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Chapter I General Introduction 

 

Lakes play important roles as freshwater resources for drinking water, agriculture, 

industry, fishing, recreation, eco-tourism, power generation, and habitat for plants and 

animals. Lakes are also applicable as an important media for transportation in some 

regions (Giardino et al. 2001). However, the condition of some lakes are suffering from 

increasing of water pollution, excessive water withdrawals and accelerated eutrophication 

that become a significant environmental issue around the world (Ayres et al. 1996). 

Water quality monitoring is thus a critical requirement for water resource management in 

order to support the sustainable use of freshwater ecosystems. In light of the spatial and 

temporal heterogeneities of water bodies, remote sensing techniques can be an effective 

approach for the routine monitoring of water quality (Liu, Islam, and Gao 2003). 

The optical signal received by remote sensing sensor, which is called top of 

atmosphere (TOA) reflectance,  is generally a mixture of signals from surface reflectance 

(i.e., waters or land target), atmosphere and their interaction before reaching the sensor 

(Gordon and Wang 1994; Santer et al. 1999). Under favorable condition, only 10% of 

signal recorded by sensor originates from water, the remaining ones come from 

atmosphere in the visible spectrum (Huot et al. 2001). In order to retrieve pure signal 

from water, removing atmospheric effect that contaminate TOA reflectance could be done 

by atmospheric correction. Thus, estimating of water quality in inland waters using 

remote sensing highly depends on accurate atmospheric correction. 
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 Most of atmospheric correction (AC) methods in water remote sensing originated 

from basic scheme proposed by Gordon and Wang (1994), as follows :          

 

                                                               (1.1) 

 

Where, ρtoa(λ) is reflectance that recorded by satellite sensor, ρr(λ) is reflectance from 

Rayleigh scattering that is the dominant contributor to ρtoa(λ), [ρa(λ)+ ρra(λ)] is aerosol 

and aerosol-Rayleigh scattering reflectance, t(λ) is diffuse transmittance of atmosphere 

and ρw(λ) is water leaving reflectance. In Equation 1.1, ρr(λ) and t(λ) can be accurately 

estimated from radiative transfer model a priori, while variables [ρa (λ) +ρra (λ)] remains 

as the largest uncertainty which needs to be solved in retrieval of ρw(λ) (Selby et al. 1978; 

Gordon et al. 1988; Gordon and Wang 1994).   

 A widely used AC algorithms proposed by Gordon & Wang (1994) (denote as 

GW94 hereafter) exploit the fact of very low signal from water in near infra red (NIR) 

regions (Figure 1.1). GW94 assumes that signal can be neglected to make Equation 1.1 

simpler. The water leaving reflectances (ρw(λ)) at two NIR reference bands (i.e. 779 nm  

and 865 nm in MERIS spectral band) are set to 0.0 sr
-1

, thus the only unknown variable in 

Equation 1.1  is [ρa (λ) +ρra(λ)] that can be estimated for NIR band.  

 

                                                            (1.2a)                                 

                                                            (1.2b) 
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Figure 1.1.  Above remote-sensing reflectance over clear water 

(Taken from NASA Ocean Biology Processing Group) 
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In order to extrapolate aerosol scattering from longer to shorter wavelengths, I need to 

convert multiple scattering aerosols (ρA(λ)) to single scattering aerosol (ρas(λ)) as follow:        

                
   
                                                (1.3)         

     

Then, estimate epsilon (ε) by rationing two aerosol reflectances in NIR, this ε is used for 

selecting the aerosol models:      

           
        

        
                                                   (1.4)             

             
              

         
                                           (1.5)   

                                                                                                                (1.6)                         

                  
   
                                                  (1.7) 

 

Extrapolating ε to shorter wavelength based on ε(779,865) as in Equation 1.5 to retrieve 

epsilon at shorter wavelength (ε(λ,865)). This epsilon is used to estimate single scattering 

aerosol at shorter wavelengths (Equation 1.6). Then, convert back the single scattering 

aerosol (ρa (λ)) into multiple scattering (ρA (λ)) using Equation 1.7.  The final goal of this 

atmospheric correction scheme is to estimate Rrs(λ) at shorter wavelengths  by removing 

ρA (λ) and ρr (λ)  from TOA signal as follow:        

      
    

 λ             

    
                           (1.8)            

       
     

 
                                                      (1.9) 
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Note, this method is only applicable in clear water when the assumption of negligible 

Rrs(λNIR)  is  valid.  

Due to high water turbidity in most inland waters, reflectances at NIR wavelengths 

are more significant than in clear water (Figure 1.2). Over this kind of water, the 

assumption of negligible water leaving reflectance at NIR wavelengths becomes invalid 

(Hu, Carder, and Muller-Karger 2000; Shi and Wang 2007; Shi and Wang 2009; Wang, 

Son, and Shi 2009). Several efforts have been made to solve this problem by estimating 

water leaving reflectance, directly estimating aerosol scattering, and estimating aerosol 

and water leaving reflectance simultaneously (Guanter et al. 2010; Guanter, Sanpedro, 

and Moreno 2007; Hu, Carder, and Muller-Karger 2000; Ruddick, Ovidio, and Rijkeboer 

2000; Wang and Shi 2007; Bailey, Franz, and Werdell 2010; Stumpf et al. 2003; Wang, 

Shi, and Jiang 2012; Doerffer and Schiller 2007; Doerffer and Schiller 2008; Kuchinke, 

Gordon, and Franz 2009; Schroeder et al. 2007)  

In order to understand the applicability of existing algorithm in inland turbid 

waters (e.g, Lake Kasumigaura), I evaluated four existing atmospheric correction 

algorithms (GWI, Stumpf et al. [2003]; Bailey, Franz, and Werdell [2010]; MUMM, 

Ruddick, Ovidio, and Rijkeboer [2000]; C2WP, Doerffer and Schiller [2007]; Doerffer 

and Schiller [2008] and SCAPE-M, Guanter et al. [2010]) using in situ water-leaving 

reflectance and concurrently acquired MERIS images collected from Lake Kasumigaura, 

Japan). The validity of the assumptions in the four atmospheric correction algorithms was 

also investigated to understand the advantages as well as limitations of each algorithm.  
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Figure 1.2.  Average above remote-sensing reflectance in Lake Kasumigaura (acquired 

on February 18, 2006). Significant Rrs(λ) at NIR wavelengths.  
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The results show that all evaluated atmospheric correction algorithms have limitations in 

Lake Kasumigaura, although the SCAPE-M and MUMM algorithms had acceptable 

accuracy for atmospheric correction in several cases. The performances of all four 

algorithms strongly depended on their assumptions (atmospheric state and/or turbidity of 

water body), and each algorithm failed when its assumptions became invalid. 

These results indicate that further improvements are necessary to address the issue 

of atmospheric correction for turbid inland waters such as Lake Kasumigaura. By 

considering the features of atmosphere and water quality over/in Lake Kasumigaura, the 

NN technique with more suitable training data and the estimation of water-leaving 

reflectance at two NIR reference wavelengths using a more appropriate method may 

improve the existing atmospheric correction algorithms in the lake. Unfortunately, the 

lack of inherent optical properties (IOPs) data collected in Lake Kasumigaura make the 

improvement of atmospheric correction algorithms based on NN technique becomes 

difficult. Meanwhile, there is a possibility for improving the algorithms by using more 

appropriate method in water-leaving reflectance estimation (i.e., following GWI scheme). 

I developed a new atmospheric corrected algorithms (namely N-GWI) which was 

based on the idea of GWI algorithm  (the standard Gordon and Wang algorithm with an 

iterative process and a bio-optical model, Stumpf et al. [2003]; Bailey, Franz, and 

Werdell [2010]), in order to avoid spatial homogeneity assumption (e.g, atmospheric and 

water condition) that limited the performance of some existing atmospheric correction for 

turbid coastal and inland waters (e.g,  MUMM and SCAPE-M). The developed algorithm 

proposed three improvements to overcome the limitation of existing algorithms by (1) 
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using a fixed aerosol model; (2) shifting the reference band from visible to NIR; (3) 

generating a semi-analytical model for the estimation of spectral slope of particle 

backscattering. To test the performance of developed algorithms, I validate the algorithm 

using 92 sites in situ-measured remote-sensing reflectance collected in two Asian turbid 

lakes: Lake Kasumigaura, Japan and Lake Dianchi, China as well as four American sea 

waters. Further investigation of N-GWI applicability in Lake Kasumigaura was carried 

out by using a long-term MERIS data and in situ chlorophyll-a concentration obtained in 

2003 to 2012. Two-hundred-fifteen MERIS images covering Lake Kasumigaura were 

ordered and obtained from ESA-EOLi client. MERIS data were atmospherically 

corrected by my developed algorithm (N-GWI) and other existing algorithms (GWI, 

MUMM, C2WP and SCAPE-M) with an output of above remote-sensing reflectance. The 

outputs were then converted to estimated chlorophyll-a concentration through a semi-

analytical model optimizing and look-up tables (SAMO-LUT) model (Yang et al. 2011). 

Two set of data were used to validate the MERIS-derived chlorophyll-a concentration, 

they were Lake Kasumigaura in situ dataset which was collected by the team of 

University of Tsukuba and Lake Kasumigaura database which was collected and 

managed by CEBES-NIES, Japan. 
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Chapter II Evaluation of four existing 

atmospheric correction algorithms in 

turbid waters 
 

 

2.1 Introduction 

Lakes play important roles as freshwater resources for drinking water, agriculture, 

industry, fishing, recreation, and tourism (Giardino et al. 2001). However, accelerated 

eutrophication in lakes is becoming a significant environmental issue around the world 

(Ayres et al. 1996). Water quality monitoring is thus a critical requirement for water 

resource management in order to support the sustainable development of freshwater 

ecosystems. In light of the spatial and temporal heterogeneities of water bodies, remote 

sensing techniques can be an effective approach for the routine monitoring of water 

quality (Liu, Islam, and Gao 2003). 

The first key step for water colour remote sensing is atmospheric correction. A 

widely used atmospheric correction algorithm with sufficient accuracy was developed by 

Gordon and Wang (1994) for clear waters (e.g. open oceans). However, this algorithm 

has often been reported to fail in coastal and inland waters because its assumption of 

negligible water-leaving reflectance at near-infrared (NIR) wavelengths becomes invalid 

in these turbid waters (Hu, Carder, and Muller-Karger 2000; Shi and Wang 2007; Shi and 

Wang 2009; Wang, Son, and Shi 2009). Several efforts have been made to solve this 
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problem. Currently, there are five types of approach for atmospheric correction over 

turbid waters (inland or coastal waters, Table 2.1). 

The first type of approach is based on the estimation of water-leaving reflectance 

(or radiance) at two NIR reference wavelengths rather than neglecting the water-leaving 

reflectance (or radiance) at these two wavelengths (Hu, Carder, and Muller-Karger 2000; 

Stumpf et al. 2003; Bailey, Franz, and Werdell 2010; Wang, Shi, and Jiang 2012). For 

example, Stumpf et al. (2003) and Bailey, Franz, and Werdell (2010) suggested the use of 

a bio-optical model to estimate water-leaving reflectance at two NIR reference 

wavelengths through an iterative procedure. This approach is now widely used for 

atmospheric correction over turbid waters. 

The second type of approach is based on the direct prediction of atmospheric 

parameters over water pixels (Ruddick, Ovidio, and Rijkeboer 2000; Guanter et al. 2010). 

For example, Ruddick, Ovidio, and Rijkeboer (2000) proposed the use of two new 

assumptions rather than the assumption in Gordon and Wang (1994) to estimate multiple-

scattering aerosols and aerosol- Rayleigh reflectances at two reference NIR wavelengths. 

Guanter, Sanpedro, and Moreno (2007) and Guanter et al. (2010) proposed the use of 

atmospheric parameters derived over neighbouring land pixels to predict atmospheric 

parameters over close-to-land water pixels through a spatial extension method; this can 

avoid assumptions on water composition and its spectral response. 

The third type of approach is based on neural network (NN) techniques (Doerffer 

and Schiller 2007, 2008; Schroeder, Schaale, and Fischer 2007; Schroeder et al. 2007).  

For example, Doerffer and Schiller (2008)  designed an algorithm to directly estimate 
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remote-sensing reflectance at the bottom-of-atmosphere (BOA) from that at the top-of 

atmosphere (TOA) based on separate NNs. The fourth type of approach still keeps the 

assumption of zero water-leaving reflectance but extends the reference wavelengths from 

NIR to shortwave infrared (SWIR) for turbid water pixels (Wang and Shi 2007). The fifth 

type of approach is based on spectral optimization (Kuchinke, Gordon, and Franz 2009; 

Kuchinke et al. 2009). In this approach, absorbing aerosol models and a bio-optical 

reflectance model were combined to provide the TOA reflectance; the modelled TOA 

reflectance was then fitted to the observed TOA reflectance through non-linear 

optimization to determine the parameters of both models. These parameters were then 

gradually improved through an iterative procedure to accomplish atmospheric correction.  

Medium resolution imaging spectrometer (MERIS) has 15 narrow spectral bands 

in the visible and NIR spectral ranges (most bandwidths are around 10 nm) and a medium 

spatial scale (about 300 m for full spatial resolution data). Regarding spectral 

configuration and spatial resolution, MERIS offers the best compromise between spatial, 

spectral, and temporal resolution for many inland water studies (although since April 

2012 MERIS has no longer been providing data, the next-generation sensors will be 

launched in 2014; Aschbacher and Milagro-Pérez [2012]). In addition, the availability of 

an atmospheric correction algorithm for public use is also expected. 
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Table 2.1. Summary of existing atmospheric correction algorithms for turbid waters.  
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Therefore, I used two criteria for selecting the algorithms: (1) applicability to MERIS 

data; and (2) current or expected future implementation into the widely used processing 

software packages SeaDAS (SeaWiFS Data Analysis System; 

http://seadas.gsfc.nasa.gov) and BEAM (Basic ERS & ENVISAT AATSR and MERIS; 

http://www.brockmann-consult.de/cms/web/beam). Based on these two criteria, I selected 

four existing atmospheric correction algorithms for an evaluation of their performance in 

this study. I selected one atmospheric correction algorithm from the first type of approach 

and another from the second type. Both are currently available in SeaDAS software for 

processing level-1b data from satellite sensors such as SeaWiFS (Sea-viewing Wide Field 

of-view Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer), and MERIS. 

Another atmospheric correction algorithm was chosen from the third type of 

approach, which is currently available in the BEAM toolbox. I selected the fourth 

atmospheric correction algorithm from the second type of approach, which will be 

available in the BEAM toolbox in the near future. Although the fourth and fifth types of 

approach are available in SeaDAS software, they can only be applied to MODIS and 

SeaWiFS data (not available for MERIS), respectively, and thus they were not used in 

this study. More details about the four selected atmospheric correction algorithms can be 

found in Section 2.2.1. 

Although several of the above-mentioned algorithms have been evaluated using a 

simulated testing dataset (e.g. IOCCG, 2010) or in situ measurements from coastal waters 

(e.g. Jamet et al., 2011) or European lakes (e.g. Guanter et al., 2010), few studies have 

been designed to evaluate for turbid Asian lakes to show the applicability of these 

http://www.brockmann-consult.de/cms/web/beam
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algorithms (Wang, Shi, and Tang 2011; Duan et al. 2012). The objectives of the present 

study were thus: (1) to evaluate the four selected atmospheric correction algorithms by 

comparing the atmospherically corrected remote-sensing reflectance from three MERIS 

images using the algorithms with concurrent in situ remote-sensing reflectance obtained 

from three data collection campaigns in Lake Kasumigaura, Japan; and (2) to investigate 

the validity of the assumptions in the four atmospheric correction algorithms to 

understand the advantages as well as the limitations of each algorithm. 

2.2 Methods 

2.2.1 Four Atmospheric Correction Algorithms 

The first selected atmospheric algorithm was developed by Stumpf et al. (2003) and 

updated by Bailey, Franz, and Werdell (2010). This algorithm is based on the original 

atmospheric correction scheme proposed by Gordon and Wang (1994), denoted as GW94 

hereafter, which is based on the assumption of negligible water-leaving radiance at an 

NIR band, but the algorithm can avoid the over-correction of the atmospheric signal for 

waters where the assumption in the GW94 is not valid (Bailey, Franz, and Werdell 2010). 

In the algorithm, water-leaving reflectance at two NIR reference bands was first 

estimated by a bio-optical model. Then the two estimated water-leaving reflectance 

values were removed from corresponding remote-sensing reflectance at the TOA, and 

inputted into the GW94 algorithm. The iterative procedure makes the estimated water-

leaving reflectance by the bio-optical model gradually close to the actual water-leaving 

reflectance (the algorithm allows up to 10 iterations, but it will converge after 3–4 in 
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most cases; Bailey, Franz, and Werdell [2010]). Therefore, this algorithm is hereafter 

called the GWI algorithm (standard Gordon and Wang’s algorithm with an iterative 

process and a bio-optical model). The new assumption in the GWI algorithm is that the 

bio-optical model used can provide accurate estimates of water-leaving reflectance at two 

NIR reference wavelengths. 

The second selected atmospheric correction algorithm is MUMM (Management 

Unit of the North Sea Mathematical Models), which was proposed by Ruddick, Ovidio, 

and Rijkeboer (2000). This algorithm is also based on the original atmospheric correction 

scheme in GW94. The MUMM algorithm uses two different assumptions as a 

replacement for the original assumption in GW94 (i.e. zero water-leaving reflectance at 

NIR bands), according to the stable spectral shapes of aerosol and water-leaving 

reflectances at two NIR reference bands. 

Ruddick et al. (2006) assumed that the ratios of (1) multiple-scattering aerosols 

and aerosol-Rayleigh reflectances and (2) water-leaving reflectance normalized by the 

sun–sea atmospheric transmittance at two NIR reference bands are spatially 

homogeneous over the sub-scene of interest (the former was named ε and the latter, α; 

Ruddick, Ovidio, and Rijkeboer [2000]). These two new assumptions allow the estimates 

of multiple-scattering aerosols and aerosol-Rayleigh reflectances at two NIR reference 

bands even for waters where water-leaving reflectance cannot be ignored. The estimated 

multiple-scattering aerosols and aerosol-Rayleigh reflectance at two NIR reference bands 

are then inputted into the original GW94 algorithm for atmospheric correction in turbid 

waters. Thus, the performance of the MUMM algorithm depends not only on water 
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composition and its spectral response (this is the definition of α), but also on the 

atmosphere status over the target waters (the definition of ε). 

The third atmospheric correction algorithm selected for comparison is the SCAPE-

M (Self-Contained Atmospheric Parameters Estimation for MERIS Data) algorithm 

(Guanter, Sanpedro, and Moreno 2007; Guanter et al. 2010). Unlike the traditional 

atmospheric correction algorithms for waters, which are ‘water-based’ methods, the 

SCAPE-M is a ‘land-based’ method for the retrieval of aerosol and water-leaving 

reflectances. Therefore, the SCAPE-M algorithm requires neither a priori assumptions 

about water composition and its spectral response nor the use of bio-optical models. It 

uses atmospheric parameters derived over neighbouring land pixels to predict 

atmospheric parameters over close-to-land water pixels through a spatial extension 

method. 

In the SCAPE-M algorithm, aerosol retrieval is performed at the macro-pixel scale. 

First, a MERIS Level-1b image is divided into a series of macro-pixels (30 km × 30 km). 

For each macro-pixel, a maximum AOT550 (aerosol optical thickness at 550 nm) is 

estimated from dark pixels in the area to avoid negative reflectance after atmospheric 

correction. This value is then refined by the exploitation of those macro-pixels with 

sufficient green vegetation and bare soil pixels (generally, five land pixels that show 

mixed vegetation and bare soil with as much spectral contrast as possible are needed). By 

assuming that surface reflectance can be provided by a linear combination of two 

endmembers (i.e. pure vegetation and bare soil), the abundance of each endmember and 

the AOT550 are retrieved concurrently for each macro-pixel. 
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Finally, the obtained AOT550 is applied to water pixels for atmospheric correction 

by assuming that the atmospheric state is laterally homogeneous within each macro-pixel. 

Because of the above assumptions, the SCAPE-M algorithm can only be used for small 

and medium-sized water bodies. In addition, only a rural aerosol model is used in the 

SCAPE-M algorithm because less information is available for the reliable retrieval of 

aerosol type over land from MERIS (Santer, Vidot, and Aznay 2005; Ramon and Santer 

2005). The SCAPE-M algorithm will be available in the BEAM toolbox in the near 

future (L. Guanter, personal communication). 

The last selected atmospheric correction algorithm is the Case-2 Water Processor 

(C2WP), which is available in the BEAM toolbox (Doerffer and Schiller 2008). The 

C2WP algorithm contains three different processors: the Case-2 Regional water 

processor, the Eutrophic Lakes processor, and the Boreal Lakes processor. The three 

processors share the same architecture, but the bio-optical models were optimized for 

different concentrations of chlorophyll-a, total suspended mater (TSM), and yellow 

substance. The NNs for atmospheric correction were trained based on the radiative 

transfer (RT)-simulated water-leaving reflectance at both the BOA and the TOA by 

taking into account various atmospheric and oceanic conditions. 

To generate water-leaving reflectance from RT simulations at the BOA, the 

inherent optical properties (IOPs) were taken from European coastal waters, Spanish 

lakes, and Finnish lakes. By considering the water quality parameters in Lake 

Kasumigaura, Japan, the Eutrophic Lakes processor (version 1.5.7) was selected for 

atmospheric correction in the present study. The concentration ranges covered in the 
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simulations for the Eutrophic Lakes processor were 1–120 mg m
−3

 for chlorophyll-a, 

0.433–51.9 g m
−3

 for TSM, and 0.1–3.0 m
−1

 (at 443 nm) for yellow substance. The 

C2WP algorithm was designed for European waters, and it is worthwhile to evaluate the 

performance of this algorithm in Asian waters. 

2.2.2 Data 
 

To evaluate the above-mentioned atmospheric correction algorithms in turbid inland 

waters, I collected concurrent in situ and MERIS data from Lake Kasumigaura, Japan. 

The lake is located in the eastern part of Japan’s Kanto plain and has a surface area of 

171 km
2
 (western part only), an average depth of 4.0 m, and a maximum depth of 7.3 m. 

It is the second largest lake in Japan (Lake Biwa is the largest) and it is a eutrophic-turbid 

lake due to high loading of nutrients and resuspension of bottom sediments by wind 

(Fukushima et al. 1996; Oyama et al. 2009). During the previous two or three decades, 

Lake Kasumigaura’s average TSM concentration has increased from 14.1 to 26.4 g m
−3

 

(mainly due to the resuspension of bottom sediments by wind); chlorophyll-a 

concentration decreased from 87 to 61 mg m
−3

 (owing to watershed management by the 

local government); and Secchi disk depth has decreased from 70 to 52 cm (CEBES 2011). 

Three full-resolution MERIS images (level-1b) covering Lake Kasumigaura were 

acquired on 18 February 2006 (denoted as K06 hereafter), 7 August 2008 (denoted as 

K08 hereafter), and 18 May 2010 (denoted as K10 hereafter). The orbital information for 

the three MERIS images is summarized in Table 2.2. These satellite images were 

processed using the SeaDAS (version 6.4) and BEAM (version 4.10.03) software 
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packages to obtain atmospherically corrected water-leaving reflectance images by the 

GWI, MUMM, and C2WP algorithms. Since the SCAPE-M is not yet available for public 

use, I asked the algorithm’s author (Dr Luis Guanter) to process the MERIS data using 

the SCAPE-M algorithm.  

Three data collection campaigns were undertaken in 2006 (February 18, 10 sites), 

2008 (August 7, 14 sites), and 2010 (May 18, 26 sites) in Lake Kasumigaura, and the 

campaigns were timed to coincide with acquisition of MERIS images. The spatial 

distribution of the sampling sites is shown in Figure 2.1. All reflectance measurements 

and water sample collections were performed between 10:00 and 14:00 h local time over 

optically deep waters. The water-leaving radiance (Lu(λ)), downward irradiance (Ed(λ)), 

and downward radiance of skylight (Lsky(λ)) were measured at each site using a FieldSpec 

HandHeld (or Pro VNIR) spectroradiometer (Analytical Spectral Devices, Boulder, CO, 

USA) in the range of 325–1075 nm at 1 nm intervals. The above-water remote-sensing 

reflectance (Rrs(λ)) was approximated using the following equation (Mobley 1999): 

          
     

     
 

        

     
                  (2.1) 

where Cal(λ) is the spectral reflectance of the grey reference panel that has been 

accurately calibrated, and r represents a weighted surface reflectance for the correction of 

surface-reflected skylight and is determined as a function of wind speed (Mobley 1999).  
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Table 2.2. Orbital information for three MERIS images used in this study (UTC: 

Coordinated Universal Time). 
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Figure 2.1. MERIS images and sampling sites at Lake Kasumigaura, Japan on (a) 18 

February 2006, (b) 7 August 2008, and (c) 18 May 2010  

 

  



22 

 

Water samples were kept in ice boxes and taken to the laboratory within approx. 

0.5 h after the whole data collections. Chlorophyll-a was extracted using methanol 

(100%) at 4°C under dark conditions for 24 h. The optical density of the extracted 

chlorophyll-a was measured at four wavelengths (750, 663, 645 and 630 nm), and the 

concentration was calculated according to SCOR-UNESCO equations  (SCOR-UNESCO 

1966). The total suspended solids (TSS) were determined gravimetrically. Samples were 

filtered through a filter pre-combusted at 500°C for 4 h to remove dissolved organic 

matter in suspension, and the filter was then dried at 105°C for 4 h and weighed to obtain 

the TSS. The absorption of coloured dissolved organic matter (CDOM) was measured 

using a spectrophotometer (UV–1700, Shimadzu, Kyoto, Japan) with filtered water. 

Descriptive statistics of the optical water quality parameters are summarized in Table 2.3, 

in which it can be seen that the turbidity of Lake Kasumigaura is very high. 

To evaluate the performance of the four atmospheric correction algorithms, I 

extracted the average water-leaving reflectance of the pixels nearest the sampling 

locations along with the eight surrounding pixels (3 × 3 window) from the 

atmospherically corrected MERIS images, and I compared reflectance with the 

corresponding in situ measurements. The use of the 3 × 3 window rather than a single 

pixel can reduce the potential error in the geometric correction and dynamics of water 

bodies, as well as potential error in spatial variability (Han and Jordan 2005). Pixels 

contaminated by clouds and corresponding sampling sites located less than one pixel 

away from the banks were then excluded. Accordingly, 7, 6, and 21 sites remained for 

comparison in February 2006, August 2008, and May 2010, respectively.  
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Table 2.3. Descriptive statistics of optical water quality parameters measured in Lake 

Kasumigaura, Japan. 
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2.2.3 Accuracies Assessment 
 

Two indices, root mean square error (RMSE) and relative error (RE), were used to assess 

the accuracy of atmospheric correction. These indices were defined as follows: 

 

                        
  

   

 
               (2.2) 

     
 

 
    

               

     
 

 

  
            (2.3) 

 

where xmeas,i and xesti,i are the measured and estimated values, respectively, and N is the 

sample size. The RMSE gives the absolute scattering of the retrieved water-leaving 

reflectance, and the RE represents the uncertainty associated with satellite-derived 

distribution. The determination coefficient (R
2
) between in situ measured Rrs(λ) and 

estimated Rrs(λ) from atmospherically corrected MERIS data was also calculated. 

2.3 Results 

2.3.1 Performance of the four atmospheric correction algorithms for MERIS 

single bands 
 

Figure 2.2 provides the overall comparisons between the measured (x-axis) and retrieved 

(y-axis) water-leaving remote-sensing reflectance values obtained by the four 

atmospheric correction algorithms at MERIS bands 1–10 for the three dates. Generally, 

the SCAPE-M algorithm overestimated the values of water-leaving reflectance at all 

MERIS bands (except for several bands in 2006), whereas the other three algorithms gave 
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underestimation of water-leaving reflectance (except for bands 1, 2, and 10 for MUMM 

in 2008).  

From the data collected in 2006 (K06), the results show that the SCAPE-M 

algorithm with an RMSE of 0.002, RE of 17.1% and determination coefficient (R
2
) of 

0.746 achieved the best performance, followed by the MUMM algorithm (RMSE=0.004, 

RE=18.1%, R
2
=0.646), C2WP (RMSE=0.005, RE=33.9%, R

2
=0.590), and GWI 

(RMSE=0.010, RE=70.5%, R
2
=0.444). For the 2008 results (K08), the MUMM algorithm 

showed the best performance (RMSE=0.002, RE=16.9%, R
2
=0.778), followed by 

SCAPE-M (RMSE=0.002, RE=29.9%, R
2
=0.722), C2WP (RMSE=0.004, RE=50.5%, 

R
2
=0.647), and GWI (RMSE=0.006, RE=69.9%, R

2
=0.541).  

Although the GWI algorithm gave the poorest performance for both the 2006 and 

2008 data, it gave the best performance for the 2010 data (K10; RMSE=0.005, RE= 

42.0%, R
2
=0.599). The next-best performances were by MUMM (RMSE=0.006, 

RE=49.6%, R
2
=0.487) and C2WP (RMSE=0.007, RE=62.3%, R

2
=0.478). The SCAPE-M 

algorithm showed the poorest performance for the 2010 data (RMSE=0.008, RE=82.7%, 

R
2
=0.221). It is notable that all four atmospheric correction algorithms showed poorer 

performance for the 2010 data compared with those of 2006 and 2008.  
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Figure 2.2. Comparisons between in situ-measured and MERIS-derived water-leaving 

remote-sensing reflectance by the four atmospheric correction algorithms (C2WP, 

SCAPE-M, MUMM, and GWI) in Lake Kasumigaura, Japan, for MERIS bands 1–10. 

The centre wavelength at each band is shown in the legend. The black line represents the 

1:1 line. Left column, 18 February 2006; middle, 7 August 2008; right, 18 May 2010. 
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Figure 2.3. Variation in root mean square error (RMSE, top) and relative error (RE, 

bottom) as a function of wavelength. 

  



28 

 

The C2WP algorithm showed relatively large retrieval errors for all three dates.  In 

addition, the GWI algorithm showed variations in RMSE and RE as a function of 

wavelength, while the other three algorithms showed relatively constant RMSE and RE 

values for all bands, especially for the MUMM algorithm. 

2.3.2 Performances of four atmospheric correction algorithms for NIR-Red 

indices 

One of the most important applications of water colour remote sensing is to estimate 

chlorophyll-a concentration, which is a key parameter for assessing water quality, the 

primary production of phytoplankton, and more. To develop chlorophyll-a estimation 

algorithms, band ratios of water-leaving reflectance are often used (Gitelson 1992; 

Gitelson et al. 2008; O’Reilly et al. 1998). Here, I selected two band ratio indices for 

comparison: a two-band index (Rrs(709)/Rrs(665)) and a three-band index 

(Rrs(753)/Rrs(665) – Rrs(753)/Rrs(709)), which are widely used in turbid inland waters 

(Gitelson et al. 2008; Moses et al. 2009). The results are shown in Figures 2.4 and 2.5. 

Generally, the two band index provided better performance than the three-band index for 

all four atmospheric correction algorithms.  
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Figure 2.4. Scatterplots of MERIS-derived vs in situ-measured two-band index 

(Rrs(709)/Rrs(665)) by the algorithms: (a) C2WP, (b) SCAPE-M, (c) MUMM, and (d) 

GWI. The black line represents the 1:1 line. 
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Figure 2.5. Scatterplots of the MERIS-derived vs in situ-measured three-band index 

(Rrs(753)/Rrs(665) – Rrs(753)/Rrs(709)) by the algorithms: (a) C2WP, (b) SCAPE-M, (c) 

MUMM, and (d) GWI. The black line represents the 1:1 line. 
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The SCAPE-M algorithm showed good performance (RE=7.84%) for the two-band index 

for all dates, although it gave a poor performance at each MERIS band for the 2010 data 

(Figures 2.2(d)–(f) and 2.3). The SCAPE-M algorithm produced overestimation for the 

three-band index for all dates. The MUMM algorithm showed acceptable performance 

for the 2006 and 2008 data for both band ratio indices, but poor performance for the 2010 

data. The band ratio indices obtained from the GWI and C2WP algorithms showed 

relatively large errors. 

2.4 Discussion 

2.4.1 Performance of the C2WP algorithm 

Compared with the other three algorithms, the C2WP algorithm showed lower 

atmospheric correction accuracies for all three dates, and even for all sampling sites with 

concentrations of three water constituents within the ranges of the training data (Figures 

2.2(a-c) and 2.3). In addition, by comparing the averaged water-leaving reflectance 

spectra corrected by C2WP with those corrected by the other three atmospheric 

correction algorithms as well as in situ measurements for each date, I found that the 

C2WP algorithm changed the spectral shapes after atmospheric correction had been 

carried out, especially around the reflectance peak at the wavelength of 709 nm (Figure 

2.6; the reflectance peak was smoothed by C2WP).  The poor performance of the two-

band and three-band indices also indicated that the C2WP algorithm could not reproduce 

actual spectral shapes well at the wavelength range 665–754 nm (Figures 2.4(a) and 

2.5(a)).  
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Figure 2.6. Comparison between in situ-measured and averaged MERIS-derived remote-

sensing reflectance by the four atmospheric correction algorithms for each date. Error 

bars refer to the standard deviation calculated from all measurements available for a 

given date. (a) 18 February 2006; (b) 7 August 2008; (c) 18 May 2010.  
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This is probably because IOPs in Spanish lakes are different from those in Lake 

Kasumigaura (Yoshimura et al. 2012; Yang et al. 2013). These results strongly suggest 

that NN parameters should be retrained by a simulation data set on the basis of IOPs 

collected from target waters. 

2.4.2 Performance of the SCAPE-M algorithm 
 

The assumption in the SCAPE-M algorithm for aerosol retrieval is that the atmospheric 

state should be homogenous within an area of 30 km × 30 km (Guanter, Sanpedro, and 

Moreno 2007; Guanter et al. 2010). Figure 2.7 shows the average, standard deviation 

(SD), and coefficients of variation (CV) (CV = SD/average of parameter) of the Rayleigh 

scattering corrected remote-sensing reflectance at MERIS band 14 (885 nm) over Lake 

Kasumigaura. It can be seen that the Rayleigh scattering-corrected remote-sensing 

reflectance of 2006 (February 18) showed the least spatial variation (SD=0.001), 

followed by 2008 (August 7, SD=0.005), while that of 2010 (May 18) showed the largest 

spatial variation (SD=0.012, approximately 12-fold that of 2006 and 2.4-fold that of 

2008). In addition, compared with the spatial variation in Rayleigh scattering-corrected 

remote-sensing reflectance, that of water-leaving reflectance at this band was low for all 

dates (SD=0.002 for 2006, 0.001 for 2008 and 2010). 

These results indicate that the spatial variation in Rayleigh scattering-corrected 

remote-sensing reflectance at band 14 was mainly caused by the atmospheric status at 

that time.  
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Figure 2.7. Average, Standard deviation (SD), and coefficients of variation (CV) of the 

Rayleigh scattering-corrected remote-sensing reflectance at MERIS band 14 (885 nm) 

over Lake Kasumigaura for each date. 
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Therefore, in Figure 2.7, it is clear that the atmospheric status on 18 May 2010 

was the most heterogeneous, followed by 7 August 2008, while that on 18 February 2006 

was the most homogeneous. This is the main reason why the SCAPE-M algorithm gave 

the best performance for the 2006 image, an acceptable atmospheric correction accuracy 

for the 2008 image, but failed for the 2010 image (Figures 2.2(d)–(f)). In addition, 

visibility at the times of satellite overpass (about 10:00 a.m., local time) was 35 km on 18 

February 2006, 15 km on 7 August 2008, and 9 km on 18 May 2010, suggesting that 

aerosol loadings in the 2006, 2008, and 2010 data were low, moderate, and high, 

respectively. 

It is surprising that the two-band index showed acceptable accuracy even for the 

2010 image, when the SCAPE-M algorithm could not yield sufficient accuracy for all 

single bands (Figures 2.2(f), 2.3(c) and 2.4(b)). The three-band index obtained from 

SCAPE-M-corrected water-leaving reflectance also showed the best performance among 

the four atmospheric correction algorithms, even though RE for the four algorithms was 

low in each case (Figure 2.5(b)). These results indicate that the SCAPE-M algorithm can 

maintain the actual spectral shape of water-leaving reflectance because it avoided a priori 

assumptions regarding water composition and its spectral response by the use of 

neighbouring land pixels (Figure 2.6). 

2.4.3 Performance of the MUMM algorithm 
 

For the successful use of the MUMM algorithm, two assumptions must be valid  

(Ruddick, Ovidio, and Rijkeboer 2000). The first concerns the atmospheric status over 
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the target waters, which requires that the ratios of multiple-scattering aerosols and 

aerosol-Rayleigh reflectances at two NIR reference bands are spatially homogeneous 

over the sub-scene of interest (i.e. they can be assumed to be constant). Although there 

was a lack of atmospheric data to test this assumption over Lake Kasumigaura, the results 

shown in Figure 2.7, suggesting large spatial variation in atmospheric status in the 2010 

image, probably make this assumption invalid. This invalid assumption for atmospheric 

status could be one reason why the MUMM algorithm performed poorly for the 2010 

image (Figure 2.2(i)). 

The second assumption concerns water composition and its spectral response, 

which requires that the ratios of water-leaving reflectances normalized by the sun–sea 

atmospheric transmittance at two NIR reference bands are spatially homogeneous over 

the subscene of interest (i.e. they can be assumed to be constant). In situ water-leaving 

reflectance values were used to test the validity of the second assumption following the 

method of Doron et al. (2011). Figure 2.8 shows the relationship between the ratio of 

Rrs(779) and Rrs(865) and single Rrs(865). Rrs(865) has been used as an indicator for water 

turbidity in previous studies (Ruddick et al. 2006; Doron et al. 2011). Generally, Rrs(865) 

is lower than 10
−4

 for very clear waters, between 10
−4

 and 10
−2

 for moderately turbid to 

turbid waters, and between 10
−2

 and 10
−1

 for extremely turbid waters (Doron et al. 2011). 

From Figure 2.8, it can be seen that the ratios were not constant as the second 

assumption required – they decreased with increasing turbidity. This result is similar to 

that reported by Doron et al. (2011). For MERIS data, the MUMM algorithm uses a 

constant ratio of 1.711.  
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Figure 2.8. Scatterplots of Rrs(779)/Rrs(865) vs Rrs(865) for in situ measurements 

collected from three field campaigns. The constant value of the ratio Rrs(779)/Rrs(865) 

used for MERIS data is 1.711 in SeaDAS, and is depicted as a straight line.  
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Compared with this constant value, the average bias of the ratios (Rrs(779)/Rrs(865)) 

estimated from in situ water-leaving reflectance was 8%, 6%, and 13% for 2006, 2008, 

and 2010, respectively.  

Consequently, the performance of the MUMM algorithm for each image can be 

explained as follows: (1) the moderate performance for the 2006 image occurred because 

the data for this date met the first assumption (low and homogenous aerosol scattering), 

but failed for the second assumption (Figure 2.2(g)); (2) the best performance for the 

2008 image occurred because the 2008 data met both assumptions relatively well (Figure 

2.2(h)); and (3) the poor performance for the 2010 image occurred because both 

assumptions were not valid for that image (Figure 2.2(i)). These results indicate that 

limitations of the MUMM algorithm come not only from atmospheric status but also 

from water constituents and their spectral responses. 

2.4.4 Performance of the GWI algorithm 

The assumption in the GWI algorithm is that a bio-optical model can be used to 

accurately estimate water-leaving reflectance at two NIR reference bands (bands 12 and 

13 of the MERIS) through an iterative procedure (Stumpf et al. 2003; Bailey, Franz, and 

Werdell 2010). Figure 2.9 shows comparisons between in situ-measured and estimated 

water-leaving reflectance at MERIS bands 12 and 13, respectively. It can be seen that the 

water-leaving reflectance at the two NIR reference bands were largely underestimated by 

the bio-optical model, especially for the 2006 and 2008 data (RE=56.0% for band 12, and 

RE= 59.0% for band 13). 
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Figure 2.9. Comparison between in situ-measured and estimated water-leaving 

reflectance at two NIR reference bands. (a) MERIS band 12 (779 nm); (b) MERIS band 

13 (865 nm). 
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These results indicate that the current bio-optical model used in the GWI 

algorithm is not able to provide sufficient accuracy for estimating water-leaving 

reflectance at the two NIR reference bands in Lake Kasumigaura. The underestimation of 

water-leaving reflectance at the two NIR reference bands will result in an overestimation 

of multiple-scattering aerosols and aerosol-Rayleigh reflectances at these bands, and then 

an overestimation of aerosol scattering at shorter bands. This is the reason why the 

atmospherically corrected water-leaving reflectances by the GWI algorithm were 

underestimated for all dates (Figures 2.2(j)–(l)). 

2.4.5 Possibilities for improving atmospheric correction algorithm in Lake 

Kasumigaura 

In the light of the above analyses, two possibilities can be considered towards improving 

the existing atmospheric correction algorithms in Lake Kasumigaura for future 

applications. The first is to improve the C2WP algorithm by retraining the parameters of 

NN using comprehensive simulation data. It is necessary to obtain the optical properties 

of water (e.g. IOPs and concentrations of water constituents) and atmosphere (e.g. 

amount and type of aerosol) in/over Lake Kasumigaura for accurate bio-optical and 

radiative transfer simulations. 

Since Lake Kasumigaura is close to Tokyo, the largest city in Japan (only 60 km 

away), and several heavy industries are in operation along the Pacific coast, it is often 

difficult to assume a homogenous atmospheric status (especially for the amount and type 

of aerosol) over the lake (Figure 2.7). Therefore, attempts to improve the MUMM and 

SCAPE-M algorithms for atmospheric correction in Lake Kasumigaura will probably not 
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be successful. This is because both algorithms require the homogenous assumption 

regarding atmospheric status.  

Consequently, the second possibility would be to improve the first type of 

approach (i.e. accurately estimating water-leaving reflectance at two NIR reference 

wavelengths using a more appropriate method). The bio-optical model used in the GWI 

algorithm has been shown to be inappropriate for Lake Kasumigaura, mainly because 

several empirical relationships for estimating absorption and backscattering coefficients 

were not valid (Figure 2.9). Extending the reference wavelength from visible to NIR 

domains can probably provide an opportunity to improve the performance of the bio-

optical model (Yang et al. 2013), and thus more accurate atmospheric correction in Lake 

Kasumigaura. 

2.5 Conclusions  
 

Here, I evaluated four atmospheric correction algorithms using in situ water-leaving 

reflectance and concurrently acquired MERIS images collected from Lake Kasumigaura, 

Japan (turbid inland water). The validity of the assumptions in the four atmospheric 

correction algorithms was also investigated to understand both the advantages and 

limitations of each algorithm. The results show that all atmospheric correction algorithms 

evaluated have limitations in regard to Lake Kasumigaura, although the SCAPE-M and 

MUMM algorithms had acceptable accuracy for atmospheric correction in several cases 

(i.e. relative errors less than 30% for the 2006 and 2008 images). The performances of all 

four algorithms strongly depended on their assumptions (atmospheric status and/or 
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turbidity of water body), and each algorithm failed when its assumptions became invalid 

(e.g. for the 2010 image, the relative errors ranged from 42% to 83%). 

These results indicate that further improvements are necessary to address the issue 

of atmospheric correction for turbid inland waters such as Lake Kasumigaura. By 

considering the features of atmosphere and water quality over/in Lake Kasumigaura, the 

NN technique with more suitable training data and the estimation of water-leaving 

reflectance at two NIR reference wavelengths using a more appropriate method may 

improve the existing atmospheric correction algorithms in the lake. 
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Chapter III Development of a new 

atmospheric correction algorithm for 

applying MERIS data to turbid inland 

waters I: implementation and 

performance 

 

3.1 Introduction 

The optical signal received by remote sensing sensor, which is called top of atmosphere 

(TOA) reflectance, is generally a mixture of signals from earth surface (lands or waters) 

and atmosphere as well as their interactions (Gordon and Wang 1994; Santer et al. 1999). 

In water areas, only 10% of signals recorded by the sensors originate from water bodies 

in the visible spectra (Huot et al. 2001; Siegel et al. 2000). Therefore, it is necessary to 

remove the atmospheric effects from remote sensing data before they were used for 

estimating water quality parameters. 

Most of atmospheric correction (AC) algorithms for water color remote sensing 

originated from the basic scheme proposed by Gordon & Wang (1994), as follows :      

                                                                  (3.1) 

where ρtoa(λ) is the reflectance that recorded by satellite sensor, ρr(λ) is the reflectance 

from Rayleigh scattering, [ρa(λ)+ ρra(λ)] is the reflectance from the sum of aerosol 

scattering and the interaction between Rayleigh and aerosol scattering (i.e. aerosol 
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multiple-scattering reflectance), t(λ) is the diffuse transmittances of the atmospheric 

column, and ρw(λ) is the water-leaving reflectance. In Equation 3.1, ρr(λ) and t(λ) can be 

calculated from radiative transfer model a priori, while variables [ρa (λ) +ρra (λ)] remains 

as the largest uncertainty that need to be solved for retrieving ρw(λ) (Selby et al. 1978; 

Gordon et al. 1988; Gordon and Wang 1994).   

In open oceans, the AC algorithm proposed by Gordon & Wang (1994) (denote as 

GW94 hereafter) is widely used by exploiting the fact that water-leaving reflectance at 

near infrared (NIR) wavelengths can be neglected in this kinds of clear waters. However, 

in most inland and coastal waters, the assumption of negligible water-leaving reflectances 

at the NIR wavelengths become invalid due to the higher water turbidity (Hu, Carder, and 

Muller-Karger 2000; Shi and Wang 2007; Shi and Wang 2009; Wang, Son, and Shi 2009).  

There are many efforts have been made to solve this problem. My previous work 

summarized the existing AC algorithms for turbid waters and then evaluated four 

representative algorithms in Lake Kasumigaura, Japan (Jaelani et al. 2013). The results 

showed that all four AC algorithms have limitations in Lake Kasumigaura, Japan and 

further improvements are necessary to address the issue of atmospheric correction for 

turbid inland waters. Fortunately, from my previous work, I not only well understood the 

limitations of the evaluated AC algorithms, but also got two hints to improve the existing 

AC algorithms for turbid inland waters such as Lake Kasumigaura.  The two hints are: (1) 

atmospheric status over a water body should be estimated pixel by pixel (i.e., considering 

heterogeneous atmospheric status, especially for the amount and type of aerosol); (2) 

water-leaving reflectance at two NIR reference wavelengths should be more accurately 
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estimated pixel by pixel. 

Based on the above two hints, an existing AC algorithm, which was developed by 

Stumpf et al. (2003) and updated by Bailey, Franz, and Werdell (2010), shows a potential 

to be improved for turbid inland waters. This algorithm is based on the original AC 

scheme in the GW94 algorithm, but estimating water-leaving reflectance at two NIR 

reference bands by a bio-optical model rather than assuming them as zero. The two 

estimated water-leaving reflectance values were removed from corresponding remote-

sensing reflectance at the TOA, and then inputted into the GW94 algorithm. This 

algorithm also adopted an iterative procedure to make the estimated water-leaving 

reflectance by the bio-optical model gradually close to actual water-leaving reflectance. 

For convenient, this algorithm was denoted as GWI (the standard Gordon and Wang 

algorithm with an iterative process and a bio-optical model) hereafter following my 

previous work.  

The objectives of the present study were to (1) develop a new AC algorithm for 

turbid inland waters based on the scheme of the GWI algorithm; and (2) evaluate the 

performance of the developed algorithm using the in situ-measured remote-sensing 

reflectance collected from two turbid Asian lakes and four American sea waters (92 sites 

in total). 

3.2 Methods 

3.2.1 Dataset 

3.2.1.1 In situ data collection 
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The in situ remote-sensing reflectance (Rrs(λ)) spectra were collected from two Asian 

lakes: Lake Kasumigaura, Japan and Lake Dianchi China. The Lake Kasumigaura (36
o
 

9’N; 140
o
 14’ E) is located in the eastern part of Japan’s Kanto’s plain and has a surface 

area of 171 km
2
 (only for the western part), an average depth of 4.0 m, and a maximum 

depth of 7.3 m. It is the second largest lake in Japan (after Lake Biwa) and it is a 

eutrophic-turbid lake due to high loads of nutrients and resuspension of bottom sediments 

by wind (Matsushita et al. 2009). The Lake Dianchi (24
o
 50’N; 102

o
 41’ E) is located in 

the Yungui plateau area of south-western China and has a surface area of 300 km
2
, an 

average depth of 4.3 m, and a maximum depth of 11.3 m. This lake is also suffering from 

increasing eutrophication due to the large amount of industrial wastewater and municipal 

sewage (Gao et al. 2005). 

In Lake Kasumigaura, three data collection campaigns were undertaken in 2006 

(Feb. 18, 10 sites), 2008 (Aug. 7, 14 sites), and 2010 (May 18, 26 sites), and the 

campaigns were timed to coincide with the acquisitions of the MERIS images. The data 

collecting sites, which located less than one MERIS pixel away from the banks and 

corresponding MERIS pixels were contaminated by clouds were excluded from the 

analyses. Accordingly, 7, 6, and 21 sites remained for comparison in Feb. 2006, Aug. 

2008 and May 2010, respectively (Figure 3.1). In Lake Dianchi, two data collection 

campaigns were undertaken in 2007 (Oct. 23, 3 sites) and 2009 (Mar. 12, 3 sites), and the 

both campaigns were 1 day before the acquisitions of the MERIS images.  

All reflectance measurements were performed between 10:00 and 14:00 h local 

time over optically deep waters. The water-leaving radiance (Lu(λ)), the downward 
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irradiance (Ed(λ)), and the downward radiance of skylight (Lsky(λ)) were measured at each 

site using a FieldSpec HandHeld (or Pro VNIR) spectroradiometer (Analytical Spectral 

Devices, Boulder, CO) in the range of 325–1075 nm at 1-nm intervals. The above-water 

remote-sensing reflectance (Rrs(λ)) was calculated approximately using the following 

equation (Mobley 1999): 

     λ    
   λ 

   λ 
 

      λ 

   λ 
         λ                                    (3.2) 

where Cal(λ) is the spectral reflectance of the grey reference panel that has been 

accurately calibrated, and r represents a weighted surface reflectance for the correction of 

surface-reflected skylight and is determined as a function of wind speed (Mobley 1999). 

 Descriptive statistics of the optical water quality parameters are summarized in 

Table 3.1, in which it can be seen that the turbidity of Lakes Dianchi and Kasumigaura is 

very high.  

3.2.1.2 Data collection from SeaBASS 

As a comparative study, I also tested the performance of developed atmospheric 

correction algorithms using in situ dataset obtained from SeaBASS (The SeaWiFS Bio-

optical Archive and Storage System), a project funded by NASA since 1997 (Werdell et 

al. 2003; Werdell and Bailey 2002). The SeaBASS database (http://seabass. 

gsfc.nasa.gov/) contains in situ ocean optical (e.g., ocean water-leaving radiance spectra), 

biological (e.g., chlorophyll-a concentration), and other related oceanographic and 

atmospheric data.   
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Table 3.1. Descriptive statistics of optical water quality parameters measured in Lake 

Kasumigaura, Japan and Lake Dianchi, China. 
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Figure 3.1. The location and spatial distribution of the sampling sites. Deadman Bay on 

(a) Mar. 13, 2011, 12 sites;  (b) Sept. 25, 2011, 8 sites  and  (c) Nov. 21, 2011, 8 sites;  

Tampa Bay  on (d) June 16, 2011, 5 sites; South Florida’s sea on (e) Feb. 28, 2012, 4 

sites;  (f) Mar. 1, 2012; 3 sites; Chesapeake Bay on (g) Jul. 11, 2012, 3 sites; (h) Jul. 14, 

2012, 5 sites; (i) Jul. 17,  2012; 4 sites; Lake Dianchi, China on (j) Oct. 24, 2007, 3 sites; 

(k) Mar. 13, 2009, 3 sites and Lake Kasumigaura, on (l) Feb. 18, 2006, 7 sites; (m) Aug. 

07, 2008, 6 sites; (n) May 18, 2010, 21 sites. Red represent the sites location.  
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SeaBASS data were contributed by a variety of researchers from international ocean 

community, using various instrumentation with all measurements closely follow rigorous, 

community-defined deployment and data processing protocols (Mueller and Fargion 

2002). In this study, I used one criterion, that the MERIS data is available at the same day 

when field campaigns were undertaken, for selecting in situ-measured Rrs(λ) from the 

SeaBASS database. As the result, I obtained 52 in situ-measured Rrs(λ) data that were 

collected in South Florida’s sea (Feb. 28 and Mar. 1, 2012; 7 sites), Chesapeake Bay (Jul. 

11, 14 and 17, 2012; 12 sites), Tampa Bay (June 16, 2011; 5 sites) and  Deadman Bay 

(Mar. 13,  Sept. 25 and Nov. 21, 2011; 28 sites). The location and spatial distribution of 

the sampling sites are shown in Figure 3.1.  

3.2.1.3 MERIS data 

According to the available in situ Rrs(λ) data and matchup MERIS data, 14 full-resolution 

MERIS images (level-1b) were downloaded using EOLi (ESA’s Link to Earth 

Observation, http://earth.esa.int/EOLi/EOLi.html), the European Space Agency's client 

for Earth Observation Catalogue and Ordering Services. Three images covering Lake 

Kasumigaura were acquired on February 18, 2006 (named as K060218 hereafter), August 

7, 2008 (named as K080807 hereafter), and May 18, 2010 (named as K100518 hereafter). 

Two images covering Lake Dianchi, China were acquired on October 24, 2007 (named as 

D071024 hereafter) and March 13, 2009 (named as D090313 hereafter). Two images 

covering South Florida’s sea were acquired on February 28, 2012 (named as SF120228 

hereafter) and March 1, 2012 (named as SF120301 hereafter). Three images covering 

http://earth.esa.int/EOLi/EOLi.html
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Chesapeake Bay were acquired on July 11, 2011 (named as CB110711 hereafter), July 14, 

2011 (named as CB110714 hereafter) and July 17, 2011 (named as CB110717 hereafter). 

One image covering Tampa Bay was acquired on June 16, 2011 (named as TB110616 

hereafter). Three images covering Deadman Bay were acquired on March 13, 2011 

(named as DB110313 hereafter), September 25, 2011 (named as DB110925 hereafter) 

and November 21, 2011 (named as DB111121 hereafter). All field campaigns were timed 

to coincide with acquisition of MERIS images, except for the field campaigns in Lake 

Dianchi (one day before).  The orbital information of 14 MERIS images is summarized in 

Table 3.2.  

All downloaded MERIS images were processed using SeaDAS software package 

(version 6.4, http://seadas.gsfc.nasa.gov/) and BEAM toolbox (version 4.11, 

http://www.brockmann-consult.de/beam/), with the outputs of above-water remote 

sensing reflectance Rrs(λ) at center wavelengths of 620, 665, 681, 709 and 754 nm 

(corresponding to MERIS bands 6-10), which are directly comparable with in situ-

measured Rrs(λ). The average of 3-by-3 window was used to compare with  in situ-

measured Rrs(λ) to avoid potential error in the geometric correction and dynamics of 

water bodies, as well as  the potential error  in spatial variability (Han and Jordan 2005). 
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Table 3.2. Orbital information for 14 MERIS images used in this study (UTC: 

Coordinated Universal Time). 
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3.2.1.4 Synthetic dataset 
 

The synthetic data was obtained from IOCCG (http://ioccg.org/groups/OCAG_data.html) 

containing absorption coefficient of phytoplankton pigments, colored dissolved organic 

matters (CDOM), detritus/mineral, and  total absorption coefficient; backscattering of  

phytoplankton, detritus/mineral and total backscattering; remote-sensing reflectance 

(below and above surface) and irradiance reflectance (below and above surface) as well 

as down-welling diffuse attenuation coefficient. The IOP data were simulated based on 

extensive field measurements, whereas AOPs data were generated using Hidrolight 

(IOCCG 2006). This synthetic data was used for generating a new equation for 

calculating a spectral slope of particle backscattering (i.e., Y value) from Rrs(λ).  

3.2.2 Development of a new AC Algorithm based on the GWI scheme 

The atmospheric correction for clear waters has been developed with sufficient accuracy 

(Gordon and Wang 1994). Therefore, in this study, I focused on the development of an 

AC algorithm that is applicable in turbid waters. In turbid waters, the most useful Rrs(λ) 

are at longer wavelengths (i.e. in the range of 665-754 nm), because the shorter 

wavelengths (blue-green) are not suitable to be used for estimating water quality 

parameters (e.g., chlorophyll-a) (Gitelson 1992; Gitelson et al. 2008; Yang et al. 2011; Yu 

et al. 2014). Therefore, it can be considered that the users only have a strong concern for 

accuracy of AC at longer wavelengths if they are studying a turbid water body.  

Accordingly, two principal policies for the development of a new AC algorithm 

are: (1) use of the GWI scheme to avoid the problem caused by spatial homogeneity 

http://ioccg.org/groups/OCAG_data.html
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assumption; and (2) AC only for longer wavelengths (i.e., longer than 620 nm). This new 

AC algorithm was denoted as N-GWI hereafter for convenience. To ensure that the N-

GWI algorithm is applicable in turbid inland waters, the improvements have been carried 

out in three aspects. The details are delineated hereafter. 

a) Using a fixed aerosol model 

In the GWI algorithm, aerosol multiple scatterings [ a(λNIR) +  ra(λNIR)] at 779 and 865 

nm were firstly estimated from TOA reflectance, Rayleigh scattering reflectance, and 

estimated water-leaving reflectance by the bio-optical model according to the Equation 

3.1. The estimated aerosol multiple scatterings were then converted to aerosol single 

scatterings  as (λNIR) at the same wavelengths through a look up table (LUT) as follows:  

 

                   
   
                                                 (3.3a) 

                  
   
                                                 (3.3b)     

 

The AC parameter epsilon (i.e., ε(779,865)) is calculated from the ratio of the two aerosol 

single scatterings at 779 and 865 nm as follow:                                    

     

           
        

        
                                                    (3.4)    

   

The value of ε(779,865), which varies from 0.976 to 1.203, is corresponding  to  80 

prepared aerosol models with different ratios of fine particles (95, 80, 50, 30, 20, 10, 05, 
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02, 01 and 00 %) and relative humidity (30, 50, 70, 75, 80, 85, 90 and 95 %). For each 

value of ε(779,865), I can extrapolate it to other wavelengths using the following 

equation (also Figure 3.2):  

 

                       
               

       
     λ                                             (3.5)     

           

Aerosol single scattering reflectance at all wavelengths can be estimated from that 

at 865 nm ( as(865)) and the epsilons at all wavelengths (ε (λ,865)):  

 

                                                                      (3.6) 

 

Based on the values of aerosol single scattering reflectance, the values of aerosol multiple 

scattering reflectance can be estimated through the LUT provided in SeaDAS software: 

 

      
   
                                                            (3.7) 

 

Finally, water-leaving reflectance ( w(λ)) at all wavelengths can be derived as follow:  

 

                  
                               

    
                                   (3.8) 
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Figure 3.2. ε(λ, 865) as a function of wavelength for 80 prepared aerosol models in 

SeaDAS. Based on ε(779, 865) value, M35 is average which is corresponds to a Coastal 

aerosol model with relative humidity (RH) of 75% and fine particles ratio of 20%. 



57 

 

Therefore, it is clear that the value of ε(779,865) plays an important role for 

selecting the most appropriate aerosol model for a pixel. However, in the waters with 

relatively high turbidities, the GWI algorithm usually could not provide accurate water-

leaving reflectance at 779 and 865 nm due to several empirical relationships for 

estimating absorption and backscattering coefficients were not valid in these kinds of 

waters (Jaelani et al. 2013). Therefore, the GWI algorithm could not obtain a reasonable 

value of ε(779,865) and thus an appropriate aerosol model.  

From Figure 3.2, it can be seen that the ε(779,865) values among all 80 aerosol 

models do not show larger variation if I just considered wavelengths longer than 620 nm. 

For the wavelength of 620 nm, the ε(620,865) values varies from 0.933 to 1.693 with an 

average of 1.222. For the wavelength of 779 nm, the ε(779,865) values varies from 0.976 

to 1.203 with an average of 1.073. The ε(779,865) value of 1.073 corresponds to a 

Coastal aerosol model with relative humidity (RH) of 75% and fine particles ratio of 20%. 

This finding indicates that the selection of aerosol model is not so important if I just 

consider AC for longer wavelengths. Therefore, it is possible to fix the ε(779,865) values 

as the average of 1.073 in the N-GWI algorithm instead of estimating it every time. This 

improvement can not only avoid an inaccurate ε(779,865) estimation from the ratio of 

aerosol scattering reflectance at two 779 and 865 nm, but also make the N-GWI 

algorithm only need to estimate aerosol scattering at 865 nm.   

b)  Shifting the reference band from visible to NIR 

The GWI algorithm used a visible band around 670 nm as the reference for clear and less 
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turbid waters (Stumpf et al. 2003; Bailey, Franz, and Werdell 2010). The value of at(670) 

was firstly calculated based on  an empirical relationship derived from NOMAD (the 

NASA bio-Optical Marine Algorithm Dataset ) (Werdell and Bailey 2005) as follow: 

 

                                                              (3.9) 

 

where Chla is the concentration of chlorophyll-a, and aw(670) is the absorption 

coefficient of pure water at the wavelength of 670 nm. Then, the backscattering 

coefficient of particles at 670 nm  (bbp(670)) was calculated using the following equation: 

 

         
             

        
                                                  (3.10) 

 

where μ(670) can be semi-analytically calculated from Rrs(670) using a bio-optical model 

(Lee, Carder, and Arnone 2002; Yang et al. 2013).  

In turbid inland waters, it is difficult to accurately predict chlorophyll-a 

concentration before an accurate AC was carried out, and thus the use of Equation 3.9 is 

limited. Yang et al. (2013) suggested the use of a longer wavelength at 754 nm instead of 

555 nm or 670 nm as the reference band. At the wavelength of 754 nm, the assumption of 

total absorption (at) mostly come from pure water will be valid even for highly turbid 

waters (i.e., at(754)≈aw(754)). Therefore, the backscattering coefficient of particles at 754 

nm (bbp(754)) can be semi-analytically calculated as follow:  
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                                             (3.11) 

 

where bbw(754) is the backscattering coefficient of pure water, and μ(754) can be semi-

analytically calculated from Rrs(754) using a bio-optical model. 

c) Generating a semi-analytical model for the estimation of spectral slope of 

particle backscattering 

The following equation is used to obtain particle backscattering coefficients at a given 

wavelength (Yang et al. 2013) :  

 

                 
   

 
 

 

                                          (3.12) 

 

where λ is the given wavelength, and Y is the spectral slope of particle backscattering. In 

the GWI algorithm, the Y values are estimated using an empirical relationship proposed 

by (Lee, Carder, and Arnone 2002) : 

 

                
      

        

        
 
                              (3.13) 

 

It can be considered that there are two limitations in the above equation (Equation 

3.13). First, this relationship is an empirical one, and thus is probably a site- or time-

specific one because the empirical relationship strongly depends on the data used.  
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Figure 3.3. Scatter plot of log [μ(754)/μ(779)] vs. Y value derived from IOCCG synthetic 

dataset. 
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Second, the Rrs(λ) at two shorter wavelengths were used in the equation. In turbid waters, 

the Rrs(λ) at shorter wavelengths strongly suffers from not only interactions among water 

constituents but also imperfect atmospheric correction. In order to address the above two 

limitations, Yang et al. (2013) proposed a semi-analytical relationship for estimating Y 

values in turbid waters. The new relationship was generated using Rrs(λ) at two longer 

wavelengths (754 and 779 nm) and corresponding IOPs data, which were obtained from 

IOCCG synthetic dataset (IOCCG 2006). In this study, I regenerated this relationship by 

using all 500 datasets according to the method proposed by Yang et al. (2013). In the 

original Yang et al. (2013), they only used 260 datasets because they used the remaining 

240 dataset for validation. The new generated relationship is as follow (also Figure 3.3): 

 

               
      

      
  

 

             
      

      
                             (3.14) 

 

where μ(754) and μ(779) can be estimated from Rrs(754) and Rrs(779) using a bio-optical 

model, respectively. 

3.2.3 Accuracies Assessments 

Two indices, root mean square error (RMSE) and normalize mean absolute error 

(NMAE), were used to assess the accuracy of atmospheric correction. These indices were 

defined as follows: 

                        
  

   

 
     (3.15) 



62 

 

 

         
 

 
  

               

     
  

            (3.16) 

 

where xmeas,i and xesti,i are the measured and estimated values, respectively, and N is the 

sample size. The RMSE gives the absolute scattering of the retrieved water-leaving 

reflectance, and the NMAE represents the uncertainty associated with satellite-derived 

distribution. The determination coefficient (R
2
) between in situ measured Rrs(λ) and 

estimated Rrs(λ) from atmospherically corrected MERIS data was also calculated. 

3.3 Results  

3.3.1 Performance in Lake Kasumigaura 

Figure 3.4 shows the comparison of in situ measured (x-axis) and atmospherically 

corrected (y-axis) Rrs(λ)  by the N-GWI algorithm as well as four previous AC algorithms 

(GWI, MUMM, C2WP and SCAPE-M) for MERIS bands 6–10 in Lake Kasumigaura.  

For the data collected in 2006 (K060218, 7 stations), results show that the N-GWI 

and SCAPE-M algorithms achieved the best performance. The N-GWI produced root 

mean square error (RMSE) of 0.003, normalized mean average error (NMAE) of 18.33%, 

and the determination coefficient (R
2
) of 0.767. While the SCAPE-M produced RMSE of 

0.003, followed by the MUMM (RMSE=0.004), C2WP (RMSE=0.004) and GWI 

(RMSE=0.007).  
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Figure 3.4. Comparisons between the in situ-measured and MERIS-derived water-leaving 

remote sensing reflectance by the N-GWI for MERIS bands 6–10 in Lake Kasumigaura: 

(left) K060218, (middle) K080807, (right) K100518. The center wavelength at each band 

is shown in the legend. The black line represents the 1:1 line.  
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For the data of 2008 (K080807, 6 stations), the N-GWI achieved the best performance 

(RMSE=0.001, NMAE=21.10%, R
2
=0.835), followed by MUMM (RMSE=0.002), 

SCAPE-M (RMSE=0.002), C2WP (RMSE=0.004) and GWI (RMSE=0.004).  Likewise 

for the data of  2010 (K100518, 21 stations), the N-GWI achieved the best performance 

(RMSE=0.002, NMAE=21.82%, R
2
=0.642), followed by GWI (RMSE=0.004), MUMM 

(RMSE=0.006), C2WP (RMSE=0.007) and SCAPE-M (RMSE=0.008).  

3.3.2 Performance in Lake Dianchi 

The performances of N-GWI as well as three existing algorithms (GWI, C2WP and 

MUMM) were presented in Figure 3.5 and Table 3.3. Figure 3.5 show the performance of 

N-GWI for Lake Dianchi. In 2007 data (D071024, 3 stations) and 2009 data (D090313, 3 

stations) N-GWI achieved the best performance with RMSE of 0.002 and 0.018, 

respectively. These performances followed by GWI with RMSE of 0.003 and 0.019, 

respectively; MUMM with RMSE of 0.003 and 0.026, respectively; and C2WP with 

RMSE of 0.006 and 0.027, respectively.  

3.3.3 Performance in American sea waters 

The performance of N-GWI in the tested American sea waters was different among the 

water bodies with NMAE in range of 83% to 1390%. The best retrieval achieved in 

Chesapeake Bay (CB110714, NMAE=83.56%) following with the data in Deadman Bay 

(DM111121, NMAE=219.90%) as presented in Figure 3.6. 
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Table 3.3. Performance of 4 atmospheric correction algorithms in 14 MERIS images. 

SCAPE-M is not included here. 
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Figure 3.5. Comparisons between the in situ-measured and MERIS-derived water-leaving 

remote sensing reflectance by the N-GWI for MERIS bands 6–10  in Lake Dianchi: (a) 

D071024, (b) D090313. The center wavelength at each band is shown in the legend. The 

black line represents the 1:1 line.  
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Figure 3.6. Comparisons between the in situ-measured and MERIS-derived water-leaving 

remote sensing reflectance by the N-GWI for MERIS bands 6–10  in American sea: (a-c) 

Chesapeake Bay; (d-f) Deadman Bay; (g-h) South Florida’s Sea and (i) Tampa Bay. The 

center wavelength at each band is shown in the legend. The black line represents the 1:1 

line.  
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The C2WP algorithm produced higher accuracy for all American sea waters: Chesapeake 

Bay data (CB110711, CB110714 and CB110717); Deadman Bay (DM110313, 

DM110925 and DM111121); South Florida’s Sea (SF120228 and SF120301) and Tampa 

Bay (TB110616) with RMSE in range of 0.000 to 0.001. The similar performance 

achieved by GWI and MUMM algorithms, except in CB110711 (RMSE=0.002), 

SF120228 (RMSE=0.003) and TB110616 (RMSE=0.007) for GWI; and CB110711 

(RMSE=0.002), CB110717 (RMSE=0.002) and TB110616 (RMSE=0.003) for MUMM. 

According to these results, C2WP algorithm is suitable for atmospheric correction in all 

American sea waters used in this study, whereas the developed algorithm achieved a 

lower accuracy than three existing algorithms. 

3.4 Discussion 

3.4.1 The performance of N-GWI 

3.4.1.1 In turbid inland waters 

In this study, all data collected in Asian turbid inland waters (K060218, K080807, 

K100518, D071024 and D090313) can be successfully processed by N-GWI with the 

NMAE less than 22% and RMSE less than 0.003 (except for D090313).  As mentioned in 

Section 3.2.1.3, two field campaigns in Lake Dianchi, China were performed one day 

before satellite acquisition. The wind speed information in Lake Dianchi on the field 

campaign date as well as one day before and after was obtained from the closest 

meteorological station (Kunming Meteorological Station). 
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Figure 3.7. Wind speed data over Lake Dianchi recorded by Kunming Meteorological 

Station (obtained from wunderground.com). In situ measurement time at 10.00; satellite 

acquisition time at 11.30 CST. 
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The wind speed on October 22, 2007 (one day before field campaign), October 23, 2007 

(field campaign date) and October 24, 2007 (image acquisition date) were slow and stable 

with averaged values of 2, 3, and 2 ms
-1

, respectively and without gust blew (Figures 

3.7(a-c). In contrast, the wind speed on March 11, 2009 (one day before field campaign), 

March 12, 2009 (field campaign date) and March 13, 2009 (image acquisition date) were 

strong and unstable with averaged values of 6, 6.16, and 5.92 ms
-1

, respectively and a 

number of gusts blew (Figures 3.7(d-f)). These data indicated that water qualities in 

periods between field campaign and MERIS data acquisition were similar in 2007, 

whereas were very different in 2009 due to the sediment resuspentation by strong wind 

before field campaign. This is considered as the reason why an underestimation occurred 

in 2009 dataset of Lake Dianchi. 

3.4.1.2 In less turbid sea’s waters 

All data obtained from SeaBASS database in this study (Deadman Bay, Tampa Bay, 

Chesapeake Bay and South Florida’s Sea) were categorized as turbid water by Shi and 

Wang (2007). However, comparing with the two Asian lakes used in this study, their 

turbidities are still low. Therefore, I grouped the SeaBASS data into less turbid waters. 

Generally the N-GWI gave overestimations in these waters (Figure 3.6). This is probably 

because that the low turbidities and thus low backscattering from water column combined 

with strong water absorption at 754 nm resulted in very low reflectance at this reference 

wavelength and thus cannot provide enough signal-to-noise ratio (SNR) for accurate 

bbp(754) estimation by equation 3.11. These results indicate that the N-GWI algorithm is 
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not suitable to be applied in the clear and less turbid waters. On the other hand, the GWI, 

C2WP and MUMM produced higher accuracies in these American sea waters, indicating 

a potential to use these AC algorithm in less turbid waters.  

3.4.2 Advantages and Limitation of the N-GWI 

The N-GWI has four advantages. First, the N-GWI was developed to estimate water-

leaving reflectance pixel by pixel, and then estimate aerosol contribution pixel by pixel. 

Therefore, it does not require to assume a spatial homogeneity for aerosol state over a 

water area as in SCAPE-M and MUMM, to assume a spatial homogeneity for the ratios 

of water-leaving reflectance at two NIR wavelengths as in MUMM, to need training data 

like the C2WP.  Second, the N-GWI used a fixed aerosol model (i.e. fixed epsilon value) 

rather than selecting it every time. Figure 3.8 shows the performance of N-GWI in Lake 

Kasumigaura for three different epsilon values. Figures 3.8(a-c) are for using a minimum 

epsilon value among 80 aerosol models in SeaDAS, whereas Figures 3.8(d-f) and 3.8(g-i) 

are for using the average and maximum epsilon values, respectively. The performances of 

N-GWI were relatively similar in K060218 for all epsilon values (RMSE=0.003); 

comparable performances in K080807 with RMSE of 0.002, 0.002 and 0.001 for 

minimum, maximum and average epsilon values, respectively; and different performance 

in K100518 with RMSE of 0.003, 0.005 and 0.002 for minimum, maximum and average 

epsilon values, respectively. The use of average epsilon value could represent most cases 

of atmospheric status.  
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Figure 3.8. Comparisons between the in situ-measured and MERIS-derived water-leaving 

remote sensing reflectance by the N-GWI for MERIS bands 6–10 in Lake Kasumigaura. 

Epsilon (ε(779,865)) value: (a-c) minimum; (d-f) average and (g-i) maximum. The center 

wavelength at each band is shown in the legend. The black line represents the 1:1 line.  
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Figure 3.9. The ratio of estimated and measured total absorption (a’(λ)/a(λ)) at 27 

sampling sites collected in Lake Kasumigaura for two reference band (670 nm and 754 

nm). The estimated total absorption at 670 nm (a’(670)) is calculated from chlorophyll-a-

based empirical equation used in GWI algorithm. The estimated total absorption at 754 

nm (a’(754)) is assumed to be equal to the water absorption. Station number 1-6 from 

K080807 and 7-27 from K100518. 
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Third, the N-GWI used 754 nm as the reference band and thus makes the assumption for 

total absorption coefficient at this wavelength become valid even for turbid waters. 

Figure 3.9 shows the ratio of estimated and measured total absorption at 754 nm 

outperformed that at 670 nm. The averaged ratio at 754 nm are 0.8 and 0.98 in K080807 

(station number 1-6) and in K100518 (station number 7-27), respectively. Even though 

the measured-chlorophyll-a concentration were used to calculate the estimated-absorption 

at 670 nm through an empirical equation (Equation 3.9), their performance are still 

poorer than that achieved by the use of 754 nm. Fourth, the N-GWI used a semi-

analytical equation to calculate Y value for extrapolating a bio-optical parameter (i.e., bbp) 

from reference to NIR wavelength (Equation 3.14) rather than the use of empirical 

equation (Equation 3.13) in the GWI.  

Considering the basic assumptions used in the N-GWI, the algorithm has three 

critical limitations: (1) the N-GWI does not promise accuracy for shorter wavelengths; 

(2) in clear and less turbid water, the low signal at reference band (754 nm) make an 

invalid estimation of aerosol scattering reflectance, and (3) the N-GWI cannot produce a 

sufficient accuracy in extremely turbid water when the assumption of backscattering 

coefficient at 754 nm mostly comes from water is invalid. Further investigation of 

applicability of the developed algorithm should be carried out in future study.  

3.4.2 Implementation to other remote sensing sensors 

Although the N-GWI was designed for MERIS sensor, there is a possibility to extend its 

implementation to other sensors. Corresponding to the three improvements in the N-GWI, 
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I need to adjust its parameters and equations based the characteristic of sensor (e.g., 

wavelength availability, number of bands). For example, for using MODIS or SeaWIFS 

sensors, I need to: (1) change the reference band, because MODIS and SeaWIFS have not 

equipped by wavelength of 754 nm, the reference band should be shifted to 748 and 765 

respectively; and (2) change the bands couple for Y estimation using two NIR bands in 

MODIS and SeaWIFS; and reproduce the semi-analytical equation using synthetic data.  

3.5 Conclusions  
 

I developed a new atmospheric correction algorithm (N-GWI) for inland turbid waters. 

The N-GWI was based on the scheme of the GWI that was implemented in SeaDAS for 

less turbid waters. The N-GWI includes three improvements: (1) using a fixed aerosol 

model; (2) shifting the reference band from visible to NIR; and (3) generating a semi-

analytical model for the estimation of spectral slope of particle backscattering.  

 The N-GWI showed good performance for two turbid inland waters (Lakes 

Kasumigaura and Dianchi) with the RMSE less than 0.003 except for the data in Lake 

Dianchi in 2009, but poor performance for four less turbid sea waters in America. These 

results show the limitations of the N-GWI in less turbid waters. Considering the 

advantages as well as its limitations, the N-GWI gave a promising result for atmospheric 

correction in turbid waters. 
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Chapter IV Development of a new 

atmospheric correction algorithm for 

applying MERIS data to turbid inland 

waters II: further validation and an 

application for long-term chlorophyll-a 

monitoring in Lake Kasumigaura, Japan 
 

4.1 Introduction 

Monitoring water quality in inland waters is required to support the sustainable use of 

freshwater ecosystems. Considering the ability to provide routine data with a large area 

coverage and sufficient spatial resolution, remote-sensing approach is suitable for 

monitoring spatial and temporal heterogeneities of water bodies (Liu, Islam, and Gao 

2003). One of the most important applications of water color remote-sensing is to 

estimate the chlorophyll-a concentration, which is a key parameter for assessing the 

water quality (Gons 1999; O’Reilly et al. 1998). However, the successful of chlorophyll-a 

retrieval from satellite remote-sensing data strongly depend on the accuracy of not only 

retrieval algorithm of the chlorophyll-a concentration but also atmospheric correction 

(Ruddick, Ovidio, and Rijkeboer 2000; Yang et al. 2011; Sathyendranath, Prieur, and 

Morel 1987).  

 In clear waters, both chlorophyll-a retrieval algorithms (e.g., O’Reilly et al. 1998) 

and atmospheric corrections algorithms (e.g., Gordon and Wang 1994) have been 

developed with sufficient accuracies. In contrast, although the algorithms for retrieving 
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chlorophyll-a have been well developed in turbid waters (e.g., Gitelson et al. 2008, 2011; 

Le et al. 2009; Yang et al. 2010, 2011), the atmospheric correction algorithms for these 

kinds of waters are still a challenge (Jaelani et al. 2013).  

In Chapter III, I developed a new atmospheric correction algorithm for turbid 

waters, which is based on the scheme of Bailey, Franz, & Werdell (2010) and named as 

N-GWI (New- the standard Gordon and Wang algorithm with an Iterative process and a 

bio-optical model). Performance of the N-GWI algorithm was primarily evaluated by 

comparing atmospherically corrected remote sensing reflectance (Rrs(λ)) with in situ-

measured Rrs(λ) in two turbid Asian lakes and four American sea waters. Since the N-

GWI algorithm was specifically developed for waters with higher turbidities, only the 

atmospherically corrected Rrs(λ) at longer wavelengths (longer than 620 nm) would be 

required because the Rrs(λ) at shorter wavelengths could not be used for retrieving water 

quality parameters in these waters (Gitelson 1992; Gitelson et al. 2008; Yang et al. 2011; 

Yu et al. 2014) 

The objectives of this chapter were to (1) further validate the performance of the 

N-GWI algorithm by comparing the measured chlorophyll-a concentration with 

estimated one; and (2) demonstrate a possibility for long-term water quality monitoring 

by satellite data in Lake Kasumigaura, Japan. For these objectives, I firstly processed 215 

MERIS images, which cover the Lake Kasumigaura, Japan and were acquired between 

2003 and 2012, using the N-GWI algorithm as well as other four existing atmospheric 

correction algorithms to produce atmospheric corrected Rrs(λ). I then inputted these 
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atmospherically corrected Rrs(λ) to chlorophyll-a retrieval algorithm for chlorophyll-a 

estimation and compared the results with the measured chlorophyll-a collected in Lake 

Kasumigaura.  

4.2 Methods 

4.2.1 Study area 

Lake Kasumigaura, Japan (36
o
 9’N; 140

o
 14’ E) is located in the eastern part of Japan’s 

Kanto’s plain and has a surface area of 171 km
2
 (only for the western part), an average 

depth of 4.0 m, and a maximum depth of 7.3 m. It is the second largest lake in Japan 

(after Lake Biwa) and it is a eutrophic-turbid lake due to high loads of nutrients and 

resuspension of bottom sediments by wind (Matsushita et al. 2009). During the last two 

or three decades, Lake Kasumigaura’s average TSM concentration increased from 14.1 to 

26.4 g m
−3

 (due mainly to the re-suspension of bottom sediments by wind), the 

chlorophyll-a concentration decreased from 87 to 61 mg m
−3

 (owing to the watershed 

management by the local government), and the Secchi disk depth decreased from 70 to 

52 cm (CEBES 2011). 

4.2.2 Measured chlorophyll-a  

There are two measured chlorophyll-a datasets were used in this study. The first dataset is 

collected by Team of University of Tsukuba.  Three data collection campaigns were 

undertaken in 2006 (Feb. 18, 10 sites), 2008 (Aug. 7, 14 sites), and 2010 (May 18, 26 

sites), and the campaigns were timed to coincide with the acquisitions of the MERIS 

images. The data collecting sites, which located less than one MERIS pixel away from 
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the banks and corresponding MERIS pixels were contaminated by clouds were excluded 

from the analyses. Accordingly, 7, 6, and 21 sites remained for comparison in Feb. 2006 

(denoted as K060218 hereafter), Aug. 2008 (denoted as K080807 hereafter) and May 

2010 (denoted as K100518 hereafter), respectively (Figures 4.1(b-d)). The range of water 

quality parameters during these campaigns are presented in Table 4.1.  

The second dataset is obtained from Lake Kasumigaura Database (CEBES 2011), 

which  is a long term database maintained by Center for Environmental Biology and 

Ecosystem Studies (CEBES), National Institute of Environmental Sciences (NIES), Japan 

for monitoring water qualities in Lake Kasumigaura. Water samples were regularly 

collected by boat at 10 sites on the second Wednesday every month since 1977. This 

database contains weather data, water quality parameters (e.g., pH, water temperature, 

electric conductivity, DOC, Secchi depth, COD, pigments including chlorophyll-a 

concentration, SS), and biological data (e.g., bacteria, protozoa, phytoplankton, NPP).  In 

which, chlorophyll-a concentration data collected from four sites (sites, 3, 7, 9, 12; Figure 

4.1(a)) between 2004 and 2011 (corresponding to available MERIS data in Lake 

Kasumigaura) were used in this study, and denoted as NIES-dataset hereafter. Field 

survey dates during the above period are summarized in Table 4.2. The data after March 

2011 are not available because they are still not yet opened for public use.  

Water samples of K060218, K080807, and K100518 were collected from the water 

surface (0.2-0.5 m) using 4.0 liters polycarbonate bottles at each site. While water 

samples of NIES dataset were collected from 0.0 to 2.0 m depth by using a column water 

sampler of 2.0 m length and of 6.0 cm diameter.  
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Figure 4.1. Location of sampling stations: (a) NIES-dataset regular stations for long-term 

monitoring; (b) K060218; (c) K080807; and (d) K100518  
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Table 4.1. Range of water quality data in Lake Kasumigaura, Japan 
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Table 4.2. Field measurement date 
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Except for water sampling method, other methods for keeping and processing water 

samples for chlorophyll-a measurement are all similar. The water samples were kept in 

ice boxes during the field survey, and taken to the laboratory within approximately 0.5 h 

after the field surveys. Then water samples were filtered by Whatman GF/F filter, and the 

filter paper was kept in a freezer under a temperature of -20
o
C. Chlorophyll-a was 

extracted using methanol (100%) at 4°C under dark conditions for 24 h. The optical 

density of the extracted chlorophyll-a was measured at four wavelengths (750, 663, 645 

and 630 nm) by absorption spectrum method, and the concentration was calculated 

according to SCOR-UNESCO equations (SCOR-UNESCO 1966).  

4.2.3 MERIS data 

I searched all available full-resolution MERIS data (level-1b) over Lake Kasumigara, 

Japan between 2003 and 2012 by using EOLi (ESA’s Link to Earth Observation, 

http://earth.esa.int/EOLi/EOLi.html), the European Space Agency's client for Earth 

Observation Catalogue and Ordering Services. In total, 492 MERIS images were found 

covering whole or a part of Lake Kasumigaura. After screened images that were 

contaminated by cloud over Lake Kasumigaura using the preview images on EOLi, I 

downloaded 215 cloud-free MERIS images. The numbers of the available MERIS images 

for each month are presented in Table 4.3. In which, three MERIS images were acquired 

on February 18, 2006, August 7, 2008, and May 18, 2010, which are the same dates as 

my three field surveys; other 39 MERIS images were acquired with the maximum 

different time from NIES-dataset within 3 days (9, 12, 11 and 7 images with 0, 1, 2 and 3 

http://earth.esa.int/EOLi/EOLi.html
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days different, respectively).  The time difference between field surveys and MERIS 

acquisitions are presented in Table 4.4.  

4.2.4 Candidate Atmospheric Correction algorithms 

The first candidate is the N-GWI algorithm, which was developed in my previous work 

and installed in SeaDAS software package (version 6.4, http://seadas.gsfc.nasa.gov/) by 

modifying the original code of GWI and recompiling the new code. There were three 

improvements in the N-GWI: (a) using a fixed aerosol model (relative humidity of 75% 

and ratio of fine particles of 20%). At the longer wavelengths, since the differences 

among different aerosol models are small, it is possible to just use a fixed aerosol model 

to carry out atmospheric correction for different pixels, and thus can avoid invalid epsilon 

estimation for selecting aerosol model in the original code; (b) shifting the reference band 

from 670 nm to 754 nm. At the wavelength of 754 nm, the total absorption coefficient 

can be assumed to approximately be equal to the pure water absorption coefficient, and 

thus can semi-analytically calculate backscattering coefficient of particles; and (c) using a 

semi-analytical model to replace empirical model in the original code for the estimation 

of spectral slope of particle backscattering.  

For comparison, I also selected other four existing atmospheric correction 

algorithms developed for turbid waters. They are: (1) the GWI algorithm (Stumpf et al. 

2003; Bailey, Franz, and Werdell 2010); (2) the MUMM algorithm (Management Unit of 

the North Sea Mathematical Models; Ruddick, Ovidio, and Rijkeboer [2000]); (3) the 

C2WP algorithm (Case-2 water Processor; Doerffer and Schiller [2008]); and (4) the 

http://seadas.gsfc.nasa.gov/
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SCAPE-M algorithm (Self-Contained Atmospheric Parameters Estimation for MERIS 

data; Guanter, Sanpedro, and Moreno [2007]; Guanter et al. [2010]). The first and second 

algorithms are available in SeaDAS software; the third algorithm is available in BEAM 

toolbox (version 4.11, http://www.brockmann-consult.de/beam/). Since the SCAPE-M 

algorithm is not yet available for public use now, I asked algorithm’s author (Dr. Luis 

Guanter) to process three MERIS images (Feb. 18, 2006; Aug. 7, 2008; May 18, 2010; 

corresponding to my own field surveys) using the SCAPE-M algorithm.  

All downloaded MERIS images were processed using SeaDAS software package 

or BEAM toolbox to produce the atmospherically corrected Rrs(λ) by N-GWI, GWI, 

MUMM, and C2WP algorithms at center wavelengths of 620, 665, 681, 709 and 754 nm 

(five longer wavelengths, corresponding to MERIS band 6-10). To evaluate the 

performance of the N-GWI, I extracted the average Rrs(λ) of the pixels nearest the 

sampling locations along with the eight surrounding pixels (3 X 3 window) from the 

atmospherically corrected MERIS images, and compared estimated chlorophyll-a with  

measured chlorophyll-a to avoid potential error in the geometric correction and dynamics 

of water bodies, as well as  the potential error  in spatial variability (Han and Jordan 

2005). 

 

  

http://www.brockmann-consult.de/beam/
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Table 4.3. The number of MERIS images  
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Table 4.4. MERIS and Lake Kasumigaura database match-up data  
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4.2.5 Estimation of Chlorophyll-a concentration using SAMO-LUT 

To estimate chlorophyll-a concentration, the SAMO-LUT algorithm (semi-analytical 

model optimizing and look-up tables) proposed by Yang et al. (2011) was used. 

Atmospherically corrected reflectance Rrs(λ) by the N-GWI as well as the GWI, C2WP, 

MUMM and SCAPE-M algorithms were used as inputs of the SAMO-LUT.  

The SAMO-LUT algorithm is originally proposed for simultaneously retrieving 

concentrations of the three water constituents (i.e., phytoplankton, NAP, and CDOM).  

The basic idea of the SAMO-LUT involves the use of an imaginary Case-2 water body, in 

which only one constituent changes while the other two are controlled as constants. A 

comprehensive synthetic dataset was used for model calibration, rather than the use of in 

situ data. In this way, I hoped to obtain not only a large sample size without a sampling 

bias for model calibration, but also a series of special cases to avoid effects from other 

constituents and thus improve model performance (e.g., a dataset only with various Chl-a 

while concentrations of  NAP and CDOM are constants).  

The main procedures of the SAMO-LUT are summarized as follows (Yu et al. 

2014): 

Step 1: Generation of simulation dataset. The Rrs(λ) spectra were generated based 

on the SIOPs from target water and a bio-optical model. In the present study, only the 

SIOPs collected from Lake Dianchi were used due to the lack of complete SIOPs data for 

other lakes. The concentrations of Chl-a and NAP (i.e., tripton in the original paper), as 

well as the absorption coefficient of CDOM at 440 nm were varied in a wide range of 1-

300 mg m-
3
 (31 values), 1-250 g m

-3
 (28 values) and 0.1-10 m

-1
 (23 values), respectively. 
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In all, 19,964 sample spectra were generated. 

Step 2: Computation of selected semi-analytical indices. Three semi-analytical 

indices were selected for the estimation of Chl-a, NAP and CDOM, based on their 

reasonableness and performance. The selected indices were: a 3-band index ([1/Rrs(665)-

1/Rrs(709)]*Rrs(754)) for Chl-a, remote-sensing reflectance for the band centered 754 nm 

(Rrs(754)) for NAP, and the band-ratio Rrs(560)/Rrs(665) for CDOM. The synthetic 

reflectances were resampled to the bandwidths of the MERIS (Medium Resolution 

Imaging Spectrometer) sensor based on its spectral response function, and then the 

selected indices were calculated.  

Step 3: Construction of look-up tables. I constructed three 2-dimensional look-up 

tables containing the coefficients of the estimation model for one constituent of interest, 

determined by the concentrations of the other two constituents. For instance, for the 

estimation of Chl-a, increments of 1 g m
-3

 for NAP and of 0.1 m
-1

 for CDOM were 

respectively used in the ranges of 1-250 g m
-3

 and 0.1-10 m
-1

, and the regression 

coefficients corresponding to different combinations of NAP and CDOM were stored in 

the LUT. 

Step 4: Initial estimations of Chl-a and NAP. I derived initial values of Chl-a and 

NAP using two general estimation models obtained through regression analysis between 

the simulated reflectance and corresponding Chl-a and NAP. The two general estimation 

models were: 

              
           

                                   (4.1)        
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                             (4.2)    

                       

The calculated initial Chl-a and NAP were then used to estimate initial CDOM 

through a prepared LUT in step 3. 

Step 5: Iteration to select more appropriate model coefficients. The estimation 

models were improved according to the initial Chl-a, NAP, and CDOM. After that, the 

refined Chl-a, NAP, and CDOM were obtained by using the improved estimation models.  

Step 6: End of iteration. I found a more appropriate estimation model from the 

LUTs for each water constituent through the iterative use of the newly obtained Chl-a, 

NAP and CDOM. The iteration was stopped when the difference between the current and 

last output was sufficiently small. Generally, the differences become stable after the 10th 

iteration. 

4.2.6 Accuracies Assessments 
 

Two indices, root mean square error (RMSE) and normalized mean absolute error 

(NMAE), were used to assess the accuracy of atmospheric correction. These indices were 

defined as follows: 

                        
  

   

 
     (4.3) 

 

         
 

 
   

               

     
   

            (4.4) 
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where xmeas,i and xesti,i are the measured and estimated values, respectively, and N is the 

sample size. The RMSE gives the absolute scattering of the retrieved water-leaving 

reflectance, and the NMAE represents the uncertainty associated with satellite-derived 

distribution. The determination coefficient (R
2
) between in situ measured Rrs(λ) and 

estimated Rrs(λ) from atmospherically corrected MERIS data was also calculated. 

4.3 Results  

4.3.1 Validation using my dataset  

Figure 4.2 shows a comparison of measured (x-axis) and estimated (y-axis) chlorophyll-a 

concentration by using my own dataset in Lake Kasumigaura. The estimated chlorophyll-

a concentrations were derived from atmospherically corrected MERIS data by different 

atmospheric correction algorithms (the GWI: Figures 4.2(a-c); the MUMM: Figures 

4.2(d-f); the C2WP: Figures 4.2(g-i); the SCAPE-M: Figures 4.2(j-l); and the N-GWI: 

Figures 4.2(m-o)) and the SAMO-LUT algorithm. Chlorophyll-a concentration estimated 

from the in situ-measured remote-sensing reflectance and the SAMO-LUT were also 

shown in Figures 4.2(p-r) for comparison. For the dataset of K060218, the SCAPE-M 

algorithm achieved the best performance with RMSE of 10.27 mg m
-3

, followed by the 

GWI (RMSE=12.13 mg m
-3

), the MUMM (RMSE=14.56 mg m
-3

), the N-GWI 

(RMSE=24.98 mg m
-3

) and the C2WP (RMSE= 56.59 mg m
-3

).  
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Figure 4.2. Comparisons between the in situ-measured and MERIS-derived chlorophyll-a 

concentration by four existing algorithms (GWI, MUMM, C2WP and SCAPE-M), the 

developed algorithm (N-GWI) and in situ measured Rrs(λ)  through SAMO-LUT model in 

Lake Kasumigaura, Japan.  The black line represents the 1:1 line. Left column: February 

18, 2006; middle: August 7, 2008; right: May 18, 2010. 

  



95 

 

However, the SCAPE-M could not catch the spatial variation of chlorophyll-a with very 

low determination coefficient (R
2
=0.006). Although the N-GWI shows the poorer 

performance than the GWI, MUMM, and SCAPE-M, it shows the similar performance 

with using in situ-measured Rrs(λ). 

For the dataset of K080807, the chlorophyll-a retrieval by N-GWI achieved the 

highest accuracy (RMSE=6.87 mg m
-3

) followed by MUMM, SCAPE-M, C2WP and 

GWI with RMSE of 18.10 mg m
-3

, 22.09 mg m
-3

, 41.96 mg m
-3

, and 243.55 mg m
-3

, 

respectively. For the dataset of K1005018, the N-GWI also achieved the highest accuracy 

(RMSE=23.56 mg m
-3

), followed by the SCAPE-M, C2WP, GWI and MUMM with the 

RMSE of 37.89 mg m
-3

, 41.42 mg m
-3

, 77.05 mg m
-3

 and 268.35 mg m
-3

, respectively. 

Overall, it can be considered that the N-GWI achieved its best performance for all three 

tested MERIS images compared to other atmospheric correction algorithms.  

4.3.2 Validation using matchup NIES-dataset  
 

In Figure 4.3, I compared the measured and estimated chlorophyll-a concentration using 

different dataset as in Figure 4.2. The measured chlorophyll-a concentration were 

obtained from NIES-dataset at four regular monitoring stations (i.e., Station 3, 7, 9 and 

12), and the estimated chlorophyll-a concentration were obtained from corresponding 

atmospherically corrected matchup MERIS data and the SAMO-LUT.  

At Stations 3, 7, and 12 (the first, second, and fourth row in Figure 4.3), the N-

GWI achieved the best performance with the smallest RMSE (17.16-31.30 mg m
-3

), 

NMAE (24.41%-34.04%), and the highest determination coefficients (0.533-0.603).  
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Figure 4.3. Comparisons between the in situ-measured and MERIS-derived chlorophyll-a 

concentration by three existing algorithms (GWI, MUMM and C2WP) and the developed 

algorithm (N-GWI) through SAMO-LUT model in Lake Kasumigaura, Japan.  The black 

line represents the 1:1 line.  
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In contrast, the other three atmospheric correction algorithms (GWI, C2WP, and 

MUMM) showed poor performance for chlorophyll-a estimation, with the RMSE ranged 

from 39.96 to 520.18 mg m
-3

, NMAE ranged from 59.07% to 274.36%, and 

determination coefficients ranged from 0.000 to 0.390.  

At station 9 (center of the lake, the third row in Figure 4.3), the N-GWI algorithm 

yielded similar accuracy (RMSE of 21.17 mg m
-3

, NMAE of 30.48%, R
2
 of 0.588) with 

the GWI (RMSE of 20.08 mg m
-3

, NMAE of 36.06%, R
2
 of 0.590), but was superior to 

the C2WP (RMSE of 41.75 mg m
-3

, NMAE of 53.68%, R
2
 of 0.191) and the MUMM 

(RMSE of 45.86 mg m
-3

, NMAE of 49.74%, R
2
 of 0.428) for chlorophyll-a estimation. 

Overall, the N-GWI achieved the best performance for all four stations compared to other 

atmospheric correction algorithms.  

4.3.2 Applicability of using MERIS data for long-term chlorophyll-a monitoring 

in Lake Kasumigaura 
 

Figure 4.4 shows a comparison of the measured and estimated chlorophyll-a 

concentration for a long-term from 2003 to 2011. The measured chlorophyll-a 

concentrations were obtained from NIES-dataset, and the estimated chlorophyll-a 

concentrations were obtained from available MERIS data between 2003 and 2012. In 

total, I obtained 215 MERIS images; however, because some stations were covered by 

cloud and/or not covered by MERIS images (i.e., in the case of the Lake Kasumigaura 

was partly covered by one MERIS image), there are 179, 185, 190, and 176 available 

MERIS images for stations 3, 7, 9, and 12, respectively.  
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Figure 4.4. Temporal variation of in situ-measured and MERIS-derived chlorophyll-a 

concentration by N-GWI algorithm at St.3, St. 7, St.9 and St.12 in Lake Kasumigaura. 
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Figure 4.5. Temporal variation of in situ-measured and MERIS-derived chlorophyll-a 

concentration by GWI algorithm at St.3, St. 7, St.9 and St.12 in Lake Kasumigaura. 
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Figure 4.6. Temporal variation of in situ-measured and MERIS-derived chlorophyll-a 

concentration by C2WP algorithm at St.3, St. 7, St.9 and St.12 in Lake Kasumigaura. 
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Figure 4.7. Temporal variation of in situ-measured and MERIS-derived chlorophyll-a 

concentration by MUMM algorithm at St.3, St. 7, St.9 and St.12 in Lake Kasumigaura. 
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In addition, since the GWI, C2WP, and MUMM algorithms could not process all pixels 

due to their assumptions, the GWI processed 173, 182, 182 and 176 data for Stations 3, 7, 

9 and 12, respectively; the C2WP processed 171, 172, 175 and 164 data for Stations 3, 7, 

9 and 12, respectively; the MUMM processed 173, 175, 182 and 167 data for Stations 3, 

7, 9 and 12, respectively. It should note that some estimated chlorophyll-a by using 

atmospherically corrected Rrs(λ) from the GWI and the MUMM algorithms were higher 

than 250 mg m
-3

, those data were not showed in Figures 4.5 and 4.7.   

From Figure 4.4, it can be seen that the estimated chlorophyll-a by using 

atmospherically corrected Rrs(λ) from the N-GWI agreed well with measured chlorophyll-

a. This result provides a strong case to show the potential for using satellite data instead 

of field measurements for water quality monitoring. In contrast, if other three 

atmospheric correction algorithms were used, the estimated chlorophyll-a would not 

agree with the measured ones in a lot of cases (Figures 4.5-4.7).   

4.4 Discussion  

Generally, the N-GWI algorithm is superior to other test atmospheric correction 

algorithms at all stations. At Station 9 (Figure 3.3(g)), the GWI algorithm also gave a 

similar accuracy with the N-GWI (RE=30.48%, RMSE=21.17 and R
2
=0.588) (Figure 

3.3(c)). This is probably because that the turbidity at Station 9 is less than those at other 

three stations. The Station 9 is located at the center of the Lake Kasumigaura, and thus is 

far away from banks and two dominant inflow rivers. This characteristic of location 

makes the water quality parameters around this station are less influenced by suspended 
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sediments carried by the inflow rivers. In addition, the water depth at the station 9 

reached the maximum value (7.0 m) of the whole water body, and thus the possibility of 

re-suspended sediments by wind is low. The average suspended sediment (SS) at four 

stations are 29.6 g m
-3

, 34.6 g m
-3

, 23.7 g m
-3

 and 24.6 g m
-3

 for Stations 3, 7, 9 and 12, 

respectively.  

Considering the validation methods used in this study, there are four possible 

error sources in the estimated chlorophyll-a concentration. The first error source is the 

accuracy of atmospheric correction algorithm itself. In this study, I fixed the aerosol 

model for all MERIS images. For longer wavelengths (longer than 620 nm), the error due 

to the use of fixed aerosol model should be acceptable (Jaelani et al., in submitting). If 

the actual aerosol data is available, accuracy of the N-GWI will be increased. In addition, 

the lacks of long-term in situ Rrs(λ) make a direct comparison impossible, even though 

this comparison is an ideal way for validating atmospheric correction algorithm.   

The second error source is come from chlorophyll-a retrieval algorithm (i.e., 

SAMO-LUT). The SAMO-LUT used Cynobacteria-dominated water to build its look up 

table (Yang et al. 2011). The accuracy of SAMO-LUT will slightly decrease when it was 

used to different phytoplankton’s species (Yu et al. 2014). The underestimation both for 

the use of in situ-measured Rrs(λ) and atmospherically corrected MERIS data of Feb. 18, 

2006 by the N-GWI are probably because this reason. During the field survey on Feb. 18, 

2006, the dominant phytoplankton species was diatom (Bacillariophyceae, Oyama et al. 

[2009]). In addition, several points with larger underestimation (measured chlorophyll-a 

larger than 125 mg m
-3

) in Figure 3.3(a) were also dominant by diatom. If I excluded 
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these points, the RMSE and NMAE will be reduced from 31.30 mg m
-3

 to 15.97 mg m
-3

 

and from 24.69% to 21.73%, respectively.  

The third error source is from the measurement method of chlorophyll-a. The 

water samples by NIES were collected from 0.0 to 2.0 m depth in Lake Kasumigaura. 

The estimated chlorophyll-a from remote-sensing data generally represents the value 

from water surface to 0.5 m depth because the transparencies in Lake Kasumigaura are 

usually less than 1.0 m.   

The last error source is the time different between in situ water sampling and 

MERIS acquisition. In the 39 matchup data from NIES dataset, 18%, 28%, 31% and 23% 

of data have 3, 2, 1, and 0 days different, respectively. These differences could make an 

error if there were water quality changes between in situ water sampling and image 

acquisition time. 

4.5 Conclusions  
 

In this study, I further validated the performance of the N-GWI algorithm by using an 

indirect comparison. Long-term MERIS images were processed by the N-GWI to 

produce atmospherically corrected Rrs(λ), which are inputs of chlorophyll-a retrieval 

algorithm (SAMO-LUT). For my own dataset, the estimated chlorophyll-a by the use of 

N-GWI and SAMO-LUT produced acceptable accuracy with normalized mean absolute 

error (NMAE) in the range of 10 to 43%, root mean squared error (RMSE) in the range of 

7  mg m
-3

 to 25 mg m
-3

 and determination coefficient (R
2
) of 0.6 to 0.9. For the matchup 

data from NIES dataset, the estimated chlorophyll-a by the use of N-GWI and SAMO-
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LUT also produced acceptable accuracy with the NMAE in the range of 24% to 34%, the 

RMSE in the range of 17 mg m
-3

 to 31 mg m
-3

 and R
2
 of 0.5 to 0.6. The good agreements 

between long-term measured and estimated chlorophyll-a provided a strong case to show 

the potential for using satellite data instead of field measurements for water quality 

monitoring. 
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Chapter V General Conclusions 
 

 

I evaluated four atmospheric correction algorithms using in situ water-leaving reflectance 

and concurrently acquired MERIS images collected from Lake Kasumigaura, Japan 

(turbid inland water). The validity of the assumptions in the four atmospheric correction 

algorithms was also investigated to understand both the advantages and limitations of 

each algorithm. The results show that all atmospheric correction algorithms evaluated 

have limitations in regard to Lake Kasumigaura, although the SCAPE-M and MUMM 

algorithms had acceptable accuracy for atmospheric correction in several cases (i.e. 

relative errors less than 30% for the 2006 and 2008 images). The performances of all four 

algorithms strongly depended on their assumptions (atmospheric status and/or turbidity of 

water body), and each algorithm failed when its assumptions became invalid (e.g. for the 

2010 image, the relative errors ranged from 42% to 83%). These results indicate that 

further improvements are necessary to address the issue of atmospheric correction for 

turbid inland waters such as Lake Kasumigaura. 

In order to overcome some limitations of existing atmospheric correction 

algorithm in Lake Kasumigaura, I developed a new atmospheric correction algorithm (N-

GWI) which was designed to be applicable in inland turbid waters. N-GWI was based on 

the algorithm of GWI that implemented in SeaDAS with sufficient accuracy in less turbid 

waters. The limitation of GWI that cannot be used in very turbid waters have been 

overcome by (1) using a fixed aerosol model; (2) shifting the reference band from visible 

to NIR; and (3) generating a semi-analytical model for the estimation of spectral slope of 
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particle backscattering.  

To validate the performance of N-GWI I did three validations, firstly I compared 

the atmospheric corrected Rrs(λ) by the developed algorithms as well as four existing 

algorithms (GWI, SCAPE-M, MUMM and C2WP) with in situ-measured Rrs(λ) collected 

in Lake Kasumigaura. The N-GWI achieved the best performance for data collected in 

K080807 (RMSE=0.001) and K100518 (RMSE=0.002), and similar performance with 

SCAPE-M in K060218 (RMSE=0.003). The second validation was performed by 

comparing atmospheric corrected reflectance of N-GWI and three existing algorithms 

(GWI, MUMM and C2WP) with in situ-measured Rrs(λ) collected in Lake Dianchi. The 

N-GWI produced the best retrieval in D071024 (RMSE=0.002) and D090313 

(RMSE=0.018) followed by GWI with RMSE of 0.003 and 0.019 respectively. The last 

validation was performed (same method with second validation) using remote-sensing 

data collected in four less turbid sea waters in America. Here, the N-GWI produced poor 

performance with NMAE ranged from 83% -1391%. Whereas, the existing algorithms 

(GWI and C2WP) produced better accuracy with NMAE ranged from 35%-645% and 

31%-231% respectively. These data show the limitation of N-GWI in less turbid waters.  

Further validation using long-term MERIS images and chlorophyll-a 

concentration was performed to evaluate the applicability of N-GWI. Long term MERIS 

images were processed by N-GWI to produce atmospheric corrected reflectance which 

was an input of SAMO-LUT model to estimate chlorophyll-a concentration. Two set of 

data were used to validate the MERIS-derived chlorophyll-a concentration, they were 

Lake Kasumigaura in situ dataset which was collected by the team of University of 
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Tsukuba (my own dataset) and Lake Kasumigaura database (NIES-dataset) which was 

collected and managed by CEBES-NIES, Japan.  The match-up data of in situ measured 

chlorophyll-a and MERIS images were 34 and 39 for my own dataset and NIES-dataset, 

respectively. In my own dataset, the estimated chlorophyll-a by N-GWI  produced 

acceptable accuracy with normalized mean absolute error (NMAE) in range of 10 to 43%, 

root mean squared error (RMSE) in range of 7  to 25 mg m
-3

 and determination 

coefficient (R
2
) of 0.6 to 0.9. Whereas in NIES-dataset, the estimated chlorophyll-a by N-

GWI produced acceptable accuracy with NMAE in range of 24% to 34%, RMSE in range 

of 17 to 31 mg m
-3

 and R
2
 of 0.5 to 0.6. The good agreements between long-term 

measured and estimated chlorophyll-a provided a strong case to show the potential for 

using satellite data instead of field measurements for water quality monitoring. 

There are three future studies that have to be carried out to improve the advantages 

of N-GWI algorithm. They are (1) implementing the N-GWI to other sensors by adjusting 

the parameters and equations based on the characteristic of those sensors (e.g., number of 

bands and wavelength availabilities); (2) making an algorithm for selecting the 

appropriate atmospheric correction algorithms in case of heterogeneous water turbidity; 

and (3) developing a new atmospheric correction for extremely turbid water (e.g., Lake 

Tonlesap in Cambodia) based on the N-GWI algorithm..  
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