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Abstract 

Abiotic stresses such as salt and drought are serious threat to agriculture, and account 

for more than 50 percent of average yield losses for most of the major crop plants 

worldwide. Abiotic stresses affect plants physiological and developmental processes, 

mainly by imposing osmotic, oxidative and ionic stresses. Abiotic stress response in 

plants is a complex process that involves expression of a large number of genes. In 

recent years, transgenic plants with improved salt and drought stress have been 

developed with a large number of genes encoding stress-related proteins, enzymes and 

metabolites. Among these, the most extensively used genes are the glycine betaine 

biosynthetic codA gene, the DREB transcription factors, and vacuolar membrane 

Na
+
/H

+
 antiporters. The use of codA, DREBs, and Na

+
/H

+
 antiporters for genetic 

engineering of plants has conferred significant stress tolerance. However, many of 

these findings were based on studies conducted under controlled conditions, and until 

now there are some reports where the transgenic plants have exhibited increased yield 

under field conditions. Despite initial achievements under controlled conditions, there 

are several important issues that need to be addressed. Some of the issues include 1) 

further increasing stress tolerance of transgenic plants with these genes; 2) enhancing 

the effectiveness of these genes in terms of yield increase under natural stressed 

environment in the fields; 3) and addressing concerns over environmental risk 

assessment of these genes. As abiotic stress tolerance is a quantitative trait, therefore, a 

multigenic approach, targeting multiple stress response mechanisms, should be 

adopted to further increase stress tolerance with the above mentioned genes. Superior 

alleles of these selected genes should be combined with other alternative strategies to 

increase stress tolerance, improve water use efficiency (WUE), CO 2 assimilation and 

overall photosynthesis leading to reduction in yield losses under realistic field 

conditions. Moreover, the most important challenge to the deployment of abiotic stress 

tolerant transgenic plants is the environmental risk assessment issues. Environmental 

release of transgenic plants, with abiotic stress tolerance genes depends on their safety 
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to the environment. The current risk assessment procedures, based on the Cartagena 

Protocol on Biosafety, have been used for insect resistance and herbicide tolerance 

traits. The nature of abiotic stress tolerance genes is different from that of insect 

resistance Bt genes. Therefore, the questions arise, 1) whether abiotic stress tolerance 

genes such as the salt tolerance-inducing codA needs additional considerations and 

new measurements in risk assessment and, 2) whether these genes will have effects on 

weediness and invasiveness potential of transgenic plants. In the present work, we 

discussed various alternative strategies to increase stress tolerance and yield in 

transgenic plants under stress conditions. To address environmental concerns, we 

examined and compared the salt tolerance-inducing codA gene with insect resistance 

Bt gene for the risk assessment elements. Based on this comparison and the recent 

environmental risk assessment studies conducted on a number of transgenic plants with 

abiotic stress tolerance genes including the codA-transgenic eucalyptus, we report that 

the codA gene does not need additional considerations or new and changed 

measurements in environmental risk assessment.  
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