating the real market, and Section 6.6 summarizes this chapter.
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Figure 6.4: Flows of the input/output for/from each component in our What-If analysis framework.
The event-based machine learning algorithms provide the nonparametric time-decaying forecasting
models of the response-event spikes (left). Such nonparametric models involve multi-scale continuous
state vectors, and we discretize the space of the continuous state vectors into discrete Micro Segments
(MSs). By solving discrete-segment cMDPs, we obtain an MS-based marketing-mix policy consisting
of the target population for each triplet of a timing, a segment, and a channel (center). The fitted
simulation model, the micro-segmentation tree, and the optimized marketing-mix policy are finally
inputted for the discrete event simulator that stochastically generates multiple paths of future sales,
where each path consists of a sequence of response events for every individual consumer (right). We
evaluate the mean and standard deviation of the total sales forecast among these paths, by summing
the amounts of the response events over all of the consumers.

6.1 Framework for Normative What-If Analysis

The substance of the discrete event simulator is marked point processes that are extended from the
nonparametric event-spike prediction models in Chapter 5. Each consumer has a real-valued and time-
varying state vector that affects the occurrence probability and the amount of each response event. For
optimization purpose we introduce a finite number of Micro Segments (MSs) by discretizing the state
vectors with a dyadic decision-tree. A marketing-mix decision making problem, with respect to each
MS, is introduced while its actual solving is deferred in Section 6.2.

For each consumer i ∈ {1, . . . ,m}, the simulator generates a sequence of response events given
a sequence of marketing-stimulus events. As in Chapter 5, Every event is associated with a flag to
represent either response or marketing-stimulus, a continuous time-stamp, and a response or stimulus
amount such as the revenue in one purchase event. Every consumer i’s response events are distributed
solely based on her/his state vector xi(t)∈RdX . We forecast the future sales for each consumer i, by
iterating the sampling of the response events and updating of the state vector xi(t) based on adding
the latest or removing the oldest events.

Using real data, we estimate a micro-segmentation function π : RdX →S that deterministically
converts any state vector into one MS s∈S. Our segmentation is semi-automatic as follows. Marketers
are accustomed to manually define a limited number of (typically from 3 to 20) segments of consumers,
which we call the Strategic Segments (SSs). Each SS is usually defined with recency, frequency,
or monetary values about the responses while more detailed segments than SS are desired for fully
exploiting the benefits of MDP approaches. One aspect is to incorporate frequencies of past marketing
stimuli, which are not handled in defining SSs usually, but which strongly affect the profitability of
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one more action due to diminishing returns and forgetting of the old stimuli. We further segment
every SS with the function involving past actions, where the substance of the function π is a dyadic
binary tree that separates the dX -dimensional state space into mutually-exclusive |S| regions. As we
showed in Figure 6.2, marketers usually give the budget constraints using SS, while such constraints
can always be converted into MS-based constraints. The manual definition for a limited number of
SS provides easy understanding of budget plans, while the automatic estimation of many MSs yields
profitable marketing-mix policy that carefully follows the finely-detailed states of consumers.

We need a dynamic budget allocation for each MS and channel, in order to efficiently generate
the sequences of marketing-stimulus events input into the simulator. Let tF1, t

F
2, . . . , t

F
H , t

F
H+1 be an

increasing sequence of future time-stamps. At each time tFh such that 1≤h≤H , we need to choose a
marketing-communication channel a∈A to target each of the m consumers, where the set A contains
all of the available channels and an element a∅ ∈A representing no action. Let nhsa be an integer to
represent the target population in channel a for MS s at time tFh. For marketing budget planning in
advance, at or before time tF1, we are required to optimize a set of the target populations {nhsa; 1≤
h≤H, s∈S, a∈A}, where each MS s and channel a are regarded as a discrete state and an action of
the MDP, respectively. When the target population exceeds the realized population of the associated
MS during the simulation, we instead target the consumers belonging to other but similar MSs on the
micro segmentation tree. Hence the entire amount of the planned costs are always consumed.

We maximize the multi-period sum of revenues minus marketing costs. We define an MDP with
a set Θ , {rhsa, ps′|hsa; 1 ≤ h ≤ H, s ∈ S, a ∈ A}, where rhsa is the expected revenue acquired in
period [tFh, t

F
h+1) when we target one consumer in MS s with channel a at time tFh, and ps′|hsa is the

probability with which a consumer in MS s at time tFh targeted in channel a switches into MS s′ at
time tFh+1. After statistically fitting all of the elements in Θ with a procedure explained later in Section
6.3, we solve an optimization problem

max
{nhsa}

H∑
h=1

γth−t1
∑
a∈A

[∑
s∈S

nhsarhsa−cha

(∑
s∈S

nhsa

)]
subject to several constraints, (6.1)

where γ is a discounting factor provided by users and cha : R→R is a non-decreasing cost function
to target consumers in channel a at time tFh. While the cost function in our case study is assumed to
be time-independent, paper-based direct mails and telemarketing by human labors are considerable
examples of the resources whose costs are time-dependent.

Optimization (6.1) is solved with financial constraints and observable state dynamics. Each of the
constraints in (6.1) belongs to one of three types. The first type is a user-defined budget constraint.
Because marketing organizations are complex, where different marketers are responsible for different
segments or channels, we usually have multiple budget constraints denoted by a set B. Each con-
straint β ∈ B is associated with a set of the triplets of timing, target-MS set, and channel denoted
by Eβ = {(h, S̃, a)}. For each of the total cost Cβ ,

∑
(h, eS,a)∈Eβ

cha

(∑
s∈ eS nhsa

)
associated with

the constraint β ∈B, we have either its maximum or minimum formulated as either Cβ ≤ Cmax
β or

Cβ ≥ Cmin
β , respectively. The second type is a flow constraint to incorporate the transitions among

segments and we provide its details later. The third one is the total-population constraint whose for-
mula is ∀h ∈ {1, . . . , H} m≡

∑
s∈S

∑
a∈A nhsa, based on the limitation that we use only one or no

channel at each time.
When we expect synergy effects (Naik and Raman, 2003; Naik et al., 2005; Kolsarici and Vakrat-

sas, 2011; Schultz et al., 2012) for Integrated Marketing Communication, it is theoretically possible
to target in multiple channels at the same time with adding a combination of original channels into the
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set A. In practice, the better approach is to increase the number of periods H with narrower decision
intervals, while only one channel is used for targeting in one period. If the number of MS is large,
this practice avoids the combinatorial explosion while incorporates short-term synergy effects through
segment transitions.

6.2 Linear Programming of the Target Populations

Let us introduce an LP algorithm to solve Optimization (6.1). The flow constraints on the segment
transitions are given as linear inequalities, where we also pay attention to the difference between the
expected and realized populations. The budget constraints are also linear inequalities, in which each
cost function cha is a linear or piecewise-linear function of the target population. Both of these types
of constraints yield additional slack variables to be optimized, and we consequently solve a high-
dimensional LP to optimize both the target populations and the slack variables.

Our optimization problem corresponds to searching for a reasonable realization of random popu-
lation in the future. Considering the population of each MS in the future to be stochastic, let Nhsa be
a random variable to represent the target population for MS s with channel a at time tFh. Because the
decision variable nhsa can be regarded as one realization of the random variable Nhsa, we wish the
realization nhsa to provide high profits in a wide variety of possible scenarios caused by randomness.
While nhsa can theoretically be a function of the remaining budget at each time tFh, deterministically
providing a constant value in advance yields a clearer and more practical budget planning for the
marketer.

Handling the expected population in the future leads to certain equalities among the decision
variables. We can constrain the expected populations in two consecutive periods by imposing〈∑

a∈AN(h+1)sa

〉
=
〈∑

s′∈S
∑

a∈A ps|hs′aNhs′a

〉
, where 〈·〉 represents the expectation operator for

each random variable. We then get∑
a∈A

n(h+1)sa = εhs+
∑
s′∈S

∑
a∈A

ps|hs′anhs′a, (6.2)

by introducing a zero-mean random noise variable εhs.
To obtain the desired realization of the random target populations, we consider an alternative

problem of maximizing the original objective minus the sum of the magnitudes of the noise variables.
Because the noise variables must obey certain probabilistic distributions, larger values of the variance
or absolute deviation of each noise variable εhs should be more penalized. For convenience of deriving
an optimized solution completely linear in every decision variable, let us consider a penalty term
which consists of the negation of the absolute deviation |εhs| for every pair of (h∈{1, . . . , H}, s∈S),
and which is related to the log-likelihood of Laplace distributions. We introduce a relaxation hyper-
parameter ηhs ≥ 0, which is the strength of the penalty term for the absolute deviations, and whose
value is given a priori, and σhs , |εhs|. A modified maximization objective is introduced as

max
{nhsa},{σhs}

H∑
h=1

γth−t1
∑
a∈A

[∑
s∈S

nhsarhsa−cha

(∑
s∈S

nhsa

)
−
∑
s∈S

ηhsσhs

]
, (6.3)

where Optimization (6.3) looks similar to the Maximum A Posteriori estimation withL1 regularization
terms (Tibshirani, 1994), though the objective in (6.3) does not represent the penalized log-likelihood.
Let ∧ be the logical “and” operator and let V1≥±V2 mean V1≥V2∧V1≥−V2. By converting (6.2)
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into two inequalities

σhs≥±

[∑
a∈A

n(h+1)sa−
∑
s′∈S

∑
a∈A

ps|hs′anhs′a

]
, (6.4)

we can readily confirm that (6.3) and (6.4) are linear in the target population and the slack variable
σhs, when we exclude the cost term cha(·). While one can assume Gaussian distributions on the noise
variables with deriving a quadratic programming problem, the Laplace-distribution approximation
yields the faster LP algorithm and robustness against the outliers of the realized populations.

Non-linear cost functions can be replaced by multiple linear inequalities with piecewise-linear
approximations. For every channel a ∈ A, we approximate its cost function by a piecewise-linear
continuous and convex function cha(n ≥ 0) =

∑Kha
k=1 I(nk−1 ≤ n < nk)(bhak +θhakn), where n0 ≡

0, n1, . . . , nKha
→∞ is a monotonically-increasing sequence of knots, I(·) is the boolean indicator

function, Kha is the number of supports, bhak ≥ 0 and θhak ≥ 0 are the bias and slope in the kth
support, respectively. Because targeting no people incurs no cost, ∀h∈ {1, . . .,H} ∀a∈A bha1 = 0.
Furthermore, the continuity and convexity assumptions provide a condition ∀h ∈ {1, . . .,H} ∀a ∈
A ∀k ∈ {1, . . .,Kha− 1}

(
bhak+θhakxk =bha(k+1)+θha(k+1)xk+1

)
∧
(
θhak<θha(k+1)

)
. For the

cost terms in the objective and the budget constraints, let us further introduce slack variables ζha ,
cha

(∑
s∈S nhsa

)
and δβz ,

∑
z=(h, eS,a)∈Eβ

cha

(∑
s∈ eS nhsa

)
, respectively. Then each slack variable is

constrained with a logical product of multiple linear inequalities stemming from the piecewise-linear
approximations.

By integrating all of the aspects of linearizing the objective and constraints, an initial condition
and total constraints for the population, we finally arrive at the LP problem we wish to solve:

max
{nhsa},{σhs},{ζha},{δβz}

H∑
h=1

[
γth−t1

∑
a∈A

[∑
s∈S

nhsarhsa − ζha

]
−
∑
s∈S

ηhsσhs

]

subject to



∀a∈A ∀h∈{1, . . . , H}∀k∈{1, . . . ,Kha} ζha≥bhak+θhak
∑

s∈S nhsa

∀β∈B

{∑
z=(h, eS,a)∈Eβ

δβz≤Cmax
β if β is a maximum constraint∑

z=(h, eS,a)∈Eβ
δβz≥Cmin

β if β is a minimum constraint

∀β∈B ∀z = (h, S̃, a)∈Eβ∀a ∈ {1, . . . ,Kha} δβz≥bhak+θhak
∑

s∈ eS nhsa

∀h ∈ {1, . . . , H−1}∀s ∈ S σhs≥±
[∑

a∈A n(h+1)sa−
∑

s′∈S
∑

a∈A ps|hs′anhs′a

]
∀s ∈ S n1s =

∑
a∈A n1sa

∀h ∈ {1, . . . , H}m=
∑

s∈S
∑

a∈A nhsa

, (6.5)

where n1s is the initial population of MS s deterministically given with historical data.
Each relaxation hyperparameter is set inversely proportional to the square root of the initial popu-

lation of the associated MS, because it corresponds to the inverse of the absolute deviation of the target
population, which is proportional to the square root of the variance. We set ηhs =ρmγth−t1/

√
1 + n1s

using the entire population m, the initial population n1s, and a global relaxation hyperparameter ρ.
Any additional constraints can be considered depending on the requirements in practice. One pos-

sible example is imposing autoregressive cost structures to affect the momentum of time-varying costs.
Such autoregressive dependence is implemented as linear inequalities involving the slack variables in
consecutive periods, i.e., ζha and ζ(h+1)a.

92



6.3 Estimation of the Parameters in LP

Here we describe the steps in estimating the set of the parameters Θ,{rhsa, ps′|hsa; 1≤h≤H, s, s′∈
S, a ∈ A} from real data. We introduce marked point processes to stochastically generate the se-
quences of response events, whose occurrence obeys an inhomogeneous Poisson process that intro-
duces time-dependent (inhomogeneous) rates in the Poisson processes, and whose amount conditional
on its occurrence obeys a log-normal distribution. Both of the per-time probability and the amount
distribution are modeled with each consumer’s high-dimensional vector of state. The fitting of the
parameters in the marked point processes is introduced in Section 6.3.1. Section 6.3.2 discusses the
micro segmentation by discretizing the state space with a dyadic binary tree. Sections 6.3.3 and 6.3.4
discuss the computations of every parameter in the set Θ, by averaging the expected revenues that
the marked point processes provide and by counting transition frequencies among micro segments,
respectively. For representing the response amounts that are always non-negative, we denote the space
of non-negative d-dimensional vectors by Rd

+, and R+ ,Rd
+.

6.3.1 Fitting of the Simulation Models

For the primitive data containing all of the event sequences, we compute the sequences of piecewise-
constant state vectors as we did in Chapter 5. Then we denote the training data by a set of the triplet
series D= {(xi1,yi1, t

P
i1), . . . , (xiLi ,yiLi

, tPiLi
)}mi=1, where Li is the length of the sequence for con-

sumer i, xij ∈RdX is a state vector, yij ∈RdY is a response vector, and tPij ∈R is the time at which
the response amounts are observed. As we showed in Chapter 5. time-series of our state vectors is
piecewise-constant in time, i.e., ∀j ∈ {2, . . ., Li}∀t ∈ [tPi(j−1), t

P
ij) xi(t)≡ xij . The actual definition

of the state vector is provided in the last part of this section, where we set the input dimensionality
dX high by exploiting a large variety of event types, in order to provide a good proxy of the hidden
mental state of each consumer. In general we denote the response vector at time t and its uth element
by yi(t)∈RdY

+ and yiu(t)∈R+, respectively.
We model the generation of every consumer’s response events with a marked point process, and we

assume that the entire dataset for all of the consumers is generated with independent and parallel runs
of these marked point processes. The inhomogeneous Poisson process for sampling the moments of
response events is identical to Chapter 5’s event-spike prediction model without the collective factor.
The amount of each response represents a “mark” in our marked point processes. For the uth type of
responses, we model its per-time occurrence probability as

lim
∆t→0

1
∆t

∫ t+∆t

t
I(yiu(t̃) 6=0)dt̃=exp(btiming

u +
〈
wtiming

u ,Φ(xi(t))
〉
), (6.6)

where Φ : RdX→RdΦ is a high-dimensional non-linear mapping function applied to the state vector,
b

timing
u is a bias term, w

timing
u is a vector of coefficients, and 〈·, ·〉 represents the inner product of

two vectors. The parameters (btiming
u ,w

timing
u ) are identical to the parameters (bk,wk) in Chapter 5,

where both of the indexes u and k represent the type of the response events. The bias term represents
the logarithm of the per-time response probability when Φ(xi(t)) is a zero vector, which usually
corresponds to the case of no event history. Conditional on the occurrence of a response event, we
model the distribution of the response amount as

log yiu(t)|yiu(t)6=0 ∼ N (bamount
u +

〈
wamount

u ,Φ(xi(t))
〉
, σ2

u), (6.7)

whereN
(
µ, σ2

)
represents a univariate Gaussian distribution whose mean is µ and whose variance is

σ2, bamount
u is another bias term to represent the logarithm of the average response amount, and wamount

u
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is another vector of coefficients. When the set of the parameters
Ξ, {btiming

u ,w
timing
u , bamount

u ,wamount
u , σ2

u}
dY
u=1, the mapping function Φ, and the definition of the state

vector are given, we are able to simulate all of the response events in the future, because Eqs. (6.6)
and (6.7) specify how to sample the next response.

Here we summarize the optimization to fit the set of the parameters Ξ. For the fitting of the
parameters (btiming

u ,w
timing
u ), we follow the procedure in Section 5.1.3. Let us denote the piecewise-

constant and continuous-time Poisson log-likelihood function by `(y; z, τ). We solve the optimization
problem

max
b
timing
u ,w

timing
u

 m∑
i=1

Li∑
j=2

`(yiju; btiming
u +

〈
wtiming

u ,Φ(xij)
〉
, tPij − tPi(j−1))− ω

timing
u ‖wtiming

u ‖1

 , (6.8)

where ωtiming
u is a regularization hyperparameter which controls the complexity and the number of

non-zero coefficients in the fitted regression model, and whose optimal value is chosen with hold-out
or cross-validation methods. Because each response amount obeys a log-normal distribution, for other
parameters associated with response amounts, we solve the following penalized least-square problem

max
bamount
u ,wamount

u

m∑
i=1

Li∑
j=1

I(yiju 6=0)
[
log yiju−(bamount

u +
〈
wamount

u ,Φ(xij)
〉
)
]2+ωamount

u ‖wamount
u ‖1,

with another regularization hyperparameter ωamount
u . After fitting the parameters (bamount

u ,wamount
u ), the

corresponding noise level σ2
u is given as

σ2
u =

∑m
i=1

∑Li
j=1 I(yiju 6= 0) [log yiju−(bamount

u +〈wamount
u ,Φ(xij)〉)]2∑m

i=1

∑LI
j=1 I(yiju 6=0)

.

We follow the principle of nonparametric multi-scale mixtures to provide the actual definition of
the state vectors. Each element of the state vector is a frequency or total response amount for one
type of events, using one specific sliding window chosen from 1 week, 2 weeks, , and 16 weeks.
By incorporating all of the event types, we make the state vector a good proxy of the hidden mental
state of each consumer. We use both of the frequencies and response amounts for purchase events,
while we use only the frequency features for other types of events. In implementing an element-wise
sub-linear function as the mapping function Φ, we adopt a definition Φ(x1, . . . , xdX

) = (x1/(1+
x1), . . . , xdX

/(1+xdX
)) because of its higher predictive accuracy than that introduced in Section

5.2.4. While we are able to contain some seasonality variables (e.g., dummy variables to represent
each month) in each state vector,in the later case study we did not include them due to the insufficient
lengths of the training data.

For modeling the synergy effects depending on each pair of actions, the mapping function should
contain quadratic terms of the state vector. Yet in the prior statistical experiments, using the quadratic
mapping function did not improve the out-of-sample likelihood scores. We concluded that synergy
effects among the marketing actions in our dataset are insignificant, while our methodology with the
custom design of the mapping function allows for handling any types of higher-dimensional synergy
effects, as well as the quadratic ones.

6.3.2 Tree-based Micro Segmentation

Here the fitting of micro-segmentation function π : RdX→S is addressed. As shown in Figure 6.5, we
adopt a dyadic binary-tree structure, in which each branch uses only one variable of the state vector
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Figure 6.5: Examples of micro-segmentation using a dyadic binary tree, whose root node represents
one Strategic Segment (SS) manually defined by users. Every node of the tree has a branching rule
consisting of a single variable and its threshold, where many of the branching variables involve the
number of specific events in specific window lengths (e.g., 4 weeks). Each of the leaves of a tree
provides the definition of one Micro Segment (MS), and each consumer switches from one MS into
another MS as time passes.

and the root node represents one SS. For each time stamp of events, let us compute a dY -dimensional

vector ỹij = (
∑Li

j′=j γ̃
tP
ij′−tPijyij)/(

∑Li
j′=j γ

tP
ij′−tPij ) using another discounting factor γ̃. Like CART

(Breiman et al., 1984) and C4.5 (Quinlan, 1996), we fit a regression tree to minimize the mean square
errors of the discounted cumulative amounts of the responses {{ỹij}

Li
j=1}mi=1. The choice of γ̃ affects

what types of the variables are used in each branch of the tree. In the case study, we adopted γ̃=0.01
or γ̃=1 to yield fast or slow switching among segments, respectively. Around the idea of performing
micro segmentation with decision trees, there are a wide variety of relevant prior work (e.g., (Elsner
et al., 2003; Abe et al., 2004; Tirenni et al., 2007b,a; Abe et al., 2009)).

6.3.3 Computing the Expected Revenues

By combining the parameters of the simulation model and the micro-segmentation function, we com-
pute the set of the parameters Θ with manipulating the samples of state vectors. Let us synthesize
a vector x+a

i (t) ∈ RdX by incrementing some elements of state vector where such elements repre-
sent frequencies of marketing stimuli in channel a 6= a∅. The vector x+a

i (t) represents a new state of
consumer i, if we immediately execute one more action in channel a. Also for the no-action element
a∅ ∈A, we denote x

+a∅
i (t) , xi(t) to unify notations. We further compute another vector x+a

i (t, t′)
by replacing the seasonality elements in x+a

i (t), which are functions of time t, by those of time t′.
Expected revenue is the product of expected frequency and per-event amount of responses. Let

us denote by gu ∈ {0, 1} whether or not the uth type of response is a purchase event. By using the
expectation of Poisson and log-normal distributions, we give a per-time expected revenue function of
action a at time t, whose seasonality is modified with time t′, as

Ria(t, t′)=
dY∑
u=1

gu exp
(
btiming
u +

〈
wtiming

u ,Φ(x+a
i (t, t′))

〉
+bamount

u +
〈
wamount

u ,Φ(x+a
i (t, t′))

〉
+
σ2

u

2

)
.

Assume that any interval time between the consecutive times of marketing decision in the future is
sufficiently small, and hence the two vectors xi(tFh) and xi(tFh+1) are close. Then we can empirically
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compute the expected-revenue parameter rhsa as

rhsa = (tFh+1 − tFh)

∑m
i=1

∑Li−1
j=1 I(π(x+a

ij )=s)
(
tPi(j+1) − t

P
ij

)
Ria(tPij , t

F
h)∑m

i=1

∑Li−1
j=1 I(π(x+a

ij )=s)
(
tPi(j+1) − t

P
ij

) .

6.3.4 Computing the Transition Probabilities

While the transition probabilities we need depend on each channel and timing, we first compute a
generator matrix R|S|×|S| 3 Q = (Qss′) of a channel-independent continuous-time Markov chain
(Serfozo, 1979), whose transition-probability matrix for elapsed time τ is given as the matrix expo-
nential exp(Qτ). Each element of the generator matrix is denoted as

Qss′ =

{
−λs ifs = s′

λsqs′|s otherwise
,

where λs > 0 is the inverse of the expected duration in MS s while qs′|s ≥ 0 is the jump probability
from MS s into MS s′.

The generator matrix Q is fitted with sequences of MSs. For each consumer i, by applying the
function π for the state vector samples, we have a L̃i(≤ Li)-length sequence of pairs of MS and
duration time (si1, τi1), (si2, τi2), . . . , (sieLi

, τ
ieLi

). We can fit the parameter λs as the inverse of the
average duration time for MS s. We also compute a transition frequency for every MS pair (s, s′) such
that s 6= s′, as

fss′ =
m∑

i=1

Li∑
j=2

I(π(xi(j−1)) = s ∧ π(xij) = s′).

While simply taking the ratios among the the frequencies {fss′} provides an estimate of the transition
probabilities, we apply the modified Kneser-Ney smoothing (Chen and Goodman, 1998), which is the
state-of-the-art statistical estimator of high-dimensional discrete-state Markov chains. For the details
to compute {qs′|s} from {fss′}, refer (Chen and Goodman, 1998).

The action-dependent transition probabilities are finally given with mixing the action-independent
transition probabilities with multiple source segments. Let us compute a ratio

θsz|ha =

∑m
i=1

∑
eLi
j=1 I(π(xi(tPij)) = s ∧ π(x+a

i (tPij , t
F
h)) = z)∑m

i=1

∑
eLi
j=1 I(π(xij(tPij)) = s)

, (6.9)

which represents the immediate switching probability from MS s into MS z when executing action
a at time tFh. Using a transition-probability matrix T h ,

{
Tss′|h

}
= exp(Q(tFh+1 − tFh)), we obtain

ps′|hsa =
∑

z∈S θsz|haTzs′|h.
In practice, to avoid over-fitting and suppress the number of parameters, we adopt the same time

intervals as ∀h∈{1, . . . , H} (tFh+1−tFh)≡ (tF2−tF1), with ignoring the seasonality as ps′|hsa ≡ ps′|sa
by replacing the seasonality-adjusted vector x+a

i (tPij , t
F
h) in (6.9) with x+a

i (tPij). Mainly for rigorous
notations, here we discussed the general case in which we allow for variable intervals among the
decision moments.
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6.4 Experimental Evaluations and Implications

We demonstrate the values of our system using a common simulation model fitted with real data.
From the same online retailer as that in Chapter 5, we received a smaller dataset containing 10,000-
consumer and 2-year marketing-stimulus and response events. Time-stamp of every event is between
2009 and 2011, while we do not disclose the beginning date with confidentiality considerations. The
dataset contains dY =2 types of responses, browsing events for e-commerce sites and purchase events
associated with a revenue amount. Because some browsing events lead later purchases, simulating
both of the browsing and purchase events provides accurate forecasts of the mid-term revenues. We
have 5 types of marketing-communication channels, including e-mails and direct mails. Each cost
function cha does not depend on time tFh in this dataset and is linear to the number of consumers, while
we do not disclose the underlying unit cost. In fitting the simulation model, the events in the first
one-year period from 2009 to 2010 were chosen as the training data.

For relying on the results of What-If analysis, it is first essential to confirm the mid- or long-term
predictability of the discrete event simulator, as well as the short-term predictability already validated
in Chapter 5. Section 6.4.1 provides a qualitative evaluation of the accuracy of the simulation-based
mid-term forecast. Section 6.4.2 provides a result of preliminary test to choose appropriate hyper-
parameters in optimization. Using fixed values of these optimization hyperparameters, Section 6.4.3
demonstrates how the optimized policy allocates the entire budget for each of the triplet of timing,
segment, and channel. Section 6.4.4 provides the main result of What-If analysis to compare multiple
segmentation criteria and budget constraints for choosing the practical and best marketing-mix policy.

6.4.1 Validating the Mid-Term Predictability of the Simulator

Before the optimization and forecasting experiments, it is important to confirm mid-term predictability
of the simulation model whose short-term predictability was already validated in Chapter 5. We simu-
lated 100 paths of response events in the second one-year period from 2010 to 2011, where the inputs
of the simulator were the actual marketing-stimulus events for all of the consumers. The difference
between the simulated and actual revenue time-series in aggregate level is shown in Figure 6.6. The
fitted model reasonably predicted the future with capturing parts of the temporal trends, while some
of the transitive declines were failed to be predicted. While we assume the correctness of the fitted
model in the following experiments, more accurate models fitted with lengthier time-series data will
improve the reliabilities of the implications.

6.4.2 Choice of the Optimization Hyperparameters

Because our LP algorithm involves the hyperparameters to be specified, we tested the sensitivity of the
maximal profit with these hyperparameters. Our goal is to maximize the mean among the simulated
samples of the finite-horizon (annual) cumulative revenues minus costs. We decided not to discount
this objective because the annual interest rate in the real economy is very low after the 2008 financial
crisis (e.g., 0.28% for the 1-year Treasury bill in 2010 (of Governors of the Federal Reserve System,
2010)). Yet an optimized policy with a different discounting factor could yield a better result, due
to the errors in approximating segment transitions. For the undiscounted true objective, Table 6.1
summarizes how combination of the discounting factor γ and the relaxation hyperparameter ρ in the
optimization process affects the simulated revenue. While optimization with the larger discounting
factor always ended in lower revenue, the relaxation hyperparameter ρ multiplied for the L1-norm
does not strongly affect the revenues.
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Figure 6.6: Mid-term predictability of the fitted simulation model. Each green-colored bar represents
the actual weekly sales revenue, while the two dashed lines are the 2.5%- and 97.5%-tile estimates
based on the simulated revenues for the actual marketing-stimulus events. While this mid-term fore-
casting is less dynamic than the actual, the simulator successfully predicted the two peaks located in
the 12th and 40th weeks. Due to confidentiality considerations, all of the revenue values are multiplied
with one secret scalar.

Based on the insensitivity to ρ, we adopted a fixed setting of γ=1 and ρ=103 for all of the remain-
ing main experiments. Our test justified the usage of the same discounting factor in the optimization
and simulation steps as γ=1.

6.4.3 Properties of the Optimized Policy

To show a typical outcome of our system, we demonstrate profit gains using three Strategic Segments
(SSs), Gold, Silver, and Normal, defined with the empirical percentiles of the latest 16-week revenue
from each consumer. The upper 5%- and 25%-tiles of the 16-week revenues were chosen as the
boundaries, where the Gold SS has the highest revenue. While we show the results for the sample
10,000 customers, expected revenues from a larger number of consumers can be inferred with scaling.

Typical outcomes of the optimization is clarified in Figure 6.7, as one path of revenue and marketing-
cost allocation of a marketing-mix policy using a 4-depth micro-segmentation. The optimizations are
done with bounding the annual budget to be from 75% to 125% of the actual total cost. The optimal
spending is concentrated in later periods or the first week, with producing the revenue time-series that
is quite different from the actual. Such characteristic results were given with our model assumption.
While we can constantly stimulate the consumers with cheap e-mails, more costly direct mails should
be concentrated on high-revenue consumers. The drastic increase of direct mails in the 19th week
occurred after the population of the high-revenue consumers had reached certain critical mass. The
change point of the revenue is around the 17th week, which is implied from each consumer’s 16-week
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Table 6.1: Sensitivity of the 20-path mean among the simulated revenues, for each triple of segmenta-
tion criteria (Fast or Slow Switching with depth=4 or 6), global relaxation hyperparameter (row) and
annual interest rate (column) to set the discounting factor . In every segmentation, high discounting
factors harm the profitabilities of the attained policies while relaxation hyperparameters do not.

0% 5% 10% 20% 30%
FAST (d=4) ρ=100 8.69×105 8.65×105 8.61×105 8.34×105 8.17×105

ρ=101 8.68×105 8.68×105 8.68×105 8.32×105 8.06×105

ρ=102 8.66×105 8.63×105 8.63×105 8.28×105 8.08×105

ρ=103 8.63×105 8.66×105 8.66×105 8.24×105 8.06×105

ρ=104 8.65×105 8.65×105 8.62×105 8.28×105 8.04×105

ρ=105 8.67×105 8.68×105 8.63×105 8.26×105 8.06×105

SLOW (d=6) ρ=100 9.21×105 9.17×105 9.14×105 8.96×105 8.58×105

ρ=101 9.16×105 9.19×105 9.12×105 8.88×105 8.57×105

ρ=102 9.13×105 9.10×105 9.10×105 8.89×105 8.57×105

ρ=103 9.19×105 9.13×105 9.09×105 8.88×105 8.60×105

ρ=104 9.20×105 9.18×105 9.13×105 8.95×105 8.58×105

ρ=105 9.22×105 9.12×105 9.10×105 8.92×105 8.60×105

memory initialized with unoptimized stimulus events before the first week. The optimization algo-
rithm assigned the stimuli not in these less profitable 16 weeks but in the later more profitable periods.
Thus, we conclude that carefully modeling the memories of consumers, as we did in Chapter 5, is
particularly important for practical marketing strategies.

6.4.4 What-If Analysis with Various Budget Constraints and Segmentation

In the final and main experiment we evaluated how the revenue forecasts depend on budget constraints
and segmentation criteria. Our main aim is to assess what types of flexibility in allocating budgets
are beneficial. We clarify the advantage of incorporating the past actions in defining each MS, over
the conventional segmentation approaches that use only the past responses. Our MS trees are fitted
to yield either fast or slow switching among segments, using short (e.g., 1-week) or lengthy (e.g.,
16-week) sliding-window features in their branching. For each setting of the trees, we evaluate the
outcome of choosing whether to involve the frequencies of the past actions. Then we also investigate
how constraints manually added by marketers change the performances, using three types of the budget
constraints in addition to the annual constraint used in Figure 6.7. The three constraints bound the total
budget in every quarter, annual budget in every SS, and annual budget in every channel, respectively
with the same 75% and 125% rules derived from the actual costs.

Figure 6.8 summarizes the results of our What-If analysis. Let us focus on the fact that solving
cMDPs whose segmentations do not involve the action variables resulted in very low profits, even
below the level of a current practice that would be based on this retailer’s own scoring model whose
details are unknown to us. In contrast, our approach with incorporating the action variables into
segmentation is evidenced to yield more profits than both of the current practice and segmentations
without actions, if we set the complexity of the micro-segmentation in an appropriate level. As a
resulting implication for marketers, at least when we apply discrete-state MDPs for marketing-mix
decision making, it is highly recommended to micro-segment consumers with the amounts of the
past actions, in addition to the amounts of responses, for carefully searching for the optimal timing
stemming from diminishing returns and forgetting.
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Figure 6.7: One realized path of revenues (the line) and cost allocation (each bar) for an optimized
policy. All of the values are multiplied with the same secret scalar used in Figure 6.6. Cost items
are classified with pairs of channel and strategic segment. To summarize the finely-detailed budget
allocation, remaining items with smaller costs (e.g., DirectMail-Normal) are aggregated into one item,
All Other Costs. The optimized revenue time-series is quite different from those in Figure 6.6, with
an allocation concentrated in later periods or the first week.

Manually adding constraints usually suppresses the benefits of the automatic optimization algo-
rithm, but is found to often produce better solutions particularly when simulation is required for evalu-
ating the true objective. Marketers should be flexible in moving budgets from some segments into the
other segments, because putting a cap on the budget for every SS more deprived the profit than bound-
ing the total budgets in every quarter. In contrast, channel-specific constraints efficiently mitigated the
approximation errors and yielded astonishing high revenues. Given these results, we believe that our
approach of combining the approximate optimization and the full simulation can stimulate desirable
interactions between the system and marketers, who consider simple but effective constraints instead
of fully relying on a single optimization result.

6.5 Discussion

Let us discuss directions to further improve the applicability of our What-If analysis framework for
more complicated marketing decision-making problems. A general direction we must consider is
to narrow the gap between the approximate but computationally-efficient optimization and the ac-
curate but time-consuming simulation. One essence to realize the ultimate consistency between the
two different objectives is allowing the direct handling of the state vectors in the solving of cMDPs.
Remember that the fortunate derivation of the efficient LP algorithm is heavily thanks to the mutual-
exclusiveness of the Micro Segments. In contrast, when we directly solve the continuous-state cMDP
problems based on the raw values of the continuous state vectors, we need a completely-new and
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efficient optimization algorithm that does not assume the mutual-exclusivity of discrete segments.
We would need to refer the literature of continuous-state reinforcement learning algorithms using
piecewise-linear approximations. Converting the continuous state vectors into mutually-independent
binary features is another considerable direction to be investigated.

Other meaningful directions to enlarge the applicability of our framework is to increase the types
of marketing actions the system is able to handle, by referring the actual details of real marketing
operations. The first direction to be investigated is to incorporate mass advertising, in which we cannot
control the exposure of an ad to each individual. A new optimization algorithm, which incorporates the
constraints on the targeting of consumers with mass advertising, should be developed for Integrated
Marketing Communications. The second direction is to incorporate the interactions among consumers
whose predictive modeling has been already discussed in Chapter 6. The assumption of independence
among the responses by all of the consumers does not hold in the real world, and the current discrete
event simulation would be replaced by a more general agent-based simulation (e.g., (Libai et al.,
2013)), introducing correlation among the response events. Rigorous risk evaluation for the marketing-
mix policies would be enabled with such correlation modeling.

6.6 Summary

This chapter introduced a normative marketing decision-making algorithm that exploits the forecasts
by our nonparametric descriptive model. The normative optimization problem is implemented as an
optimization of target populations to form a time-dependent marketing-mix policy that allocates the
marketing budgets across many periods, segments, and channels. We introduced a new LP algorithm
to solve the optimization problem, which allows for inputting complex budget constraints required in
real marketing operations. With simulating continuous-state marked point processes to generate each
consumer’s response events, we validated the implied revenue gains by our normative decision-making
algorithm, based on an online retailing case study. By relying on this final experimental achievement,
we believe the huge benefit of forecasting the behaviors of humans based on our philosophy of non-
parametric multi-scale descriptive modeling, and the practical rationality of the normative decision
making as an additional outcome derived from the philosophy.
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Dependence on micro-segmentation
without action variables

Dependence on micro-segmentation
using action variables

Dependence on budget constraints

Figure 6.8: What-If analysis whose values are multiplied with the same secret scalar used in Figures
6.6 and 6.7. The left-most white bars in the top two figures show the actual value in the simulation pe-
riod, while every other bar shows the 100-path mean and standard deviation (with an error bar) for an
optimized policy. Segmentation names “Fast-d” and “Slow-d” represent d-depth micro-segmentation
trees whose transitions from one segment into another segment are frequent or infrequent, respec-
tively. The top-left and top-right figures provide comparisons among several micro-segmentation cri-
teria, where action variables are not incorporated in the branching of the micro-segmentation in the
left figure, while are incorporated in the right figure. The bottom figure shows the dependence of the
realized profit on each of the set of budget constraints, when the Fast and depth=4 micro-segmentation
involving action variables is commonly used. By comparing the top-right figure with the top-left
one, segmentation using action variables is shown to make state-based policies significantly prof-
itable. The highest performance when channel-specific budget constraints are imposed tells us that
some constraints in LP are able to stabilize the optimization, by mitigating the errors introduced in
approximating the true continuous-state cMDPs by a discrete-segment ones.
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Chapter 7

Conclusion

This dissertation introduced efficient decision-making algorithms in the real world, based on the non-
parametric descriptive models to predict the behaviors of interacting humans. The proposed nonpara-
metric models interpolate multi-scale basis functions for handling either the fat tails produced by the
positive feedback, or the long-range dependence yielded by the persistent interactions. By explicitly
preparing the multi-scale basis functions in advance, we derived convex optimization algorithms to
obtain the global optima of the model parameters in all of the technical contributions. The design of
the multi-scale basis functions has been customized for each of the transportation and the marketing
application examples. In the latter marketing application, the nonparametric mixture modeling con-
tributed for the efficient computation of the time-varying state vectors, which consequently yielded a
normative and optimal marketing-mix decision-making algorithm for marketers to obtain the maxi-
mum long-term profit.

In this concluding chapter, we start with reviewing the essences of our specific technical contribu-
tions. Section 7.1 discusses every specific contribution provided in each of the previous four chapters.
Then we proceed into considerations about how our philosophy of the nonparametric multi-scale mix-
tures has been commonly applied in all of the technical contributions, or customized for implementing
each specific contribution. Based on these considerations, Section 7.2 provides our main overview
to conclude this dissertation in terms of the generalization capability of the nonparametric-mixture
modeling in broader domains. In considering the future work we will next solve, we try to go back
to the essential challenge introduced in Chapter 1, which is the accurate modeling and prediction of
the bounded rationality and the positive feedback in the real world of interacting humans. Section 7.3
discusses how we should solve the remaining problems still by using the statistical descriptive mod-
eling framework, but by focusing more on microsophic decision-making mechanisms each human
possesses.

7.1 Our Contributions

In Chapter 3, as our first contribution, we introduced the acceleration of globally-optimal nonparamet-
ric density estimation, via deriving an efficient optimization algorithm applied in the convex cluster-
ing (Lashkari and Golland, 2008) or the Kullback-Leibler Importance Estimation Procedure (KLIEP;
Sugiyama et al. (2008)). Such accelerated algorithm of nonparametric density estimation is a pre-
requisite for stably fitting many fat-tail distributions observed in large-scale datasets. Instead of the
existing first-order EM algorithms, the accelerated algorithm adopted the Sequential Minimal Opti-
mization approach that picks up a pair of two similar basis functions and quickly prunes the irrelevant
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one of them. In each step to update the mixture weights for such two basis functions, exact evalu-
ations of their first derivatives enabled quick judgement of the pruning of the irrelevant basis while
an element-wise Newton-Raphson method produced efficient updating of the weights of relevant ba-
sis functions. The proposed algorithm is further accelerated when we incorporate locally-adaptive
bandwidths, which embody a multivariate generalization of the multiple scales.

In Chapter 4, as our second contribution and an example of applying the first contribution for
transportation decision making, we introduced a scalable nonparametric conditional density estimator
of many travel-time distributions conditional on each of the huge number of links in a road network,
and each of the one-hour timezones. The proposed estimation algorithm is designed on deliberations
about how to realize all of the high accuracy in statistical prediction, scalability for large datasets,
and physical interpretation to justify the interpolation mechanism in the proposed estimator, based
on the positive feedback among many vehicle drivers. The proposed estimator begins with fitting
of nonparametric basis density functions, which are modeled as mixtures of gamma or log-normal
distributions having multiple characteristic scales. Then, for both generalizing for the links having
limited numbers of travel-time samples and reflecting the positive feedback, the proposed estimator
interpolates these nonparametric basis density functions among close links using a sparse diffusion
kernel, which emulates the propagation of traffic and which is customized for guaranteeing the scal-
ability. The accelerated convex clustering algorithm and the KLIEP are applied in optimizing both
of the first mixture of gamma or log-normal distributions, and the second mixture of the nonparamet-
ric basis density functions. The full spatio-temporal estimates are provided by further interpolating
these multiple spatial estimators among multiple timezones. Both normative and descriptive decisions
in transportation, such as route recommendation and traffic simulation, are realized by inputting the
fitted travel-time distributions into risk-sensitive stochastic routing algorithms.

As well as the modeling of fat tails, we addressed the modeling of long-range dependence in
Chapter 5, by taking a marketing application example to predict the responses of each individual
consumer. The philosophy of nonparametric multi-scale mixtures is here implemented as a new model
of continuous-time Inhomogeneous Poisson Processes to distribute the spikes of response events by
consumers, whose covariates are compound outcomes of marketing actions and self-exiting consumer
activities. Here the nonparametric mixtures are implemented as staircase functions, which are the
mixtures of multi-scale step functions and whose computational efficiency is essential for securing
the scalability to large datasets. The staircase-functional nonparametrics was exploited for modeling
both of the power-law forgetting curves caused by the interactions among each consumer’s multiple
memories, and those for the aggregated responses reflecting the word-of-mouth and social trends
among mutually-interacting consumers. To detect each mutually-interacting group of consumers, we
introduced an automatic clustering of time-series regression residuals, which is the difference between
the actual responses and predicted ones by an initial Poisson regression without the mutual-interaction
factor.

In Chapter 6, we addressed an economic decision making problem to optimizing the marketing-
mix budget allocation, whose underlying forecasts are given by the nonparametric-mixture models
reflecting the long-range dependence between marketing-stimulus and response events. Here the
computationally-efficient staircase nonparametrics, which yielded the finite-dimensional state vec-
tors, greatly helped us derive an efficient state-based marketing-mix policy based on the constrained
Markov Decision Processes. Consideration about the budget constrains in real marketing operations
led us to design an efficient Linear Programming algorithm to optimize a target population, for each
triple of a timing, a target segment, and a marketing-communication channel. What-If analysis exper-
iments, which test different segmentation criteria while adopt the common simulation model, enabled
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us to compare many marketing-mix strategies within the common metric about the implied profit
gains.

7.2 Overview

The common issue in all of the specific problems is the modeling of the fat tails and the long-range
dependence observed in the real human activities. The philosophy of the efficient nonparametric multi-
scale mixtures is implemented either as the globally-optimal sparse nonparametric density estimation
for the fat-tail distributions, or the computationally-efficient time-varying explanatory variables in the
Inhomogeneous Poisson Processes to model the long-range dependence. The Sequential Minimal
Optimization technique to accelerate the convex clustering algorithm is regarded as a common and
generally-useful technique to guarantee the applicability of sparse nonparametric density estimation
for large-scale and real-world datasets. The high predictive accuracies about the lots of travel-time
distributions in vehicle traffic modeling provides one experimental evidence of the efficiency of the
proposed nonparametric philosophy, in addition to the purely algorithmic contribution. By focusing on
the fact that we needed careful strategies to interpolate each basis density functions with one another,
we regard the combination of the accelerated and global optimization of the mixture weights with
domain-specific manual designs of basis functions, which should cover all of the required scales in
each application, as the essential key to achieve high generalization capabilities in fitting lots of fat-tail
and complex distributions. The success of the consumer-response prediction implies that the effec-
tive combination of the convex optimization and custom design of multi-scale basis density functions
is applicable also for modeling the long-range dependence. Another outcome of the nonparametric
mixture of finite-support multi-scale staircase functions is each of the efficiently-computed state vec-
tors, which are explanatory variables in the Poisson regression. Such efficient representation of the
state vectors while still incorporating the long-range dependence is the main enabler of the norma-
tive marketing-mix decision making algorithm, which is based on the constrained Markov Decision
Processes and whose profit gains are experimentally evidenced with discrete event simulation.

In reviewing the connection between the successes in transportation and marketing applications,
we are able to remember the fact that both fat-tail distributions and long-range dependence are com-
monly parametrized by power-law functions. Our nonparametric mixture modeling methodology is
free from all of the three crucial limitations of high bias, local optimality, and non-scalability which
were first discussed in Section 1.4. This significant computational advantages, over the existing para-
metric approach of directly modeling the power-law functions, are regarded as the main reasons of the
experimental high performances by our nonparametric models in all of the example applications.

In contrast to the commonality of the nonparametric mixture philosophy, the required customiza-
tions in designing each basis function are caused by the limitation of available data, and physical
interpretations or domain knowledge have been shown to be useful in such customizations. For exam-
ple, while the main justification of the sparse diffusion kernel is the positive feedback that occurs as
propagation of traffic on a road network, such sparse diffusion kernel also contributed for improving
the predictive accuracies with alleviating the lack of training data. For another example, the aggre-
gation of the frequencies of responses to account for unobservable word-of-mouth is an outcome by
prioritizing the collective behavior of the entire market over the detectability of each inter-individual
interaction. This marketing-specific customization was also inspired by limitation of available data,
and further led the idea of clustering the consumers based on a time-series of the residuals, which is
the difference between the actual responses and predicted ones by a basic Inhomogeneous Poisson re-
gression. The effectiveness of elegantly solving the problems with constraints has also been observed
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in the design of the normative marketing-mix optimization algorithm. Here the consideration about
the budget constrains in real marketing operations led us to design an efficient Linear Programming
algorithm to optimize a target population.

Based on all of the considerations in this section, we conclude that our philosophy of the non-
parametric descriptive modeling leads effective and practical decision making strategies in interacting
with other humans, as well as providing accurate forecasts. The source of this practicality is the non-
parametric multi-scale nature in the descriptive modeling, which is supported by the stable and global
optimization of the mixture weights and the broad coverage for all of the required scales to yield the
fat tails or the long-range dependence in each application domain.

7.3 Future Work

In the future work, we primarily plan to directly model the bounded rationality of humans with fo-
cusing on more microscopic mechanisms. The nonparametric models in this dissertation have been
specialized for predicting macroscopic observations, which are essentially the collective phenomena
as the aggregation of many microscopic interactions among humans. While this macroscopic approach
resulted in an efficient normative decision making, more interpretable approaches while keeping on
the high predictive accuracy should be created for more useful implications. One possible way is to
modify the nonparametric models as directly explaining the mechanisms, with which each human be-
comes often irrational. Such mechanical explanations would be a mixture of the optimizing models
assuming the rationality of humans, and the statistical models merely focusing on the input-output
relationship.

The other fundamental direction in extending our approach is the microscopic modeling of in-
teractions, whose statistical estimation is highly accurate even when the amount of training data is
limited. A key phenomenon that strongly impacts the way of our decision making and that we must
predict with high accuracy is the bursty correlation among humans, such as financial crisis caused by
fears of many investors and exploding word-of-mouth about exceptionally excellent products. In the
real world, correlation among the behavior of each human is time-varying where strong interactions
happen within very short periods despite the weak coupling strengths in most of the other days. The
limited lengths of such strong-interaction periods make the statistical estimation of the time-varying
correlation challenging, as we discussed in Chapter 5. Specialized designs of autoregressive predictive
models, which have parsimonious parametrizations while keep on the sufficient explanatory powers
about the variability of the correlation, must be provided for handling the burstness phenomena. Thus,
efficient statistical modeling with careful considerations about the learnability to real data will remain
as the core of our approaches in any possible direction.
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