
Efficient Clustering Algorithms for
Large-scale Graphs

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2015

Hiroaki Shiokawa

ABSTRACT
Recent advances in social and information science have provided linked data that
model our society and the natural world around us. Since graphs are fundamental
data structures that can naturally represent data entities as well as the relationships
among entities, their importance is increasing in representing complicated struc-
tures and schema-less data such as data generated by Twitter, Facebook and various
complex networks. For these complex networks, graph cluster analysis is one of
the most important techniques in various research areas such as data mining, social
science and marketing.

The problem of the graph cluster analysis is to find clusters of nodes which are
densely connected within the cluster and sparsely connected among clusters, and
this problem has been studied for some decades in many fields. Since the size of
graphs is increasing significantly in the big data era, efficient clustering algorithms
that can handle large-scale graphs are highly demanded.

In order to achieve efficient clustering of large-scale graphs, this dissertation in-
vestigates three novel algorithms taking statistical properties of real-world graphs
into consideration: (1) we propose an incremental agglomerative graph clustering
algorithm for modularity-based clustering, (2) we investigate a data parallel cluster-
ing method for modularity-based graph clustering by using SIMD instructions, and
(3) we introduce a novel clustering algorithm for structural clustering by handling
two-hop away nodes in the real-world graphs for efficient clustering. As a result,
in the experiments over real-world and synthetic datasets, this dissertation proves
that the algorithms can achieve not only efficient clustering but also highly accurate
clustering results for large-scale graphs. By providing efficient and sophisticated
approaches that suit for large-scale graphs, the algorithms will help in increasing
the effectiveness of clustering in a wide range of applications.

i

Acknowledgements
First of all, I am sincerely and extremely grateful to my supervisor, Professor Hi-
royuki Kitagawa who opened the gate for me to pursue Ph.D degree. This thesis
has been done under the direction of him, and would not have been possible with-
out his helpful advises and encouragement. I would like also to thank great faculty
members, Associate Professor Toshiyuki Amagasa, Assistant Professor Yasuhiro
Hayase, and Assistant Professor Chiemi Watanabe. They greatly helped and en-
couraged me.

I am very grateful to my doctoral committee, Professor Hiroyuki Kitagawa, Pro-
fessor Tetsuya Sakurai, Professor Koichi Wada, Professor Sadaaki Miyamoto, and
Associate Professor Toshiyuki Amagasa for their valuable suggestions and con-
structive recommendations. Their efforts to strengthen and improve my thesis from
different technical angles are wholeheartedly appreciated.

Also, my thesis was highly supported by so many my colleagues of Nippon
Telegraph and Telephone (NTT) Corporation. I would like to thank the members
of Distributed Processing Technology Project at NTT Software Innovation Center,
Dr. Makoto Onizuka (he is now a professor at Osaka University), Dr. Yasuhiro
Fujiwara, Mr. Takeshi Yamamuro, Mr. Junya Arai, Mr. Yasutoshi Ida, Dr. Machiko
Toyoda, Dr. Takeshi Mishima, Mr. Yasuhiro Iida, Dr. Toshimori Honjo, Dr. Sotetsu
Iwamura and Mr. Seiji Kihara. I got the idea of this work thanks to the helpful
advises from them. I would especially like to thank Dr. Makoto Onizuka and Dr.
Yasuhiro Fujiwara for their supports and advises. I learned visions and philosophy
of research from them.

I would also like to thank members of Kitagawa Data Engineering Laboratory.
I am grateful to my seniors and friends, Dr. Hiroyuki Toda, Dr. Yutaka Kabutoya,
Dr. Tsubasa Takahashi, Dr. Yuto Yamaguchi, Dr. Salman Ahmed Shaikh and Mr.
Takahiro Komamizu for their support and good will. I enjoyed many discussions
on research, their sharing ideas, and collaboration of works as well as social events.
Ms. Hiroko Odagiri, Ms. Yumiko Hisamatsu and Ms. Tetsuko Sato also helped me
to accomplish this work.

I would like to thank my parents, Masahiro and Yuko, my younger brother and
sister, Yuki and Ayaka, and my grandparents, Yoshihiro and Yasuko, for always
being supportive. Without your comprehensive supports, I would not be here.

Finally, I would like to thank my wife, Riko, for standing beside me. She took
my long journey to be always in my side to give her absolute support, love, warmth
and understanding for the success of my study. Your love and encouragement have
always helped me.

Hiroaki Shiokawa
January 2015

iii

Contents

Abstract i

Acknowledgements iii

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivations . 4

1.2 Contributions . 5

1.2.1 Main Ideas: Structural Properties of Graphs 5

1.2.2 Fast Algorithm for Modularity-based Graph Clustering . . . 6

1.2.3 Vectorized Algorithm for Modularity-based Clustering . . . 7

1.2.4 Fast Algorithm for Structural Clustering Algorithm 8

1.3 Overview of the Thesis . 9

2 Background and Survey 11

v

2.1 Graph Clustering Applications . 11

2.1.1 Information Networks . 11

2.1.2 Social Networks . 12

2.1.3 Biological Networks . 13

2.1.4 Database Systems and Distributed Systems 14

2.1.5 Other Applications . 15

User Recommendation . 15

Event Detection . 16

Landmarks Detection . 16

2.2 Graph Clustering Algorithm . 17

2.2.1 Problem Definition . 17

2.2.2 Graph Partitioning . 18

2.2.3 Modularity-based Clustering 20

2.2.4 Structural Clustering . 22

2.2.5 Summary of the Survey . 25

3 Fast Algorithm for Modularity-based Graph Clustering 29

3.1 Introduction . 29

3.2 Preliminary . 31

3.2.1 Modularity . 31

3.2.2 BGLL . 32

3.3 Proposed method . 32

vi

3.3.1 Ideas . 33

3.3.2 Incremental aggregation 34

3.3.3 Incremental pruning . 37

3.3.4 Efficient ordering of node selections 38

3.3.5 Graph clustering algorithm 39

3.4 Experimental evaluation . 41

3.4.1 Efficiency . 42

3.4.2 Modularity . 43

3.4.3 Effectiveness . 44

3.5 Summary of this Chapter . 46

4 Parallel algorithm for Modularity-based Graph Clustering 48

4.1 Introduction . 48

4.2 Preliminary . 49

4.3 Proposed method . 50

4.3.1 Ideas . 51

4.3.2 CRS-based Graph Representation 52

4.3.3 Proposed method: ParBGLL 53

Vectorization of the modularity computation 53

Vectorized selection of the maximum modularity gain node . 56

4.3.4 Graph Clustering Algorithm 57

4.4 Experimental evaluation . 59

vii

4.4.1 Efficiency . 60

4.4.2 Modularity . 61

4.4.3 Scalability . 62

4.5 Summary of this Chapter . 62

5 Efficient Algorithm for Structural Clustering 65

5.1 Introduction . 65

5.2 Preliminary . 68

5.3 Proposed method: SCAN++ . 72

5.3.1 Overview of SCAN++ . 72

5.3.2 Directly Two-hop-away Reachable (DTAR) 73

5.3.3 Two-phase Clustering . 74

Local clustering phase . 74

Cluster refinement phase 76

5.3.4 Similarity Sharing . 79

5.3.5 Algorithm of SCAN++ . 82

5.4 Theoretical Analyses of SCAN++ 84

5.4.1 Efficiency of SCAN++ . 84

5.4.2 Exactness of SCAN++ . 85

5.5 Experiments . 87

5.5.1 Datasets . 88

5.5.2 Efficiency . 90

viii

5.5.3 Exactness . 92

5.5.4 Effectiveness . 95

5.5.5 Scalability . 96

5.6 Summary of this Chapter . 96

6 Conclusion and Future Work 98

6.1 Summary of Contributions . 98

6.2 Future Work . 99

Bibliography 102

List of Publications 115

ix

List of Figures

3.1 Clustering time for real-world datasets 43

3.2 Power-law differences . 44

3.3 Clustering coefficient differences 45

3.4 Scalability of each algorithm . 46

4.1 CRS-based graph representation 52

4.2 Vectorized relative modularity gain computations 56

4.3 Example of reg mask construction from reg result and reg max . . . 57

4.4 Running time for real-world datasets 61

4.5 L2 cache hit ratio . 62

4.6 L3 cache hit ratio . 62

4.7 Scalability for each method . 63

5.1 Running time for smaller real-world datasets 89

5.2 Running time for larger real-world datasets 90

5.3 Parameter µ differences for smaller datasets (ϵ = 0.6) 91

5.4 F-measure for smaller real-world datasets (ϵ = 0.6, µ = 5) 93

x

5.5 F-measure for larger real-world datasets (ϵ = 0.6, µ = 5) 93

5.6 c differences for each algorithm 94

5.7 Scalability for each algorithm . 95

xi

List of Tables

2.1 Summary of graph clustering algorithms 26

3.1 Definition of main symbols . 31

3.2 Real-world datasets . 42

3.3 Modularity Q for each dataset . 42

4.1 Definition of main symbols . 50

4.2 Real-world datasets . 59

4.3 Modularity Q for each dataset . 62

5.1 Definition of main symbols . 68

5.2 Real-world datasets . 88

xii

Chapter 1

Introduction

Advances in technology and computing power now provide the possibility of col-
lecting and mining a massive amount of real-world data. Mining such data will
allow us to understand the structure and the workings of real systems and to find
unknown and interesting patterns.

Many types of real-world datasets can be modeled with graphs. Graphs can
represent data entities as well as the relationships among entities and provide a
powerful mathematical tool to represent the relations in the data. They arise in a
wide range of application domains from social networks to biological networks and
beyond. For example, a social network is a graph connecting people who contact or
interact with each other; nodes and edges represent people and interactions among
people, respectively. Social networks are not limited to “online social networks”
such as Facebook, Twitter and LinkedIn. Other examples of social networks are net-
works of people collaborating with each other, co-authorships and co-appearance,
as well as networks of communication among people such as telecommunications
and emails. An information network is a graph of entities such as World Wide Web
(WWW), network of citations, and word co-occurrence networks (a.k.a. word-
net). Technical networks refers to manmade graphs such as the Internet topol-
ogy, the electric power grid, road networks, railways and airline routes. Biologi-
cal networks represent biological systems such as networks of metabolic pathways,
protein-protein interactions, the food web, and the network of blood vessels.

Traditionally, graphs are modeled as random graphs [1]. However, empirical
studies on real-world graphs have revealed that real-world graphs are organized into

1

topological structures of some intrinsic properties [2–5]. Hence, it is important to
uncover the intrinsic structures hidden in the real-world graphs to advance scientific
and industrial applications.

In order to understand the structure and the functions hidden in such real-world
graphs, a great many graph mining techniques such as PageRank [6, 7], shortest
path discovery [8, 9], influence maximization [10, 11] and frequent pattern discov-
ery [12,13] have been developed in the last two decades. An extremely well-studied
structural property of real-world graphs is their cluster structure. The cluster struc-
ture captures the tendency of similar nodes in the graph to group together into clus-
ters. This property has been observed in many real-world graphs [2, 3]. In order to
understand the structures and the functions hidden in massive scale graphs, graph
cluster analysis (a.k.a. community detection) is one of the most important tech-
niques in various research areas such as data mining [14], social science [15], com-
puter networks [16]. A cluster can be regarded as a group of nodes that are densely
connected within a group while only sparse connections between different groups.
By discovering the hidden cluster structures in large-scale graphs we can understand
the characteristics and interrelationships of the nodes forming the graph. Here, we
give some real-world applications of graph cluster analyses.

Community Detection in Social Networks: One of the most popular applica-
tions of graph clustering is social analysis. As we described before, graphs can
represent human relationships such as friendship, co-authorship, telephone calls,
and emails in the form of the social networks. Graph clustering algorithms natu-
rally fit to community detection in massive graphs. The communities have natural
interpretations in the context of a variety of social networks:

• For the case of friendship networks such as Facebook, Twitter and LinkedIn,
communities stand for groups of members who may know each other and
may, therefore, be linked with one another. This is useful in determining
important associations in the underlying friendships. In addition, blogging
communities often behave like social networks, and contain links among re-
lated blogs. Graph cluster analyses are also useful for determining the closely
related blogs that are likely to cover the same topics.

• An interesting application in the context of the Enron scandal was to deter-
mine important email interactions among groups of Enron employees. Graph
clustering algorithms are very useful in order to isolate dense email interac-
tions among different groups of customers. This approach can be used for a

2

variety of intelligence applications such as determining suspicious communi-
ties through the grouping of interactions.

Cluster Analyses on Biological Networks: In recent years, large amounts of
biological networks have been generated in the field of medical care and bioinfo-
matics. Some biological networks are naturally decomposed into some components,
which are commonly referred to as modular networks such as transcriptional mod-
ules, protein complexes, gene functional groups, and signaling pathways. For this
reason, graph clustering methods are often used for the following biological net-
works:

• Recently, large amounts of mammalian protein-protein interaction (PPI) net-
works have been generated and are available for public access (i.e. BioGRID
[17], HPRD [18] and MINT [19]). PPI networks refer to physical contacts
established among proteins as a result of biochemical events and/or electro-
static forces; each node represents a protein/gene and each edge represents a
physical contact between proteins/genes. From a biological perspective, pro-
tein and gene interactions imply the key mechanisms related with disease and
health. In fact, a lot of existing studies have reported that extremely important
mechanisms can be uncovered through graph cluster analyses [20–23].

• The description of structural and functional connectivity in the human brain
has attracted considerable attention [24]. The human brain is structurally and
functionally organized into a complex network enabling segmentation and
integration of information processing. Recent studies have suggested that
a combination of MRI techniques together with graph cluster analyses can
help us to map structural and functional connectivity patterns of the human
brain [25–28].

Graph cluster analyses are also used in many other applications detailed in
Chapter 2. As we can see above, the graph cluster analyses are undoubtedly signif-
icant for graph data mining and its application.

3

1.1 Motivations

As described above, graph cluster analyses are useful in a wide range of applica-
tions. In order to find clusters from real-world graphs, a lot of graph clustering
algorithms have been proposed over the last few decades in many fields, partic-
ularity in computer science and physics. The main challenge of graph clustering
algorithms is to find clusters, sets of nodes which are densely connected within
clusters and sparsely connected among clusters. Existing clustering methods fail to
scale well and so suffer from high computation cost. This is because the size of the
above real-world graphs are very large. For example, the most well known graph
is the WWW, which now contains more than 50 billion web pages and more than
one trillion unique URLs [29]. In addition, a recent snapshot of the friendship net-
work of Facebook contained over 864 million daily active users [30]. Furthermore,
LinkedData is also going through exponential growth, and it now consists of 31
billion RDF triples and 504 million RDF links [31]. Even though the size of these
graphs continues to increase, most of existing graph clustering algorithms require
exhaustive computations that repeatedly evaluate all nodes and edges. Therefore, it
is difficult to apply current algorithms to large-scale graphs.

Graph cluster analyses of large-scale graphs have applications in many domains.
They include recommendation and marketing where clustering speed is of prime
importance. In addition, the above application domains also require highly accurate
clustering results. Therefore, this thesis presents efficient graph clustering algo-
rithms that maintain their clustering quality even for large-scale graphs. The main
objectives of this research are as follows:

• Efficiency: The algorithms proposed here are designed to achieve faster
clustering speeds than state-of-the-art alternatives for large-scale graphs, i.e.
those with more than a few million nodes.

• Accuracy: The algorithms are designed to match the clustering quality of
state-of-the-art algorithms for large-scale graphs.

As stated before, even though the state-of-the-art algorithms can produce clusters of
good quality, it is difficult to apply them to large-scale graphs due to their clustering
speed limitations. This thesis provides efficient algorithms that are applicable to
large-scale graphs and produce clusters of high quality. Our proposals will help in
increasing effectiveness of clustering in a wider range of applications.

4

1.2 Contributions

The goal of our research is to present efficient, accurate and scalable graph clus-
tering algorithms for extremely large-scale graphs. This thesis presents novel algo-
rithms that overcome the low efficiency of the current state-of-the-art graph clus-
tering methods for large-scale graphs based on interesting structural properties of
real-world graphs. Compared to state-of-the-art algorithms, the proposals can ef-
ficiently analyze graphs at least with more than several million nodes and edges.
Moreover, this thesis reveals that the proposals also produce high accurate cluster-
ing results, matching those of existing methods. The proposed algorithms can find
well-clustered results from large-scale graphs within short computation time. In
this section, we first give the main ideas underlying our contributions and then give
summaries of our proposed graph clustering algorithms.

1.2.1 Main Ideas: Structural Properties of Graphs

The basic concept of this thesis is to utilize the structural properties of real-world
graphs for improving clustering speed. Historically, a great deal of work has re-
vealed that real-world graphs have several structural properties [32]. One of the
most famous properties is the “small-world effect” [3], also known as “six degrees
of separation” [2], and the scale-free behavior of graphs [4,5]. It is known that most
of real-world graphs that exhibit the small-world effect has two robust measures:
high clustering coefficient and power-law degree distribution.

The clustering coefficient is a measure of the degree in which nodes in a graph
tend to be in the same cluster. If the value of the clustering coefficient of a graph
is high, nodes of the graph tend to create densely connected groups [33]. In fact,
Watts and Strogatz revealed that many real-world graphs have significantly higher
clustering coefficients than random graphs [3]. This means that in clusters of real-
world graphs most adjacent nodes are densely connected to each other and they are
likely to share large portions of neighboring nodes.

Another measure of the structure of real-world graphs is degree distribution,
which characterizes the distribution of node degrees. It has been shown that real-
world graphs tend to have degree distributions that follow the power-law [4, 5].
This means that most nodes have relatively small degrees while just a few nodes
have significantly larger degrees.

5

These properties indicate that real-world graphs are fundamentally different
from random graphs [1]. This thesis introduces three graph clustering algorithms
that are designed to utilize the above structural properties for computational effi-
ciency. The algorithms are summarized in the following subsections.

1.2.2 Fast Algorithm for Modularity-based Graph Clustering

This proposal offers high efficiency for modularity-based graph clustering. Re-
cently, the modularity-based graph clustering algorithm of [34] has become a de
facto graph clustering tool and it is widely used in various applications. The basic
concept of modularity-based graph clustering is to define the subgraphs as clusters
that have significantly different topological structures from random graph struc-
tures. Since finding the clusters that maximize the modularity is an NP-complete
problem, many greedy approaches have been proposed [35–38]. However, these
methods including the state-of-the-art algorithm suffer from the following three
bottlenecks when applied to large-scale graphs: (1) they exhaustively and itera-
tively process all nodes and all edges in the large-scale graph to find clusters, (2)
the random node selection employed by the algorithm involves unnecessary com-
putations for finding clusters, and (3) its random node accesses increase the cost of
node referencing. From these reasons, existing algorithms incur high computation
costs for clustering.

To overcome the above clustering speed limitations, we propose a greedy al-
gorithm named Incremental Modularity Agglomeration Clustering (IMAC). IMAC
focuses on the structural properties of real-world graphs: high clustering coeffi-
cients and power-law degree distributions. Since IMAC considers both structural
properties, it avoids the exhaustive computation of all nodes and edges. Specifi-
cally, IMAC employs the following three approaches for efficient clustering: (1) it
incrementally aggregates nodes, which are placed in the same cluster, into a single
vertex, (2) it incrementally prunes modularity gain computations of nodes that have
already been clustered, and (3) it optimizes the order of vertex selection for efficient
clustering.

As a result, IMAC has three advantages. The first is its high efficiency. IMAC
is considerably faster than existing approaches such as CNM [36] and BGLL [38].
Specifically, our experiments show that IMAC computes clusters from large-scale
graphs of more than 100 million nodes within 3 minutes. The second is its high
accuracy. Our approach provides clustering results with high modularity; it returns

6

almost the same modularity scores as the state of the art approach, BGLL. The third
advantage is its effectiveness for real-world graphs. As described in Section 1.2.1,
IMAC is designed to effectively utilize the structural properties of real-world graphs
such as the clustering coefficient and power-law degree distribution. For this reason,
IMAC offers excellent clustering speed for large-scale complex networks. We detail
this algorithm in Chapter 3.

1.2.3 Vectorized Algorithm for Modularity-based Clustering

This proposal is a vectorized modularity-based graph clustering algorithm, named
ParBGLL, that uses SIMD instructions. As described in the previous section, ex-
isting modularity-based graph clustering algorithms, including the state-of-the-art
method, suffer from low efficiency due to their exhaustive computations and ran-
domized data accesses.

Our proposal consists of two building blocks. The first, in order to reduce
computation cost of node referencing, we adopt a CPU cache efficient graph data
representation. Specifically, we employ compressed row storage (CRS format for
short) [39] instead of the adjacency list representation. CRS format, one of the most
popular storage formats for sparse matrixes, puts the subsequent nonzero elements
of the sparse matrix rows in contiguous memory locations. This increases the ef-
ficiency of node referencing. Our algorithm extends the CRS format to cover both
adjacency lists and degrees, and increases the cache hit ratio for efficient cluster-
ing. The second, in order to reduce the time taken to compute modularity gain,
we employ a data parallel method with Streaming SIMD Extensions (SSE), which
is the SIMD instruction set extension of the x86. SIMD instructions are extended
instructions present in most modern CPU designs in order to improve the perfor-
mance of multimedia applications. They perform the same operation on multiple
data points simultaneously, and exploit the data level parallelism of the CPU core
but not concurrency. As described above, real-world graphs have highly skewed
degree distributions and there are many small degree nodes. Hence, by using SIMD
instructions to compute these small degree nodes, we improve the clustering speed
for large-scale graphs. In addition to the above SIMD-based modularity computa-
tion, we propose an efficient modularity computation form to reduce the number of
instructions that are required for each modularity gain computation by transforming
the modularity’s formula into simple representations.

These approaches have three major advantages. The first is that only small com-

7

putation cost is needed to extract clusters from large-scale graphs. Our approach
successfully overcomes the bottlenecks of the state-of-the-art method BGLL; the
extended CRS format increases the cache hit ratio and the data parallel method with
SIMD instructions performs the modularity gain computations efficiently. The sec-
ond advantage is that our proposal has better scalability than the state-of-the-art ap-
proach BGLL. The clustering speed of our approach increases almost linearly with
the parallelism level for large-scale graphs. The third advantage is the high mod-
ularity of the clustering results. Our evaluation reveals that the clustering results
produced by our approach have almost the same modularity scores as the state-of-
the-art method BGLL. We detail the algorithm in Chapter 4

1.2.4 Fast Algorithm for Structural Clustering Algorithm

Although modularity-based approaches are effective for many applications, recent
research has pointed out that they fail to fully reproduce the ground-truth from
large-scale graphs [40]. In order to overcome the above drawback of modularity-
based methods, density-based algorithms have been developed recently [41]. The
density-based methods evaluate the density of edge connections between adjacent
nodes, and they regards extremely densely connected subgraphs as clusters. It is
reported that density-based methods offer better clustering results than modularity-
based equivalents, however, their computation cost is significantly higher.

To improve the efficiency of density-based approaches, we propose a novel al-
gorithm based on a basic property of real-world graphs: a node and its two hop
away nodes share a lot of neighbors. By utilizing this property for clustering, our
algorithm successfully reduces the number of edges evaluated in the clusters.

To the best of our knowledge, our proposal is the first solution to achieve both
high efficiency and highly accurate clustering results at the same time for large-
scale graphs. Experiments confirm that it outperforms the existing methods in terms
of running time without sacrificing clustering quality. Even though existing algo-
rithms do offer enhancements in application quality, they are difficult to apply to
large-scale graphs due to their clustering speed limitation. However, by provid-
ing sophisticated approaches that suit large-scale graphs, the proposed method will
help to improve the effectiveness of a wide range of applications. We detail this
algorithm in Chapter 5.

8

1.3 Overview of the Thesis

In the above sections we have presented the background and motivations of this
work, and briefly presented the main contributions of this thesis. In this section, we
detail the structure of this thesis:

Chapter 2: In this chapter, we overview existing studies on graph clustering al-
gorithms such as graph partitioning algorithms, modularity-based algorithms and
structural clustering algorithms. Specifically, we focus on the advantages and dis-
advantages of existing algorithms since they employ diverse definitions of graph
clusters. Besides discussing existing algorithms, we also introduce applications
that use graph clustering.

Chapter 3: First, in Chapter 3, we address the goal of finding clusters based on
modularity from extremely large-scale graphs (i.e. greater than 100 million nodes);
we propose incremental modularity agglomerative clustering (IMAC) which utilizes
clustering coefficient and power-law degree distribution of graphs for efficient clus-
tering. We conduct evaluations to confirm the effectiveness of IMAC by using both
real-world datasets and synthetic datasets.

Chapter 4: Then, in Chapter 4, we propose the fast modularity-based clus-
tering approach by using data parallel computation schemes. In order to raise the
computation efficiency of data parallel schemes, we vectorize the state-of-the-art
modularity clustering algorithm BGLL. We evaluate this vectorized approach by
using both real-world datasets and synthetic datasets in Chapter 3.

Chapter 5: Last, in Chapter 5, we propose a novel structural clustering algo-
rithm, named SCAN++, for finding clusters defined by structural similarity from
large-scale graphs. In order to achieve efficient clustering, we focus on the cluster-
ing coefficient of real-world graphs. SCAN++ makes effective use of the cluster-
ing coefficient to reduce the computation cost of clustering. Experiments on both
real-world datasets and synthetic datasets verify the efficiency and effectiveness of
SCAN++.

Chapter 6: In the final chapter, we provide the main conclusions of this thesis
and outline some directions for future advances.

9

Chapter 2

Background and Survey

Various kinds of graph cluster analyses are now possible with the emergence of real-
world graphs. This chapter outlines the basics of graph clustering, its applications
and approaches.

2.1 Graph Clustering Applications

Mining large-scale real-world graphs has many different applications such as un-
derstanding the function of a system, and modeling and predicting its behavior. In
this section we review some of the key application areas of graph clustering such as
information networks, social networks, biological networks, and database systems.

2.1.1 Information Networks

In any information network, graph clustering serves as a tool for analyzing, model-
ing, and predicting the function, usage and evolution of the network. Applications
include business analysis, marketing, infrastructure improvements, and identifying
anomalous use.

In computer networks, clustering may be used to identify relevant substruc-
tures and to analyze the connectivity for the purposes of modeling and structural

11

optimization. One representative example is the topology design of the Internet.
Grout and Cunningham used a graph clustering approach for optimizing the net-
work topology in order to reduce the total network traffic load [42, 43]. They mod-
eled the network topology, which consists of network switches and non-switches
(i.e. personal computers and servers), as a graph, and then detected the sub-topology
containing high network traffic loads by using graph clustering. In the World Wide
Web, by representing each web page as a node and each hyperlink as an edge and
then subjecting the hypertext documents to graph clustering, we can identify topics
and other entities formed by several interconnected documents [44,45]. Those stud-
ies organized hypertext documents by using graph clustering, and then estimated the
topics of all clusters.

Graph clustering is also used in the structural design and operation of wireless
ad-hoc networks [46–49] and sensor networks [50]. Given that such networks ex-
hibit dynamic topology changes, graph clustering is useful to find better network
routing. For example, Nguyen et al. and Dinh et al. used graph clustering for
mobile ad-hoc networks (MANET) [48, 49]. By extracting clusters in the MANET,
they directly route or forward messages (i.e. network packets) to nodes in the same
cluster as the destinations. By doing this way, they avoid unnecessary messages for-
warded through nodes in different clusters, which reduces the number of duplicate
messages as well as the overhead information.

2.1.2 Social Networks

Applications of graph clustering in social networks include identifying groups of
individuals “exposed” to the influence of a certain individual of interest, such as
identifying terrorist networks when a member is known or locating potentially in-
fected people when an infected and contagious individual is discovered. Graph
clustering of a social network also helps to identify mechanisms such as the forma-
tion of trends and behavior [51–56].

Zhou et al. applied the graph clustering approach to detect communities from
social message networks such as emails, tweets on Twitter, and Facebook updates
[52]. In order to uncover the communities of each user as well as their associated
topics and communities, they designed a latent community model called COCOMP.
In the work [52], they applied their approach to the tweets collected from United
States President Barak Obama’s account from November 2009 to February 2010.
They revealed that the President roughly belongs to the following five communities.

12

President: comments on his advocacy of the Presidency, Public Policy: related to
domestic and international politics and policy, Holidays: mainly about wishing the
best for American families and friends, Senate Vote: related to health bills and
Blessing Haiti: a response to the tremendous earthquake.

Finding influential individuals from users of social networks and micro-blogging
services is one of the most critical issues for applications such as viral marketing.
This problem is formally defined as the problem to find the individuals that influ-
ence the greatest number of users. The approach proposed by Chen et al. offers the
effective detection of influential individuals based on SCAN [54]. In order to gen-
erate a small set of candidate individuals, this approach extracts clusters, hubs and
outliers from graphs by their SCAN-based algorithm. Then, it identifies the influen-
tial individuals from just the significantly large clusters and hubs that connect a lot
of clusters. As a result, they revealed that information can spread easily from hubs
to many adjacent clusters; their approach outperforms the previous approaches [57]
for real-world social networks.

Pei et al. utilized the online micro-blogging service Twitter to track the dy-
namically changing topics that are discussed on Twitter [55]. Since such online
micro-blogging services are noisy, informal and surge quickly, they investigated an
incremental density-based clustering approach. By finding clusters from Twitter
and using Part-of-speech Tagger [58] for topic identification, their method can ef-
fectively track, on the fly, events and topic dynamics even from large volumes of
social network data. For example, their approach detected the emergence in Twitter
of the “SOPA (Stop Online Piracy Act) protest” in January 2012.

In the current information society, the study of social networks tends to overlap
the study of information networks, as the popularity and significance of electronic
messaging has become overwhelming in the big data era.

2.1.3 Biological Networks

In the field of bioinfomatics, graph clustering tasks typically deal with the classifi-
cation of gene expression data such as gene-activation dependencies [59,60]. Xu et
al. [59] and Boyer et al. [60] used graph clustering approaches for genome analysis.
As we described in the previous chapter, gene-activation dependencies can be repre-
sented by graphs. By using graph clustering approaches to identify gene-activation
dependencies, we can extract groups of strongly interacting genes that may have

13

some helpful functions. For example, Xu et al. applied graph clustering to a gene
expression data set of Arabidopsis, they found a known cis-acting element of chitin
responsive genes from the dataset [59].

As well as genes, protein and gene interactions encode the key mechanisms
determining disease and health [20–23, 61]. In fact, such mechanisms can be un-
covered through graph analyses. For example, in order to effectively identify the
key functional modules and biomarkers underlying the mechanisms of disease and
toxicity, Ding et al. applied graph clustering to PPI networks [61]. They reported
that SCAN [41] could find helpful biomarkers in real-world datasets. For example,
Ding et al. applied SCAN to the gene interaction data of breast cancer patients.
The clusters, hubs and outliers obtained by graph clustering were better prognostic
biomarkers than the traditional biomakers; the former were more helpful for identi-
fying the patients not needing additional chemotherapy.

Another biological application of clustering is epidemic spreading [62,63]. New-
man [63] studied SIR-type epidemic processes in a special class of graphs and found
that graphs with a cluster structure have smaller epidemics, but a lower epidemic
threshold, making it easier for diseases to spread.

2.1.4 Database Systems and Distributed Systems

When storing a large set of data, a key question is how to group the data into pages
in physical memory. A single page is typically large enough to contain multiple
elements, only a small fraction of the entire dataset. Therefore, it is natural choice
to partition the relevant data, which might be retrieved by the same query, into the
same group.

Diwan et al. proposed a paging method that applies clustering to tree-like
data [64]. Wu et al. [65] and Agrawal et al. [66] addressed the graph-based solu-
tions for the database organization issue. They provide graph clustering-based data
layout solutions in order to improve query speed for searching nodes and computing
shortest paths, and implementing distance queries for scale-free graphs. Bradley et
al. used a k-means like algorithm to partition a large database in one scan by us-
ing a limited memory buffer [67]. Recently, Wu et al. presented SemStore [68],
a semantic-preserving distributed RDF triple storage scheme for scalable SPARQL
query processing. They designed an RDF partition algorithm in order to reduce
query processing time.

14

As well as database systems, distributed systems can also utilize graph cluster-
ing for load balancing. A standard approach for scalable computation is to partition
the input graph into smaller units which are then processed by a large distributed
system such as GraphLab [69], Trinity [70] and Pregel [71]. For these distributed
systems, partition skewing may degrade scalability, so finding a balanced graph par-
tition is an important task for load balancing. The problem of finding a balanced
graph partition, one that minimizes the number of cut edges, is known as the bal-
anced graph partitioning problem; it has been studied extensively over the last two
decades. To support graphs with million of nodes, multi-level partitioning solutions,
such as Metis [72] and Scotch [73], were proposed.

2.1.5 Other Applications

Beyond the above applications, graph clustering is used in many other application
domains.

User Recommendation

Social tagging systems have emerged as a popular way for users to annotate, and
share resources on the Web, such as Yahoo! Delicious, and Flickr. However, due to
the extreme popularity of such systems, a user is easily overwhelmed by the large
amount of data and it is very difficult to dig out the information that he/she is in-
terested in. The modularity-based graph clustering approach suggested by Zhou
et al. [74], can help users to discover other users with common interests automat-
ically and effectively. It obtains an undirected weighted tag-graph for each user.
In each graph, nodes represent the tags used by each user, and edges represent
co-occurrences of tag pairs. It then extracts clusters as the topics that represent a
user’s interests by using a modularity-based clustering algorithm [36] in each graph.
Finally, it computes the interest-based similarity among users by measuring the
KL–divergence [75] of the topics for each user. Their approach can discover users
with common interests more effectively than the memory-based [76] and model-
based [77] algorithms.

15

Event Detection

Recent micro-blogging services such as Twitter allow users to continuously report
their real life events. Detecting life events would be useful for understanding what
users are really thinking and doing. Therefore, event detection algorithms have long
been a research topic [78, 79]. Weng et al. applied modularity-based clustering to
wavelet-based signals for event detection [80]. They build signals computed by
wavelet analysis for individual words, which capture only the bursts in the words’
appearances. They then obtain a graph whose nodes and edges represent signals
and correlation values between signals, respectively. Finally, they detect events by
using a modularity-based algorithm. Their modularity-based approach shows better
performance than the LDA-based approach [81] in finding events.

Landmarks Detection

Social photo sharing applications such as Flickr have emerged as a popular way to
share and annotate photos by using tags. However, they suffer from the limitations
imposed by tags such as polysemy, lack of uniformity and spam. Thus it is diffi-
cult for users to find photos of interest from the photo collections organized by the
tags. In order to achieve efficient photo searches of tagged photos, Papadopoulos
et al. proposed a landmark detection method based on SCAN [82]. Landmarks
are the representative objects that are frequently found in photos, and the cluster-
ing of tagged photos is regarded as the detection of popular landmarks. They first
build a similarity image graph from tagged images by computing the cosine simi-
larity of SIFT descriptors [83] and the co-occurrences of tags between photos. They
then utilize SCAN to identify clusters, hubs and outliers from the similarity image
graph; the clusters are used for detecting landmarks in the photo collections, and
the hubs and the outliers are removed from the collections as noises. They estimate
landmarks by ranking based on the appearance frequency of the tags included in
the cluster. Their approach discovers landmarks more effectively than the k-means
based algorithm [82].

16

2.2 Graph Clustering Algorithm

Due to the importance of graph clustering in many application domains, many graph
clustering algorithms have been proposed over the last few decades. In this sec-
tion, we first define the problem addressed by graph clustering algorithms in Sec-
tion 2.2.1, which we address in this thesis, and then we survey the graph clustering
algorithms in Sections 2.2.2 to 2.2.4.

2.2.1 Problem Definition

A cluster can be regarded as the group of nodes that are densely connected within
a group and sparsely connected to different groups. Generally, graph clustering
algorithms can be formalized as follows:

Problem 1 (Graph clustering)

Given: Graph G = {V,E}, where V and E are sets of nodes and edges included
in the graph G, respectively.

Find: All disjoint clusters Ci = {Vi,Ei} where Vi ⊆ V and Ei ⊆ E.

In this thesis, to simplify the representations, we assume graphs are undirected and
unweighted. Moreover, clusters do not have nodes overlapping with those of other
clusters, i.e., V =

∑
iVi and Vi ∩ Vj = ∅ for any i ̸= j. In addition, we denote a

set of clusters as C = {C1,C2, . . . ,Ck} when a graph G has k clusters.

Based on the problem definition given by Problem 1, this section discusses and
surveys the graph clustering algorithms categorized as follows:

• Graph partitioning (Section 2.2.2)

• Modularity-based clustering (Section 2.2.3)

• Structural clustering (Section 2.2.4)

Details of each algorithm will be discussed in the following subsections.

17

2.2.2 Graph Partitioning

First, we review graph partitioning algorithms. Traditionally, the graph clustering
problem is related to the graph partitioning problem. In this case, the goal is to
partition the graph in such a way to minimize the numbers of edges that cross parti-
tions. This problem is also referred to as the minimum-cut problem and is formally
defined as follows:

Problem 2 (Graph partitioning) Let P be a partition on graph G, and ec(P) =∑
u∈V ec(u) be the size of edge cut, where ec(u) is the number of node u’s neighbors

that do not belong to the same partition as node u. Graph partitioning divides V
into a set of non-overlapping k partitions P = {C1,C2, . . . ,Ck} such that (1)
|Ci| ≈ |V|/k for each Ci; (2) ec(P) is minimized.

Since the graph partitioning problem is NP-hard [84], several approximation algo-
rithms have been derived.

In the simplest case, the 2-way minimum-cut problem, we need to partition
the graph into two clusters while minimizing the number of edges that cross the
partitions. Ding et al. proposed one of the most popular algorithms, called min-max
cut method [85]. The min-max cut method [85] seeks to partition graph G = {V,E}
into two clusters, A and B, in top-down manner. The main idea of min-max cut is
minimizing the number of edges between A and B, and maximizing the number
of edges within each. A cut is defined as the number of edges that would have to
be removed to isolate the nodes in A from those in B. The min-max cut method
searches for the partition that creates two clusters whose cut is minimized and while
maximizing the number of remaining edges.

A major drawback of the min-max method is that it may not effectively cap-
ture the cluster structures included in the given graph. For example, if the min-max
method partitions the following two cluster A = {u ∈ V} and B = V\{u}, the
two clusters can be an optimum result. Therefore, in practice, the min-max meth-
ods requires some constraints such as the size of two clusters A and B should be
equal or similar size (i.e. |A| ≈ |B|). However, such constraints are not always
appropriate; for instance, in social networks some communities are much larger
than others. To address this issue, the normalized cut method [86] was proposed
by Shi and Malik. This method is an extension of the min-max cut method. In
the normalized cut method, Shi and Malik proposed a new measure of partitioning
instead of looking the total number of edges connecting two clusters. Specifically,

18

their measure computes the cut cost as a fraction of the total edge connections to
all the nodes in the graph. In order to find such normalized cut partitions, Shi and
Malik employed spectral graph theory [87]. As a result, the normalized cut method
provides partitions, whose size is balanced, as an optimum cluster.

Both the min-max cut method and normalized cut method partition a graph into
only two clusters. In order to divide a graph into k clusters, we have to recursively
apply these methods in a top-down manner; splitting the graph into two clusters,
and then further splitting these clusters, and so on, until k clusters are detected.
However, there is no guarantee of the optimality of the recursive clustering results
and there is no indicator that is used to halt the bisection procedure.

Kerninghan-Lin algorithm [75], proposed by Kerninghan et al. in 1970, is one
of the well known techniques for multi-way graph partitioning. Based on hill climb-
ing, this classical algorithm starts with a random cut of the graph. After that, it
incrementally swaps nodes among partitions until the number of overall edge-cuts
is reduced (this procedure is called coarsening). The result of this algorithm may
be a local optimum rather than a global optimum. There are many variations based
on the Kerninghan-Lin algorithm including the Fiduccia-Matteyses min-cut heuris-
tic [88].

Karypis et al. proposed METIS [72] by improving the Kerninghan-Lin algo-
rithm. METIS works in three steps: (1) coarsening the graph; (2) partitioning the
coarsened graph; (3) uncoarsening. In the first step, METIS coarsens a graph by
finding the maximal match. The maximal match is a set of edges such that all edges
in a maximal match do not share their endpoint nodes with the other edges in the
maximal match. After it finds a maximal match, it collapses the two ends of each
edge into one node, and as a result, the graph is coarsened. The coarsening step
is repeated until the graph is small enough. Then, in the second step, it applies
the Kerninghan-Lin algorithm or Fiduccia-Matteyses min-cut heuristic directly to
the small graph. In the third step, the partitions on the small graph are projected
back to the finer graphs. They also proposed a parallel version of METIS named
ParMETIS [89].

Recently, Wang et al. [90] pointed out that the coarsening approach of traditional
partitioning algorithms spoils the semantics of the real-world graphs. The reason is
that the correctness of the coarsening approach is based on the following assump-
tion: A (near) optimal partition on a coarser graph implies a good partitioning of
the finer graph. However, in general, this assumption only holds when the degree of
node in the graph is bounded by a constant. As we described in the previous chapter,

19

real-world graphs tend to follow a power-law degree distribution. Hence, the coars-
ening may fail to capture the semantics of real-world graphs. In addition, they also
pointed out that it is difficult to apply the traditional methods to large-scale graphs
with more than billion nodes since the coarsening approach incurs high computation
costs. In order to overcome the above limitations, Wang et al. proposed the label
propagation based partitioning technique, named MLP. MLP uses multilevel label
propagation to iteratively coarsen a graph until the coarsened graph is small enough.
Since label propagation handles the local topological structure of the given graph,
MLP can find “semantic-aware” coarsened graphs. MLP can partition billion-node
graphs and is easy to parallelize.

The above approaches have been joined by other proposals such as streaming
graph partitioning [91, 92] and approximation algorithms [84, 93].

2.2.3 Modularity-based Clustering

As we described in Section 2.2.2, graph partitioning has drawbacks in that there
is no guarantee of the optimality of the clustering result. Furthermore, to permit
multi-way partitioning, we have to determine the number of clusters (i.e. k in the
previous section) that are to be extracted from the graph.

To overcome the above drawbacks, modularity was proposed as a measure of
graph clustering quality by Newman and Girvan [34]. It measures the difference
of a graph structure from an expected random graph. The main idea of modularity
is to find groups of nodes that have a lot of inner-group edges and few inter-group
edges. Specifically, modularity is defined as follows:

Definition 1 (Modularity Q) Let euv be the total number of edges between clusters
Cu and Cv; au be the total number of edges that are attached to nodes in cluster
Cu; m = |E|. The following equation gives the modularity score of the clustering
result.

Q =
∑
Cu∈C

{
euu
2m

−
(au
2m

)2
}
. (2.1)

In Definition 1, au/2m is the fraction of edges of cluster Cu that we would expect
to obtain if the graph was a random graph. Therefore, well clustered graphs will
have high modularity scores, since the value of euu is greatly different from that of
a random graph.

20

The main task for modularity-based methods is to find groups of nodes from the
graph that maximize modularity Q, formally:

Problem 3 (Modularity clustering) Let C = {C1,C2, . . . ,Ci} be the set of clus-
ters. Modularity clustering divides the graph into a set of clusters C such that
arg max

∑
Ci∈C

{
eii
2m

−
(

ai
2m

)2}.

Although modularity-based algorithms are effective for many applications, find-
ing the maximum modularity involves NP-complete complexity [34]. This problem
has led to the introduction of approximate approaches such as top-down algorithm
[34], bottom-up greedy algorithms [35–38], simulated annealing approach [94],
spectral algorithm [95] and random walk approach [96].

The Girvan-Newman algorithm [34] is a divisive clustering algorithm, which is
based on the concept of betweenness centrality. Betweenness centrality attempts
to identify edges that are critical bridges between different connected components,
and delete them, until clusters do not change. The betweenness centrality is defined
as the proportion of shortest paths between nodes that pass through a certain edge.
Therefore, the betweenness centrality, B(e), of edge e, is defined as follows:

Definition 2 (Betweenness centrality) Let cp(e, i, j) be the number of shortest paths
between node i and j which pass through edge e; and sp(i, j) be the number of
shortest paths between node i and j. Betweenness centrality B(e) is defined as
follows:

B(e) = cp(e, i, j)

sp(i, j)
. (2.2)

The algorithm ranks edges by B(e), and deletes the edge with the highest score.
They used modularity Q as the objective function of the clustering for choosing the
number of communities into which a graph should be divided.

Instead of performing an exhaustive search, a bottom-up greedy method named
Newman clustering, was proposed by Newman [35]. It iteratively selects and merges
pairs of nodes so as to maximize the rise in modularity. It produces reasonable
clusters with a hierarchical structure that represents the merge history. Despite its
effectiveness in avoiding the NP-complete problem, it incurs high computing cost,
O(|V|2), where |V| is the number of nodes.

Various algorithms were proposed to reduce the computational cost of Newman
clustering [36–38]. Clauset et al. proposed a greedy modularity-based algorithm,

21

called CNM [36], which is one of the most widely used methods recently. They
used the modularity gain, which is obtained after merging a pair of nodes, and
nested heap structures of modularity gain for all pairs of nodes. It iteratively selects
and merges the best pair of nodes, the pair that has the largest modularity gain, from
the heap until this procedure no longer improves the modularity. The computation
cost of CNM is O(d|E| log |V|), where d and |E| are the depth of the hierarchical
clustering result and the number of edges, respectively. Wakita et al. observed
that CNM suffers a decrease in clustering speed if the cluster size is unbalanced
[37]. Based on this observation, they modified the definition of the modularity
gain; specifically, they added the notion of consolidation ratio to the modularity
gain. The consolidation ratio measures how the sizes of a pair of clusters differ. By
adding this ratio to the modularity gain, they achieved faster clustering than CNM.
However, Blondel et al. reported that the approaches have a tendency to produce
super-clusters with significant low modularity [38]. Since the merge proceeds in a
global maximization manner, super-clusters contain a large fraction of the nodes.

Blondel et al. proposed the efficient greedy algorithm BGLL [38]. In contrast
to CNM, it computes the modularity gain only for adjoining nodes pairs in local
maximization. Although BGLL is effective for extracting high modularity clusters,
it is difficult to realize quick responses for graphs of unprecedented size, such as
Web graphs with their few billion edges. The reason is that it iteratively scans all
nodes/edges as long as modularity increases. It is known that the time complexity
of BGLL is nearly linear to the edge size.

As described above, modularity based methods can handle significantly large-
scale graphs and they are one of the most widely approaches used in many appli-
cations [25, 74, 80, 97]. However, despite the efficiency of the modularity-based
approach, these methods cannot identify hubs and outliers in graphs. Furthermore,
recent research pointed out that modularity is not a scale-invariant measure [40].
Hence, it is difficult for modularity-based methods to find small clusters hidden in
large-scale graphs; these methods fail to fully reproduce the ground-truth [41]. This
serious problem is well known as the resolution limit of modularity [40].

2.2.4 Structural Clustering

Due to the resolution limit of the modularity-based algorithms, structural clustering
[41, 98–101] has been widely examined in many studies in the last few years. The
main idea of structural clustering is that if adjacent nodes are densely connected to

22

each other, they should be assigned to the same cluster. To find clusters based on this
idea, these methods extract densely connected subgraphs as clusters. Furthermore,
besides extracting clusters, they can find special role nodes, hubs and outliers, which
are not assigned to any cluster. By finding densely connected clusters, hubs, and
outliers, they achieve more accurate clustering results than existing algorithms (e.g.
edge cut based methods and modularity based methods).

In order to evaluate the density of adjacent nodes, Xu et al. proposed a mea-
surement called structural similarity [102].

Definition 3 (Structural similarity) The following equation gives the structural
similarity, σ(u, v), between adjacent nodes u and v.

σ(u, v) =
|N[u] ∩ N[v]|√
|N[u]||N[v]|

, (2.3)

where N[u] = {v ∈ V : (u, v) ∈ E} ∪ {u}.

The structural similarity is a score from 0 to 1 and indicates the scale of match-
ing degree of N[u] and N[v]. When adjacent nodes share many members of their
neighborhoods, their structural similarity will be large.

The main task of the structural clustering is to find all clusters, hubs, and outliers
from a graph according to Definition 3 and user-specified parameters.

Yuruk et al. proposed DHSCAN which adopts the top-down clustering man-
ner [98]. Similar to the Girvan-Newman method in Section 2.2.3, DHSCAN itera-
tively removes edges based on the ascending order of structural similarity measures
given by Definition 3. The graph is divided into disconnected components by re-
moval of edges. This iterative divisive procedure produces a dendrogram showing
the hierarchical structure of the clusters. Additionally, a proposal by Feng et al.
modify Definition 1 to allow this divisive procedure to stop at the point of the max-
imum structural similarity based modularity [102]. Formal definition of structural
similarity based modularity is as follows:

Definition 4 (Structural similarity based modularity Qs) Let ISi be a sum of struc-
tural similarity of nodes within cluster Ci; DSi be the total structural similarity be-
tween nodes in cluster Ci and any nodes in the graph; and TS be the total structural
similarity of any adjacent nodes in the graph. The following equation gives the

23

structural similarity based modularity score of the clustering result:

Qs =
∑
Ci∈C

{
ISi

TS
−
(

DSi

TS

)2
}
. (2.4)

The study [98] reports that the clustering results have better quality than those
of modularity based algorithms (i.e CNM). However, analogous to the Girvan-
Newman method, DHSCAN incurs high computation costs for clustering since it
has to iteratively compute the structural similarity for all edges. Hence, it is imprac-
tical to apply DHSCAN to large-scale graphs.

To achieve high quality clustering results but with lower costs than DHSCAN,
some bottom-up algorithms [41, 99, 100, 103, 104] were proposed in the last few
years.

SCAN [41], proposed by Xu et al., is the most popular method based on struc-
tural similarity. It is an extension of the traditional density based clustering method
DBSCAN [105]. This algorithm can find clusters as well as hubs and outliers in a
graph once two parameters, ϵ and µ, are specified. For finding clusters, SCAN first
extracts seeds of clusters called cores from the graph. Cores are formally defined as
follows:

Definition 5 (Core) Let Nϵ[u] = {v ∈ N[u] : σ(u, v) ≥ ϵ}; ϵ and µ be user-
specified parameters. Node u is a core if and only if |Nϵ[u]| ≥ µ.

Once SCAN determines node u to be a core, it assigns all nodes in Nϵ[u] to the
same cluster as the core. It then selects a node from the cluster and repeatedly
finds cores and expands clusters from the cores. After the cluster extraction termi-
nates, SCAN classifies the remaining nodes as hubs or outliers. If a remaining node
bridges several clusters, it is regarded as a hub; otherwise it is an outlier. This al-
gorithm incurs the average cost of O(|E|2/|V|). The reason is that SCAN evaluates
the structural similarities for all adjacent nodes, and each similarity computation
requires O(|E|/|V|) time, on average.

Huang et al. and Sun et al. proposed the parameter-free methods named SHRINK
[99] and gSkeletonClu [100], respectively. SHRINK is a parameter-free hierarchi-
cal clustering algorithm that combines the advantages of structural similarity and
modularity based methods. It first computes structural similarities for all adjacent
nodes. Then it aggregates densely connected node pairs, called micro communities,
into the same clusters if the aggregation improves the Qs score given by Definition

24

4. In this way, SHRINK achieves parameter-free and hierarchical clustering. In
contrast, gSkeletonClu tries to find the best value of ϵ in the clustering process. Fol-
lowing SHRINK, it first computes the structural similarities for all adjacent nodes
in the graph. After that, it extracts spanning trees [106] from the graph by using the
results of the structural similarities; and then searches the trees to find the effective
values of ϵ. SHRINK and gSkeletonClu are user-friendly algorithms since they do
not require user-specified parameters. Moreover, Huang et al. reported that their
clustering quality is better than that of SCAN [99–101]. However, these methods
require exhaustive similarity computations for all adjacent nodes; hence the time
complexities of SHRINK and gSkeletonClu are at least O((|E|2 log |V|)/|V|) and
O(|E|2/|V|+ |V| log |V|), respectively. Therefore, as in SCAN, both SHRINK and
gSkeletonClu require large computation time for large-scale graphs.

Recently, Lim et al. proposed LinkSCAN∗ [104], which uses SCAN to find
overlapping communities from a graph. In order to detect overlapping communities
very accurately, LinkSCAN∗ transforms the graph into a link-space graph, which
combines the advantages of the graph and line graph [107]. However, this trans-
formation entails an increase of the size of the graph for clustering. Hence, they
introduced a graph sampling step. This approach is certainly efficient in reducing
the computation time; to the best of our knowledge, LinkSCAN∗ is one of the most
efficient methods for structural similarity based clustering. However, it degrades
the clustering results compared to SCAN since sampling involves approximation.

2.2.5 Summary of the Survey

This chapter provided an overview of the key techniques used for cluster analy-
sis of large-scale graphs. In this chapter, we investigated existing algorithms that
are grouped into three types; graph partitioning, modularity-based clustering, and
structural clustering. Most of the initial graph clustering algorithms tried to mini-
mize the number of edges that cross different partitions. In order to capture more
complicated cluster and community structures hidden in graphs, modularity-based
clustering and structural clustering were widely developed in the fields of computer
science and physics.

Our brief survey indicates that existing methods still suffer from their computa-
tional cost at finding clusters in billion-node graphs. The reason is that the methods
require exhaustive computations; they have to evaluate at least all edges in graphs.
In order to avoid the exhaustive computations of traditional algorithms, this the-

25

Table 2.1: Summary of graph clustering algorithms

Algorithm Complexity
m

od
ul

ar
ity

cl
us

te
ri

ng

Girvan and Newman [34] O(|E|2|V|)
Newman [35] O(|V|2)
Clauset et al. [36] O(d|E| log |V|)
Blondel et al. [38] O(τω|E|)
IMAC (Chapter 3) O(|E|+ α(1−c)

α−1
|V|)

ParBGLL (Chapter 4) O(1
p
|E|+ |V|)

st
ru

ct
ur

al
cl

us
te

ri
ng Xu et al. [41] O(|E|2/|V|)

Huang et al. [99] O((|E|2 log |V|)/||V|)
Sun et al. [100] O(|E|2/|V|+ |V| log |V|)
LinkSCAN∗ [104] O(|E|)
SCAN++ (Chapter 5) O(1−c

c
|E|)

sis presents three efficient algorithms for modularity-based and structural cluster-
ing. Differ from the existing studies, our proposals are designed to avoid exhaus-
tive computations by capturing the structural properties described in Chapter 1. In
Chapter 3, we present an efficient modularity-based clustering algorithm, named
IMAC, which utilizes clustering coefficient and power-law degree distribution for
avoid exhaustive modularity computations. Chapter 4 also presents a fast vector-
ized modularity-based graph clustering approach ParBGLL. ParBGLL reduces the
computation cost such as the number of CPU instructions for each modularity com-
putations by using data parallel scheme of modern CPUs. Differ from Chapter 3
and 4, we present an efficient algorithm SCAN++ for structural clustering in Chap-
ter 5. SCAN++ effectively reduces number of structural similarity computations
and computational costs of each similarity computation by capturing the clustering
coefficient of graphs.

Table 2.1 lists the time complexities of major modularity-based clustering and
structural clustering methods including our proposals. Note that IMAC, ParBGLL
and SCAN++ are the methods proposed in Chapter 3, 4 and 5, respectively. The
symbols |V| and |E| are the number of nodes and edges in the graph, respectively.
Also, d, c and n are dendrogram depth, clustering coefficient, and average degree,
respectively. The symbols τ and ω in BGLL are the number of iterations consumed
in its modularity computations and node aggregations, respectively. We omitted

26

the time complexity of DHSCAN and the approach proposed by Wakita and Tsumi
since no full discussion has been provided. As shown in Table 2.1, our propos-
als achieve lower time complexity than the traditional algorithms since they using
the structural properties for avoiding exhaustive computations. The details of each
proposal are discusses in the following chapters.

27

Chapter 3

Fast Algorithm for Modularity-based
Graph Clustering

In AI and Web communities, modularity-based graph clustering algorithms are be-
ing applied to various applications. However, existing algorithms are not applied to
large graphs because they have to scan all nodes/edges iteratively. The goal of this
chapter is to efficiently compute clusters with high modularity from extremely large
graphs with more than a few billion edges. The heart of our solution is to com-
pute clusters by incrementally pruning unnecessary nodes/edges and optimizing the
order of vertex selections. Our experiments show that our proposal outperforms
all other modularity-based algorithms in terms of computation time, and it finds
clusters with high modularity.

3.1 Introduction

Recently, modularity-base clustering proposed by Newman and Girvan [34] has
become one of the most popular algorithms for extracting clusters in a graph. Mod-
ularity evaluates the density of edges inside clusters as compared to edges between
clusters. The better clustering results are achieved with higher modularity scores.
Modularity-based algorithms have been applied to many applications such as image
segmentation [97] and brain analysis [25] due to its effectiveness.

Although the modularity-based algorithms are effective for many applications,

29

finding the maximum modularity involves NP-complete complexity [34]. This
problem has led to the introduction of approximation approaches [35–38]. Blon-
del et al. proposed an efficient greedy algorithm BGLL [38]. To the best of our
knowledge, BGLL is representative for the state-of-the-art algorithm; it achieves
fast clustering with higher modularity than the other algorithms. In contrast to
CNM, it computes the modularity gain only for the adjoined nodes pairs as a lo-
cal maximization. Blondel et al. reported that BGLL requires almost 3 hours to
process graphs with 118 million nodes [38]. Although BGLL is effective for ex-
tracting high modularity clusters, it is difficult for BGLL to realize quick responses
for graphs of unprecedented size, such as Web graphs with their few billion edges.
This is because it iteratively scans all nodes/edges as long as the modularity is in-
creasing.

To overcome the limitation of computing time in the previous approaches, we
propose a novel clustering algorithm. In order to reduce computational cost, we
introduce three ideas. First, we incrementally aggregate nodes, which are placed in a
same cluster, into a single vertex. Second, we incrementally prune computations of
modularity gain for nodes whose clusters are obviously obtained. Last, we optimize
the order of vertex selections for efficient clustering. Our proposal has the following
attractive characteristics:

• Efficiency: The proposed algorithm is considerably faster than existing ap-
proaches such as CNM and BGLL.

• High-modularity: Our approach provides clustering results with high mod-
ularity; it returns almost the same modularity scores as the state of the art
approach, BGLL.

• Effectiveness: Our algorithm is effective in improving the performance for
large-scale complex networks.

To the best of our knowledge, our approach is the first solution to divide graphs
into clusters that have more than 100 million nodes and 1 billion edges within 3
minutes. These characteristics confirm the practicality of our algorithm for real
world applications. With our proposal, many more applications can be implemented
more efficiently.

30

Table 3.1: Definition of main symbols
Symbol Definition

Γ(u) Set of adjacent nodes of node u
Pi Set of prunable nodes defined by Definition 10
Ti Set of target nodes defined by Definition 11
Q Modularity score of a clustering result given by Definition 6

△Qij Modularity gain between cluster Ci and Cj defined by Definition 7
eij Number of edges that bridges cluster Ci and Cj

ai Number of edges that connected to nodes in cluster Ci. ai =
∑

k eik
cu Cluster ID of the cluster to which node u belongs
c score of clustering coefficient
α skewness of the power-law degree distribution

3.2 Preliminary

In this section, we give some preliminaries of this chapter. Table 3.1 lists main
symbols and their definitions that are used in this chapter.

3.2.1 Modularity

Modularity, introduced by Newman et al. [34], is widely used to evaluate the cluster
structure of a graph from a global perspective. It measures the differences in graph
structures from an expected random graph. The main idea of modularity is to find
groups of nodes that have a lot of inner-group edges and few inter-group edges.
Modularity Q is formally defined as follows:

Definition 6 (Modularity Q) Let euv be the total number of edges between cluster
Cu and Cv; au be the total number of edges that are attached to nodes in cluster
Cu; and m be the total number of edges in the whole graph. The following equation
gives the modularity score of the clustering result.

Q =
∑
Cu∈C

{
euu
2m

−
(au
2m

)2
}
. (3.1)

In Definition 6, au/2m is the expected fraction of edges of Cu, which can be ob-
tained when we assume the graph to be a random graph. Therefore, well clustered

31

graphs will have high modularity scores, since the value of euu is highly different
from the random graph.

3.2.2 BGLL

We then overview the state-of-the-art algorithm BGLL.

BGLL is divided in two phases that are repeated iteratively. First phase is local
clustering phase. In this phase, BGLL finds clusters by greedily maximizing the
modularity of its clustering result. Specifically, it first picks a node and computes
modularity gains, which is an increment of modularity after assigning two nodes
into a same cluster, for all adjacent nodes of the node. If BGLL finds adjacent
nodes that have the largest positive score of modularity gain among adjacent nodes,
it assigns the node into the same cluster of the adjacent node. Otherwise, the node
stays in its original cluster. BGLL continues this local clustering until there are no
improvements of modularity.

Second phase is cluster aggregation phase. In the cluster aggregation phase,
BGLL aggregates each cluster, which is obtained by the local phase, into a node.
Besides the cluster aggregation, it also merges edges that are lying inner and in-
ter clusters into weighted edges. The inner edges of a cluster are merged into a
weighted self-loop edge of the corresponding aggregated node. The weight of the
self-loop edge equals to doubled number of edges that are included in the cluster.
On the other hand, the inter edges between two clusters are merged into a weighted
edge that bridges the corresponding aggregated nodes. The weight of the weighted
edge is obtained from number of edges that bridge two clusters. After finishing
cluster aggregation phase, we obtain a weighted graph.

BGLL iterates the above two phases until the modularity score of its clustering
results does not increase. Algorithm 1 shows the detail procedure of BGLL.

3.3 Proposed method

This section presents details of our proposal. In contrast to all the other algorithms,
we can find clusters with high modularity in graphs of unprecedented size, such as
more than a few billion of edges, within a few minutes. We give an overview the

32

Algorithm 1 BGLL
Input: G = {V,E};
Output: clustering result of G;
1: repeat
2: repeat
3: select node u from V;
4: for all node v included in the adjacent nodes of node u do
5: compute modularity gain between node u and v;
6: end for
7: find node v′ that has the largest modularity gain from the adjacent nodes of node u;
8: if the modularity gain of node v′ > 0 then
9: assign node u to the cluster of node v′;
10: else
11: stay node u in its original cluster;
12: end if
13: until modularity Q is increased
14: aggregate clusters into a weighted graph;
15: until modularity Q is increased

ideas underlying our algorithm that is followed by a full description including graph
clustering algorithm.

3.3.1 Ideas

We introduce three ideas to avoid the high computation cost of existing algorithms.
First, we incrementally aggregate nodes, which are placed in a same cluster, into a
single node to eliminate unnecessary nodes/edges from the graph. Second, we incre-
mentally prune nodes whose clusters are obtained without modularity computing.
Last, we optimize the order of node selections to reduce the number of modular-
ity computations in the clustering process. Instead of iterative computations for all
nodes/edges in the whole graph, we only compute the key nodes/edges efficiently.
Moreover, our proposal successfully produces clustering results with high modular-
ity by obtaining clusters in a local modularity maximization and avoiding skewed
access.

These simple ideas have two main advantages. First, we can extract clusters
with quite-small computational cost for complex networks [108]. Our ideas suc-
cessfully handle the interesting characteristics of complex networks; high cluster-
ing coefficients and power-law degree distributions. This is because our ideas are
designed to perform well even if the graph has many co-occurrence nodes between
adjacent nodes. That is, high clustering coefficients lead our algorithm to compute
efficiently. Additionally, our ideas perform well in the case that there are strong
imbalances among the degrees of all nodes as in power-law distributions. Thus,

33

our algorithm runs faster on large size complex networks than the state of the art
algorithm.

Second, our algorithm can produce clustering results with high modularity by
not missing the chances that may improve the modularity. The reason is twofold.
First is that our pruning method does not sacrifice modularity. Second is that our
ideas successfully prevent our algorithm from producing imbalanced clustering re-
sults, which would otherwise greatly degrade the modularity. Therefore, our algo-
rithm can extract clustering results with high modularity.

3.3.2 Incremental aggregation

We extract clusters by incrementally aggregating nodes placed in a same cluster into
an equivalent single node with weighted edges. In contrast to previous algorithms,
our proposal does not traverse all nodes/edges multiple times. In this section, we
formally introduce our incremental aggregation technique and its properties.

We specify the modularity gain proposed by Newman [35], since it is also uti-
lized by our algorithm.

Definition 7 (Modularity gain △Quv) Let △Quv be the modularity gain which is
obtained after merging nodes u and v. The modularity gain △Quv is defined as
follows:

△Quv = 2
{euv
2m

−
(au
2m

)(av
2m

)}
. (3.2)

By using modularity gain, our proposal finds clusters in a local maximization
manner. When node u is selected, it computes the modularity gain of u for each v
in Γ(u), where Γ(u) is the set of nodes neighboring u. After computing all modu-
larity gains between u and v, our algorithm incrementally aggregates u and v that
yields the highest rise in modularity. Details of the incremental aggregation and
aggregated node are as follows:

Definition 8 (Incremental aggregation) Let node v be the neighboring node of
node u that yields the highest rise in modularity. If node u has a positive modu-
larity gain for v (i.e. △Quv > 0), the pair of nodes, u and v, are aggregated into a
single node w. If node v has the negative modularity gain (i.e. △Quv ≤ 0), the pair
of nodes u and v are not aggregated.

34

Definition 9 (Aggregated node) We initialize the weight of each edge to 1 in the
given graph. If node w is aggregated from node u and v, node w has two types of
weighted edges; a self-loop edge and outer edges. The weight of the self-loop edge
is obtained by summing (1) weights of the self-loop edges of nodes u and v, and (2)
weights of edges between node u and v. The weights of outer edges for other nodes
are obtained by summing the weights of edges that incident nodes u and v.

From Definition 9, the degree of w is given as the number of the weighted outer
edges that are obtained by aggregating nodes/edges included in the same cluster.
Then, we introduce the theoretical properties of Definition 8 and 9.

Lemma 1 (Equivalence of the modularity) If (1) node u and v belong to the same
cluster (i.e. cu = cv) and (2) node u and v are aggregated into node w, the modu-
larity taken from node w is equivalent that of nodes u and v.

Proof Let Q(u,v) be the modularity for the case that node u and v belong to the same
cluster, and Qw be the modularity of aggregated node w. From Definition 9, the
weighted edges of w are eww = euu + evv + 2euv = e(u,v)(u,v) and aw = au + av =
a(u,v). Qw is obtained as follows:

Qw =
eww

2m
− a2w

4m2
=

euu + evv + 2euv
2m

− (au + av)
2

4m2
= Q(u,v) (3.3)

Thus, node w has the same modularity as nodes u and v that belong to the same
cluster. □
From Lemma 1, we can reduce the number of nodes/edges in the graph without
sacrificing modularity quality. Additionally, we advance the following lemma to
avoid iterative traversal of all nodes/edges:

Lemma 2 (Negativity of the modularity) Once a node has negative modularity
gain for all neighbors, it will never be clustered with its neighbors in the subse-
quent process.

Proof We assume nodes vi and vj are connected. There are two cases in which the
modularity gains of node u can be updated. First is that node u is connected to
both of vi and vj . In this case, the modularity gains of u are given as △Quvi < 0
and △Quvj < 0, respectively. If vi and vj are aggregated into node w, the updated

35

modularity gain △Quw can be obtained by Definition 7 and 9 as follows:

△Quw = 2
{euw
2m

−
(au
2m

)(aw
2m

)}
(3.4)

= 2

{
euvi + euvj

2m
−
(au
2m

)(
avi + avj

2m

)}
(3.5)

= 2
(
△Quvi +△Quvj

)
< 0. (3.6)

As can be see, node u always has negative modularity gain after merging pairs of
neighbor nodes in this case. Next, we assume the case that only node vi is connected
to node u. In this case, the modularity gain between u and vi is given as △Quvi < 0.
If vi and vj are aggregated into a node w, the updated modularity gain △Quw is
obtained as follows:

△Quw = 2
{euw
2m

−
(au
2m

)(aw
2m

)}
(3.7)

= 2

{
euvi
2m

−
(au
2m

)(
avi + avj

2m

)}
(3.8)

= 2
(
△Quvi −

auavj
4m2

)
< 0. (3.9)

This case also has no positive improvement of △Quw after aggregation. Therefore,
node u never finds a neighbor node yielding positive modularity gain. Thus, once a
node only has negative modularity gains, it will never be clustered in the subsequent
process. □
From Lemma 2, we can efficiently reduce the number of traverses for all nodes/edges.
This is because, once a node is detected as yielding having only negative modularity
gain, it is never considered for aggregation thereafter.

Our proposal efficiently handles the structural feature of high clustering coef-
ficient. The clustering coefficient of adjoined nodes [109] measures how close the
pair of nodes is to being a clique. By considering this pairwise clustering coeffi-
cient, the efficiency of our algorithm is confirmed as follows:

Lemma 3 (Efficiency of incremental aggregation) Let c be the clustering coeffi-
cient of the adjacent nodes, and n be the number of neighbors adjoined to the pair
of nodes (i.e. |Γ(u) ∪ Γ(v)|). In each incremental aggregation, our algorithm can
eliminate cn edges.

Proof If a pair of nodes have n neighboring nodes, the pair is expected to have cn
neighboring nodes that are co-referenced from both of the pair. From Definition
9, cn edges, indicates co-referenced nodes from the pair, will be eliminated by

36

aggregating the pair into a single node. Therefore, we can eliminate cn edges in
each aggregation. □
From Lemma 3, it is obvious that our algorithm performs well when the given graph
has a high clustering coefficient.

3.3.3 Incremental pruning

In practice, there are a lot of nodes whose clusters are trivially determined, we call
them prunable nodes. We call the set of nodes whose modularity gains are to be
computed as target nodes, in the clustering process. Unlike existing algorithms,
our algorithm computes the modularity gain for only target nodes by dynamically
removing prunable nodes in incremental manner. We formally introduce below the
definitions of prunable nodes and target nodes with their theoretical properties. The
set of prunable nodes Pi in the i–th aggregation is defined as follows:

Definition 10 (Prunable vertices) Let cu be a cluster to which node u belongs.
The following equation gives the set of prunable nodes in the i–th aggregation.

Pi=

{
∅ (i = 0)
{u : |Γ(u)|=1}∪{u :∀v,w∈Γ(u), cv=cw} (i > 0)

(3.10)

Definition 10 indicates that a node is included in Pi if (1) the node has only a single
adjacent node, or (2) all the adjacent nodes of the node belong to the same cluster.
We can introduce the following properties of prunable nodes:

Lemma 4 (Non-negativity of the modularity gain) If node u is included in Pi,
the modularity gain of node u for each adjacent node must be greater than 0.

Proof From Definition 10, if the node included in Pi has only a single adjacent node
in the given graph (i.e. |Γ(u)| = 1), we have euv = au = 1 and 0 < av < 2m.
Therefore, from Definition 7, the modularity gain △Quv between node u and v is
always greater than 0. If all neighbor nodes of node u belong to the same cluster
cw, (i.e. cv = cw,∀v, w ∈ Γ(u)), node u has edges euw = au > 0 and cluster cw has
0 < aw < 2m. Therefore, the modularity gain △Quw between node u and cluster
cw is always greater than 0. □
From Lemma 4, all nodes included in Pi must have positive modularity gains. That
is, all nodes that belong to Pi are always clustered in their neighbors’ cluster. There-
fore, we can aggregate these nodes without sacrificing the quality of modularity.

37

From Lemma 4, the set of target nodes in the i–th aggregation, Ti, can be defined
as follows:

Definition 11 (Target vertices) The following equation gives the set of target nodes
in the i-th aggregation.

Ti =

{
V (i = 0)
Ti−1 − Pi (i > 0)

(3.11)

Our algorithm incrementally prunes Pi from Ti−1 in each aggregation step. How-
ever, computation costs would be excessive if we naively search for nodes in Pi such
that all of their adjacent nodes belong to a same cluster. For efficient computing,
therefore, we introduce a theoretical property of Ti and Pi as follows:

Lemma 5 (Incremental pruning) We can find all nodes included in Pi by obtain-
ing nodes such that they have only a single adjacent node from Ti−1 in each aggre-
gation.

Proof If a node in the given graph has only a single adjacent node, the node can be
obviously pruned. If all neighboring nodes of a node belong to a same cluster, all of
them have already been aggregated into a single node by Definition 8. Therefore,
we can obtain Pi by finding nodes such that they have only a single adjacent node.□
By Lemma 5, we can efficiently find all nodes in Pi.

3.3.4 Efficient ordering of node selections

We establish efficient ordering of node selections for local modularity maximiza-
tion to reduce the computations. Our proposal dynamically selects node with the
smallest degree by handling the power-law degree distribution.

One of the famous properties of complex graphs is the power-law degree dis-
tribution [110]; most nodes have relatively few neighbors while a few nodes have
many neighbors. Under the power-law degree distribution, the frequency of nodes
with degree number of d is proportional to d−α, where exponent α is a positive
constant that represents the skewness of the degree distribution. A high α implies
that the vast majority of nodes have small degree. As α decreases, the graph den-
sity and the number of large degree nodes increases. Given the power-law degree
distribution, we find the following empirical observation:

38

• Observation 1: Greedy modularity-based algorithms, which maximize mod-
ularity in a local manner, can extract clusters with a small number of modu-
larity computations by selecting nodes that have the smallest degree.

We compute the modularity gains of node u for all neighbor nodes in Γ(u). This
process involves |Γ(u)| times modularity computations for node u to find the node
that yields the highest rise in modularity gain. Therefore, selecting nodes that have a
large degree waste computation time. Thus, we find nodes of the highest modularity
gain with low computation cost by dynamically selecting nodes with the smallest
degree. By combining the ordering and the incremental aggregation, we reduce the
size of degrees. Thus, the ordering reduces the computational cost especially for
high degree node. Additionally, we find the node of the highest modularity gain
more efficiently as the graph strongly follows power-law degree distribution. This
is because nodes in the power-law degree distribution tend to have highly skewed
degree.

Moreover, we obtain clusters with high modularity by avoiding skewed access
to nodes of large degree. This is because our proposal successfully prevents the
results from producing super-clusters, which would otherwise greatly degrade the
modularity. Thus, we extract clusters from graphs with high modularity.

3.3.5 Graph clustering algorithm

Algorithm 2 shows our algorithm. First, if i = 0, the algorithm initializes
P0 = ∅ and T0 = V based on Definition 10 and 11, respectively (line 1). Next,
it incrementally computes prunable nodes Pi (line 4) and merge each node in Pi

into its neighboring cluster (lines 5-7). Next, it obtains target nodes Ti as described
in Lemma 5 and Definition 11 (line 8). It selects node u with the smallest degree
from Ti based on Observation 1 (line 9), and finds neighbor node v that maximizes
the modularity gain as defined in Definition 7 (line 10). If the modularity gain
△Quv is positive, it then aggregates nodes u and v into a single node as described
in Definition 8 and 9 (lines 11-14). Otherwise, node u is pruned from Ti by Lemma
2 (line 16). If Ti contains no nodes, it terminates its iteration cycle. Finally, it re-
turns aggregated nodes as a result; all nodes included in an aggregated node belong
to same cluster.

We provide a theoretical analysis of the computation cost.

39

Algorithm 2 Incremental Modularity Agglomerative Clustering (IMAC)
Input: G = {V,E};
Output: clustering result of G;
1: i = 0, P0 = ∅, T0 = V;
2: while |Ti| > 0 do
3: i = i+ 1;
4: Pi = {u : |Γ(u)| = 1};
5: for ∀u ∈ Pi do
6: aggregate node u into its neighbor;
7: end for
8: Ti = Ti−1 − Pi;
9: select node u from Ti that has the smallest degree;
10: v = arg max v′△Quv′ ;
11: if △Quv > 0 then
12: aggregate u and v into a single node w;
13: Ti = Ti − {u, v};
14: Ti = Ti ∪ {w};
15: else
16: Ti = Ti − {u};
17: end if
18: end while

Theorem 1 (Computational cost) Our algorithm requires O(|E|+ α(1−c)
α−1

|V|) time
to obtain a clustering result from a graph, where c and α are the clustering coeffi-
cient and the skewness of the degree distribution, respectively.

Proof Our algorithm needs 2|E| computations without the incremental aggregation,
because it has to compute △Q for all neighbors for each node. Lemma 3 shows that
each incremental aggregation eliminates cn edges from the given graph, where n is
the average degree. Moreover, it iterates the incremental aggregations |Ti| ≈ |V|
times by Definition 8 and 9, so we can eliminate cn|V| edges from the given graph.
As a result, our method requires O(|E| − cn|V|) modularity computations for clus-
tering the given graph. In addition to the modularity computation costs, our method
also requires aggregation costs for merging two nodes/clusters. The computational
cost of each aggregation is O(n|V|) since our algorithm traverses all adjacent nodes
for merging two nodes. Hence, the total computational cost is O(|E|+n(1−c)|V|).
Generally, the average degree is n = α

α−1
for the real-world graphs that follow the

power-law degree distribution. Therefore, the computational cost of our method is
O(|E|+ α(1−c)

α−1
|V|). □

This theorem indicates that the computation cost of our proposal is dramatically
smaller than those of existing algorithms; for instance, CNM requires O(d|E| log |V|)
to obtain a clustering result. Furthermore, we have even smaller computation cost
than the one described in Theorem 1 in practical cases. This is because we have
two other techniques to enhance the clustering speed; incremental pruning and effi-
cient ordering. However their computation costs strongly depend on the structure of

40

the graph, we show concrete computation times for real world datasets in the next
section.

3.4 Experimental evaluation

We conducted evaluations to confirm the effectiveness of our algorithm. In the
experiments, we used the five public datasets [111] to evaluate our algorithm:

• dblp-2010: This scientific collaboration graph was extracted from the bib-
liography service DBLP in 2010; each node is a scientist and each edge is
coauthor relationship.

• ljournal-2008: This graph was obtained from a social networking site Live-
Journal in 2008; each node and edge represent a user and friendship among
users, respectively.

• uk-2005: This graph was obtained from a 2005 crawl of .uk domain; each
node and edge mean a Web page and a link between pages, respectively.

• webbase-2001: This Web graph of .us domain in 2001 was downloaded from
the Stanford Webbase project, each node and edge mean a Web page and a
link, respectively.

• uk-2007-05: This graph is a expansion of uk-2005 crawled from .uk domain
Web pages in May, 2007.

The details of our datasets are shown in Table 5.2, where α is the exponent that
controls the skewness of the degree distribution, described in previous section.
Additionally, we also use synthetic datasets generated by DIGG1 and LFR bench-
mark [112] to evaluate the effectiveness of our proposal for complex networks. The
details setting will be described later.

All experiments were conducted on a Linux 2.6.18 server with Intel Xeon CPU
L5640 2.27GHz and 144GB RAM. We implemented our proposal using C++ and
we used the optimization parameter “-O2” for each algorithm. To evaluate the exist-
ing algorithms, we used programs of CNM2 and BGLL3 published on their authors’

1http://digg.cs.tufts.edu/
2http://www.cs.unm.edu/ aaron/research/fastmodularity.htm
3https://sites.google.com/site/findcommunities/

41

Table 3.2: Real-world datasets
dblp-2010 ljournal-2008 uk-2005 webbase-2001 uk-2007-05

|V| 326,186 5,363,260 39,459,925 118,142,155 105,896,555
|E| 1,615,400 79,023,142 936,364,282 1,019,903,190 3,738,733,648
α 2.82 2.29 1.71 2.14 1.51

Table 3.3: Modularity Q for each dataset
dblp-2010 ljournal-2008 uk-2005 webbase-2001 uk-2007-05

Proposed 0.90 0.74 0.98 0.98 0.97
BGLL 0.88 0.74 0.97 0.96 0.97
CNM 0.82 - - - -

sites.

3.4.1 Efficiency

We evaluated the clustering performance of each algorithm through wall clock time
for each real world dataset. Figure 3.1 shows the results of computational time. In
Figure 3.1, our proposal is tested under two different types; Proposed and Proposed-
Limited. Proposed represents the full version of our algorithm described in Al-
gorithm 2. And Proposed-Limited represents the limited version of Algorithm 2
which only uses the incremental aggregation. Since CNM cannot compute clus-
ters in a day except for dblp, we omitted the results of CNM for other dataset.
Figure 3.1 indicates that Proposed is significantly faster than the other algorithms
under all conditions examined. As described earlier, the existing algorithms tra-
verse all nodes/edges multiple times while our algorithm dynamically eliminates
nodes/edges. As a result, our proposal is up to 60 times faster than the state of the
art algorithm BGLL; our algorithm computed clusters from the graph with 1 billion
edges in 156 seconds. Furthermore, Proposed-Limited is up to 20 times faster than
BGLL, even though Proposed is almost three times faster than Proposed-Limited
under all conditions. This indicates that the incremental aggregation contributes
most to the improvement. Proposed more efficiently reduces the computational cost
than Proposed-Limited by combining incremental aggregation, incremental pruning
and efficient ordering.

42

10-1

100

101

102

103

104

105

dblp-2010 ljournal-2008 uk-2005 webbase-2001 uk-2007-05

W
al

l c
lo

ck
 ti

m
e

[s
]

CNM
BGLL

Proposed-Limited
Proposed

Figure 3.1: Clustering time for real-world datasets

3.4.2 Modularity

One major advantage of our algorithm is that it outputs clusters with high modular-
ity. Table 3.3 shows modularity Q for each of the real world datasets. Table 3.3 in-
dicates that the modularity score of our algorithm is higher than that of CNM. Since
CNM optimizes modularity in a global manner, it tends to produce super-clusters
which significantly degrades modularity. In contrast, our algorithm successfully
avoid to produce super-clusters by using a local modularity maximization and effi-
cient ordering of node selections. Furthermore, Table 3.3 shows that our proposal
achieves slightly higher modularity than BGLL even though BGLL also performs
higher modularity than CNM. The computation time of BGLL is significantly larger
than ours as shown in Figure 3.1. That is, these results show the superiority of our
approach over the previous approaches.

43

10-1

100

101

 2 2.1 2.2 2.3 2.4 2.5

W
al

l c
lo

ck
 ti

m
e

[s
]

Size of α for each dataset

Proposed
BGLL

Figure 3.2: Power-law differences

3.4.3 Effectiveness

We evaluate the effectiveness of our algorithm for complex networks that have high
cluster coefficients and power-law degree distributions. We compared our proposal
with BGLL since it performed well in terms of computing time and modularity. To
evaluate the effectiveness, we used synthetic graphs produced by the graph genera-
tor DIGG.

Figure 3.2 shows the computation times of our proposal and BGLL for different
α values (from 2.0 to 2.5) of graphs with 1 million nodes; α represents the skewness
of the power-law degree distribution. It is known that the clustering coefficient
also follows a power-law degree distribution [108]; graphs with large α tend to
have high clustering coefficients. As shown in Figure 3.2, BGLL shows almost
constant computational time under all conditions examined. In contrast to BGLL,
our algorithm increases its clustering speed as α increases. In the most efficient
case, i.e. α = 2.5, our proposal is up to two times faster than the result of α =
2.0. This is because our algorithm eliminates a significant number of nodes/edges
as shown in Lemma 3 and 5, when the graph has large α. Thus, our algorithm
outperforms BGLL at high α values.

44

10-1

100

 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l c
lo

ck
 ti

m
e

[s
]

Clustering coefficient

Proposed
BGLL

Figure 3.3: Clustering coefficient differences

We evaluated the effectiveness of our algorithm in terms of high clustering co-
efficients. We generated LFR benchmark graphs with 1 million nodes; the average
clustering coefficient was varied from 0.1 to 0.6 following the real-world datasets.
The other parameters, average degree and maximum degree were fixed at 20 and
50, respectively. Figure 3.3 shows the computation time of our proposal and BGLL
for different clustering coefficient scores. As shown in Figure 3.3, BGLL shows al-
most constant computation time under all conditions examined. Unlike BGLL, our
algorithm increased its clustering speed as the clustering coefficient increased. In
the most efficient case (i.e. clustering coefficient is 0.6) our algorithm was up to 1.9
times faster than the result of the worst case (i.e clustering coefficient is 0.1). These
results imply that our incremental agglomerative algorithm effectively prunes the
computations for the graphs with high clustering coefficient.

Figure 5.7 shows the scalability for our proposal and BGLL; we show the wall
clock time as a function of the number of nodes. We varied the number of nodes
from 10 thousand to 100 million with α = 2.5. As shown in Figure 5.7, our algo-
rithm scales better than BGLL. This is because we do not traverse all nodes/edges
multiple times. Thus, our proposal clearly achieves higher scalability than BGLL.

45

10-2

10-1

100

101

102

103

104

104 105 106 107 108

W
al

l c
lo

ck
 ti

m
e

[s
]

Number of vertices

Proposed
BGLL

Figure 3.4: Scalability of each algorithm

3.5 Summary of this Chapter

We have introduced an efficient algorithm for finding clusters with high modular-
ity that allows graphs of unprecedented size to be processed in practical time. Our
algorithm is based on three ideas. First, it incrementally aggregates nodes, which
are placed in a same cluster, into a single node. Second, it incrementally prunes
computations for nodes whose clusters can be obtained. Last, it dynamically se-
lects the node with the smallest degree. Experiments show that our algorithm can
achieve efficient clustering with high modularity. Modularity-based algorithms are
fundamental to many current and prospective applications in various disciplines.

46

Chapter 4

Parallel algorithm for
Modularity-based Graph Clustering

As we described in Chapter 3, the state-of-the-art algorithm BGLL has to com-
pute modularity gains of all adjacent node pairs to find clusters. However, this
demands extremely high computation time for large-scale graphs. For this reason,
we proposed IMAC (incremental modularity agglomerative clustering) in the previ-
ous chapter. To supplement the previous chapter, we propose here another variation
of efficient modularity-based clustering, named ParBGLL, by using a data parallel
computation scheme.

4.1 Introduction

As shown in the previous Chapter, the state-of-the-art algorithm BGLL is very in-
efficient at finding clusters in large-scale graphs. In Chapter 3, we proposed an
efficient clustering algorithm, named IMAC, from the algorithmic perspective.

In this chapter, in order to overcome the performance limitation of BGLL, we
tackle efficient clustering from the parallel computation and implementation per-
spective. Our solution is the novel data parallel graph clustering algorithm, named
ParBGLL. ParBGLL is based on two ideas: First, in order to reduce the computa-
tion cost for node references, we adopt a graph data representation for BGLL that is
CPU cache efficient. Specifically, we employ compressed row storage (CRS format

48

for short) [39] instead of the adjacency list representation. Our algorithm extends
the CRS format to represent both adjacency lists and degrees, and increases the effi-
ciency of CPU prefetch for fast clustering. Second, in order to reduce the computa-
tion time for modularity gain computations, we employ a data parallel method with
Streaming SIMD Extensions (SSE), which is the SIMD instruction set extension of
the x86. SIMD instructions are the extended instructions included in most modern
CPU designs in order to improve the performance of multimedia applications. They
perform the same operation on multiple data points simultaneously, and exploit data
level parallelism in the CPU core but not concurrency. Since, real-world graphs
have highly skewed degree distributions, there are a lot of small degree nodes. By
computing these small degree nodes efficiently by using SIMD instructions, we can
dramatically improve the clustering speed for large-scale graphs.

Our proposal have three major advantages:

• Efficiency: Our approach successfully overcomes the bottlenecks of the
state-of-the-art method BGLL; the extended CRS format increases the cache
hit ratio and the data parallel method with SIMD instructions is very efficient
at performing the modularity gain computations.

• High modularity: Our evaluations reveal that the clustering results pro-
duced by our approach achieve almost same modularity scores as the state-
of-the-art method BGLL.

• Scalability: Our proposal has better scalability than the state-of-the-art ap-
proach BGLL. Our approach reasonably increases its clustering speed accord-
ing to the level of parallelism for large-scale graphs.

4.2 Preliminary

In this section, we formally define the notations and introduce the background of
this chapter. Table 4.1 lists the main symbols and their definitions that are newly
used in this chapter.

Prior to discussing the details of our proposal, we first introduce the SIMD in-
structions that are the key technique of our proposed method ParBGLL.

49

Table 4.1: Definition of main symbols

Symbol Definition

Va node array of CRS-based graph representation given in Section 4.3.2
Ea edge array of CRS-based graph representation given in Section 4.3.2

△Q′
ij Relative modularity gain between cluster i and j defined by Definition 12

p maximum parallelism of SIMD-based computation

Single Instruction Multiple Data (SIMD) is a term proposed by Flynn in 1966
[113] and it means that a single instruction set is applied to multiple data items.
In practice, the cores in modern processors have functional units that perform the
same operation on multiple data items simultaneously. These units are called SIMD
units, and instructions based on SIMD units are called SIMD instructions. Today’s
processors have 128-bit wide SIMD instructions that can, for example, perform
operations on four 32 bit elements simultaneously. For instance, the Intel Core i7
processor is a quad-core processor with 128-bit SIMD(SSE), and NVIDIA GeForce
GTX 280 GPU is a 30-core processor with 256-bit SIMD.

Recently, many approaches have been proposed that use SIMD units to per-
form tree search [114, 115]. However, to the best of our knowledge, there are no
graph clustering approaches that have been optimized for SIMD units/instructions.
Therefore, we tackled this challenging problem in developing a SIMD-based graph
clustering algorithm.

4.3 Proposed method

This section overviews our proposal. The main objective is to develop a data par-
allelism technique for modularity-based graph clustering on modern CPUs. Our
data parallel method is based on SIMD instructions. The heart of our solution is
to compute the modularity gain between nodes, which takes the greatest part of the
computing time, in parallel by transforming the modularity’s formula into simple
representations. Moreover, in implementing a clustering algorithm, we introduce a
data structure that improves the cache hit ratio of node selection for greater com-
puting efficiency. In the following sections, we first give an overview the ideas
underlying our algorithm followed by a full description including the graph cluster-
ing technique.

50

4.3.1 Ideas

The proposed method consists of two building blocks. First, in order to reduce
computation cost for node references, we adopt CPU cache and prefetch efficient
graph data representation for BGLL. Specifically, we employ compressed row stor-
age (CRS format for short) [39] instead of the adjacency list representation. CRS
format is one of the most popular storage formats for sparse matrixes. It puts subse-
quent nonzero elements of the sparse matrix rows in contiguous memory locations.
Hence, the format enables us to increase the efficiency of node referencing. Our
algorithm extends the CRS format to represent both adjacency lists and degrees,
which increases the cache hit ratio for efficient clustering.

Second, in order to reduce the computation time for modularity gain computa-
tions, we employ a data parallel method with Streaming SIMD Extensions (SSE),
which is the SIMD instruction set extension of the x86. SIMD instructions are the
extended instructions included in most modern CPU designs in order to improve
the performance of multimedia applications. They perform the same operation on
multiple data points simultaneously, and exploit data level parallelism on the CPU
core but not concurrency. Hence, our algorithm uses SIMD instructions in com-
puting the modularity gain in order to increase clustering speed. Furthermore, for
efficient computation, we reduce the number of instructions that are required for
each modularity gain computation by transforming the modularity’s formula into
simple representations.

These approaches have three major advantages. The first advantage is that only
small computation cost is incurred in extracting clusters from large-scale graphs.
Our approach successfully overcomes the bottlenecks of the state-of-the-art method
BGLL; the extended CRS format increases the cache hit ratio and the data parallel
method with SIMD instructions can efficiently perform the modularity gain com-
putations. The second advantage is that our proposal has better scalability than the
state-of-the-art approach BGLL. Our approach reasonably increases its clustering
speed with the parallelism level for large-scale graphs. The third advantage is the
high modularity of the clustering results. Our evaluations revealed that the cluster-
ing results produced by our approach achieve almost the same modularity scores as
the state-of-the-art method BGLL.

51

�
�

node id 0 1 2 3 4 5 6 7 99 100���

0 3 4 7 8 13 14 17 221 223���

�
� 2 10 15 4 11 42 88 221 223���9

adjacent nodes
of node 2

Figure 4.1: CRS-based graph representation

4.3.2 CRS-based Graph Representation

Graph G = {V,E} is commonly represented as an adjacency matrix. For sparse
graphs such a representation wastes a lot of space. Furthermore, the matrix repre-
sentation also increases data access costs for clustering since state-of-the-art algo-
rithms iteratively access all nodes and edges for finding clusters and these compu-
tations on the matrix representation decrease cache and prefetch efficiency.

In order to overcome the above limitations, we present graphs in compact ad-
jacency list form that are packed into large arrays called CRS [39]. We introduce
here details of the CRS-based graph representation. This graph representation con-
sists of two arrays: node array Va and edge array Ea. Each node points to starting
position of its own adjacency list in this large array of edges. Figure 4.1 shows an
example of CRS-based data representation. Each array is formally given as follows:

• Node array: Nodes of the graph are represented as an linear array, called
node array Va. Each index and entry of node array Va correspond to the node
id and the starting index of its adjacency list in edge array Ea, respectively.
For example, in Figure 4.1, node array Va shows the starting index of its
adjacency list in Ea from node 0 to node 100. Specifically, node 2 in node
array Va of Figure 4.1 has the entry of 4, and it implies that the adjacency list
of node 2 starts from index 4 of Ea.

• Edge array: Edges of the graph are represented as a linear array, called edge
array Ea. Each entry of edge array Ea refers to a node in node array Va.

52

While the above graph representations use linear arrays, we can obtain adjacent
nodes of a node efficiently. As described above, the node array has the starting index
of its adjacency list in edge array Ea. Hence, we can obtain the adjacent nodes of a
node by retrieving the indices of Ea from Va[u] to Va[u + 1]. For example, we can
obtain the adjacent nodes of node 2, {11, 42, 88}, by retrieving Ea from Va[2] = 4
to Va[2 + 1] = 7.

Additionally, we reduce the data access costs for clustering by using the above
two arrays for clustering. This is because the node array and edge array are stored
in continuous memory address space. Therefore, this representation can improve
prefetch efficiency for graph clustering.

4.3.3 Proposed method: ParBGLL

In this section, we introduce ParBGLL, vectorized modularity-based graph cluster-
ing that uses SIMD instructions.

Vectorization of the modularity computation

The state-of-the-art algorithm BGLL computes modularity gains for all adjacent
nodes of each node. In our proposal ParBGLL, we introduce the vectorized com-
putation form by using SIMD instructions: First, as is true for BGLL, ParBGLL
selects a node to initiate the modularity gain computation. ParBGLL then obtains
all adjacent nodes from the CRS-based graph representation. Last, ParBGLL per-
forms vectorized modularity gain computation for all adjacent nodes.

In order to obtain the modularity gain, we have to evaluate the equation given
by Definition 7 for each adjacent node. In this case, if we assume that we have
already obtained the score of each term in Definition 7 such as eij ,

∑
Ck∈C eik and∑

Ck∈C ejk, we have to use SIMD instructions to evaluate at least the following six
instructions:

• quotient of eik and 2m

• quotient of
∑

Ck∈C eik and 2m

• quotient of
∑

Ck∈C ejk and 2m

53

• product of
∑

Ck∈C eik/2m and
∑

Ck∈C ejk/2m

• difference between eij/2m and (
∑

Ck∈C eik/2m)(
∑

Ck∈C ejk/2m)

• a product between 2 and {eij/2m− (
∑

Ck∈C eik/2m)(
∑

Ck∈C ejk/2m)}

In order to reduce the number of instructions, we focus on the locality of graph
clustering computations in real-world graphs. In the local clustering phase of BGLL,
we have to find the adjacent node that maximizes the modularity gain among all ad-
jacent nodes of the node. Traditionally, the original algorithm BGLL computes the
full description of Definition 7, hence it requires at least six instructions for each
computation as we described above. However, almost modularity gain computa-
tions have similar mathematical expressions since BGLL only needs to select an
adjacent nodes whose modularity gain is local maximum. More specifically, if we
compute the modularity gains for the adjacent nodes of node u, all the modularity
gain computations have same values of 2m and

∑
Ck∈C euk: They differ only in

values of euj and
∑

Ck∈C ejk. In fact, we can compute the relative size of the modu-
alrity gain by only comparing euj and

∑
Ck∈C ejk; and this relative form reduces the

number of instructions for each modularity computation. Hence in our proposal, we
only compute relative form of the modularity gain, defined in Definition 12, instead
of the full description of Definition 7. We define relative modularity gain as follows:

Definition 12 (Relative modularity gain △Q′
ij) Let m be the total number of edges

and eij be the total number of edges between cluster Ci and Cj . The following
equation gives the relative modularity gain △Q′

ij among the nodes in Γ(u):

△Q′
ij = 2meij −

∑
Ck∈C

eik
∑
Ck∈C

ejk. (4.1)

From Definition 12, we can introduce the following Lemma:

Lemma 6 (Equivalence between △Qij and △Q′
ij) Let node v, w be the adjacent

nodes of node u. We always have,

△Qu,v > △Qu,w ⇔ △Q′
u,v > △Q′

u,w. (4.2)

Proof We first prove the sufficient condition of Lemma 6. From Definition 7, we

54

have

△Quv = 2

{
euv
2m

−
(∑

Ck∈C euk

2m

)(∑
Ck∈C evk

2m

)}
(4.3)

△Quw = 2

{
euw
2m

−
(∑

Ck∈C euk

2m

)(∑
Ck∈C ewk

2m

)}
(4.4)

Therefore, the following holds,

△Quv > △Quw (4.5)

2

{
euv
2m

−
(∑

Ck∈C euk

2m

)(∑
Ck∈C evk

2m

)}
> 2

{
euw
2m

−
(∑

Ck∈C euk

2m

)(∑
Ck∈C ewk

2m

)}
(4.6)

2meuv −
∑
Ck∈C

euk
∑
Ck∈C

evk > 2meuw −
∑
Ck∈C

euk
∑
Ck∈C

ewk (4.7)

△Q′
u,v > △Q′

u,w. (4.8)

As a result, we have △Qu,v > △Qu,w ⇒ △Q′
u,v > △Q′

u,w The necessary condition
of Lemma 6 can prove the same approach that we show above. Therefore, we hold
△Qu,v > △Qu,w ⇔ △Q′

u,v > △Q′
u,w □

As we can see, the relative modularity gain contains only three instructions as
follows:

• product of eij and 2m

• product of
∑

Ck∈C eik and
∑

Ck∈C ejk

• difference between 2meij and
∑

Ck∈C eik
∑

Ck∈C ejk

Hence, we can reduce the number of instructions by using the relative modularity
gain instead of the modularity gain given by Definition 7.

ParBGLL uses the above relative modularity gain to find clusters in a data par-
allel manner. Figure 4.2 shows our vectorized modularity gain computations that
are based on the relative modularity gain of Definition 12. As shown in Figure 4.2,
when we compute the relative modularity gains for the adjacent nodes, we can eval-
uate them in parallel provided they occupy the same SIMD register. For example,
in Figure 4.2, we compute the relative modularity gains △Q′

12,△Q′
13,△Q′

14 and
△Q′

15. In this case, we can evaluate them in parallel by using SIMD instructions
(i.e. mm set epi32 and mm sub epi32) since these four relative modularity gain
computations can occupy the same SIMD register (i.e. Register A in Figure 4.2).

55

2

3

1

4

5

6

7

modularity gain computations
∆�

�

�,�

� 2�	�

��

�∑

�

�

��

∑

�

�

��

SIMD registers

= = = =

∆�′
��

∆�′
��

∆�′
��

∆�′
��

convert

2� 2� 2� 2�

�
��

�
��

�
��

�
��

Register: A

Register: B

_mm_set_epi32

∑
�

�
��

Register: C

Register: D

∑
�

�
��

∑
�

�
��

∑
�

�
��

∑
�

�
��

∑
�

�
��

∑
�

�
��

∑
�

�
��

_mm_set_epi32

_mm_sub_epi32

Figure 4.2: Vectorized relative modularity gain computations

Vectorized selection of the maximum modularity gain node

After computing the relative modularity gains for all adjacent nodes of a node, we
then have to select the one that has the largest relative modularity gain among all
adjacent nodes. We also implement this procedure by SIMD instructions.

In order to find the largest (relative) modularity gain node, we first set up five
SIMD registers, named reg id, reg result, reg max id, reg max and reg mask. reg id
is a SIMD register that stores the adjacent node ids. reg result stores values of the
relative modularity gains that correspond to the reg id. reg max id contains adja-
cent node ids that may have the largest modularity gain among the adjacent nodes.
reg max stores relative modularity gain values that correspond to the reg max id.
Finally, reg mask is a mask SIMD register that is used to select the node with the
largest modularity gain.

Here, we introduce a concrete procedure for selecting the largest modularity
gain node. As shown in the previous section, reg id and reg result are filled by
subsets of the adjacent nodes and their relative modularity gain values, respectively.
If reg max id and reg max are empty, ParBGLL copies the entries of reg id and
reg result to reg max id and reg max, respectively. Otherwise, it updates reg max id
and reg max. In order to update the reg max id and reg max, we first build reg mask
from reg result and reg max. For building reg mask, ParBGLL compares the rela-
tive modularity gain values for each alignment between reg result andreg max. In
each alignment, if the relative modularity value in reg result is greater than that of
reg max, ParBGLL fills the corresponding alignment of reg mask with 1. Other-
wise, it fills the corresponding alignment with 0.

56

0.55 0.21 0.67 0.01

0.25 0.43 0.33 0.12

reg_result

reg_max

1111…11reg_mask 0000…00 1111…11 0000…00

_mm_cmpgt_epi32

= = = =

Figure 4.3: Example of reg mask construction from reg result and reg max

Figure 4.3 shows an example of reg mask construction. As we can see, the left
most alignment of reg result is greater than that of reg max. This implies that the
corresponding alignment should be updated by the result of reg result. Therefore,
we fill the left most alignment of reg mast with 1. On the other hand, the right
most alignment of reg result is smaller than that of reg max. This implies that this
alignment does not need to be updated, and hence we fill the right most alignment
with 0.

After computing reg mask, ParBGLL extracts the adjacent nodes that may have
the largest relative modularity gain by using reg mask and reg max id as follows:

reg max id = (!reg mask & reg max id) | (reg mask & reg id) (4.9)

ParBGLL continues the above procedure until all adjacent nodes of a node have
been evaluated, and it continues saving and updating both reg max id and reg max.
After terminating the above procedure, we have the candidate adjacent nodes in
reg max id that have the largest relative modularity gains. Hence, by traversing the
candidate nodes in reg max id with their relative modularity gain values in reg max,
ParBGLL finds the largest relative modularity gain nodes from adjacent nodes.

4.3.4 Graph Clustering Algorithm

Algorithm 3 shows our algorithm. Basically, Algorithm 3 follows the algorithm
of BGLL, see in Algorithm 1. First, ParBGLL fills SIMD register reg 2m with 2m,
repeatedly used in ParBGLL (line 2). Then, it selects a node from V and com-
putes the relative modularity gain values for all adjacent nodes of the node by using
our vectorized method (line 4-15). In these relative modularity gain computations,
ParBGLL first prepares SIMD register reg u (line 5). ParBGLL then computes

57

Algorithm 3 ParBGLL
Input: G = {V,E};
Output: clustering result of G;
1: repeat
2: fill SIMD register reg 2m with 2m;
3: repeat
4: select node u from V;
5: fill SIMD register reg u with

∑
k∈C euk;

6: i = 0, N = Γ(u);
7: while i ≤ (|Γ(u)|/p+ 1) do
8: pop p nodes {v1, v2, . . . , vp} from N;
9: fill SIMD register reg id with {v1, v2, . . . , vp};
10: fill SIMD register reg e with {euv1 , euv2 , . . . , euvp};
11: fill SIMD register reg v with {

∑
k∈C ev1k,

∑
k∈C ev1k, . . . ,

∑
k∈C ev1k};

12: compute reg result = (reg 2m)(reg e)− (reg u)(reg v);
13: get reg mask from reg result and reg max;
14: get reg max and reg max id by Eq. (4.9);
15: i++;
16: end while
17: search for node v′ that has the largest △Q′

uv′ from reg max and reg max id;
18: if the modularity gain of node v′ > 0 then
19: assign node u to the cluster of node v′;
20: else
21: keep node u in its original cluster;
22: end if
23: until modularity Q is increased
24: aggregate clusters into a weighted graph;
25: until modularity Q is increased

the modularity gain values for all adjacent nodes of node u in data parallel man-
ner. In Algorithm 3, we assume the maximum parallelism equals p. Therefore, in
each data parallel computation, ParBGLL picks p nodes from Γ(u) (line 8), and
computes gains by using SIMD instructions (line 9-15). These data parallel compu-
tations continue until there are no unevaluated nodes in Γ(u). After the modularity
gain computations, ParBGLL selects adjacent node v′ that maximizes the modu-
larity gain from reg max id and reg max (line 17), and assigns node u and v′ to
the same cluster if the gain between them is positive (line 18-22). The consequent
procedures are same as those of BGLL (line 24).

We provide here a theoretical analysis of the computation cost of ParBGLL

Theorem 2 (Computation cost) ParBGLL requires O(1
p
|E| + |V|) time to cluster

a graph, where p, |E| and |V| are the maximum parallelism level, the number of
edges, and the number of nodes, respectively.

Proof Since the average degree is |E|/|V|, the number of iterations consumed by
Algorithm 3 (line 7-16) for each node, is 1

p
|E|+ 1. Our algorithm has to iterate the

58

Table 4.2: Real-world datasets
dblp-2010 ljournal-2008 uk-2005 webbase-2001 uk-2007-05

|V| 326,186 5,363,260 39,459,925 118,142,155 105,896,555
|E| 1,615,400 79,023,142 936,364,282 1,019,903,190 3,738,733,648
α 2.82 2.29 1.71 2.14 1.51

above computations at least |V| times. Therefore, the computation cost of ParBGLL
is O(1

p
|E|+ |V|). □

4.4 Experimental evaluation

We conducted evaluations to confirm the effectiveness of our algorithm. In the
experiments, we used the following five public datasets [111] to evaluate our algo-
rithm:

• dblp-2010: This scientific collaboration graph was extracted from the bib-
liography service DBLP in 2010; each node is a scientist and each edge is
coauthor relationship.

• ljournal-2008: This graph was obtained from the social networking site Live-
Journal in 2008; each node and edge represent a user and friendship among
users, respectively.

• uk-2005: This graph was obtained from a 2005 crawl of .uk domain; each
node and edge indicate a Web page and a link between pages, respectively.

• webbase-2001: This Web graph of .us domain in 2001 was downloaded from
the Stanford Webbase project, each node and edge represent a Web page and
a link, respectively.

• uk-2007-05: This graph is a expansion of uk-2005 crawled from .uk domain
Web pages in May, 2007.

The details of our datasets are shown in Table 5.2, where α is the exponent that
controls the skewness of the degree distribution, described in the previous section.
Additionally, we also used synthetic datasets generated by DIGG1 as same as the

59

previous section. The specific parameter settings are given later.

All experiments were conducted on a Linux 2.6.18 server with Intel Xeon CPU
L5640 2.27GHz and 144GB RAM. In our evaluation, the maximum parallelism
is 4 since we used SIMD register size and node unit size of 128 bits and 32 bits,
respectively. We implemented our proposal using C++ and we used the optimization
parameter “-O2” for each algorithm. To evaluate the existing algorithms, we used
BGLL programs published on the authors’ sites.

4.4.1 Efficiency

We evaluated the clustering performance of each algorithm through wall clock time
for each real world dataset. Figure 4.4 shows the computation times recorded.
For Figure 4.4, our proposal was tested in two variants; Cache+SIMD and Cache.
Cache+SIMD represents the full version of our algorithm that uses the cache effi-
cient data structure and the SIMD-based parallelism. Cache is the limited version
of proposal that does not uses SIMD-based parallelism. Figure 4.4 indicates that
Cache and Cache+SIMD are superior to the original algorithm BGLL under all ex-
perimental conditions. Specifically, Cache is at least five times faster than BGLL,
and Cache+SIMD is almost 20 times faster than BGLL. As described earlier, the
existing algorithms traverse all nodes/edges multiple times and this computation de-
creases the prefetch efficiency. In contrast, Cache and Cache+SIMD employ CRS
based data layout for clustering. Therefore, both of Cache and Cache+SIMD can
increase the prefetch efficiency and the clustering speed.

In order to experimentally verify the prefetch efficiency of our proposal, we
evaluated the CPU L2/L3 cache hit ratio for Cache and BGLL. To monitoring the
CPU cache hit ratio, we used Intel R⃝ Performance Counter Monitor [116]. Fig-
ure 4.5 and 4.6 show that the evaluation result of L2 and L3 cache, respectively. As
we can see, Cache shows higher L2 and L3 cache hit ratios for large-scale datasets
such as uk-2005, webbase-2001 and uk-2007-05. This implies that our CRS-based
graph representation improves the prefetch efficiency and as a result, the L2 and
L3 cache hit ratios are increased. Figure 4.5 and 4.6 also show that the CRS-based
representation matches BGLL for smaller datasets such as dblp-2010. Although the
L3 cache size of our experimental environment is 12 MB, dblp-2010 only consumes
roughly 6MB for clustering. Therefore, our approach is also competitive for smaller

1http://digg.cs.tufts.edu/

60

100

101

102

103

104

105

106

dblp-2010 ljournal-2008 uk-2005 webbase-2001uk-2007-05

W
al

l c
lo

ck
 ti

m
e

[s
ec

]

Cache+SIMD
Cache
BGLL

Figure 4.4: Running time for real-world datasets

datasets. Figure 4.4 also indicates that Cache+SIMD is almost four times faster
than Cache for all datasets. As described above, we set the maximum parallelism
of SIMD-based computation to 4 in this evaluation. The results of Figure 4.4 im-
ply that our method offers reasonable performance. More specifically, we can see
that the performance improvement of Cache+SIMD is high for datasets with high α
values such as dblp-2010, ljournal-2008, and webbase-2001. The reason is simple;
these datasets have a lot of small degree nodes since their degree distributions are
highly skewed. As we can see in Algorithm 3, ParBGLL can compute the rela-
tive modularity gains for all adjacent nodes by a single iteration if node degree is
smaller than the level of parallelism p. Therefore, if a graph has a highly skewed de-
gree distribution that follows a power-law, our algorithm offers improved clustering
performance.

4.4.2 Modularity

We evaluated the clustering quality of Cache, Cache+SIMD and BGLL in terms
of modularity. Table 4.3 shows modularity Q values for each of the real world
datasets. As shown in Table 4.3, our evaluation revealed that our proposal produces
almost same clustering results in terms of modularity as BGLL. This is because
the relative modularity gain given by Definition 12 can always find the same node

61

 0

 20

 40

 60

 80

 100

dblp-2010 ljournal-2008 uk-2005 webbase-2001uk-2007-05

L2
 C

ac
he

 h
it

ra
tio

 (
%

)

Cache
BGLL

Figure 4.5: L2 cache hit ratio

 0

 20

 40

 60

 80

 100

dblp-2010 ljournal-2008 uk-2005 webbase-2001uk-2007-05

L3
 C

ac
he

 h
it

ra
tio

 (
%

)

Cache
BGLL

Figure 4.6: L3 cache hit ratio

Table 4.3: Modularity Q for each dataset
dblp-2010 ljournal-2008 uk-2005 webbase-2001 uk-2007-05

Cache+SIMD 0.868 0.755 0.977 0.980 0.982
BGLL 0.871 0.754 0.979 0.981 0.979

that maximizes the original form of modularity gain (Lemma 6). Hence, clustering
quality equals that of BGLL even though Figure 4.4 shows our algorithms are much
faster than BGLL.

4.4.3 Scalability

We evaluate the scalability of our proposal by using synthetic datasets produced by
the graph generator DIGG. We set the parameter α, which controls the skewness
of the power-law degree distribution, as α = 2.0. Under the above condition, we
produced four synthetic graphs with 10 thousand, 100 thousand, one million, and
10 million nodes. Figure 4.7 shows the wall clock time of clustering for the four
synthetic datasets. As shown in Figure 4.7, our proposal is only up to two times
faster than BGLL when graph size is small (i.e. 10 thousand and 100 thousand
nodes). In contrast, the clustering speed of our algorithm is increased when graph
size is large (i.e. one million and 10 million nodes).

62

10-1

100

101

102

104 105 106 107

W
al

l c
lo

ck
 ti

m
e

[s
]

Number of vertices

Cache+SIMD
BGLL

Figure 4.7: Scalability for each method

4.5 Summary of this Chapter

In this chapter, we have introduced a vectorized modularity-based clustering al-
gorithm named ParBGLL by extending the state-of-the-art algorithm BGLL. Our
algorithm is based on two ideas. First, we extend the CRS format to produce a
data layout that suits graph clustering by increasing cache and prefetch efficiency.
Second, we convert the modularity gain computation into a vectorized computation
form by using Streaming SIMD Extensions (SSE), the instruction set extension for
the x86 CPU. Experiments showed that our algorithm can achieve scalable cluster-
ing with high modularity.

63

Chapter 5

Efficient Algorithm for Structural
Clustering

The structural clustering algorithm SCAN, proposed by Xu et al. [41], is success-
fully used in many applications because it not only detects densely connected nodes
as clusters but also identifies sparsely connected nodes as hubs or outliers. However,
it is difficult to apply SCAN to large-scale graphs due to its high time complexity.
In this chapter, we propose a novel graph clustering algorithm named SCAN++. In
order to reduce time complexity, we introduce new data structure of directly two-
hop-away reachable node set (DTAR). DTAR is the set of two-hop-away nodes from
a given node that are likely to be in the same cluster as the given node. SCAN++
employs two approaches for efficient clustering by using DTARs without sacrificing
clustering quality. As a result, SCAN++ detects exactly the same clusters, hubs, and
outliers from large-scale graphs as SCAN with much smaller computation time.

5.1 Introduction

Besides extracting clusters, finding special role nodes, hubs and outliers, is also a
worthwhile task for understanding the structures of large-scale graphs [117]. Hubs
are generally thought of as bridging different clusters. In the context of graph data
mining, they are often considered as representative or influential nodes. In contrast,
outliers are the nodes that are neither clusters nor hubs; they are treated as noises.

65

The hubs and outliers provide useful insights in mining graphs. For instance, hubs
in web graphs act like authoritative web pages that link similar topics [118]. The
detection of outliers in web graphs is useful in stripping spam pages from web
pages [119]. As well as web analysis, hubs and outliers play important roles in
various applications such as marketing [120] and epidemiology [62]. That is why
identifying hubs and outliers has become an interesting and important problem.

Most traditional clustering algorithms such as graph partitioning [85, 90, 121,
122], modularity-based clustering [34, 36, 38, 123], density-based clustering [124–
126], and clique detection [127, 128] only study the problem of cluster detection
and so ignore hubs and outliers. One of the most successful clustering methods
is structural clustering algorithm (SCAN) proposed by Xu et al. [41]. Similar to
density-based clustering and clique detection, the main concept of SCAN is that
densely connected adjacent nodes should be in the same cluster. However, unlike
the traditional algorithms, SCAN successfully finds, at not insignificant cost, not
only clusters but also hubs and outliers. As a result, it has been used in many
applications in social, web and bioinfomatics domains.

Although SCAN’s effectiveness in detecting hubs and outliers as well as clus-
ters is known in many applications, SCAN has, unfortunately, a serious weakness;
it exponentially increases its computation cost with the number of edges. This is
because SCAN has to find all clusters prior to identifying hubs and outliers; it first
finds densely connected node sets as clusters. It then classifies the remaining non-
clustered nodes into hubs or outliers. This clustering procedure entails exhaustive
density evaluations for all adjacent nodes in large-scale graphs. Several methods
have been proposed to improve its clustering speed. For example, LinkSCAN∗,
proposed by Lim et al., is a state-of-the-art algorithm that uses SCAN to find over-
lapping communities from large-scale graphs [104]. They improve the efficiency of
SCAN by employing an edge sampling technique [104] in the clustering process.
By sampling edges from the graphs, they reduce the number of edges that require
density evaluations. However, this approach produces approximated clustering re-
sults; it does not guarantee the same clustering results as the original algorithm, and
so loses the superiority of SCAN [104].

We present a novel algorithm, SCAN++, which mitigates the low efficiency of
SCAN. Our proposal can efficiently handle graphs with more than several million
nodes and edges. Furthermore, SCAN++ guarantees the exactness of its cluster-
ing result; SCAN++ always returns exactly the same clusters, hubs and outliers as
SCAN.

66

SCAN++ is based on the property of real-world graphs; real-world graphs such
as web graphs have high scores of clustering coefficients [3, 108]. The clustering
coefficient of a node is a measure of node density. If a node and its neighbor nodes
approach a complete graph (a.k.a. a clique), the score of clustering coefficient be-
comes high. That is, a node and its two-hop-away nodes especially in real-world
graphs are expected to share large parts of their neighborhoods. Based on this prop-
erty, SCAN++ prunes the density evaluation for the nodes that are shared between
a node and its two-hop-away nodes. Specifically, SCAN++ employs the follow-
ing techniques: (1) it uses a new data structure, directly two-hop-away reachable
node set (DTAR), the set of nodes that are two hops away from a given node, (2)
it reduces the cost of clustering by avoiding unnecessary density evaluations if the
nodes are not included in DTARs, and (3) its density evaluation is efficient since
DTAR allows the reusing of density evaluation results. After identifying clusters,
SCAN++ classifies the remaining nodes, which do not belong to clusters, as hubs or
outliers. Instead of the exhaustive computation performed by the original algorithm,
SCAN++ can find clusters in an efficient manner in large-scale real-world graphs.

SCAN++ has the following attractive characteristics:

• Efficient: SCAN++ exploits DTAR to avoid exhaustively evaluating the den-
sity of all adjacent nodes in the graphs (Section 5.3.3 and 5.3.4). Conse-
quently, it achieves higher clustering speeds than SCAN as well as the edge
sampling technique of LinkSCAN∗ (Section 5.5.2). Although SCAN requires
exponential clustering time against the number of edges, SCAN++ has near-
linear clustering time against the number of edges (Section 5.4.1 and 5.5.5).

• Exact: Unlike state-of-the-art algorithms, SCAN++ theoretically guarantees
the same clustering results as SCAN, even though it drops unnecessary den-
sity evaluations (Section 5.4.2). As a result, SCAN++ always returns exactly
same clusters, hubs and outliers as original SCAN (Section 5.5.3).

• Effective: As described above, real-world graphs have high scores in terms
of clustering coefficients. Accordingly, we designed SCAN++ to effectively
handle graphs of high clustering coefficients by using DTAR. Hence, SCAN++
offers efficient clustering for large-scale real-world graphs that exhibit high
clustering coefficients (Section 5.5.4).

To the best of our knowledge, SCAN++ is the first solution to achieve both high
efficiency and clustering results guarantees at the same time. Our experiments con-
firm that SCAN++ computes clusters, hubs and outliers 20 times faster than original

67

Table 5.1: Definition of main symbols
Symbol Definition

ϵ Threshold of the structural similarity, 0 ≤ ϵ ≤ 1
µ Minimal number of nodes in a cluster
H Set of hubs in H
O Set of outliers in G
B Set of bridges in G

N[u] Set of nodes in the structure neighborhoods of node u
Nϵ[u] Set of nodes in the ϵ-neighborhoods of node u
D[u] Set of directly structure-reachable nodes of node u
C[u] Set of nodes that belong to the same cluster as node u
T[u] Set of nodes in the DTAR of node u
Tu Set of nodes in the converged DTAR of node u
L[u] Set of nodes in the local cluster of node u
VTu Set of candidate nodes of clusters derived from Tu

Pϵ[b] Set of pivots in the ϵ-neighborhood pivots of bridge b
σ(u, v) Structural similarity between node u and v

SCAN on average without sacrificing the clustering quality. Even though original
SCAN is effective in enhancing application quality, it has been difficult to apply
to large-scale graphs due to its performance limitation. However, by providing a
sophisticated approach that suits the identification of clusters, hubs, and outliers,
SCAN++ will help to improve the effectiveness of a wider range of applications.

5.2 Preliminary

In this section, we formally define the notations and introduce the background of
this chapter. Table 5.1 lists the main symbols and their definitions that are newly
used in this chapter.

We briefly review the original algorithm of SCAN proposed by Xu et al. [41].
SCAN is one of the most popular graph clustering methods; it successfully detects
not only clusters C but also hubs H and outliers O in the given graph unlike tra-
ditional methods. Intuitively, SCAN extracts clusters as sets of nodes that have
dense internal connections; it identifies the other non-clustered nodes (i.e. nodes
that belong to none of the clusters) as hubs or outliers. More specifically, SCAN

68

determines a non-clustered node as a hub if it bridges different clusters; otherwise,
the node is determined as an outlier. Therefore, prior to identifying hubs and out-
liers, it finds all clusters in a given graph.

SCAN detects clusters based on a simple idea; if adjacent nodes are densely
connected to each other, they should be assigned to the same cluster. To find clusters
based on this idea, SCAN first detects a special node, called core. Core is a node
that has a lot of neighbor nodes with highly dense connections; the core is regarded
as the seed of a cluster. SCAN uses the structural neighborhood [41] to evaluate
density. The structural neighborhood of a node is a node set composed of the node
itself and all its adjacent nodes.

Definition 13 (Structural neighborhood) The definition of structural neighborhood
of node u, denoted by N[u], is given as follows:

N[u] = {v ∈ V : (u, v) ∈ E} ∪ {u}. (5.1)

The density of adjacent nodes is computed by the common nodes in the structural
neighborhoods. SCAN measures the number of common nodes in two structural
neighborhoods normalized by the geometric mean of their structural neighborhood
sizes. This measurement is called structural similarity and is defined as follows:

Definition 14 (Structural similarity) The following equation gives the structural
similarity, denoted by σ(u, v), between node u and v.

σ(u, v) =
|N[u] ∩ N[v]|√
|N[u]||N[v]|

. (5.2)

The definition is extended from a cosine similarity, and it can be replaced by other
measures such as Jaccard similarity [101]. The structural similarity is a score vary-
ing from 0 to 1 that indicates the scale of matching degree of structural neighbor-
hoods. When adjacent nodes share many members of their structural neighbor-
hoods, their structural similarity becomes large.

From Definition 14, SCAN detects the core by evaluating structural similarities
for all neighborhoods. A node is core if the node has sufficiently large structural
similarities with enough number of its adjacent nodes. In order to specify core
metrics, SCAN requires two user-specified parameters. First is the minimum score
of the structural similarity to neighbor nodes, denoted by ϵ. Second is the minimum

69

number of neighborhoods, denoted by µ, all of whose structural similarities exceed
ϵ. SCAN regards a node as core when it has at least µ neighbors with structural
similarities greater than ϵ:

Definition 15 (Core) Node u is core iff the node has at least µ neighbor nodes
whose structural similarities are greater than ϵ. More precisely,

Node u is core ⇔ |Nϵ[u]| ≥ µ, (5.3)

where Nϵ, called ϵ-neighborhood, is defined as follows:

Nϵ[u] = {v ∈ N[u] : σ(u, v) ≥ ϵ}. (5.4)

Once SCAN finds core, SCAN expands a cluster from the core. Specifically,
nodes included in the ϵ-neighborhood of the core are assigned to the same cluster
as the core. The ϵ-neighborhood nodes of the core are called directly structure-
reachable nodes, and are defined as follows:

Definition 16 (Directly structure-reachable) The following equation gives directly
structure-reachable nodes of node u denoted by D[u]:

D[u] =
{

Nϵ[u] (|Nϵ[u]| ≥ µ)
∅ (|Nϵ[u]| < µ)

(5.5)

When node u is core and D[u] ̸= ∅, SCAN assigns all nodes in D[u] to the same
cluster as node u.

SCAN recursively expands the cluster by checking whether each node, which
is included in the cluster, satisfies core condition defined by Definition 15 or not.
Specifically, if (1) node v is included in D[u] and (2) node v is core, SCAN assigns
nodes in D[v] to the same cluster as node u. These directly structure-reachable
nodes (i.e. D[v]) are expanded from a member node of the cluster (i.e. D[u]). These
expanded directly structure-reachable nodes D[v] are called structure-reachable nodes
of node u. On the other hand, if (1) node v is included in D[u] and (2) node v is
not core, SCAN does not expand the cluster from the node. All nodes in a clus-
ter, except the core node, are called border nodes. SCAN recursively finds cores
and expands the clusters from the cores until there are no undiscovered cores in the
structure-reachable nodes of node u. After completion of cluster expansion, SCAN
obtains the structure-reachable nodes of node u, which are composed of cores and
borders. The original algorithm determines the obtained nodes as being in the same
cluster as node u. Formally, the cluster that has node u is defined as follows:

70

Definition 17 (Cluster) The following equation obtains the cluster by node u, de-
noted by C[u]:

C[u] = {w ∈ D[v] : v ∈ C[u]}, (5.6)

where C[u] is initially set to C[u] = {u}.

Note that a cluster is uniquely determined by the cores included in the cluster [101].
So, if we find the same cores as SCAN, we also detect the same clusters as SCAN.
After termination of cluster expansion, SCAN randomly selects a new node from
the nodes that have yet to be checked. SCAN continues this procedure until there
are no undiscovered cores.

After detecting clusters, SCAN identifies non-clustered nodes (i.e. nodes that
belong to no cluster) as hubs or outliers. The idea is simple; a node is a hub if the
node is connected to multiple clusters, otherwise it is an outlier.

Definition 18 (Hub and Outlier) Assume node u does not belong to any cluster.
u ∈ H iff node v and w exist in N[u] such that C[v] ̸= C[w]. Otherwise u ∈ O.

Note that, as described in the literature [41], the definition of a hub and an outlier is
flexible enough for practical application. For example, it may be more appropriate
than the above definition for some applications to determine a non-clustered node
with extremely high degree as a hub. This point should be discussed in future when
we consider actual applications.

As a result, SCAN finds all clusters, hubs, and outliers in a graph. However,
despite its effectiveness in finding the hidden structure of graphs, it is difficult to
apply SCAN to large-scale graphs since it requires high time complexity. This
is because the clustering procedure entails exhaustive similarity evaluations for
all adjacent nodes in the given graph; SCAN has to traverse all nodes and com-
pute the structural similarities for all of the adjacent nodes in the graph. Thus, if
V = {u1, u2, . . . , u|V|}, the running cost of SCAN is of the order of O(|N[u1]| +
|N[u2]|+ · · ·+ |N[u|V|]|) = O(|E|). In addition to the cost of clustering, each struc-
tural similarity computation (e.g. σ(u, v)) takes at least O(min(|N[u]|, |N[v]|)) time
since the computation of structural similarity defined in Definition 14 enumerates all
common nodes between N[u] and N[v]. Therefore, the total running cost of SCAN
is O(min(|N[u]|, |N[v]|)|E|). The average and the largest size of degree are |E|/|V|
and |V|, respectively. Hence, the average and the worst running cost of SCAN are
given by O(|E|2/|V|) and O(|V|3), respectively.

71

5.3 Proposed method: SCAN++

Our goal is to find exactly the same clusters, hubs, and outliers as SCAN from large-
scale graphs within short computation time. In this section, we present details of
our proposal, SCAN++. We first overview the ideas underlying SCAN++ and then
give a full description of the graph clustering algorithm.

5.3.1 Overview of SCAN++

As described in the previous section, SCAN incurs high computation cost for clus-
tering since it entails exhaustive structural similarity computations. In order to ef-
ficiently find exactly same clusters as SCAN, we use an observation of real-world
graphs: if node u is two hops away from node v, their structural neighborhoods,
N[u] and N[v], are likely to share large portion of nodes. This observation is based
on a well-known property of real-world graphs: real-world graphs are expected
to have high clustering coefficients [3]. For nodes that have high clustering co-
efficients, the topology among a node and its neighboring nodes is likely to be a
clique [108]. Thus, nodes u and v are expected to share most of their neighbor-
hoods if they are two hops apart. For example, in a social network, if a user and
friends of his/her friends are in the same community, they are likely to share a lot
of common friends even if they do not have direct friendships with each other.

In order to reduce the computation costs, SCAN++ uses a new data structure
based on the observation, called directly two-hop-away reachable node set (DTAR
for short), instead of the directly structure-reachable nodes of the original algo-
rithm. Intuitively, DTAR is a set of nodes such that (1) it includes two-hop-away
nodes from a given node, and (2) the nodes in DTAR are likely to be lie in the same
cluster of the given node. By selecting two-hop-away nodes from the given node,
we share the computation of clustering among the given nodes and nodes in DTAR.
By using DTAR instead of the structure-reachable nodes of SCAN, we consider
two approaches to defeating the exhaustive computation of SCAN. First approach
is the two-phase clustering. In this method, we reduce the number of similarity
computations for clustering without sacrificing the quality of clusters. Specifically,
the method first roughly detects subsets of clusters by computing structural simi-
larity only for the pairs of the pivot in DTAR and its adjacent node. It then refines
the subsets of clusters to find exactly the same clusters as SCAN. The exactness of
clustering results is proved in Section 5.4.2. The second approach is the similarity

72

sharing. In this method, we reduce the computation cost for each similarity com-
putation from O(|E|/|V|) by sharing the scores of each structural similarity com-
putation between two-hop-away node pairs in DTAR. We give a detailed definition
of DTAR in Section 5.3.2. Also, we discuss the details of the two-phase clustering
method and similarity sharing method in Section 5.3.3 and 5.3.4, respectively.

These approaches have two major advantages. The first is that we can extract
clusters with small computation cost from large-scale real-world graphs. As de-
scribed above, our ideas successfully utilize the property of real-world graphs by
using DTAR. SCAN++ thus has much lower computation cost for large-scale graphs
than SCAN. We discuss the efficiency of SCAN++ in Section 5.4.1. The second ad-
vantage is that SCAN++ guarantees the exactness of the clustering results. That is,
SCAN++ always provides exactly the same clusters as SCAN. This is because the
two-phase clustering method of SCAN++ finds all cores in the given graph. We
provide a detailed theoretical analysis of the exactness in Section 5.4.2.

5.3.2 Directly Two-hop-away Reachable (DTAR)

From the observation in the previous section, we first introduce the data structure
called DTAR. Intuitively, DTAR is a set of nodes that (1) it includes two-hop-away
nodes from a given node, and (2) the nodes in DTAR are likely to lie in the same
cluster as the given node. The formal definition of DTAR is as follows:

Definition 19 (Directly two-hop-away reachable) The definition of DTAR of node
u, denoted by T[u], is given by following equation.

T[u] = {v ∈ V : v /∈ Nϵ[u] and Nϵ[u] ∩ N[v] ̸= ∅}. (5.7)

As a matter of convenience, we call the given node, which acts as the starting point
of DTAR, as pivot (i.e. node u in Definition 19); also, the ϵ-neighborhoods of the
pivot are referred as bridges.

Similar to the directly structure-reachable nodes given in Definition 16, DTAR
is recursively expanded by selecting a new pivot. Specifically, let nodes u and T[u]
be a pivot and a DTAR of node u, respectively; SCAN++ selects node v ∈ T[u]
as a new pivot and then assigns all nodes in T[v] to a new DTAR expanded from
T[u]. This DTAR, T[v], expanded from a new pivot in T[u], is called the two-
hop-away reachable node set (TAR for short). Our proposal recursively finds new

73

pivots and expands DTARs from the pivots until there are no undiscovered pivots in
TAR. After the expansions terminate, SCAN++ obtains a converged TAR rooted at
a given node. Formally, the converged TAR, which is rooted at node u, is defined
as follows:

Definition 20 (Converged TAR) Let node u be a pivot. The following equation
gives the converged TAR rooted at pivot u, denoted by Tu:

Tu = {w ∈ T[v] : v ∈ Tu}, (5.8)

where Tu is initially set to Tu = {u}.

SCAN++ efficiently detects clusters, which are exactly same as SCAN, from given
graphs by using the converged TAR.

5.3.3 Two-phase Clustering

SCAN++ detects the clusters in the given graph by constructing converged TARs
and running the two-phase clustering method simultaneously. The two-phase clus-
tering method allows us to efficiently find clusters while matching the exactness of
the SCAN results. In this section, we formally introduce this two-phase clustering
method.

We overview the two-phase clustering below. The two-phase clustering consists
of (1) local clustering phase and (2) cluster refinement phase. In the local clustering
phase, SCAN++ roughly clusters the given graph, and identifies local clusters for
each converged TAR. In our algorithm, local clusters are obtained from a converged
TAR. The local clusters act as a subset of clusters that are potentially included in
the converged TAR. After finding the local clusters, SCAN++ obtains clusters by
merging the local clusters in the cluster refinement phase. This refinement phase en-
ables SCAN++ to produce exactly same clustering results as SCAN but with much
shorter computation time. We detail each phase does in the following sections.

Local clustering phase

At the beginning of clustering, SCAN++ finds a converged TAR (defined in Defini-
tion 20) and then extracts local clusters from the converged TAR, in the bottom-up

74

clustering manner. By finding local clusters for each converged TAR, SCAN++
captures the rough cluster structures of the given graph. The formal definition of
the local cluster is given as follows:

Definition 21 (Local cluster) If node u is a member of a converged TAR, the fol-
lowing equation gives the local cluster of node u, denoted by L[u].

L[u] =
{

Nϵ[u] (|Nϵ[u]| ≥ µ)
{u} (|Nϵ[u]| < µ)

(5.9)

Note that each local cluster in a converged TAR is connected to the other local
clusters via bridges. The goal of the local clustering phase is to enumerate all local
clusters for each pivot contained in a converged TAR.

Concrete details of the procedure of the local clustering phase are as follows:
First, SCAN++ selects arbitrary node u ∈ V as a pivot of a DTAR. Next, SCAN++
evaluates the structural similarity defined in Definition 14 for the pivot and its ad-
jacent node that are included in N[u]. By applying Definition 15, SCAN++ then
checks whether node u satisfies the requirement of core or not; if |Nϵ[u]| ≥ µ,
then node u is core. Thus SCAN++ assigns all nodes in Nϵ[u] to L[u] to the lo-
cal cluster of node u by applying Definition 21. Otherwise, it only assigns node u
to L[u]. After that, SCAN++ obtains the DTAR rooted from node u and selects a
new pivot from T[u]. SCAN++ recursively continues this procedure until it finds
converged TAR Tu that is rooted at node u. After termination of the above proce-
dure, SCAN++ selects a new pivot, a node that has not been a pivot or bridge in
any converged TAR. SCAN++ terminates the local clustering phase if all nodes are
assigned as pivots or bridges.

Efficiency of the local clustering phase: SCAN++ evaluates only the struc-
tural similarities between pivots and neighbor bridges; that is, it does not evaluate
the structural similarities for adjacent node pairs that are lying between bridges.
In the local clustering phase, SCAN++ uses TARs to effectively handle the high
clustering coefficient characteristics of real-world graphs. Specifically, let c be
the clustering coefficient of a node pair defined by Latapy et al. [109]. If node
u and v are pivots such that v ∈ T[u], the local clustering phase does not com-
pute the structural similarities for c|{N[u] ∪ N[v]}\{u, v}| bridges that are shared
between node u and v. Hence, as shown in the observation in Section 5.3.1, a
high clustering coefficient score c implies that each pivot shares large portion of
its structure neighborhoods with the nodes that are two hop-away from the pivot
(i.e. c|{N[u] ∪ N[v]}\{u, v}| bridges). Thus the local clustering phase successfully

75

prunes the candidates subjected to structural similarity computations for adjacent
nodes between other bridges. Theoretical analyses of the efficiency of SCAN++ are
shown in Section 5.4.1.

Cluster refinement phase

After identifying the local clusters, SCAN++ then refines them to find exactly the
same clusters as SCAN. From Definition 17, we introduce a necessary and sufficient
condition for merging local clusters in the following lemma:

Lemma 7 (Merging local clusters) Let nodes u and v lie in the same converged
TAR. We have,

∃w ∈ Nϵ[u] ∩ Nϵ[v] s.t. |Nϵ[w]| ≥ µ ⇔
L[u] ∪ L[v] ⊆ C[w].

(5.10)

Proof We first prove the necessary condition of Lemma 7. Since w ∈ Nϵ[u] ∩
Nϵ[v] s.t. |Nϵ[w]| ≥ µ, node w is core and we have u, v ∈ D[w]. From Definition
16 and 21, L[u] = Nϵ[u] = D[u] and L[v] = Nϵ[v] = D[v], when node u and v
are core. Otherwise, L[u] and L[v] contain only node u and node v, respectively.
Thus we have L[u] ∪ L[v] ⊆ D[w] ∪ D[u] ∪ D[v]. From Definition 17, we have
C[w] = {w ∈ D[v] : v ∈ C[w]} where C[w] is initially set to C[w] = {w}. Hence,
L[u] ∪ L[v] ⊆ D[w] ∪ D[u] ∪ D[v] ⊆ C[w]. Therefore, we have the necessary
condition of Lemma 7.

Next, we prove the sufficient condition of Lemma 7. Since L[u]∪L[v] ⊆ C[w],
we have cu = cv. Hence, from Definition 17, we have node w such that u, v ∈
C[w] and |Nϵ[w]| ≥ µ. Additionally, from Definition 21, nodes u and v are pivots.
Recall Definitions 19 and 20, two pivots (i.e. node u and v) only share the nodes
in Nϵ[u] ∩ N[v] (or N[u] ∩ Nϵ[v]). Therefore, node w must be in Nϵ[u] ∩ N[v] (or
N[u]∩Nϵ[v]). Since u, v ∈ C[w], nodes u and v have σ(u,w) ≥ ϵ and σ(v, w) ≥ ϵ,
respectively. Thus w ∈ Nϵ[u] ∩ Nϵ[v], which yields the sufficient condition of
Lemma 7. □
From Lemma 7, if we have core in Nϵ[u] ∩ Nϵ[v], L[u] and L[v] are assigned to the
same cluster. From Definition 21, a local cluster is adjacent to other local clusters
via bridges. Hence, if a bridge satisfies the core condition in Definition 15, SCAN++
merges the local clusters adjacent to the bridge into the same cluster.

76

Intuitively, to find local clusters that are merged into the same cluster, we check
all bridges to determine whether they can be cores or not. This is because Lemma
7 implies that we may be able to merge local clusters if a bridge has more than two
pivots in its ϵ-neighborhoods. However, this straightforward approach incurs high
computation costs since we have to compute structural similarities among cores
and bridges. To avoid this inefficient cluster refinement, SCAN++ reuses the results
of the local clustering phase. We first define a set of pivots that are included in
ϵ-neighborhood of a bridge.

Definition 22 (ϵ-neighborhood pivots of bridge) Let node b be a bridge extracted
during the local clustering phase, the ϵ-neighborhood pivots of node b, denoted by
Pϵ[b], are defined as follows:

Pϵ[b] = {p ∈ N[b] : σ(b, p) ≥ ϵ and p is a pivot}. (5.11)

From Lemma 7, we have to extract cores from bridges such that |Pϵ[b]| ≥ 2 since
such bridges connects two or more pivots (and their local clusters) with the struc-
tural similarity greater than ϵ. However, if the ϵ-neighborhood pivots of a bridge
already satisfy the core condition in Definition 15 (i.e. |Pϵ[b]| ≥ µ for bridge b) by
the local clustering phase, we can determine that the bridge is core without comput-
ing the structural similarities. In addition, from Lemma 7 and Definition 22, we can
introduce prunable bridges given by the following lemma.

Lemma 8 (Prunable bridges) Let bridge b be core, and
∪

p∈Pϵ[b]
L[p] be the merged

cluster by Lemma 7. The following set shows prunable bridges that are merged into
clusters without computing structural similarities in the subsequent cluster refine-
ment process:

{b′ ∈
∪

p∈Pϵ[b]

L[p] : |{p′ ∈ Pϵ[b
′] : cp′ ̸= cb}| = 0}, (5.12)

where cp′ and cb are clusters of pivot p′ and bridge b, respectively.

Proof From Definition 22, prunable bridges have neighborhood pivots whose clus-
ter ids are the same as cb. This implies that all neighboring local clusters have
already been merged in the same cluster by Lemma 7. Hence, the prunable bridges
do not merge any local clusters in the subsequent cluster refinement process. □
Lemma 8 implies that we can skip the process to determine the prunable bridges are
core nodes at the cluster refinement process.

77

By using Lemma 7, 8 and Definition 22, we introduce a concrete procedure for
the cluster refinement phase as follows: First, SCAN++ obtains a set of bridges B
as a result of the local clustering phase. Next, it selects bridge b ∈ B that maximizes
|Pϵ[b]| so that we can merge a lot of local clusters and remove many prunable bridges
from B by Lemma 8 if bridge b is core. Then, it determines whether bridge b is core
or not. If bridge b is core, SCAN++ merges all nodes in

∪
p∈Pϵ[b]

L[p] into the same
cluster based on Lemma 7. After merging the local clusters, SCAN++ obtains all
prunable bridges included in {b′ ∈

∪
p∈Pϵ[b]

L[p] : |{p′ ∈ Pϵ[b
′] : cp′ ̸= cb}| = 0} by

Lemma 8, and removes them from B. These processes are continued until there are
no bridges that have more than µ local clusters.

After the above procedure, we can divide the remaining bridges into two groups
by their degree: (1) bridges with |N[b]| < µ, or (2) bridges with |N[b]| ≥ µ and
2 ≤ |Pϵ[b]| < µ. From Definition 15, the former case trivially has no cores, hence
SCAN++ removes them from B. The latter case may have some cores, so SCAN++
computes the structural similarities only for the bridges in the latter case. Finally,
SCAN++ terminates the cluster refinement when there are no unevaluated bridges
in B.

Efficiency of the cluster refinement phase: Our cluster refinement phase has
short computation time for two reasons: First is that SCAN++ does not require
exhaustive structural similarity computations for all bridges. In practice, two local
clusters in a converged TAR tend to share a lot of bridges due to the high clustering
coefficients of real-world graphs. This implies that we can merge several local
clusters at the same time by checking only one of the bridges, and thus prune a lot of
computations for prunable bridges included in the merged local clusters (Lemma 8).
Therefore, we can reduce the computation time by merging local clusters. Second
reason is that structural similarity computations are not required for bridges if the
parameter settings are effective. This is based on the observations on the effective
parameters (i.e. ϵ and µ) for real-world graphs as revealed by Xu et al. [41] and Lim
et al. [104]. In the literature [41], they revealed the following effective parameter
setting, given the goal of reasonable clustering results for real-world graphs: “an ϵ
value between 0.5 and 0.8 is normally sufficient to achieve a good clustering result.
We recommend a value for µ, of 2.” Also, in the literature [104], Lim et al. revealed
that clustering quality parameter is less sensitive to µ than ϵ. These observations
imply that desirable clustering results can be obtained by properly choosing the
above parameters. In practice, if we set parameter µ = 2 based on the observation
of the literature [41], the bridges have the following attractive property for efficient
computations:

78

Lemma 9 (Property of bridges for µ = 2) If we set µ = 2, bridges always satisfy
the core condition.

Proof From the definition of DTAR in Definition 19, SCAN++ always selects
bridges from ϵ-neighborhoods of a pivot. In addition, from the definitions of the
structural similarity in Definition 14, each node always has the structural similarity
that is equal to 1 with itself (e.g. σ(u, u) = 1). As a result, bridges have |Pϵ[b]| ≥ 2,
therefore they always satisfy the core condition when µ = 2. □
That is, bridges in real-world graphs are cores and so structural similarities do not
need to be calculated for bridges.

As a result, SCAN++ lowers the computation cost by cluster refinement. We
will show that cluster refinement has small, practical computation time for real-
world graphs in Section 5.5.2.

5.3.4 Similarity Sharing

In this section, we describe our approach to reducing the cost of structural similarity
computation. As shown in Section 5.2, the original algorithm enumerates all com-
mon nodes in the structural neighborhoods of two adjacent nodes. This approach
is expensive since its time complexity is O(|E|/|V|) on average. Therefore, we in-
troduce an efficient method for computing the structural similarity by sharing the
intermediate results of structural similarities in DTAR. We first introduce a topolog-
ical property of DTAR, and then we detail our approach based on the property.

In order to introduce the property, we first define pivot subgraph Gw by using
T[u] as follows:

Definition 23 (Pivot Subgraph) If node v is a two-hop-away node from node u
(i.e. v ∈ T[u]) given in Definition 19 and Gw = {Vw,Ew} is the pivot subgraph of
node w where Vw ⊆ V and Ew ⊆ E, Vw and Ew are defined as follows:

Vw = N[u] ∩ N[v] ∪ {w} (5.13)

Ew = {(x, y) ∈ E : x, y ∈ Vw} (5.14)

Definition 23 indicates that if node v is included in T[u], we have two pivot sub-
graphs Gu and Gv for node u and v, respectively.

79

Definition 23 provides the following lemma that shows a topological property
of DTAR suggested in Definition 19.

Lemma 10 (Subgraph isomorphism of DTAR) If node v is a directly two-hop away
reachable from node u (i.e. v ∈ T[u]) given in Definition 19, the pivot subgraphs of
node u and v (i.e. Gu and Gv) are always isomorphic [129].

Proof From Definition 13 and 19, N[u] ∩ N[v] = {w ∈ V : (u,w) ∈ E ∧ (v, w) ∈
E} ̸= ∅ if node u and v are two-hop-away nodes. Hence, if mapping φ(u) = v
and φ(w) = w where w ∈ N[u] ∩ N[v], trivially we have isomorphism mapping
φ : Vu → Vv with (x, y) ∈ Eu ⇔ (φ(x), φ(y)) ∈ Ev. Therefore, Gu and Gv are
isomorphic. □
This lemma implies that if node u is a pivot and node v is a node in T[u] given by
Definition 19, node v and the nodes in N[u] ∩ N[v] always have the same subgraph
topology as the subgraph of node u and nodes in N[u]∩N[v]. By using Lemma 10,
we introduce the following lemma for efficient structural similarity computation.

Lemma 11 (Similarity sharing) If we have nodes u, v and w such that v ∈ T[u]
and w ∈ N[u] ∩ N[v], we can compute structural similarity σ(v, w) by using the
result of the structural similarity σ(u,w) as follows:

σ(v, w) =√
|N[u]||N[w]|σ(u,w)− |(N[u]\N[v]) ∩ N[w]|+ |(N[v]\N[u]) ∩ N[w]|√

|N[v]||N[w]|
.

(5.15)

Proof From Definition 23, we have two pivot subgraphs Gu and Gv for node u and
v, respectively. From Lemma 10, subgraphs Gu and Gv are isomorphic. Therefore,
N[u]∩N[w] shares N[u]∩N[v]∩N[w] ̸= ∅ with N[v]∩N[w] since N[u]∩N[v] ̸= ∅
and w ∈ N[u] ∩ N[v] for v ∈ T[u] given by Definition 19. Hence, if we decompose
|N[u] ∩ N[w]| and |N[v] ∩ N[w]| by using N[u] ∩ N[v] ∩ N[w] into |N[v] ∩ N[w]| =
|N[u] ∩ N[v] ∩ N[w]| + |(N[v]\N[u]) ∩ N[w]| and |N[u] ∩ N[w]| = |N[u] ∩ N[v] ∩
N[w]|+ |(N[u]\N[v]) ∩ N[w]|, we have,

|N[v] ∩ N[w]| =
|N[u]∩N[w]|−|(N[u]\N[v])∩N[w]|+|(N[v]\N[u])∩N[w]|.

(5.16)

From Definition 14, structural similarity is as follows:

σ(v, w) =
|N[v] ∩ N[w]|√
|N[v]||N[w]|

, (5.17)

80

σ(u,w) =
|N[u] ∩ N[w]|√
|N[v]||N[w]|

. (5.18)

Hence, from Eq. (5.16) and (5.18),

Eq. (5.17) =
|N[u] ∩ N[w]| − |(N[u]\N[v]) ∩ N[w]|+ |(N[v]\N[u]) ∩ N[w]|√

|N[v]||N[w]|

=

√
|N[u]||N[w]|σ(u,w)− |(N[u]\N[v]) ∩ N[w]|+ |(N[v]\N[u]) ∩ N[w]|√

|N[v]||N[w]|
.(5.19)

Therefore, we have Lemma 11. □
Lemma 11 implies that we can reuse the result of the similarity computation σ(u,w)
for obtaining σ(v, w) where node v is a two-hop-away node from node u (i.e. v ∈
T[u]) and w ∈ N[u] ∩ N[v].

Efficiency of similarity sharing method: As shown in Lemma 11, SCAN++
shares the scores of structural similarity computations between a node and a node
in the DTAR. Hence, SCAN++ reduces the cost of structural similarity computa-
tion. From Lemma 10 and 11, the efficiency of the similarity sharing method is as
follows:

Lemma 12 (Efficiency of similarity sharing) Let v ∈ T[u] and w ∈ N[u] ∩ N[v].
The cost for computing the structural similarity σ(v, w) is O(min(|N[v]\N[u]|, |N[w]|))
if σ(u,w) has already been computed.

Proof From Lemma 11, we can obtain the score of σ(v, w) by computing σ(u, v),
|(N[u]\N[v]) ∩ N[w]| and |(N[v]\N[u]) ∩ N[w]|. Given v ∈ T[u], we have already
have the score of σ(u,w) by Definition 19. Additionally, since (N[u]\N[v]) ∩
N[w] ⊆ N[u] ∩ N[w], |(N[u]\N[v]) ∩ N[w]| was also obtained when SCAN++
computed |N[u] ∩ N[w]| for σ(u,w). The remaining term of Eq. (5.15) is just
|(N[v]\N[u]) ∩ N[w]|. Therefore the similarity sharing requires the computational
cost O(min(|N[v]\N[u]|, |N[w]|)). □
As shown in Section 5.2, the original computation form of the structural similarity
in Definition 14 incurs O(min(|N[v]|, |N[w]|)) = O(|E|/|V|) computation time for
average. In contrast, Lemma 12 shows similarity sharing incurs O(min(|N[v]\N[u]|, |N[w]|))
when σ(u,w) has already been computed. Since the average degree is |E|/|V|, we
have |N[v]\N[u]| ≤ |N[w]| = |N[v]|. As a result, O(min(|N[v]\N[u]|, |N[w]|)) =
O(|N[v]\N[u]|) ≤ O(|E|/|V|). Therefore similarity sharing computes σ(v, w) with
smaller computational cost than the original computation form defined by Defini-
tion 14.

81

5.3.5 Algorithm of SCAN++

We can efficiently extract the clustering results by using two-phase clustering and
similarity sharing. The pseudo-code of our proposal, SCAN++, is given in Algo-
rithm 4. Algorithm 4 consists of three parts: local clustering phase given by Section
5.3.3 (line 2-17), cluster refinement phase given by Section 5.3.3 (line 18-37), and
classification of hubs and outliers (line 38-44). Initially all the nodes are labeled
with their own cluster-id (i.e. cu for node u). First, SCAN++ runs local clustering
phase (line 2-17). It selects a node as a pivot of a DTAR (line 3-6). Then, SCAN++
computes the structural similarities for the pivot by using Lemma 11 (line 7-9). Af-
ter that, it finds local clusters from the pivot by Definition 21 (line 10-11). Finally,
it expands Tu by Definition 19 (line 12-13), and continues this procedure until there
are no unvisited pivots in Tu. Then, the cluster refinement phase starts. SCAN++
refines local clusters (line 18-37). First, SCAN++ selects bridge b that maximizes
|Pϵ[b]| (line 19). If |N[b]| < µ, the bridge can not be core, and hence it is removed
from B (line 20-21). Otherwise, when 2 ≤ |Pϵ[b]| < µ, SCAN++ computes the
structural similarity of bridge b until SCAN++ can identify node b as core or border
(line 23-25). Then, SCAN++ checks if bridge b satisfies the core condition in Defi-
nition 15 (line 26). If the bridge is core, SCAN++ merges local clusters by Lemma 7
(line 27-28) and removes prunable bridges from B based on Lemma 8 (line 29-33).
Finally, SCAN++ adds the clusters derived in this phase to C (line 37). After the
cluster refinement, SCAN++ classifies the singleton nodes that do not belong to any
cluster, as either hubs or outliers (line 38-44). This phase is based on Definition 18.
If a singleton node is adjacent to multiple clusters, it regards the node as a hub (line
38). Otherwise, it regards the node as an outlier (line 40). After assigning all nodes
to clusters C, hubs H or outliers O, SCAN++ terminates the clustering procedure.

82

Algorithm 4 SCAN++
Input: G = (V,E), ϵ ∈ R, µ ∈ N;
Output: clusters C, hubs H, and outliers O;
1: U = V, B = ∅, queue Q;
2: while U ̸= ∅ do
3: select a node u ∈ U;
4: Tu = {u};
5: while we have unvisited pivots in Tu do
6: select node p ∈ Tu;
7: for each node v ∈ N[p] do
8: evaluate σ(p, v) by Lemma 11;
9: end for

10: get L[p] by Definition 21;
11: label all nodes in L[p] as cp;
12: get T[p] by Definition 19;
13: Tu = Tu ∪ T[p];
14: end while
15: get VTu by Definition 24;
16: U = U\VTu , B = B ∪ {Nϵ[p]\{p}};
17: end while
18: while B ̸= ∅ do
19: get node b ∈ B s.t. arg max |Pϵ[b]|;
20: if |N[b]| < µ then
21: B = B\{b};
22: else
23: if 2 ≤ |Pϵ[b]| < µ then
24: evaluate σ(b, b′) for b′ ∈ N[b]\Pϵ[b];
25: end if
26: if node b is core then
27: merge

∪
p∈Pϵ[b]

L[p] in to the same cluster;
28: label all nodes in

∪
p∈Pϵ[b]

L[p] as cb;
29: for each bridge b′ in

∪
p∈Pϵ[b]

L[p] do
30: if |{p ∈ Pϵ[b

′] : cp ̸= cb}| = 0 then
31: B = B\{b′} by Lemma 8;
32: end if
33: end for
34: end if
35: end if
36: end while
37: insert all clusters into C;
38: for each singleton node u ∈ V do
39: if ∃x, y ∈ N[u] s.t. cx ̸= cy then
40: label node u as hub and u ∈ H;
41: else
42: label node u as outlier and u ∈ O;
43: end if
44: end for

83

5.4 Theoretical Analyses of SCAN++

In this section, we theoretically discuss the efficiency and exactness of SCAN++.

5.4.1 Efficiency of SCAN++

We analyze the computational complexity of algorithm SCAN++. Given a graph
with |V| nodes and |E| edges, SCAN++ finds all clusters w.r.t. given parameter
settings. This theoretically entails the following time complexity:

Theorem 3 (Time complexity of SCAN++) SCAN++ incurs time complexity of O(1−c
c
|E|)

to obtain clustering results where c is the average pairwise clustering coefficient
[109].

Proof Let the average degree of the given graph be |E|/|V|. As we described in
Section 5.3.3, each pivot is expected to share c|E|/|V| bridges with the other pivots
where c is the average pairwise clustering coefficient. Since, from Definition 19 and
20, the shared bridges do not become new pivots, the maximum number of pivots
in the given graph is |V|2/(c|E|). Moreover, for each pivot, which acts as a starting
point of a DTAR, SCAN++ incurs time complexity of O(|E|/|V|). This is because it
evaluates structural similarities for all adjacent nodes identified by the pivot. Thus
the computational cost for the structural similarity computation for each pivot is
O((|E|/|V|){|V|2/(c|E|)}) = O(|V|/c).

In addition, Lemma 12 shows that we can obtain structural similarity on DTARs
by computing just |(N[v]\N[u])∩N[w]| where v ∈ T[u] and w ∈ N[u]∩N[v]. Hence,
the time complexity of each similarity computation is O(min(|N[v]\N[u]|, |N[w]|)).
Recall that a pivot shares c|E|/|V| neighborhoods with the other pivots, hence
we have O(min(|N[v]\N[v]|, |N[w]|)) = O((1 − c)|E|/|V|) time complexity for
each structural similarity computation. Therefore, the total time complexity is
O(|V|(1−c)|E|

c|V|) = O(1−c
c
|E|). □

As shown in Section 5.5, |V| ≪ |E| and 0 < c < 1 in practice. Additionally,
as described in Section 5.3.1, it is known that the clustering coefficient c of most
real-world graphs tends to be high [3, 108]. Hence, Theorem 3 indicates that the
proposed algorithm, SCAN++, can find clustering results much faster than SCAN
that needs O(|E|2/|V|).

84

5.4.2 Exactness of SCAN++

In the previous sections, we introduced a new clustering method SCAN++, which is
more efficient than SCAN. However, the following question remains, “Can this ap-
proach find exactly the same clusters as SCAN?” We answer this important question
affirmatively below.

In order to demonstrate the exactness of the clustering results derived from
SCAN++, we show our approach does not fail to find the clusters given by Defi-
nition 17. For discussing the exactness of SCAN++, we define a set of nodes that
are cluster candidates derived from a converged TAR.

Definition 24 (Candidate clusters) Let Tu be a converged TAR obtained by SCAN++,
the following equation gives the candidate clusters VTu derived from Tu:

VTu = Tu ∪ {
∪

∀v∈Tu

Nϵ[v]}. (5.20)

From Definition 24, we have the following lemma:

Lemma 13 (Non-directly structure-reachability) Let VTu be nodes that do not
belong to VTu (i.e. VTu = V\VTu). SCAN++ always has the following property for
adjacent node pair (u, v):

u ∈ VTu ∧ v ∈ VTu ⇒ σ(u, v) < ϵ. (5.21)

Proof We prove Lemma 13 by contradiction. We assume that adjacent node pair
(v, w) has σ(v, w) ≥ ϵ if v ∈ VTu and w ∈ VTu . From Definition 19 and 20, all
bridges are adjacent to only the nodes in VTu . Thus node v must be a pivot of Tu

since node v is adjacent to node w which belongs to VTu . Recall Definition 19 that
SCAN++ regards ϵ-neighborhoods of a pivot as bridges that are included in VTu .
Hence, node w is a member of Nϵ[v] ⊆ VTu , and this contradicts w ∈ VTu . This
yields Lemma 13. □
Lemma 13 implies that node set VTu is always surrounded by adjacent nodes whose
structural similarities are less than ϵ.

According to Lemma 13, we introduce a property of clusters derived from con-
verged TAR. Informally speaking, the property is that there are no clusters that
cross several candidate node sets that originated from different converged TARs.
The property is detailed as follows:

85

Lemma 14 (Cluster comprehensibility) Let C[v] be a cluster where node v ∈
VTu . All member nodes included in C[v] satisfy the following condition:

v ∈ VTu ⇒ ∀w ∈ C[v], w ∈ VTu . (5.22)

Proof We prove Lemma 14 by contradiction. At first, we assume the following
condition:

v ∈ VTu ⇒ ∃w ∈ C[v], w /∈ VTu . (5.23)

From Definition 17, node w is included in the structure-reachable node set of node
v since w ∈ C[v]. However, Lemma 13 shows that node w always has structural
similarity less than ϵ for all adjacent nodes in VTu since w /∈ VTu . Hence, node w
is not structure-reachable from node v. This contradicts Eq. (5.23), which yields
Lemma 14. □
From Lemma 14, it is clear that there are no clusters that cross several converged
TARs; all structure-reachable cores in a candidate cluster VTu always belong to
VTu . Hence, we can find exactly same clusters as SCAN if we detect all cores that
are included in each candidate cluster VTu .

Based on Lemma 14, we show that SCAN++ can detect exactly the same clus-
ters as SCAN from each candidate node set as follows:

Theorem 4 (Clustering results of SCAN++) Our proposed algorithm SCAN++
always has exactly same clustering results as SCAN.

Proof As shown in Section 5.2, the clusters defined in Definition 17 are uniquely
determined by the cores included in a structure-reachable nodes. Additionally, no
clusters cross several converged TARs from Lemma 14. Hence, if SCAN++ finds
all cores included in the candidate clusters VTu derived from a converged TAR, it
clearly produces exactly the same clustering results as SCAN. As shown in Section
5.3.3, SCAN++ finds all cores from pivots since SCAN++ computes the structural
similarity for all adjacent nodes of the pivots in the local clustering phase. In addi-
tion, SCAN++ can find all cores from the bridges. There are two reasons: (1) as we
described in Section 5.3.3, if bridges are adjacent to more than µ pivots with struc-
tural similarity that exceeds ϵ, the bridges are trivially regarded as core in the cluster
refinement phase, (2) as shown in Algorithm 4 (line 23-25), SCAN++ computes the
structural similarity for all remaining bridges, i.e. those whose core condition has
not been checked but are adjacent to more than two pivots. Thus, SCAN++ finds all
cores in VTu . Therefore, the clustering results of SCAN++ are exactly the same as
those of SCAN. □
Thus, SCAN++ is assured of yielding exact results as SCAN.

86

5.5 Experiments

We compared the effectiveness of four algorithms including our proposed method
SCAN++.

• SCAN++: our proposal with similarity sharing.
• SCAN∗: a simple variation of SCAN that produces approximate results by

utilizing the edge sampling technique proposed by the state-of-the-art method
LinkSCAN∗ [104]. Based on LinkSCAN∗, SCAN∗ samples min{du, α +
β ln du} edges for each node, where du is the degree of a node and both α
and β are user-specified parameters. We set α = 2|E|/|V| and β = 1 as
recommended by LinkSCAN∗.

• SCAN: the original algorithm [41].
• gSkeletonClu: a state-of-the-art algorithm extended from SCAN that pro-

vides us parameter-free structural clustering [101]. gSkeletonClu employs
the tree-decomposition-based algorithm and it searches clustering results that
maximize the score of modularity [34].

Our experiments will demonstrate that:

• Efficient: Compared to existing algorithms, SCAN++ achieves higher speed
clustering for large-scale graphs (Section 5.5.2)

• Exact: SCAN++ yields exactly the same clustering results as SCAN (Section
5.5.3)

• Effective: SCAN++ is effective in improving clustering speed for large-scale
graphs whose clustering coefficients are high (Section 5.5.4)

• Scalable: SCAN++ has near-linear scalability against graph size in terms of
running time (Section 5.5.5)

Our experiments were designed to show that the proposed approach is a very viable
option for computing clusters, hubs, and outliers.

All experiments were conducted on a Linux 2.6.18 server with one CPU (In-
tel Xeon Processor L5640 2.27GHz) and 144GBytes of main memory. SCAN++,
SCAN* and SCAN were implemented in C/C++ using the gcc-g++ 4.8.1 compiler
and we used the optimization parameter “-O2” for each algorithm. To evaluate the
other algorithm, we used the program of gSkeletonClu published on their authors’
sites1.

1http://web.xidian.edu.cn/jbhuang/en/publications.html

87

Table 5.2: Real-world datasets
Dataset |V| |E| c

condmat 23,133 186,936 0.6334
slashdot 77,360 905,468 0.0555
amazon 334,863 925,872 0.3967

dblp 317,080 1,049,866 0.6324
road 1,379,917 3,843,320 0.0470
cnr 325,557 5,477,938 0.5586

google 875,713 5,105,039 0.5143
skitter 1,696,415 11,095,298 0.2581

5.5.1 Datasets

The experiments used the following eight public datasets published by Standard
Network Analysis Project2 and Laboratory of Web Algorithmics3:

• condmat: This is a researcher collaboration network extracted from Arxiv
Condense Matter Physics papers; each node represents an author and each
edge represents co-authorship between users [130].

• shlashdot: This is an online social network in Slashdot. Nodes correspond to
users and edges correspond to friend/foe relationship between users [131].

• amazon: This is a co-purchasing network at Amazon, where each node and
edge represent a product and a relationship between products that are fre-
quently co-purchased, respectively [132].

• dblp: This is a researcher collaboration graph extracted from the bibliogra-
phy service DBLP; each node is an author and each edge represents coauthor
relationship [132].

• road: This is a road network of Texas, where nodes correspond to intersec-
tions and endpoints and the roads connecting these intersections or endpoints
are represented by edges [131].

2http://snap.stanford.edu
3http://law.di.unimi.it/datasets.php

88

10-2

10-1

100

101

102

103

104

105

106

107

condmat slashdot amazon dblp

W
al

l c
lo

ck
 ti

m
e

[s
]

SCAN++(ε=0.2)
SCAN++(ε=0.4)
SCAN++(ε=0.6)
SCAN++(ε=0.8)

SCAN*
SCAN

gSkeletonClu

Figure 5.1: Running time for smaller real-world datasets

• cnr: This is a web graph crawled from the Italian CNR domain; nodes and
edges represent web pages and hyperlinks between two web pages, respec-
tively.

• google: This is a web graph released by Google as a part of Google Program-
ming Contest; each node represents a web page and each edge represents a
hyperlink between web pages [131].

• skitter: This is an internet topology graph obtained by the traceroute com-
mand; each node represents a IP address and each edge represents a connec-
tion between IP addresses [131].

The statistics of each dataset are shown in Table 5.2. In the right most column, c
shows the average clustering coefficient. As a matter of convenience, we refer to
the group of datasets condmat, slashdot, amazon and dblp as the smaller datasets,
and the remaining datasets, road, cnr, google and skitter, as the larger datasets.
Additionally, in order to evaluate the effectiveness of our algorithm, we also used
synthetic datasets generated by LFR benchmark [112], which is considered as the
de facto standard model for generating graphs. The settings will be detailed later.

89

10-2

100

102

104

106

108

road cnr google skitter

W
al

l c
lo

ck
 ti

m
e

[s
]

SCAN++(ε=0.2)
SCAN++(ε=0.4)
SCAN++(ε=0.6)
SCAN++(ε=0.8)

SCAN*
SCAN

gSkeletonClu

Figure 5.2: Running time for larger real-world datasets

5.5.2 Efficiency

We evaluated the clustering performance of each method through wall clock time
for the real-world datasets. In this evaluation, we fixed the parameter µ = 5 and
varied the parameter ϵ as 0.2, 0.4, 0.6 and 0.8 for each algorithm. Figure 5.2 shows
the running time for each real-world dataset. Since existing algorithm show almost
same results under all parameter settings, we omitted the results of them from Figure
5.2 except for ϵ = 0.6. In addition, we omitted the results of gSkeletonClu for skitter
since it cannot compute clusters in a day.

Figure 5.2 shows that SCAN++ is much faster than existing approaches under all
conditions examined. Of particular interest, SCAN++ is 20 times faster than SCAN
on average, and it is also a few orders of magnitude faster than gSkeletonClu. As
described in Section 5.2, SCAN subjects all adjacent nodes in the given graph to
structural similarity computations. Furthermore, SCAN incurs average computa-
tion time of O(|E|/|V|) for each structural similarity computation. Hence, SCAN
requires O(|E|2/|V|) time on average. Similar to SCAN, for finding clustering re-
sults that maximizes modularity, gSkeletonClu has to extract spanning trees from
the graph by computing structural similarities for all adjacent nodes. Therefore, as

90

10-2

10-1

100

101

2 5 10 15

W
al

l c
lo

ck
 ti

m
e

[s
]

Value of µ for each dataset

condmat
slashdot
amazon

dblp

Figure 5.3: Parameter µ differences for smaller datasets (ϵ = 0.6)

shown in Figure 5.2, gSkeletonClu requires significantly larger computation times
for clustering than SCAN++ or SCAN. In contrast to both SCAN and gSkeleton-
Clu, as shown in Section 5.3, SCAN++ employs two efficient clustering approaches,
(1) two-phase clustering and (2) similarity sharing that utilizes the clustering coef-
ficient. As a result, as shown in Theorem 3, SCAN++ only requires near-linear
complexity O(1−c

c
|E|) in terms of number of edges. Therefore, SCAN++ can find

clusters, hubs and outliers much more efficiently than SCAN∗, SCAN and gSkele-
tonClu.

Figure 5.2 also shows that SCAN∗ could be competitive with our proposal
SCAN++ for slashdot in terms of efficiency. This is due to former’s use of the
clustering coefficient of the given graph. As shown in Table 5.2, slashdot has a sig-
nificantly lower clustering coefficient than the other datasets. SCAN++ could not
reduce the running time enough by using two-phase clustering and similarity shar-
ing since the small graphs had low clustering coefficients. Even though road and
skitter have relatively lower clustering coefficients than the other datasets, SCAN++
was much faster than SCAN∗. There are two reasons. First, road and skitter are
much larger graphs than slashdot. If graph size is large enough, SCAN++ can re-
duce the computation time even if the clustering coefficients are small. Second,

91

each node in road has almost the same degree while slashdot has a skewed degree
distribution. As we described, SCAN∗ eliminates edges from the graph when the
degree of each node is large enough. However, the nodes in road have almost the
same degree; hence SCAN∗ could not effectively eliminate edges from the dataset.
Therefore, SCAN++ ran faster than SCAN∗ for road and skitter. Although, SCAN∗

is efficient for small graphs with lower clustering coefficients, it is an approxima-
tion approach based on SCAN and so can not match the clustering performance of
the other methods. We will discuss this point in Section 5.5.3.

In all conditions examined, the running time of the cluster refinement phase
described in Section 5.3.3 is negligible. Specifically, SCAN++ consumed less than
1% of its running time for merging clusters under all conditions examined. This
is because, in the real-world datasets with high clustering coefficients, each bridge
is adjacent to many pivots with high structural similarity scores. Hence, as shown
in Lemma 8, most bridges are prunable bridges, and they do not require additional
similarity computations for merging local clusters. We omit the detailed results of
the running time for merging local clusters due to space limitations.

Our experiments also considered different parameter µ settings. Figure 5.3
shows the running time of SCAN++ for the smaller datasets for various values of
µ. As shown in Figure 5.3, the values of µ have no significant impact for the run-
ning time of SCAN++. This is because the running time of the cluster refinement
phase consumes at most 1% of the total running time. Although we omit the re-
sults of the other algorithms from Figure 5.3 and the results of the larger datasets
due to space limitations, all the other methods shows almost same results as Figure
5.2. SCAN++ can find clusters, hubs, and outliers more efficiently than the existing
approaches even under different parameter settings.

5.5.3 Exactness

One major contribution of SCAN++ is that it outputs exactly same clustering re-
sults as SCAN. To demonstrate the exactness of the clustering results, we evaluated
accuracy of obtaining cores against SCAN for each dataset. This is because, as
shown in Definition 17, clustering results are uniquely determined by the cores. In
this experiment, we used F-measure as the metrics of accuracy [133]. F-measure
quantifies the accuracy of the clustering results by calculating the harmonic mean
of precision and recall. Hence, we defined precision and recall as follows: preci-
sion is the fraction of cores by each method that matches those of SCAN, and recall

92

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

condmat slashdot amazon dblp

F
-m

ea
su

re

SCAN++
SCAN*

gSkeletonClu

Figure 5.4: F-measure for smaller real-world datasets (ϵ = 0.6, µ = 5)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

road cnr google skitter

F
-m

ea
su

re

SCAN++
SCAN*

gSkeletonClu

Figure 5.5: F-measure for larger real-world datasets (ϵ = 0.6, µ = 5)

93

10-1

100

101

102

 0.1 0.2 0.3 0.4 0.5 0.6

W
al

l c
lo

ck
 ti

m
e

[s
]

Average cluster coefficient

SCAN++
SCAN

Figure 5.6: c differences for each algorithm

is the fraction of cores obtained by SCAN that are also extracted by each method.
F-measure takes a value between 0 and 1, and F-measure is 1 if the obtained cores
exactly match those by SCAN. Figure 5.5 shows F-measure of each method against
SCAN. In this evaluation, we set the parameters of each algorithm as ϵ = 0.6 and
µ = 5. As well as Figure 5.2, we omitted the results of gSkeletonClu for skitter
since it does not return the clustering result in a day.

Figure 5.5 indicates that SCAN++ can obtain exactly same clustering results as
SCAN. Even though we drops unnecessary similarity computations, SCAN++ guar-
antees of outputting the same cores as SCAN as shown in Theorem 4. Therefore,
F-measure of SCAN++ were 1 as shown in Figure 5.5. On the other hand, SCAN∗

and gSkeletonClu output clustering results that differ from those of SCAN. This is
because SCAN∗ is an approximation method that samples subset of edges from the
given graph and gSkeletonClu employs the clustering results that maximize modu-
larity [34]. Figure 5.5, as well as Figure 5.2, confirms that SCAN++ is superior to
existing methods in terms of speed and accuracy.

94

10-2

10-1

100

101

102

103

104

105

105 106 107

W
al

l c
lo

ck
 ti

m
e

[s
]

Number of edges

SCAN++
SCAN

Figure 5.7: Scalability for each algorithm

5.5.4 Effectiveness

We evaluate the effectiveness of our algorithm in terms of high clustering coeffi-
cients. To evaluate the effectiveness, we used synthetic graphs produced by the
LFR benchmark. We generate LFR benchmark graphs with 1,000,000 nodes; the
average clustering coefficient was varied from 0.1 to 0.6 following the real-world
datasets in Table 5.2. The other parameters, average degree and maximum degree,
were fixed at 20 and 50, respectively. Figure 5.6 shows the computation times of
our proposal and SCAN for difference c scores. As shown in Figure 5.6, SCAN
shows almost constant computation time under all conditions examined. Unlike
SCAN, our algorithm increased its clustering speed as c increased. In the most ef-
ficient case (i.e. c = 0.6) our proposals was up to three times faster than the result
of the worst case (i.e. c = 0.1). These results imply that our two-hop-away node
based algorithm effectively prunes the candidates that are assessed. Thus, our algo-
rithm outperforms SCAN when the given graph has high c scores as is likely with
real-world graphs.

95

5.5.5 Scalability

We evaluated the scalability of SCAN++ and SCAN. We generated LFR benchmark
graphs with various numbers of nodes from 1,000 to 1,000,000. The other parame-
ters, average degree, maximum degree and clustering coefficient, were fixed at 20,
50 and 0.4, respectively. The running times of the algorithms, shown in Figure 5.7,
show that SCAN++ has near-linear scalability in terms of number of edges. On
the contrary, SCAN exponentially increases its running time with number of edges.
This result verifies our theoretical analysis in Section 5.4.1, hence, our proposals
are scalable for large-scale graphs.

5.6 Summary of this Chapter

This chapter addressed the problem of efficiently finding clusters, hubs, and out-
liers in large-scale graphs. Our proposal, SCAN++, is based on three ideas: (1) it
introduces a new data structure, called directly two-hop-away reachable node set
(DTAR), that contains only nodes that two hops away from a given node, (2) it
drops unnecessary density evaluations for adjacent nodes in the clustering proce-
dure by using DTARs, and (3) its density evaluation method is highly efficient since
it shares some of the density evaluation results of DTARs. As a result, SCAN++
has all of the following attractive advantages:

• Efficient: SCAN++ achieves 20 times higher clustering speed than its com-
petitors; it scales very well, offering linear clustering time against the number
of edges in the graph.

• Exact: SCAN++ is not an approximation method. It always returns exactly
the same clustering results as SCAN.

• Effective: SCAN++ is effective in improving the clustering speed for real-
world graphs with high clustering coefficients.

As far as we know, this is the first study to introduce a graph clustering algorithm
that achieves both high speed and exact clustering results at the same time. Graph
clustering algorithms that extract not only clusters but also hubs and outliers are
essential for many applications. The proposal will help to improve the effectiveness
of current and future applications.

96

Chapter 6

Conclusion and Future Work

This dissertation addressed the problem of efficiently finding clusters in large-scale
graphs. Our graph clustering proposals use the topological properties of real-world
graphs such as clustering coefficient and power-law distribution for efficient cluster-
ing. As far as we know, this is the first study to introduce graph clustering algorithms
that achieve both high speed and highly accurate clustering results at the same time.
The contributions of this dissertation consist of three sub-works: (1) fast algorithm
and (2) parallel algorithm for modularity-based graph clustering (Chapters 3 and 4,
respectively), and (3) efficient algorithm for density-based graph clustering (Chap-
ter 5). Our experiments on both real-world and synthetic datasets showed that our
proposals are much faster than state-of-the-art algorithms for large-scale graphs.
Graph clustering algorithms are essential for many applications. These proposals
will help to improve the effectiveness of current and future applications.

6.1 Summary of Contributions

We summarize the contributions of this thesis as follows:

• We introduced an efficient modularity-based graph clustering algorithm, named
IMAC. Our experimental evaluation reported that IMCA is almost 60 times
faster than the state-of-the-art algorithm BGLL. Specifically, it computes clus-
ters from a real-world graph with more than 100 million nodes and 1 billion

98

edges within 156 seconds (Chapter 3).

• We investigated a vectorized variant of BGLL, named ParBGLL, for modu-
larity clustering. We evaluated our approach on both real-world graphs and
synthetic graphs, and showed that our approach is up to 3 times faster than
the default setting of BGLL (Chapter 4).

• We proposed an efficient clustering algorithm, named SCAN++, to address
structural clustering problems. We proved that SCAN++ offers the same clus-
tering quality as the state-of-the-art algorithm SCAN; SCAN++ always re-
turns exactly same clustering results as SCAN. In addition, our experiments
reported that SCAN++ is almost 20 times faster than SCAN for real-world
datasets (Chapter 5).

We believe that this work not only enhances the possibility of analyzing large-
scale real-world graphs, but also contributes to scientific and/or cultural advances.

6.2 Future Work

We state our future work for each chapter and our long-term view.

Future work based on Chapters 3 and 5 has two parts. The first is to investi-
gate fast and highly accurate clustering algorithms for time evolving graphs. Re-
cently, the topology of real-world graphs changes dynamically and the volume of
the changes is significant. For example, the micro-blogging service Twitter reported
that up to 340 million daily posts were logged in 2012 [134]. For this reason, we
believe that incremental graph clustering is critical. The second is to investigate pa-
rameter free graph clustering. As we described in Chapter 5, our proposed method
SCAN++ requires some user-specified parameters. However, different datasets are
likely to have different parameter settings. Therefore, such parameters should be
automatically tuned through an understanding of the statistical properties of real-
world graphs.

Future work for Chapter 4 is also twofold. The first is to investigate more scal-
able data parallel computation techniques by using graph compression. As shown
in Chapter 4, the parallelism of our method is highly dependent on SIMD register
size. This, however, limits the degree of parallelism possible since the largest SIMD

99

register is (as of 2014) still less than 512 bits. In order to improve the scalability
of the SIMD register, an intuitive approach is to introduce graph compression. The
second is to propose task parallel techniques that do not sacrifice clustering qual-
ity. In order to introduce task parallel graph clustering, we first partition the input
graph into several subgraphs before the clustering procedure. However, this parti-
tioning may degrade the clustering quality since it can split some clusters. In order
to achieve highly scalable graph clustering, one of the key challenges to introduce
a task parallel method that does not degrade clustering quality.

Finally, we present the long-term goal. In the Big Data era, we must be able to
handle the volume and variety of data. Against the problem of data volume, efficient
data mining algorithms, which are not limited to just graph mining algorithms, are
highly demanded to uncover and understand the real-world data around us. To deal
with data variety, we plan to investigate mining algorithms that handle the attributes
and semantics of data.

100

Bibliography

[1] P. Erdos and A Renyi. On the Evolution of Random Graphs. In Publication of
the Mathematical Institute of the Hungaring Academy of Sciences, volume 5,
pages 17–61, 1960.

[2] Stanley Milgram. The Small World Problem. Psychology Today, 67(1):61–
67, 1967.

[3] D. J. Watts and S. H. Strogatz. Collective Dynamics of ’Small-World’ Net-
works. Nature, 393(6684):409–10, 1998.

[4] Albert-Laszlo Barabasi and Reka Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509–512, 1999.

[5] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On Power-law
Relationships of the Internet Topology. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, SIGCOMM ’99, pages 251–262, New York, NY, USA, 1999.
ACM.

[6] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report
1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-
1999-0120.

[7] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast Incremental
and Personalized PageRank. pages 173–184, 2010.

[8] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast Exact Shortest-Path
Distance Queries on Large Networks by Pruned Landmark Labeling. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 349–360.
ACM, 2013.

102

[9] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Dynamic and Histori-
cal Shortest-Path Distance Queries on Large Evolving Networks by Pruned
Landmark Labeling. In 23rd International World Wide Web Conference,
WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, pages 237–248.
ACM, 2014.

[10] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi Kawarabayashi.
Fast and Accurate Influence Maximization on Large Networks with Pruned
Monte-Carlo Simulations. In Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec,
Canada, pages 138–144. AAAI Press, 2014.

[11] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence Maximization: Near-
Optimal Time Complexity Meets Practical Efficiency. In International Con-
ference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014, pages 75–86. ACM, 2014.

[12] Manish Gupta, Jing Gao, Xifeng Yan, Hasan Cam, and Jiawei Han. Top-
k Interesting Subgraph Discovery in Information Networks. In IEEE 30th
International Conference on Data Engineering, Chicago, ICDE 2014, IL,
USA, March 31 - April 4, 2014, pages 820–831. IEEE, 2014.

[13] Wenqing Lin, Xiaokui Xiao, and Gabriel Ghinita. Large-scale Frequent Sub-
graph Mining in MapReduce. In IEEE 30th International Conference on
Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014,
pages 844–855. IEEE, 2014.

[14] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Clustering Large Attributed
Graphs: an Efficient Incremental Approach. In ICDE, pages 689–698, 2010.

[15] Tiancheng Lou and Jie Tang. Mining Structural Hole Spanners Through
Information Diffusion in Social Networks. In WWW, pages 825–836, 2013.

[16] Mahmoud Taghizadeh and Subir Biswas. Community Based Cooperative
Content Caching in Social Wireless Networks. In Proc. MobiHoc, pages
257–262, 2013.

[17] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton
Breitkreutz, and Mike Tyers. BioGRID: A General Repository for Interaction
Datasets. Nucleic acids research, 34(suppl 1):D535–D539, 2006.

103

[18] Suraj Peri, J Daniel Navarro, Troels Z Kristiansen, Ramars Amanchy, Vi-
neeth Surendranath, Babylakshmi Muthusamy, TKB Gandhi, KN Chan-
drika, Nandan Deshpande, Shubha Suresh, et al. Human Protein Reference
Database as a Discovery Resource for Proteomics. Nucleic acids research,
32(suppl 1):D497–D501, 2004.

[19] Andrew Chatr-Aryamontri, Arnaud Ceol, Luisa Montecchi Palazzi, Giu-
liano Nardelli, Maria Victoria Schneider, Luisa Castagnoli, and Gianni Ce-
sareni. MINT: the Molecular INTeraction Database. Nucleic acids research,
35(suppl 1):D572–D574, 2007.

[20] Juan Casado-Vela, Rune Matthiesen, Susana Selles, and Jose Ramon
Naranjo. Protein-Protein Interactions: Gene Acronym Redundancies and
Current Limitations Precluding Automated Data Integration. Proteomes,
1(1):3–24, 2013.

[21] Charu C. Aggarwal and Haixun Wang. Managing and Mining Graph Data.
Springer Publishing Company, Incorporated, 1st edition, 2010.

[22] Zhichao Liu, Qiang Shi, Don Ding, Reagan Kelly, Hong Fang, and Weida
Tong. Translating Clinical Findings into Knowledge in Drug Safety Evalua-
tion - Drug Induced Liver Injury Prediction System (DILIps). PLoS Compu-
tational Biology, 7(12), 2011.

[23] Sarath Chandra C. Janga and Andreas Tzakos. Structure and Organization
of Drug-target Networks: Insights from Genomic Approaches for Drug Dis-
covery. Molecular bioSystems, 5(12):1536–1548, Dec 2009.

[24] Olaf Sporns, Giulio Tononi, and Rolf Kötter. The Human Connectome: A
Structural Description of the Human Brain. PLoS Computational Biology,
1(4):e42, 2005.

[25] Di Yu, Tianji Wu, Yi Shan, Yu Wang, Yong He, and Ningyi Yang. Making
Human Connectome Faster: CPU Acceleration of Brain Network Analysis.
In Proceedings of IEEE 16th International Conference on Parallel and Dis-
tributed Systems (ICPADS 2010), pages 593–600. IEEE, 2010.

[26] E. Bullmore and O. Sporns. Complex Brain Networks: Graph Theoreti-
cal Analysis of Structural and Functional Systems. Nature Reviews Neuro-
science, 10(3):186–198, 2009.

104

[27] Yong He, Zhang J. Chen, and Alan C. Evans. Small-world Anatomical Net-
works in the Human Brain Revealed by Cortical thickness from MRI. Cere-
bral Cortex, 17(10):2407–2419, 2007.

[28] Karl W. Doron, Danielle S. Bassett, and Michael S. Gazzaniga. Dynamic
Network Structure of Interhemispheric Coordination, 2012.

[29] Maurice de Kunder. WorldWideWebSize.com ∥ The size of the World Wide
Web (The Internet). http://worldwidewebsize.com/, 2014.

[30] Inc Facebook. Facebook Reports Third Quarter 2014 Results. http://
investor.fb.com/releasedetail.cfm?ReleaseID=878726,
2014.

[31] Anja Jentzsch, Richard Cyganiak, and Chris Bizer. State of the LOD Cloud.
http://lod-cloud.net/state/, 2014.

[32] Réka Albert and Albert-László Barabási. Statistical Mechanics of Complex
Networks. Rev. Mod. Phys., 74(1):47–97, Jan 2002.

[33] P. W. Holland and S. Leinhardt. Transitivity in Structural Models of Small
Groups.

[34] M. E. J. Newman and M. Girvan. Finding and Evaluating Community Struc-
ture in Networks. Phys. Rev. E, 69:026113, Feb 2004.

[35] M. E. J. Newman. Fast Algorithm for Detecting Community Structure in
Networks. Physical Review E - PHYS REV E, 69:066133, Jun 2004.

[36] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding Commu-
nity Structure in Very Large Networks. Phys. Rev. E, 70:066111, Dec 2004.

[37] Ken Wakita and Toshiyuki Tsurumi. Finding Community Structure in Mega-
Scale Social Networks. In Proceedings of the 16th International Conference
on World Wide Web (WWW 2007), pages 1275–1276. ACM, 5 2007.

[38] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast Unfolding of Communities in Large Networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008:P10008, October 2008.

[39] James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst. Tem-
plates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2000.

105

[40] Santo Fortunato and Marc Barthélemy. Resolution Limit in Community De-
tection. Proceedings of the National Academy of Sciences, 104(1):36–41, 1
2007.

[41] Xiaowei Xu, Nurcan Yuruk, Zhidan Geng, and Thomas A. J. Schweiger.
SCAN: A Structural Clustering Algorithm for Networks. In KDD, pages
824–833, 2007.

[42] Vic Grout and Stuart Cunningham. A Constrained Version of a Clustering
Algorithm for Switch Placement and Interconnection in Large Networks”,
booktitle = Proceedings of the 19th International Conference on Computer
Applications in Industry and Engineering (CAINE), pages = 252-257, year =
2006,.

[43] Vic Grout, Stuart Cunningham, and Rich Picking. Practical Large-scale Net-
work Design with Variable Costs for Links and Switches. International Jour-
nal of Computer Science and Network Security, 7(7):113–125, 2007.

[44] Satu Virtanen. Clustering the Chilean Web. In Proceedings of the 1st Latin
American Web Congress (LAWEB), pages 229–231. IEEE, 2003.

[45] KilHong Joo and WonSuk Lee. An Incremental Document Clustering for
the Large Document Database. In Information Retrieval Technology, volume
3689 of Lecture Notes in Computer Science, pages 374–387. Springer Berlin
Heidelberg, 2005.

[46] Ting-Chao Hou and Tzu-Jane Tsai. A Access-based Clustering Protocol for
Multihop Wireless ad hoc Networks. Selected Areas in Communications,
IEEE Journal on, 19(7):1201–1210, Jul 2001.

[47] C. R. Lin and M. Gerla. Adaptive Clustering for Mobile Wireless Networks.
IEEE Journal on Selected Areas in Communications, 15(7):1265–1275, Sep
2006.

[48] T.N. Dinh, Ying Xuan, and M.T. Thai. Towards Social-aware Routing in
Dynamic Communication Networks. In Proceedings of 28th IEEE Interna-
tional Conference on Performance Computing and Communications Confer-
ence (IPCCC 2009), pages 161–168, Dec 2009.

[49] Nam P. Nguyen, Thang N. Dinh, Ying Xuan, and My T. Thai. Adaptive Algo-
rithms for Detecting Community Structure in Dynamic Social Networks. In
Proceedings of the 30th IEEE International Conference on Computer Com-
munications (IEEE INFOCOM 2011), pages 2282–2290, 3 2011.

106

[50] Takehiro Furuta, Mihiro Sasaki, Fumio Ishizaki, Atsuo Suzuki, and Hajime
Miyazawa. A New Cluster Formation Method for Sensor Networks using
Facility Location Theory. Technical report, Tech. Rep. NANZAN-TR-2006-
01, Nanzan Academic Society Mathematical Sciences and Information En-
gineering, Nagoya, Japan, 2006.

[51] Guan Wang, Yuchen Zhao, Xiaoxiao Shi, and Philip S. Yu. In Proceedings of
the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’12, pages 588–596, New York, NY, USA, 2012.
ACM.

[52] Wenjun Zhou, Hongxia Jin, and Yan Liu. Community Discovery and Profil-
ing with Social Messages. In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’12,
pages 388–396, New York, NY, USA, 2012. ACM.

[53] Marek Ciglan, Michal Laclavı́k, and Kjetil Nørvåg. On Community Detec-
tion in Real-world Networks and the Importance of Degree Assortativity. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’13, pages 1007–1015, New York,
NY, USA, 2013. ACM.

[54] Yi-Cheng Chen, Wen-Yuan Zhu, Wen-Chih Peng, Wang-Chien Lee, and Suh-
Yin Lee. CIM: Community-Based Influence Maximization in Social Net-
works. ACM Trans. Intell. Syst. Technol., 5(2):25:1–25:31, April 2014.

[55] Pei Lee, Laks V. S. Lakshmanan, and Evangelos E. Milios. Incremental
Cluster Evolution Tracking from Highly Dynamic Detwork Data. In Isabel F.
Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski, editors,
Proceedings of the 30th IEEE International Conference on Data Engineering
(ICDE2011), pages 3–14, 2014.

[56] Jiwei Li and Claire Cardie. Timeline Generation: Tracking Individuals on
Twitter. In Proceedings of the 23rd International Conference on World Wide
Web, WWW ’14, pages 643–652, New York, NY, USA, 2014. ACM.

[57] Hao Ma, Haixuan Yang, Michael R. Lyu, and Irwin King. Mining Social Net-
works Using Heat Diffusion Processes for Marketing Candidates Selection.
In CIKM, pages 233–242, 2008.

107

[58] Kristina Toutanova and Christopher D. Manning. Enriching the Knowledge
Sources Used in a Maximum Entropy Part-of-speech Tagger. In Proceed-
ings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora: Held in Conjunction with
the 38th Annual Meeting of the Association for Computational Linguistics -
Volume 13, EMNLP ’00, pages 63–70, Stroudsburg, PA, USA, 2000. Asso-
ciation for Computational Linguistics.

[59] Ying Xu, Victor Olman, and Dong Xu. Clustering Gene Expression Data
using a Graph-Theoretic Approach: an Application of Minimum Spanning
Trees. Bioinformatics, 18(4):536–545, 2002.

[60] Frdric Boyer, Anne Morgat, Laurent Labarre, Jol Pothier, and Alain Viari.
Syntons, Metabolons and Interactons: An Exact Graph-Theoretical Ap-
proach for Exploring Neighbourhood Between Genomic and Functional
Data. Bioinformatics, 21(23):4209–4215, 2005.

[61] Yijun Ding, Minjun Chen, Zhichao Liu, Don Ding, Yanbin Ye, Min Zhang,
Reagan Kelly, Li Guo, Zhenqiang Su, StephenC Harris, Feng Qian, Weigong
Ge, Hong Fang, Xiaowei Xu, and Weida Tong. atBioNet An Integrated
Network Analysis Tool for Genomics and Biomarker Discovery. BMC Ge-
nomics, 13(1), 2012.

[62] Yang Wang, D. Chakrabarti, Chenxi Wang, and C. Faloutsos. Epidemic
Spreading in Real Networks: an Eigenvalue Viewpoint. In SRDS, pages 25–
34, 2003.

[63] Mark EJ Newman. Properties of Highly Clustered Networks. Physical Re-
view E, 68(2):026121, 2003.

[64] Ajit A. Diwan, Sanjeeva Rane, S. Seshadri, and S. Sudarshan. Clustering
techniques for minimizing external path length. In Proceedings of 22th In-
ternational Conference on Very Large Data Bases (VLDB), pages 342–353,
1996.

[65] Andrew Y. Wu, Michael Garland, and Jiawei Han. Mining Scale-free
Networks Using Geodesic Clustering. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’04, pages 719–724, New York, NY, USA, 2004. ACM.

[66] Rakesh Agrawal and H. V. Jagadish. Algorithms for Searching Massive
Graphs. IEEE Trans. Knowl. Data Eng., 6(2):225–238, 1994.

108

[67] Paul S Bradley, Usama M Fayyad, Cory Reina, et al. Scaling Clustering Al-
gorithms to Large Databases. In Proceedings of the 4th International Confer-
ence on Knowledge Discovery and Data Mining (KDD), pages 9–15, 1998.

[68] Buwen Wu, Yongluan Zhou, Pingpeng Yuan, Hai Jin, and Ling Liu. Sem-
Store: A Semantic-Preserving Distributed RDF Triple Store. In Proceedings
of the 23rd ACM International Conference on Conference on Information
and Knowledge Management (CIKM), pages 509–518. ACM, 2014.

[69] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Distributed GraphLab: A Framework
for Machine Learning in the Cloud. PVLDB, 5(8):716–727, 2012.

[70] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A Distributed Graph Engine
on a Memory Cloud. In Kenneth A. Ross, Divesh Srivastava, and Dimitris
Papadias, editors, Proc. ACM SIGMOD 2013, pages 505–516, 2013.

[71] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A System
for Large-scale Graph Processing. In Ahmed K. Elmagarmid and Divyakant
Agrawal, editors, Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA,
June 6-10, 2010, pages 135–146. ACM, 2010.

[72] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Com-
puting, 20(1):359–392, 8 1998.

[73] François Pellegrini and Jean Roman. SCOTCH: A Software Package for
Static Mapping by Dual Recursive Bipartitioning of Process and Architec-
ture Graphs. In High-Performance Computing and Networking, Interna-
tional Conference and Exhibition, HPCN Europe 1996, Brussels, Belgium,
April 15-19, 1996, Proceedings, volume 1067 of Lecture Notes in Computer
Science, pages 493–498. Springer, 1996.

[74] Tom Chao Zhou, Hao Ma, Michael R. Kyu, and Irwin King. UserRec: A User
Recommendation Framework in Social Tagging Systems. In Proceedings
of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010). AAAI
Press, 2010.

[75] B W Kernighan and S Lin. An Efficient Heuristic Procedure for Partitioning
Graphs. Bell System Technical journal, 49(2):291–307, 2 1970.

109

[76] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An
Algorithmic Framework for Performing Collaborative Filtering. In Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 1999), pages 230–237.
ACM, 1999.

[77] Thomas Hofmann. Latent Semantic Models for Collaborative Filtering. ACM
Transactions on Information Systems (TOIS), 22(1):89–115, 2004.

[78] Yiming Yang, Thomas Pierce, and Jaime G. Carbonell. A Study of Retro-
spective and On-Line Event Detection. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (SIGIR 1998), pages 28–36. ACM, 1998.

[79] Jon M. Kleinberg. Bursty and Hierarchical Structure in Streams. In Pro-
ceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2002), pages 91–101. ACM, 2002.

[80] Jianshu Weng and Bu-Sung Lee. Event Detection in Twitter. In Proceed-
ings of the 5th International AAAI Conference on Weblogs and Social Media
(ICWSM 2011). AAAI Press, 2011.

[81] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Al-
location. In Proceedings of Advances in Neural Information Processing Sys-
tems 15 [Neural Information Processing Systems (NIPS 2001)], pages 601–
608. MIT Press, 2001.

[82] S. Papadopoulos, C. Zigkolis, Y. Kompatsiaris, and A. Vakali. Cluster-Based
Landmark and Event Detection for Tagged Photo Collections. IEEE Multi-
Media, 18(1):52–63, Jan 2011.

[83] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60:91–110, 2004.

[84] Konstantin Andreev and Harald Räcke. Balanced Graph Partitioning. In
Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, SPAA ’04, pages 120–124. ACM, 2004.

[85] Chris H. Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D. Si-
mon. A Min-max Cut Algorithm for Graph Partitioning and Data Clustering.
In ICDM, pages 107–114, 2001.

110

[86] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation.
IEEE TPAMI, 22(8):888–905, 2000.

[87] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society,
1997.

[88] Charles M Fiduccia and Robert M Mattheyses. A Linear-time Heuristic for
Improving Network Partitions. In Design Automation, 1982. 19th Conference
on, pages 175–181. IEEE, 1982.

[89] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel Static and Dy-
namic Multi-constraint Graph Partitioning. Concurrency and Computation:
Practice and Experience, 14(3):219–240, 2002.

[90] Lu Wang, Yanghua Xiao, Bin Shao, and Haixun Wang. How to partition a
billion-node graph. In ICDE, pages 568–579, 2014.

[91] Isabelle Stanton and Gabriel Kliot. Streaming Graph Partitioning for Large
Distributed Graphs. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), pages 1222–
1230. ACM, 2012.

[92] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Mi-
lan Vojnovic. FENNEL: Streaming Graph Partitioning for Massive Scale
Graphs. In Proceedings of the 7th ACM international conference on Web
search and data mining (WSDM), pages 333–342. ACM, 2014.

[93] Robert Krauthgamer, Joseph Seffi Naor, and Roy Schwartz. Partitioning
Graphs into Balanced Components. In Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 942–949. So-
ciety for Industrial and Applied Mathematics, 2009.

[94] Roger Guimera, Marta Sales-Pardo, and Luis Amaral. Modularity from Fluc-
tuations in Random Graphs and Complex Networks. Phys. Rev. E, 70, Aug
2004.

[95] M. E. J. Newman. Finding Community Structure in Networks using the
Eigenvectors of Matrices. Physical Review E - PHYS REV E, 74:36104, 5
2006.

[96] Pascal Pons and Matthieu Latapy. Computing Communities in Large Net-
works using Random Walks. In Computer and Information Sciences-ISCIS
2005, pages 284–293. Springer, 2005.

111

[97] Arnaud Browet, Pierre-Antoine Absil, and Paul Van Dooren. Community
Detection for Hierarchical Image Segmentation. In Proceedings of the 14th
International Workshop on Combinatorial Image Analysis (IWCIA 2011),
Lecture Notes in Computer Science, pages 358–371. Springer, 5 2011.

[98] Nurcan Yuruk, Mutlu Mete, Xiaowei Xu, and Thomas A. J. Shweiger. A
Divisive Hierarchical Structural Clustering Algorithm for Networks. In Proc.
ICDM Workshops, pages 441–446, 2007.

[99] Jianbin Huang, Hongbo Deng, Heli Sun, Yizhou Sun, Jiawei Han, and
Yaguang Liu. SHRINK: a Structural Clustering Algorithm for Detecting
Hierarchical Communities in Networks. In CIKM, pages 219–228, 2010.

[100] Heli Sun, Jianbin Huang, Jiawei Han, H. Deng, Peixiang Zhao, and Bo-
Qin Feng. gSkeletonClu: Density-Based Network Clustering via Structure-
Connected Tree Division or Agglomeration. In Proc. ICDM, pages 481–490,
Dec 2010.

[101] Jianbin Huang, Heli Sun, Qinbao Song, Hongbo Deng, and Jiawei Han. Re-
vealing Density-Based Clustering Structure from the Core-Connected tree of
a network. IEEE TKDE, 25(8):1876–1889, 2013.

[102] Zhidan Feng, Xiaowei Xu, Nurcan Yuruk, and Thomas A. J. Schweiger. A
Novel Similarity-Based Modularity Function for Graph Partitioning. In Proc.
DaWaK, pages 385–396, 2007.

[103] Dustin Bortner and Jiawei Han. Progressive Clustering of Networks using
Structure-Connected Order of Traversal. In ICDE, pages 653–656, 2010.

[104] Sungsu Lim, Seungwoo Ryu, Sejeong Kwon, Kyomin Jung, and Jae-Gil
Lee. LinkSCAN∗: Overlapping Community Detection Using the Link-space
Transformation. In ICDE, pages 292–303, 2014.

[105] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In KDD, pages 226–231, 1996.

[106] J.B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling
Saleseman Problem. In Proc. Amer. Math. Soc. 7, pages 48–50, 1956.

[107] T. S. Evans and R. Lambiotte. Line Graphs, Link Partitions, and Overlapping
Communities. Phys. Rev. E, 80(1):016105, July 2009.

112

[108] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM
REVIEW, 45(2):167–256, 2003.

[109] Matthieu Latapy, Clemence Magnien, and Nathalie Del Vecchio. Basic
Notions for the Analysis of Large Two-mode Networks. Social Networks,
30(1):31–48, 2008.

[110] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On Power-law
Relationships of the Internet Topology. In Proceedings of the ACM SIG-
COMM 1999 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM 1999), pages 251–262,
New York, NY, USA, 1999. ACM.

[111] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered
Label Propagation: A MultiResolution Coordinate-Free Ordering for Com-
pressing Social Networks. In Proceedings of the 20th international confer-
ence on World Wide Web (WWW 2011). ACM Press, 2011.

[112] Andrea Lancichinetti and Santo Fortunato. Community Detection Algo-
rithms: A Comparative Analysis. Phys. Rev. E, 80:056117, Nov 2009.

[113] Michael Flynn. Very High-speed Computing Systems. Proceedings of the
IEEE, 54(12):1901–1909, 1966.

[114] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D
Nguyen, Tim Kaldewey, Victor W Lee, Scott A Brandt, and Pradeep
Dubey. Designing Fast Architecture-Sensitive Tree Search on Modern
Multicore/Many-core Processors. ACM Transactions on Database Systems
(TODS), 36(4):22, 2011.

[115] Pawan Harish and PJ Narayanan. Accelerating Large Graph Algorithms on
the GPU using CUDA. In High performance computing–HiPC 2007, pages
197–208. Springer, 2007.

[116] Thomas Willhalm. Intel R⃝ Performance Counter Monitor - A better way to
measure CPU utilization | Intel R⃝ Developer Zone. http://www.intel.
com/software/pcm, 2014.

[117] U Kang and Christos Faloutsos. Beyond ‘Caveman Communities’: Hubs and
Spokes for Graph Compression and Mining. In ICDM, pages 300–309, 2011.

[118] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. J.
ACM, 46(5):604–632, September 1999.

113

[119] Baoning Wu and Brian D. Davison. Identifying Link Farm Spam Pages. In
WWW, pages 820–829, 2005.

[120] Pedro Domingos and Matt Richardson. Mining the Network Value of Cus-
tomers. In KDD, pages 57–66, 2001.

[121] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

[122] Ning Xu, Lei Chen, and Bin Cui. LogGP: A Log-based Dynamic Graph
Partitioning Method. PVLDB, pages 1917–1928, 2014.

[123] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. Fast Algorithm
for Modularity-based Graph Clustering. In AAAI, pages 1170–1176, 2013.

[124] Peng Jiang and Mona Singh. SPICi: A Fast Clustering Algorithm for Large
Biological Networks. Bioinformatics, 26(8):1105–1111, 2010.

[125] Corban G Rivera, Rachit Vakil, and Joel S Bader. NeMo: Network Module
Identification in Cytoscape. BMC bioinformatics, 11(Suppl 1):S61, 2010.

[126] Yizhou Sun, Charu C. Aggarwal, and Jiawei Han. Relation Strength-Aware
Clustering of Heterogeneous Information Networks with Incomplete At-
tributes. PVLDB, 5(5):394–405, 2012.

[127] Jia Wang and James Cheng. Truss Decomposition in Massive Networks.
PVLDB, 5(9):812–823, 2012.

[128] Nan Wang, Jingbo Zhang, Kian-Lee Tan, and Anthony K. H. Tung. On
Triangulation-based Dense Neighborhood Graphs Discovery. PVLDB,
4(2):58–68, 2010.

[129] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[130] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph Evolution:
Densification and Shrinking Diameters. ACM TKDD, 1(1), March 2007.

[131] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Community Structure in Large Networks: Natural Cluster Sizes and the Ab-
sence of Large Well-Defined Clusters. Internet Mathematics, 6(1):29–123,
2009.

114

[132] Jaewon Yang and Jure Leskovec. Defining and Evaluating Network Commu-
nities Based on Ground-Truth. In Proc. ICDM, pages 745–754, 2012.

[133] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to Information Retrieval. Cambridge University Press, 2008.

[134] Kun-Lin Liu, Wu-Jun Li, and Minyi Guo. Emoticon smoothed language
models for twitter sentiment analysis. In AAAI, 2012.

115

Reference Papers

Journal Paper

• Hiroaki Shiokawa, Yasuhiro Fujiwara, Makoto Onizuka, “Fast Extraction
Method of Communities in Network Structures,” IEICE TRANSACTIONS
on Information and Systems, Vol.J96-D, No.5, pp.1145-1157, May 2013 (in
Japanese with English Abstract).

• Hiroaki Shiokawa, Takeshi Yamamuro, Yasuhiro Fujiwara, Makoto Onizuka,
“Parallel Approach for Modularity-based Graph Clusteirng with SIMD In-
struction,” DBSJ Journal, Vol.12, No.1, pp.91-96, Jun 2013 (in Japanese with
English Abstract).

Conference Paper

• Hiroaki Shiokawa, Yasuhiro Fujiwara, Makoto Onizuka, “Fast Algorithm
for Modularity-based Graph Clustering,” In Proceedings of the 27th AAAI
Conference on Artificial Intelligence (AAAI2013), pp.1170-1176, Bellevue,
Washigton, USA, July 2013.

116

Other Papers

Journal Paper

• Junya Arai, Makoto Onizuka, Hiroaki Shiokawa, “Efficient k-Anonymization
by Combining Clustering and Space Partitioning,” DBSJ Journal, Vol.13-J,
No.1, pp.72-77, Octorber 2014 (in Japanese with English Abstract).

• Yasuhiro Iida, Yasunari Kishimoto, Yasuhiro Fujiwara, Hiroaki Shiokawa,
Makoto Onizuka, “Finding Communities and Ranking for Large-Scale Graphs
−Fast Algorithms and Applications−,” Journals of JSAI, Vol.29, No.5, pp.472-
479, September 2014 (in Japanese).

• Yasuhiro Fujiwara, Makoto Nakatsuji, Takeshi Yamamuro, Hiroaki Shiokawa,
Makoto Onizuka, “Fast and Exact Personalized PageRank,” IEICE TRANS-
ACTIONS on Information and Systems, Vol.J97-D, No.4, pp.738-751, April
2014 (in Japanese with English Abstract).

• Hiroaki Shiokawa, Hiroyuki Kitagawa, Hideyuki Kawashima, Yosuke Watan-
abe, “A High Availability Scheme for Distributed Stream Processing,” IEICE
TRANSACTIONS on Information and Systems, Vol.J93-D, No.6, pp.767-780,
Jun 2010 (in Japanese with English Abstract).

Conference Paper

• Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima,
Makoto Onizuka, “Efficient Ad-hoc Search for Personalized PageRank,” In
Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD2013), pp.445-456, New York, USA, June 2013.

117

• Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Makoto Onizuka,
“Fast and Exact Top-k Algorithm for PageRank,” In Proceedings of the 27th
AAAI Conference on Artificial Intelligence (AAAI2013), pp.1106-1112, Belle-
vue, Washington, USA, July 2013.

• Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Makoto Onizuka,
“Efficient Search Algorithm for SimRank,” In Proceedings of the 29th IEEE
International Conference on Data Engineering (ICDE2013), pp.589-600, Bris-
bane, Australia, April 2013.

• Yasuhiro Fujiwara, Makoto Nakatsuji, Takeshi Yamamuro, Hiroaki Shiokawa,
Makoto Onizuka, “Efficient Personalized PageRank with Accuracy Assur-
ance,” In Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD2012), pp.15-23, Beijing,
China, August 2012.

• Hiroaki Shiokawa, Hiroyuki Kitagawa, Hideyuki Kawashima, “A-SAS: An
Adaptive High-Availability Scheme for Distributed Stream Processing Sys-
tems,” In Proceedings of the 11th International Conference on Mobile Data
Management (MDM2010), pp.413-418, Missouri, USA, May 2010.

118

