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Collective inertia of the Nambu-Goldstone mode from linear response theory

Nobuo Hinohara*

Center for Computational Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
and NSCL/FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

(Received 30 June 2015; published 21 September 2015)

Background: Spurious zero-energy Nambu-Goldstone (NG) modes appear when the symmetry of a system is
spontaneously broken. The Thouless-Valatin inertia, the collective inertia of the NG mode, contains important
information concerning collective motion.
Purpose: To establish an efficient and precise method for deriving the collective inertia and the conjugate
operator of a NG mode, I derive an expression for the response function in terms of the coordinate-momentum
representation of the quasiparticle random-phase approximation which is valid even if a symmetry-restoring
zero-energy mode is present.
Methods: I use the finite amplitude method for computing the response function of superfluid nuclei with the
nuclear density functional theory.
Results: I derived analytically the collective inertia and the conjugate coordinate operator of the NG mode from
the zero-energy linear response with the momentum operator of the NG mode. The formulation is tested in
the cases of translational and pairing rotational modes. Illustrative calculations are performed for the neutron
pairing rotation in Sn isotopes, the proton pairing rotation in N = 82 isotones, and the neutron and proton pairing
rotations around the 130Xe nucleus.
Conclusions: The proposed formulation allows us to compute the collective inertia of the NG mode precisely
and efficiently. The conjugate coordinate operator can be utilized to remove spurious contributions to the strength
distribution in the finite amplitude method.
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I. INTRODUCTION

Spontaneous symmetry breaking is a universal phe-
nomenon that plays an essential role in various fields of
physics. The emergence of pions from chiral symmetry
breaking and gauge-symmetry breaking in superconducting
systems are typical examples.

The nucleus is a finite quantum system, whose exact ground
state does not break the symmetries of the Hamiltonian. How-
ever, if we introduce a one-body mean-field approximation
such as the Hartree-Fock-Bogoliubov (HFB) approximation
to the low-energy nuclear many-body problem, spontaneous
symmetry breaking can take place to account for more corre-
lations within the one-body approximation [1–5]. Continuous
symmetries that are conserved in the nuclear Hamiltonian
which can be broken spontaneously are the translational,
rotational, and particle-number gauge symmetries. The isospin
symmetry can be broken spontaneously [6,7], but is explicitly
broken in the level of the effective nuclear and Coulomb
interactions [8].

If a continuous symmetry is broken spontaneously, a zero-
energy Nambu-Goldstone (NG) mode appears which restores
it [9,10]. In the case of the symmetry-broken nuclear mean
field, the NG mode appears in the self-consistent solution to the
quasiparticle random-phase approximation (QRPA) as a sym-
metry restoration mode [11]. The NG modes that correspond
to broken symmetries in the mean field approximation (for
example, the center of mass mode for translational symmetry,
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the rotational mode for rotational symmetry, and the pairing
rotational mode for particle-number gauge symmetry) are
associated with infinitesimal transformations of the frame of
reference. As such, NG modes are known as “spurious modes,”
since they do not represent a physical excitation within the
intrinsic frame.

The actual spectroscopy measurement is performed in the
laboratory frame for a nuclear energy eigenstate that preserves
the symmetries of the Hamiltonian. Then the inertia of the NG
mode in the intrinsic frame has an experimental correspon-
dence. The collective inertia for the NG mode within the QRPA
framework is called the Thouless-Valatin inertia [12]. The
meaning of this inertia changes depending on the NG mode
present: for translational motion it represents the total mass of
the nucleus; for the rotational and pairing-rotational modes,
it represents the rotational and pairing-rotational moments of
inertia, respectively. Except for the center of mass mode where
both the coordinate and momentum QRPA phonon operators
are known [11], the Thouless-Valatin inertia is not known in
advance, and the QRPA equations must be solved in order to
find it.

The Thouless-Valatin inertia is important because it con-
tains information on symmetry restoration, namely, ground
state correlations to a particular broken symmetry [13,14].
This inertia was recently used for the three-dimensional
spacial rotational mode in the five-dimensional quadrupole
collective Hamiltonian [15,16]. When compared with the
Belyaev moment of inertia [17,18] (its simplified ver-
sion), the Thouless-Valatin inertia is typically 30% higher; this
is due to the contributions from two-body residual interactions
not found in the Belyaev moment of inertia [19]. The
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Thouless-Valatin inertia has also been applied to symmetry
breaking in quantum dots [20]. Given its usefulness, a
microscopic derivation of the inertia based on the nuclear
energy density functional (EDF) would be helpful in making
systematic calculations with predictive power [21].

The expression for the Thouless-Valatin inertia is well
known in terms of the QRPA A and B matrices [11,22–24].
However, its direct evaluation is not trivial due to the size
of these matrices. Therefore, alternative approaches for com-
puting the Thouless-Valatin inertia have been proposed: the
cranked mean-field calculation [19,25,26] and a perturbative
expansion based on adiabatic time-dependent HFB [27].

An alternative approach to solving the QRPA equations
based on linear response theory has been developed for nuclear
density functional theory: it is called the finite amplitude
method (FAM) [28]. In the FAM, the response function to
an external one-body field can be evaluated only through a
one-body induced field, and the calculation cost is significantly
reduced compared with the matrix diagonalization of the
QRPA equations. The FAM has been implemented on various
versions of Skyrme-HFB codes [29–31] and within covariant
density functional theory [32,33]. Not only does the FAM serve
as an efficient way to calculate strength functions [34,35], it
has also been used to improve upon solution methods of the
QRPA equations [36–38]. Up to now the FAM has been used
to find physical excitations, and has not been formulated for
the symmetry restoration NG modes.

The NG mode sometimes gives an unphysical contribution
to a physical excitation that has the same quantum numbers.
Its energy can be nonzero when a self consistency between the
HFB and QRPA equations is broken, or when basis truncation
violates the exact symmetry numerically. In Ref. [28], a
prescription to remove such contamination from the FAM
response function is proposed and demonstrated in the case
of center-of-mass motion. A similar prescription is employed
in the iterative Arnoldi diagonalization [39]. To apply this
prescription to other modes, however, we need full solutions
of the NG mode, which are not known in advance other than
in the case of center-of-mass mode.

The aim of this paper is to present a formalism of the FAM
that can be applicable in the presence of the NG mode and
give expressions for the Thouless-Valatin inertia and conjugate
coordinate operator of the NG modes. The expression of the
FAM response function in terms of the QRPA solutions [37]
is based on the XY representation of the QRPA equation, and
is not applicable to the NG mode. In this paper, I derive the
spectral representation of the response function of the FAM in
terms of the momentum-coordinate (PQ) representation of the
QRPA [11,40]. This is done to handle both the NG modes and
imaginary solutions of the QRPA in addition to the physical
modes.

This paper is organized as follows. In Sec. II, the QRPA
equations in the PQ representation are recapitulated. Sec-
tion III contains a brief introduction to the FAM, and its
response function is expressed in the PQ representation of
the QRPA in Sec. IV. Then in Sec. V, the expression for
the Thouless-Valatin inertia is derived. Numerical tests of the
formalism for the center of mass motion and pairing rotations
are presented in Sec. VI, and realistic calculations of the

neutron and proton pairing rotations are shown in Sec. VII.
Last, conclusions and outlook are given in Sec. VIII.

II. QRPA IN XY AND PQ REPRESENTATIONS

I recapitulate the QRPA matrix expression for later conve-
nience [11]. The QRPA equation in XY representation is given
by

SX = �3XO, (1)

where

Sμν,μ′ν ′ =
(

A B
B∗ A∗

)
μν,μ′ν ′

, Xμν,i =
(

Xi Y i∗

Y i Xi∗

)
μν

, (2)

�3 =
(

1 0
0 −1

)
, Oij =

(
� 0
0 −�

)
ij

, (3)

where μν, μ′ν ′ are the two-quasiparticle indices, ij are the
indices for QRPA eigenmodes, and A and B are the QRPA
matrices. The indices of �3 can be either μν,μ′ν ′ or ij . The
matrix � in O is �ij = �iδij , where �i is the energy of the
QRPA eigenmode. The amplitudes Xi and Y i are the two-
quasiparticle amplitudes of a QRPA phonon operator

Ô
†
i =

∑
μ<ν

Xi
μν Â

†
μν − Y i

μν Âμν, (4)

with Â
†
μν = â†

μâ†
ν ; they are normalized with

〈[Ôi,Ô
†
j ]〉 = δij , 〈[Ô†

i ,Ô
†
j ]〉 = 0, (5)

or equivalently

X†�3X = �3, X�3X† = �3. (6)

The QRPA equations are written in the Hamiltonian expression
as

[ĤQRPA,Ô
†
i ] = �iÔ

†
i , [ĤQRPA,Ôi] = −�iÔi, (7)

where ĤQRPA is the QRPA part of the Hamiltonian. We always
have pairs of solutions with positive and negative frequencies.
This expression assures that the two-quasiparticle part of the
Hermitian broken-symmetry operator P̂NG given by

P̂NG =
∑
μ<ν

(PNG)μν Â
†
μν + (PNG)∗μν Âμν (8)

is always a solution ÔNG of the equation with �NG = 0. The
problem with the XY representation of the QRPA equations
for NG modes is that they cannot be normalized with Eq. (6).

We now switch to the PQ representation to handle NG
modes. We introduce Hermitian coordinate and momentum
operators that describe the eigenmodes as

Q̂i =
√

1

2Mi�i

(Ôi + Ô
†
i ) =

∑
μ<ν

Qi
μν Â

†
μν + Qi∗

μν Âμν, (9)

P̂i = 1

i

√
Mi�i

2
(Ôi − Ô

†
i ) =

∑
μ<ν

P i
μν Â

†
μν + P i∗

μν Âμν, (10)

034321-2



COLLECTIVE INERTIA OF THE NAMBU-GOLDSTONE . . . PHYSICAL REVIEW C 92, 034321 (2015)

and regard these operators as a starting point. Here Mi is the
inertia for each mode. The QRPA equations in terms of these
operators are written as

∑
μ′<ν ′

(
A B
B∗ A∗

)
μν,μ′ν ′

(
Pi

−P ∗
i

)
μ′ν ′

= i�2
i Mi

(
Qi

Q∗
i

)
μν

, (11)

∑
μ′<ν ′

(
A B
B∗ A∗

)
μν,μ′ν ′

(
Qi

−Q∗
i

)
μ′ν ′

= − i

Mi

(
Pi

P ∗
i

)
μν

. (12)

By defining the matrices

Vμν,i =
(

P i Qi

−P i∗ −Qi∗

)
μν,i

, Wij =
(

0 −iM−1

iM�2 0

)
ij

,

(13)

with Mij = Miδij , the QRPA equations in PQ representation
are summarized as

SV = �3VW. (14)

The operators P̂i and Q̂j are normalized with

〈[Q̂i ,P̂j ]〉 = iδij , 〈[Q̂i ,Q̂j ]〉 = 〈[P̂i ,P̂j ]〉 = 0, (15)

or equivalently

V†�3V = �2, V�2V† = �3, (16)

where

�2 =
(

0 −i
i 0

)
. (17)

The solution for a zero-energy NG mode is written as(
A B
B∗ A∗

)(
PNG

−P ∗
NG

)
= 0, (18)(

A B
B∗ A∗

)(
QNG

−Q∗
NG

)
= − i

MNG

(
PNG

P ∗
NG

)
, (19)

where MNG is the Thouless-Valatin inertia for the NG mode.
We assume that the A and B matrices are real. From the real
and imaginary parts of Eq. (19), we have

(A − B)QR
NG = P I

NG

MNG
, (A + B)QI

NG = − P R
NG

MNG
, (20)

where we use QNG = QR
NG + iQI

NG and PNG = P R
NG + iP I

NG.
The normaization of the Q̂NG and P̂NG operators (15) can be
written as

2
(−QI

NGP R
NG + QR

NGP I
NG

) = 1. (21)

Substituting Eq. (20) into the equation above, we have the
expression for the Thouless-Valatin inertia

MNG = 2
[
P R

NG(A + B)−1P R
NG + P I

NG(A − B)−1P I
NG

]
. (22)

In many cases, PNG is either real or pure imaginary. Then the
expression reduces to

MNG =
{

2PNG(A + B)−1PNG
(
PNG = P R

NG

)
,

−2PNG(A − B)−1PNG
(
PNG = iP I

NG

)
.

(23)

Computation of the Thouless-Valatin inertia from Eq. (23)
requires full evaluation of the A and B matrices of large di-
mensions for recent nuclear density functional theory without
symmetry restrictions. In Sec. V, I derive expressions for the
Thouless-Valatin inertia based on linear response theory.

III. FINITE-AMPLITUDE METHOD

In this section I introduce the FAM, and express the
response function in the PQ representation in Sec. IV following
the notations in Ref. [30]. We start with an external time-
dependent field F̂ (t) with a frequency ω and a small finite
amplitude parameter η,

F̂ (t) = η{F̂ e−iωt + F̂ †eiωt }, (24)

applied to the system. Here the one-body operator is written
in the quasiparticle basis

F̂ =
∑
μ<ν

(
F 20

μν Â
†
μν + F 02

μν Âμν

) +
∑
μν

F 11
μν B̂μν, (25)

where B̂μν = â†
μâν . In the FAM, we solve the time-dependent

HFB (TDHFB) equations with the external field

i
∂

∂t
âμ(t) = [Ĥ (t) + F̂ (t),âμ(t)]. (26)

The time dependence is governed by the forced oscillation of
the external field. The time-dependence of the quasiparticle
and the Hamiltonian is given by

âμ(t) = {âμ + δâμ(t)}eiEμt , (27)

δâμ(t) = η
∑

ν

â†
ν{Xνμ(ω)e−iωt + Y ∗

νμ(ω)eiωt }, (28)

Ĥ (t) =
∑

μ

Eμ B̂μμ + δĤ (t), (29)

δĤ (t) = η{δĤ (ω)e−iωt + δĤ †(ω)eiωt }, (30)

δĤ (ω) =
∑
μ<ν

{
δH 20

μν(ω) Â
†
μν + δH 02

μν(ω) Âμν

}
, (31)

where Eμ is the quasiparticle energy and Xμν(ω) and Yμν(ω)
are the FAM amplitudes. Using the expressions above and
taking the terms linear to η (small-amplitude approximation),
the TDHFB equations are written as

(Eμ + Eν − ω)Xμν(ω) + δH 20
μν(ω) = −F 20

μν, (32)

(Eμ + Eν + ω)Yμν(ω) + δH 02
μν(ω) = −F 02

μν. (33)

This expression does not involve the A and B matrices
explicitly, but through the one-body induced fields, δH 20(ω)
and δH 02(ω). This is the advantage of the FAM: the response
of the system to the external field F̂ can be evaluated from
one-body quantities only. For more details on how to compute
the one-body induced field in nuclear density functional theory,
see Ref. [30]. We also note that the FAM equation is formally
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equivalent to linear response theory, and can be written as(
X(ω)
Y (ω)

)
= −

[(
A B
B∗ A∗

)
− ω

(
1 0
0 −1

)]−1(
F 20

F 02

)
= − R(ω)

(
F 20

F 02

)
, (34)

where R(ω) is the response function.

IV. FAM RESPONSE FUNCTION IN THE PQ
REPRESENTATION

Now I derive the expression of the response function R(ω)
in terms of the PQ representation of the QRPA. A similar
derivation has been done for the XY representation of the

QRPA in Ref. [37]. Using Eqs. (14) and (16), the response
function R(ω) is written as

R(ω) = [S − ω�3]−1 = V[W − ωI]−1�2V†, (35)

where

[W − ωI]−1 =
(−ω −iM−1

iM�2 −ω

)−1

, (36)

and I is a unit matrix. We note that this expression cannot be
defined at ω = ±�i . This excludes ω = 0 if a NG mode is
present. This matrix has blocked structure for the same index
in the four blocks, and we can take the inverse for each 2 × 2
matrix. The response function and the FAM amplitudes with
P and Q coefficients are now given as

R(ω)μν,μν ′ =
∑

i

1

ω2 − �2
i

×
[(

iωP i
μν −Mi�

2
i Q

i
μν

)
Qi∗

μ′ν ′ +
(−M−1

i P i
μν −iωQi

μν

)
P i∗

μ′ν ′
(−iωP i

μν +Mi�
2
i Q

i
μν

)
Qi

μ′ν ′ +
(
M−1

i P i
μν +iωQi

μν

)
P i

μ′ν ′(−iωP i∗
μν +Mi�

2
i Q

i∗
μν

)
Qi∗

μ′ν ′ +
(
M−1

i P i∗
μν +iωQi∗

μν

)
P i∗

μ′ν ′
(
iωP i∗

μν −Mi�
2
i Q

i∗
μν

)
Qi

μ′ν ′ +
(−M−1

i P i∗
μν −iωQi∗

μν

)
P i

μ′ν ′

]
,

(37)[
Xμν(ω)

Yμν(ω)

]
= −

∑
μ′<ν ′

Rμνμ′ν ′ (ω)

[
F 20

μ′ν ′

F 02
μ′ν ′

]
=

∑
i

1

ω2 − �2
i

[(−iωP i
μν + Mi�

2
i Q

i
μν

)〈Qi |F̂ |0〉 + (
M−1

i P i
μν + iωQi

μν

)〈Pi |F̂ |0〉(
iωP i∗

μν − Mi�
2
i Q

i∗
μν

)〈Qi |F̂ |0〉 + (−M−1
i P i∗

μν − iωQi∗
μν

)〈Pi |F̂ |0〉

]
,

(38)

where we define the transition strengths from the ground state to the states expressed with P̂i and Q̂i phonon operators as

〈Pi |F̂ |0〉 ≡〈[P̂i ,F̂ ]〉 =
∑
μ<ν

P i∗
μνF

20
μν − P i

μνF
02
μν, (39)

〈Qi |F̂ |0〉 ≡〈[Q̂i ,F̂ ]〉 =
∑
μ<ν

Qi∗
μνF

20
μν − Qi

μνF
02
μν. (40)

We note that the FAM amplitudes X(ω) and Y (ω) are not Xi and Y i eigenvectors of the QRPA themselves, therefore they are
well defined through the linear response equation even if there are NG modes. The FAM strength function is

S(F̂ ,ω) =
∑
μ<ν

F 20∗
μν Xμν(ω) + F 02∗

μν Yμν(ω)

=
∑

i

1

ω2 − �2
i

{
1

Mi

|〈Pi |F̂ |0〉|2 + Mi�
2
i |〈Qi |F̂ |0〉|2 + ω[QP ]i(F̂ )

}
, (41)

where we define a real quantity [QP ]i(F̂ ) ≡ i(〈Qi |
F̂ |0〉∗〈Pi |F̂ |0〉 − 〈Pi |F̂ |0〉∗〈Qi |F̂ |0〉). When NG modes are
not present (�i �= 0), the following transition strength can be
defined:

〈i|F̂ |0〉 = i

√
1

2Mi�i

〈Pi |F̂ |0〉 +
√

Mi�i

2
〈Qi |F̂ |0〉, (42)

〈0|F̂ |i〉 = i

√
1

2Mi�i

〈Pi |F̂ |0〉 −
√

Mi�i

2
〈Qi |F̂ |0〉, (43)

and by substituting these into Eq. (41), we can go back to the
original expression of the FAM strength function [37]

S(F̂ ,ω) = −
∑
i>0

(
|〈i|F̂ |0〉|2
�i − ω

+ |〈0|F̂ |i〉|2
�i + ω

)
. (44)

Generally, the solutions of the QRPA equations consist of
physical modes with �2

i > 0, NG modes with �2
i = 0, and

imaginary modes with �2
i < 0. Imaginary solutions of the

QRPA equations can occur when the HFB state does not
correspond to a variational minimum. The PQ representation
of the strength function (41) is valid for all three kinds of the
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modes. We consider the QRPA equations at a nonvariational
minimum mainly in two cases. When the HFB code has a
symmetry restriction, we cannot take the variation against
the restricted degrees of freedom, and unexpectedly the HFB
state obtained with the symmetry-restricted code can be
unstable. Typical examples are when a deformed nucleus is
computed with a spherical HFB code, or when a triaxial
state is computed with an axial HFB code. The transition
to isoscalar pairing condensation with a HFB code with
proton-neutron symmetry and proton-neutron particle-particle
RPA was recently discussed from this point of view [41].
Another case is large-amplitude collective motion. The local
QRPA [16] based on the adiabatic theory of large-amplitude
collective motion [42] requires the solutions of the QRPA
equations at nonequilibrium HFB states.

We can split the contributions of three modes to the strength
function as

S(F̂ ,ω) = S(F̂ ,ω)phys + S(F̂ ,ω)NG + S(F̂ ,ω)imag, (45)

where the contribution from the NG mode is given by

S(F̂ ,ω)NG =
∑

i,�i=0

{
|〈Pi |F̂ |0〉|2

Miω2
+ [QP ]i(F̂ )

ω

}
. (46)

The same expression is found in Ref. [43]. When we compute
the strength function distribution with the FAM, we replace
the real frequency ω by a complex value for the frequency
ω + iγ where the imaginary part gives the width 
 = 2γ . If
the external field can excite the NG mode, there is a spurious
contribution

− 1

π
Im S(F,ω + iγ )NG

= γ

π

∑
i,�i=0

{
2ω|〈Pi |F̂ |0〉|2
Mi(ω2 + γ 2)2

+ [QP ]i(F̂ )

ω2 + γ 2

}
(47)

to the strength distribution. The procedure to remove this
contribution from the center of mass mode has been proposed
in Ref. [28].

V. THOULESS-VALATIN INERTIA FOR
NAMBU-GOLDSTONE MODES

A. Thouless-Valatin inertia from the momentum operator

The momentum operator P̂NG of a NG mode is a conse-
quence of a broken symmetry of the system. By using it as an
external field of the FAM, we can show that the contribution
to the strength function is zero

S(P̂NG,ω) = 0 (48)

from Eqs. (15), (41), and (46). Here we recall that the response
function (37) is undefined at ω = 0 in the presence of the NG
mode. From Eq. (34), the linear response equation at ω = 0 is
written as (

A B
B∗ A∗

)(
X(0)
Y (0)

)
= −

(
PNG

P ∗
NG

)
. (49)

Assuming that the A and B matrices are real, and decom-
posing X(0) and Y (0) into their real and imaginary parts,

we have

(A + B)[XR(0) + YR(0)] = −2P R
NG, (50a)

(A − B)[XI (0) − Y I (0)] = −2P I
NG, (50b)

XR(0) − YR(0) = 0, (50c)

XI (0) + Y I (0) = 0. (50d)

The FAM strength function at ω = 0 is then

S(P̂NG,0) =
∑
μ<ν

(P ∗
NG)μνXμν(0) + (PNG)μνYμν(0)

= − 2P R
NG(A + B)−1P R

NG − 2P I
NG(A − B)−1P I

NG

= − MNG, (51)

where we use Eq. (22). Therefore the FAM strength function
for the momentum operator of the NG mode is summarized as

S(P̂NG,ω) =
{

0 (ω �= ±�i),
−MNG (ω = 0), (52)

and the strength at zero frequency gives the Thouless-Valatin
inertia. Using Eqs. (20), (50), and (52), the coordinate opeartor
of the NG mode is then given by

QNG = −i
X(0) + Y ∗(0)

2S(P̂NG,0)
. (53)

Except for the trivial case of the center-of-mass mode, the
coordinate operator of the NG mode is not known in advance,
and this expression will be useful for removing spurious
modes [28].

B. Thouless-Valatin inertia from the coordinate operator

An alternative derivation of the Thouless-Valatin inertia
is found from the FAM calculation using the conjugate
coordinate operator of the NG mode Q̂NG as an external field.
In this case, the strength function is derived from Eqs. (15)
and (46) as

S(Q̂NG,ω) = 1

MNGω2
(ω �= ±�i). (54)

Therefore the Thouless-Valatin inertia is given from the
energy-weighted sum rule [11] as

M−1
NG = 2m1(Q̂NG) = 2

2πi

∫
A1

ωS(Q̂NG,ω)dω, (55)

where A1 is the counterclockwise half circle in the complex
energy plane from ω = −iRA1 to iRA1 centered at the
origin [38].

C. Thouless-Valatin inertia and the m−1 sum rule

The expression for the Thouless-Valatin inertia (23) is same
as the inverse-energy-weighted sum rule given in Ref. [44]
but for the momentum operator of the NG mode. Moreover
the dielectric theorem [11,44] connects the inverse-energy-
weighted sum rule through the constrained HFB state |φ(λ)〉
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computed with the Hamiltonian Ĥ + λP̂NG:

m−1(P̂NG) = −1

2

[
∂

∂λ
〈φ(λ)|P̂NG|φ(λ)〉

]
λ=0

= MNG

2
. (56)

This theorem allows us to compute the Thouless-Valatin
rotational moment of inertia from the cranked HFB calcula-
tion [19,20,25,45]. These facts show that the Thouless-Valatin
inertia is related to the inverse-energy-weighted sum rule
m−1(P̂NG). However, we need a careful consideration of the
m−1 sum rule when NG modes are present. The expression of
the m−1 sum rule in terms of the transition matrix elements of
an operator F̂ is given by

m−1(F̂ ) =
∑

i

�−1
i |〈i|F̂ |0〉|2, (57)

and the NG modes should not be included in the summation.
Because of the discontinuous character of the FAM strength
function S(P̂NG,ω = 0), the inverse energy-weighted sum rule
from the contour integration of Ref. [38] does not provide the
Thouless-Valatin inertia. The contribution from the NG mode
to the m−1 sum rule has to be added separately. A similar
discussion is found for the m1 sum rule in the Appendix of
Ref. [46].

D. Approximate symmetry

Even though the Hamiltonian preserves its symmetry, it can
be explicitly broken in the settings of a numerical calculation.
This is actually the case for translational and rotational
symmetries. We often express the single-particle states either
in the harmonic oscillator basis expanded about the center
of mass or in the coordinate lattice of a finite box. Ideally
the translational displacement leaves the energy of the system
invariant. But if the wave function is expanded in a finite basis,
the translational/rotational symmetry is broken explicitly. This
results in the translational and rotational modes appearing
at finite energies. I discuss the effect on such approximate
symmetries on the evaluation of the Thouless-Valatin inertia.
When the symmetry is approximate, the excitation energy
�NG is finite, and the contribution to the strength function is
actually the same as other physical modes. The momentum
and coordinate operators of the NG mode are now only
approximate solutions to the QRPA equations. Therefore we
have the following approximate expressions for the strength
function at energy around ω = �NG:

S(Q̂NG,ω) ∼ 1

MNG
(
ω2 − �2

NG

) , (58)

S(P̂NG,ω) ∼ MNG�2
NG

ω2 − �2
NG

. (59)

At ω = 0, the contribution from the finite excitation energy
�NG in Eq. (59) is canceled, and Eq. (51) remains as a good
approximation to the Thouless-Valatin inertia. The energy-
weighted sum rule (55) is valid if RA1 > �NG. The position
of the excitation energy of the NG mode is estimated from

Eqs. (58) and (59) as

�2
NG = 1

S(P̂NG,0)S(Q̂NG,0)
. (60)

E. Inglis-Belyaev cranking inertia

The Inglis-Belyaev cranking inertia [17,18] is easily evalu-
ated when the FAM routine is available. The general expression
of the cranking inertia for the Hermitian operators F̂i and F̂j

is given by

MIB(ij ) = 2
∑
μ<ν

F i20∗
μν F

j20
μν + F i20

μν F
j20∗
μν

Eμ + Eν

. (61)

By setting the induced field and the energy to zero in the
FAM calculation (δH 20

μν = δH 02
μν = 0 and ω = 0), the FAM

amplitudes for operator F̂i is given without self-consistent
iteration:

Xμν(F̂i ,ω = 0) = − F i,20
μν

Eμ + Eν

, (62)

Yμν(F̂i ,ω = 0) = − F i,02
μν

Eμ + Eν

. (63)

The Inglis-Belyaev inertia is given from the amplitudes for
another operator F̂j as

MIB(ij ) = −
∑
μ<ν

[
F j,20∗

μν Xμν(F̂i ,0) + F j,02∗
μν Yμν(F̂i ,0)

]
.

(64)

If F̂i = F̂j , the Inglis-Belyaev inertia gives the response
function without an induced field. This derivation agrees
with the fact that the cranking inertia does not include the
contribution from the residual interaction.

VI. NUMERICAL TESTS

To check the derivation in the previous section and to show
its applicability, numerical calculations for 26Mg with the
EDF SLy4 [47] with volume pairing V0 = −125.2 MeV fm3

and a 60 MeV quasiparticle energy cutoff were performed.
The HFB and FAM calculations were based on the computer
code HFBTHO [48,49] and its FAM extension to the K = 0
mode [29]. The calculations were performed with various
sizes of the harmonic oscillator space from Nsh = 5 to 20.
The proton-superconducting oblate deformed HFB state with
β = −0.18 and �p = 0.619 MeV was used. The broken
symmetries in this HFB state are translational, rotational, and
proton particle number.

A. Center of mass mode

The center of mass mode appears as a translational
symmetry restoration mode. This is the only case where both
the coordinate and momentum operators are known,

Q̂c.m. = 1

A

A∑
i=1

r̂ i , P̂c.m. = −i

A∑
i=1

∇̂i , (65)
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FIG. 1. (Color online) The FAM strength function S(( Q̂c.m.)z,ω)
for a response to the center-of-mass coordinate operator with a real
frequency ω.

and the Thouless-Valatin inertia is nothing but the total mass
Mc.m. = mA [11]. The z component (K = 0) of the center-of-
mass coordinate operator ( Q̂c.m.)z is used as an external field
of the FAM. Figure 1 shows the FAM strength function with
various sizes of the harmonic oscillator single-particle model
space Nsh. In this calculation a real value of ω is used, therefore
the strength function S(( Q̂c.m.)z,ω) is also real. As I discussed
in Sec. V D, translational symmetry is not an exact symmetry
of the system if the single-particle states are expressed in a
finite harmonic oscillator basis, and the strength function is
approximated by Eq. (58). Therefore the value of the strength
function at ω = 0 is finite, and there is a low-energy pole
that corresponds to a spurious excitation of the center of
mass mode. Its energy approaches zero as the model space
size increases. The strength function for Nsh = 20 is close to
that for Nsh = 15, indicating that further convergence of the
spurious energy to zero is numerically difficult. Figure 2 shows
the same plot but for the center-of-mass momentum operator
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FIG. 2. (Color online) The FAM strength function S(( P̂ c.m.)z,ω)
for a response to the center-of-mass momentum operator with a real
frequency ω.

( P̂c.m.)z. This curve is approximated by Eq. (59), and the value
at ω = 0 shows the Thouless-Valatin inertia.

In Table I, the Thouless-Valatin inertia for the center of mass
motion in the form of 1/2m = A/2Mc.m. is listed. The value
for SLy4 is 20.73553 MeV fm2. The one-body center-of-mass
correction to the kinetic energy [50–52] is not taken into
account in this calculation because it effectively scales with the
nucleon mass m, and makes the comparison complicated. In a
smaller harmonic oscillator model space such as Nsh = 5, the
center-of-mass excitation has higher excitation energy. This
indicates the coordinate and momentum operators expressed in
a small basis are not a good approximation to the NG solution
of the QRPA, and the component of the center of mass can
be distributed over the physical modes. The normalization of
the coordinate and momentum operators are satisfied within
0.2% accuracy. With a larger harmonic oscillator model space,
the spurious energy of the center of mass reaches zero,
and the normalization of the operators is more accurate.
In Table I the Thouless-Valatin inertia computed from the
energy-weighted sum rule of the center–of-mass coordinate
operator with Eq. (55) up to 2 MeV and from the strength
function with the center-of-mass momentum operator at zero
energy with Eq. (51) are listed. Both inertias are close to the
exact value, but the inertia computed from the momentum
operator agrees precisely, because it is evaluated at a single
point ω = 0 in the complex-energy plane, and is more precise
than the discretized contour integration with the coordinate
operator. Practically, in all cases of symmetry-breaking modes
other than the center-of-mass mode, we know only the
momentum operator, and the Thouless-Valatin inertia can
be derived from it. This analysis using the center-of-mass
mode shows that, even if the symmetry is approximate, the
Thouless-Valatin inertia can be computed very accurately from
the FAM strength function.

In the same table, the Inglis-Belyaev inertia for the center-
of-mass motion is also shown. As is well known, the Inglis-
Belyaev value of the inertia deviates from the Thouless-Valatin
inertia, showing that the contribution of the residual interaction
is very important even in the case of trivial center-of-mass
motion.

B. Pairing rotational mode

Unlike center-of-mass motion, particle number operators
are defined in the configurational space. Therefore the broken
particle-number gauge symmetry is always exact if the same
model space is employed in the HFB and QRPA frameworks.

As we have seen in Eq. (52), the strength function
obtained with the proton particle number field, that is, a
broken particle-number gauge symmetry in 26Mg, S(N̂p,ω)
is zero except at ω = 0. The FAM enables us to compute
the discontinuous value at ω = 0 without any convergence
problems, and elsewhere the strength function is numerically
zero. The Thouless-Valatin inertia for the proton pairing
rotation in the present case with Nsh = 5 is 1.1545 MeV−1.
The same quantity but for the neutron number operator is
exactly zero including at ω = 0, because the neutron particle
number is a conserved symmetry, and commutes with all other
QRPA modes of a particle-hole type.
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TABLE I. The inertia for the center of mass motion of 26Mg in units of MeV fm2. The Thouless-Valatin inertia is computed from the energy
weighted sum rule of the center-of-mass coordinate operator ( Q̂c.m.)z with Eq. (55) with a radius RA1 = 2 MeV discretized with NA1 = 12
points, and from the strength function at zero energy with the center-of-mass momentum operator ( P̂ c.m.)z with Eq. (51). The Inglis-Belyaev
value of the inertia, the spurious excitation energy of the center of mass mode evaluated with Eq. (60), and the commutation of the coordinate
and momentum operators are also listed.

Nsh 1/2m from ( Q̂c.m.)z 1/2m from ( P̂ c.m.)z Inglis-Belyaev �c.m. MeV 〈[( Q̂c.m.)z,( P̂ c.m.)z]〉/i

5 20.69748 20.74676 26.04977 1.346 0.998836
10 20.78073 20.82140 25.87571 0.889 0.999310
15 20.73573 20.73232 25.73650 0.151 1.000026
20 20.73946 20.73666 25.74138 0.146 1.000041
exact 20.73553 20.73553 0 1

From Eq. (53), we can derive the proton gauge angle
operator �̂p, which is the conjugate coordinate operator of
the proton pairing rotation. Although we can compute the
Thouless-Valatin inertia from S(N̂p,ω = 0), to check the
consistency, The response to the coordinate operator of the
proton pairing rotation is shown in Fig. 3. In the figure,
the strength function computed from the FAM and Eq. (54)
with the Thouless-Valatin inertia determined from the proton
number operator are compared. Both curves agree very well as
expected. Note that this strength function S(�̂p,ω) looks very
different from that of the center-of-mass coordinate operator
S(( Q̂c.m.)z,ω) in Fig. 1. In the case of the pairing rotational
mode, the symmetry is exact, and the position of the pole
is exactly at zero energy. The Thouless-Valatin inertia from
the m1(�̂p) sum rule through Eq. (55) with RA1 = 1 MeV
is 1.1545 MeV−1, and is perfectly consistent with the inertia
from the momentum operator N̂p.

VII. REALISTIC EXAMPLES

A. Pairing rotation in single-closed-shell nuclei

As for realistic examples of NG modes in nuclei, I
discuss pairing rotations in single-closed-shell nuclei. The
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FIG. 3. (Color online) The FAM strength function for the proton
pairing-rotational angle operator S(�̂p,ω) for a real frequency ω

for 26Mg, computed with a Nsh = 5 model space, plotted together
with the curve in Eq. (54) with the Thouless-Valatin inertia MTV =
1.1545 MeV−1.

ground states of tin isotopes are known to form a neutron
pairing rotational band [11,53,54], which has been actively
discussed recently in connection with the two-neutron transfer
reaction [55–58]. The binding energy of the N -neutron
isotope B(N,Z) from the nearby reference state with neutron
N0 is written as

B(N,Z0) = B(N0,Z0) + λn(N0,Z0)�N + (�N )2

2Jn(N0,Z0)
,

(66)

where �N = N − N0, and λn(N0,Z0) is the neutron chemical
potential of the reference state. Under the assumption that the
ground states of even-even nuclei form a pairing rotational
band, the last term can be regarded as the pairing rotational
energy, and the neutron pairing rotational moment of inertia
Jn(N0,Z0) at a reference state is computed with the FAM from
the zero-energy response of the neutron particle-number field

Jn(N0,Z0) = −S(N̂n,ω = 0) (67)

at a reference state.
Again SLy4 with volume pairing in a Nsh = 20 model

space is used. The pairing strength is fixed to V0 =
−178.81 MeV fm3 which reproduces the experimental av-
eraged neutron pairing gap �̃(3)

n (116Sn) = [�(3)
n (115Sn) +

�(3)
n (117Sn)]/2 = 1.100 MeV [59]. This parameter setting is

used for all the calculations in Sec. VII. The neutron pairing
rotational moment of inertia at the reference state 116Sn
(N = 66) that is located in the middle of the N = 50 and
82 shell gaps was calculated. The Thouless-Valatin moment
of inertia for the neutron pairing rotation was Jn,TV = 5.95
MeV−1, while the Belyaev inertia was given by Jn,IB = 4.71
MeV−1, and in this case the residual interaction contributes to
the inertia about 30%.

Figure 4 shows the neutron pairing rotational energy
measured from 116Sn as a function of neutron number.
The Thouless-Valatin inertia for the neutron pairing rotation
explains the pairing rotational spectrum especially well in the
vicinity of the reference state. Agreement between the pairing
rotational energy from the Thouless-Valatin inertia and the
HFB energy shows the validity of the dielectric theorem far
from the reference state and at small anharmonicity. Note that
inclusion of the one-body center-of-mass correction violates
the dielectric theorem, because the correction term (1 − 1/A)
is not variational with respect to the change of particle
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FIG. 4. (Color online) Neutron pairing rotational energy of even
Sn isotopes. The red solid (blue dashed) curve is the pairing
rotational energy (N − 66)2/[2Jn,TV(B)(116Sn)] with the Thouless-
Valatin (Belyaev) pairing rotational moment of inertia evaluated at
116Sn. The red squares are the HFB energy EHFB(N ) − EHFB(116Sn) −
λn,HFB(116Sn)(N − 66), and the black circles are the experimental
values evaluated with −Bexp(N ) − λn,exp(116Sn)(N − 66), where the
binding energy is taken from Ref. [59]. The experimental neutron
chemical potential is evaluated with λn,exp(116Sn) = [Bexp(118Sn) −
Bexp(114Sn)]/4 = −8.345 MeV.

numbers [60]. As the neutron number changes from N = 66,
deviation from the parabola curve is seen, both in the HFB
calculations and the experimental data, indicating a change of
the intrinsic structures as a function of the neutron number.
The deviation is larger in the neutron-deficient side.

The next example is the proton pairing rotation in N = 82
isotones, where we take 142Nd (Z = 60) as our reference state.
The averaged proton pairing gap �̃(3)

p (142Nd) = 0.788 MeV is
well reproduced with the same pairing functional parameters.
We can define the proton pairing rotational moment of inertia
Jp(N0,Z0) by repeating the same discussion with Eq. (66)
but for protons. The Thouless-Valatin inertia for this proton
pairing rotation is 2.35 MeV−1, while the Belyaev inertia
is 6.13 MeV−1. The residual interaction changes the pairing
rotational moment of inertia by a factor of about 2.6. This is
because of the residual Coulomb contribution: the Coulomb
interaction is known to affect the proton pairing energy and gap
at the mean-field level [61–63]. Because the Coulomb energy
is proportional to Z2, its residual part directly contributes to
the proton pairing rotational moment of inertia in the QRPA
level. Figure 5 shows the proton pairing rotational energy
measured from 142Nd. To explain the experimental curve, the
contribution of the residual interaction is essential in the case
of the proton pairing rotation.

B. Mixing of neutron and proton pairing rotational modes

When both the neutron and proton are in the superconduct-
ing phase, the neutron pairing and proton pairing rotational
modes appear as NG modes. These zero-energy modes are
degenerate because they have the same Kπ = 0+ quantum
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FIG. 5. (Color online) Same as Fig. 4 but for the proton pair-
ing rotational energy for even N = 82 isotones measured from
142Nd (Z = 60). The experimental proton chemical potential is
λp,exp(142Nd) = −5.761 MeV.

numbers. Thus the eigenmodes as solutions of the QRPA
equations are generally the linear combination of the two
pairing rotational modes. The momentum operators of the two
NG modes are written as

N̂1 = N̂n cos θ + αN̂p sin θ,
(68)

N̂2 = −N̂n sin θ + αN̂p cos θ,

where θ is a mixing angle, and α is a scaling parameter.
The parameter α should be 1 under the isospin symmetry,
but we keep a general expression here. The overall scaling
of the operators N̂1 and N̂2 does not change the physics. The
conjugate angle operators are written as

�̂1 = �̂n cos θ + 1

α
�̂p sin θ,

�̂2 = −�̂n sin θ + 1

α
�̂p cos θ,

(69)

where �̂n and �̂p are the neutron and proton two-quasiparticle
parts of the operator. The operators in Eqs. (68) and (69)
satisfy the commutation relations of Eq. (15) if the neutron
and proton parts of the operators are normalized with the same
commutation relation.

The Thouless-Valatin inertias for the two NG modes are
derived from Eq. (23):

M1 = −S(N̂n,N̂n) cos2 θ − α2S(N̂p,N̂p) sin2 θ

− 2αS(N̂n,N̂p) sin θ cos θ, (70)

M2 = −S(N̂n,N̂n) sin2 θ − α2S(N̂p,N̂p) cos2 θ

+ 2αS(N̂n,N̂p) sin θ cos θ, (71)

where

S(N̂n,N̂n) = −2Nn(A + B)−1Nn = S(N̂n,ω = 0), (72)

S(N̂n,N̂p) = −2Nn(A + B)−1Np = S(N̂p,N̂n), (73)

S(N̂p,N̂p) = −2Np(A + B)−1Np = S(N̂p,ω = 0) (74)
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are the strength functions obtained from the FAM with
zero frequencies. Here Nn and Np are the two-quasiparticle
amplitudes of the particle number operators N̂n and N̂p, re-
spectively (we assume Im Nn = Im Np = 0). The off-diagonal
term S(N̂n,N̂p) is obtained by evaluating the strength function
for the proton particle number operator from the FAM
equations with a neutron particle-number external field, or
vice versa. The two parameters θ and α are constrained from
the orthogonality of the two NG modes:

tan 2θ = 2αS(N̂n,N̂p)

S(N̂n,N̂n) − α2S(N̂p,N̂p)
. (75)

In comparison with experimental data, we are interested in
the pairing rotational energy in terms of neutrons and protons
rather than in terms of the neutron-proton mixed eigenmodes.
The pairing rotational energy is written as

Erot(N,Z) = (�N1)2

2M1
+ (�N2)2

2M2

= 1

2
(�N �Z)J−1

(
�N
�Z

)
= (�N )2

2Jnn

+ 2(�N )(�Z)

2Jnp

+ (�Z)2

2Jpp

, (76)

where �N1, �Z1, �N , and �Z are the deviations of the
particle numbers from a reference state. The inertia tensor J is
given by

J−1 = −
(

S(N̂n,N̂n) S(N̂n,N̂p)

S(N̂p,N̂n) S(N̂p,N̂p)

)−1

=
(

1/Jnn 1/Jnp

1/Jnp 1/Jpp

)
,

(77)

and the neutron and proton components are explicitly written
as

Jnn = − S(N̂n,N̂n)S(N̂p,N̂p) − S(N̂n,N̂p)2

S(N̂p,N̂p)
, (78)

Jnp = S(N̂n,N̂n)S(N̂p,N̂p) − S(N̂n,N̂p)2

S(N̂n,N̂p)
, (79)

Jpp = − S(N̂n,N̂n)S(N̂p,N̂p) − S(N̂n,N̂p)2

S(N̂n,N̂n)
. (80)

This shows that the principal axes of the pairing rotations
are not aligned with the neutron and proton directions in the
gauge space because of the presence of the off-diagonal term
S(N̂n,N̂p). Note that this does not exist in the Belyaev inertia,
because the two-quasiparticle indices in Eq. (61) are either
neutrons or protons when neutron-proton mixing is absent
in the mean field. The residual interaction plays an essential
role for generating the neutron-proton term in the pairing
rotational energy. In Ref. [64], the principal axes tilted against
the neutron and proton gauge-angle space have been reported
in the reduced energy kernel when neutrons and protons are
superconducting.

C. Neutron and proton pairing rotations around 130Xe

Consider the neutron and proton pairing rotations by taking
a reference state at the open-shell deformed nucleus 130Xe. The
lowest energy HFB solution obtained with the axial HFB code
has a prolate deformation with β = 0.143, and both neutrons
and protons are superconducting with �n = 0.702 MeV and
�p = 0.517 MeV. The experimental averaged pairing gaps are
�̃(3)

n (130Xe) = 1.170 MeV and �̃(3)
p (130Xe) = 1.014 MeV.

The response functions computed from the FAM are
S(N̂n,N̂n) = 12.704 MeV−1, S(N̂n,N̂p) = 8.725 MeV−1,
and S(N̂p,N̂p) = 3.083 MeV−1. We take a numerical av-
erage of S(N̂n,N̂p) and S(N̂p,N̂n) for the off-diagonal
term. The Thouless-Valatin moments of inertia are Jnn =
11.986 MeV−1, Jnp = −4.236 MeV−1, and Jpp = 2.909
MeV−1. The opposite sign of Jnp is consistent with the
isorotation picture, whose rotational energy is proportional
to T (T + 1) [7,65,66], and produces a negative sign for the
neutron-proton term.

Figure 6 shows the pairing rotational energies measured
from 130Xe along the Xe isotope direction, the N = 76 isotone
direction, the A = 130 isobar direction, and the Tz = 11 direc-
tion. Clear parabola patterns are seen in the pairing rotational
energy from the HFB and the experimental data in Figs. 6(a)
and 6(b), although the reference state has a prolate deformation
and the intrinsic shape changes nucleus by nucleus. The
Thouless-Valatin inertia explains the neutron and proton
pairing rotational energy in the vicinity of the reference state.

In Fig. 6(c), the pairing rotational energy along the A = 130
isobar is shown. Again a parabola pattern is found along the
isobar, and both the HFB and the Thouless-Valatin inertia
explain the experimental data. From Eq. (76) the pairing
rotational energy along the isobar is given by

Erot(N,Z) =
(

1

2Jnn

− 2

2Jnp

+ 1

2Jpp

)
(�Tz)

2 (81)

with �Tz = 11 − Tz. This represents the isorotational energy
which restores the broken isospin symmetry. The coefficient
in front of (�Tz)2 is 0.44 MeV, and explains the systematic
behavior of the binding energies. For comparison the pairing
rotational energy with the Thouless-Valatin inertia but without
the neutron-proton term is also shown in the same figure. The
value is close to the Belyaev inertia that does not contain the
neutron-proton term either, indicating the importance of the
neutron-proton term for the isorotation.

The last example is the Tz = 11 nuclei shown in Fig. 6(d).
All the calculations and the experimental data show that the
pairing rotational energy is small. This degree of freedom
is associated with the breaking of global gauge invariance
(the total particle number symmetry) [65]. In fact, the pairing
rotational energy from the Thouless-Valatin inertia along a
constant Tz line is written as

Erot(N,Z) =
(

1

2Jnn

+ 2

2Jnp

+ 1

2Jpp

)
(�A)2

4
, (82)

and the coefficient in front of (�A)2/4 = (A − 130)2/4
is −0.02 MeV. Our functional preserves an approximate
isospin symmetry well, and only the Coulomb term breaks it.
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FIG. 6. (Color online) (a) Neutron pairing rotational energy along Xe isotopes, (b) proton pairing rotational energy along N = 76 isotones,
(c) neutron and proton pairing rotational energies along the A = 130 isobar, and (d) along Tz = 11 nuclei measured from 130Xe (N = 76,Z =
54). The experimental neutron and proton chemical potentials are λn,exp = −7.926 MeV and λp,exp = −7.149 MeV. The red solid curves
are the pairing rotational energies with the Thouless-Valatin inertias in Eq. (76); black dotted curves are the same energies but without the
neutron-proton terms. The blue dashed curves are the pairing rotational energies from the Belyaev inertias without neutron-proton terms.

Using independent pairing strengths for neutrons and protons
introduces explicit isospin symmetry breaking in the pairing
channel, and may generate pairing rotational energy associated
with global gauge invariance. The quadrupole shape changes
rapidly along the Tz = 11 chain, and the correlation energy
from the deformation is larger than the pairing rotational
energy. This causes a deviation from the parabola curve in
the pairing rotational energy.

As a whole, the pairing rotational description based on
the open shell nucleus 130Xe works well, and explains the
experimental binding energy systematics of neighboring even-
even nuclei around 130Xe. This indicates that the intrinsic
superconducting HFB state of 130Xe contains information of
neighboring even-even nuclei. With this generalization of the
pairing rotation to the neutron and proton mixed modes, we
can take an arbitrary superconducting nucleus as a reference
state of the pairing rotation. Systematic analysis of the pairing
rotational modes and moments of inertia in this direction is in
progress [67].

VIII. CONCLUSION

I formulated linear response theory in the presence of zero-
energy NG modes. I showed that the Thouless-Valatin inertia

of the NG mode is derived from the zero-frequency response to
the momentum operator of the NG mode. Combined with the
finite-amplitude method for nuclear energy density functional
theory, we can compute the Thouless-Valatin inertia very
precisely and efficiently. This formulation also provides the
expression for the conjugate coordinate operator that will
be necessary for the spurious mode removal procedure of
the FAM. The formulation was numerically tested in detail
for the cases of the trivial center-of-mass mode and the
pairing rotational mode. Although the center of mass mode
is not at zero energy in practical numerical calculations,
the strength function at zero frequency provides a precise
Thouless-Valatin inertia. The realistic applications for the
neutron and proton pairing rotational moments of inertia are
presented for Sn isotopes and N = 82 isotones, respectively. I
then consider the situation where both neutrons and protons are
in a superconducting phase. I show that the neutron and proton
pairing rotational degrees of freedom are mixed in the QRPA
normal modes, and the neutron-proton term in the pairing
rotational energy is generated. As a realistic application, I show
that the ground state energies around 130Xe can be interpreted
in terms of the pairing rotation picture.

One interesting future application of this formalism for NG
modes is in the computation of the Thouless-Valatin rotational
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moment of inertia. A systematic comparison of the energy
of the 2+

1 states of deformed nuclei with experimental data
may clarify the property of the unconstrained time-odd term
of the nuclear EDF. Once implementation into the symmetry
unrestricted HFB code has been completed, this approach
can serve as a technique for deriving the Thouless-Valatin
moments of inertia of three-dimensional collective rotation for
the five-dimensional quadrupole collective Hamiltonian [16]
alternative to the cranked mean-field calculation.

Deriving the pairing collective Hamiltonian [68–70] based
on the nuclear EDF and discussing the anharmonic and
large-amplitude aspect of the collective pairing motion and
the coupling of the pairing vibration and pairing rotation will
be challenges for the future. Extension of the neutron and
proton pairing rotations to full SU (2) isorotation by including

the neutron-proton pairing within the isospin-invariant nuclear
density functional theory [71–73] is another future challenge
for understanding the role of the isospin symmetry in low-
energy nuclear collective motion.
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[7] K. Neergård, Phys. Rev. C 80, 044313 (2009).
[8] W. Satuła, J. Dobaczewski, W. Nazarewicz, and M. Rafalski,

Phys. Rev. Lett. 106, 132502 (2011).
[9] Y. Nambu, Phys. Rev. 117, 648 (1960).

[10] J. Goldstone, Il Nuovo Cimento 19, 154 (1961).
[11] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, Berlin, 1980).
[12] D. J. Thouless and J. G. Valatin, Nucl. Phys. 31, 211 (1962).
[13] T. Kammuri, Prog. Theor. Phys. 37, 1131 (1967).
[14] G. Bertsch and K. Hagino, Phys. At. Nucl. 64, 588 (2001).
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