
On-line Collision and Deadlock Avoidance of
PTP Command-Based Industrial Manipulators

using Advanced Collision Map

Ahmad Yasser Afaghani

Graduate School of Systems and Information Engineering
Department of Intelligent Interaction Technologies

University of Tsukuba

This dissertation is submitted for the degree of

Doctor of Philosophy in Engineering

March 2015

I would like to dedicate this dissertation to my beloved wife Dima and my lovely parents
Hayat and Dr. Jamal . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 36,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 70 figures.

Ahmad Yasser Afaghani
March 2015

Acknowledgements

This research project would not have been possible without the support of many people. I
would like to convey my thanks and gratitude to them throughout this dissertation.

I would like to express my sincere appreciation and gratitude to my supervisor
Prof. Dr. Yasumichi AIYAMA who was abundantly helpful and offered invaluable
assistance, support and guidance. I would like to thank you for encouraging my research and
for allowing me to grow as a research scientist.

Deepest thanks are also due to my co-supervisors Prof. Dr. Takashi TSUBOUCHI,
Prof. Dr. Yasushi NAKAUCHI, and Prof. Dr. Yasuhisa HASEGAWA. I am appreciate for your
helpfulness and kindness during the research.

Special thanks to the committee members Prof. Dr. Hiromi MOCHIYAMA and
Prof. Dr. Jun OTA. Thank you for giving me brilliant comments and suggestions.

I would like also to give special thanks to my previous supervisor during master course
Prof. Dr. Shin’ ichi YUTA.

I would also like to convey special thanks to Japanese Government especially Ministry of
Education,Culture,Sports,Science & Technology(MEXT) who accepted me to do my research
in Japan and provided me with the financial means and language learning facilities.

I am thankful to all my colleagues in Manipulation System laboratory. You were nice to
me and introduced me more about Japan and its culture.

I would like to say that I am glad and thankful to have friends from different countries
who i introduced to them during my study. Thank you for them for spending nice moments
together in Japan.

I am very thankful to my dear brother Salah and sister Lama as well as my
mother-in-law Zainab, brother-in-law Abdulkader, and sisters-in-law Ruba & Raghad. Words
cannot express how they supported me emotionally during my study. Your prayer for me was
what sustained me thus far.

Finally, I wish to express my love and gratitude to my beloved wife Dima and my
compassionate parents Hayat and Jamal who encouraged me emotionally and spiritually to
pursue the PhD degree. They were always my support in the moments when there was no
one to answer my queries.

Abstract

Since many industrial applications include multiple robot manipulators to achieve several
tasks in same workspace, the collision avoidance becomes a significant matter to be con-
sidered. Off-line motion planning is the common method which is widely used in factory
automation. However, when the control commands of each robot are unpredictable due to
unstructured environment such as bin picking, it is necessary to consider on-line motion
planning. Moreover, point-to-point (PTP) command-based control, which is widely used for
industrial robots, is implemented using a black box controller. That means no modification is
possible in the controller system. Thus, the collision avoidance for such robots in on-line
mode becomes a significant issue.

This research aims to build a system that can avoid the collisions and deadlocks of n-robot
industrial manipulators that are controlled using PTP commands in on-line mode. The robots
share same workspace and they have no prior knowledge of the commands which will be
sent after start up the system.

To this end, three essential issues are necessary to be addressed. Collision Detection,
Collision Avoidance, and Deadlock Avoidance.

First, an Advanced Collision Map method is developed to detect the collisions between
whole bodies of the robot manipulators and represent them as collision areas on the map.
This map provides simple 2D scheme which relates travelling length to servo time, and
thus, the collisions which may occur in 3D-space are converted into 2D-space. That gives
simplicity of dealing with the problem of collision avoidance. Collision detection using
advanced collision map requires to calculate the robots’ motions. But since the industrial
robot manipulators have complicated shapes, the mathematical expression of robot body
is hard and burdensome. Therefore, to decrease the computational cost, the links of the
robots are approximated geometrically using the swept sphere volume which presents tight
modelling. Furthermore, it is extremely easy to check for collisions and, therefore, feasible
for on-line applications.

Second, a Time Scheduling Method is applied in this work to avoid the collisions which
are detected using advanced collision map. The method guarantees collision-free path of the
robot by modifying the trajectory of that robot without changing the geometric path that is

vi

provided by PTP command. It is successful to apply this method due to restrictions of the
proposed system that are controlled using black box controllers.

Third, an Escaping Technique is developed to avoid the deadlocks which may occur if
any robot becomes an obstacle in front of the other. This technique is based on proposing an
escaping goal in six directions for the robot manipulator which causes the deadlock. The
technique utilizes advanced collision map method intelligently to detect the collisions for the
process of avoiding the deadlocks, in addition to decrease meaningless travelling which may
be got by proposing far escaping goal.

The collision and deadlock avoidance system has been built for two robot manipulators at
first. Then, the system has been generalized to include n-robot manipulators in the workspace.
Finally, to demonstrate the effectiveness of proposed methods, the system has been tested
and evaluated using an openGL-based simulator.

Table of contents

List of figures x

List of tables xiii

Nomenclature xv

1 Introduction 1
1.1 Background . 1
1.2 Research Motivation and Purpose . 3
1.3 Related Works . 4
1.4 Outline of Dissertation . 8

2 On-line System Description 10
2.1 Introduction . 10
2.2 System Conditions and Assumptions . 11
2.3 System Structure . 12
2.4 System Strategies . 13

2.4.1 Robot Mode Strategy . 13
2.4.2 Command Acquisition Strategy 14
2.4.3 Robot Modelling Strategy . 15

2.5 Conclusions . 17

3 Advanced Collision Map 18
3.1 Collision Map Concept . 18

3.1.1 Introduction of Collision Map . 18
3.1.2 Design of Collision Map . 19

3.2 Design of Advanced Collision Map . 21
3.2.1 Advanced Collision Map for Two-Robot 21
3.2.2 Advanced Collision Map for n-Robot 26

Table of contents viii

3.3 Time of Building Advanced Collision Map 28
3.4 Conclusions . 29

4 Two-Robot Collision Avoidance System 30
4.1 Collision Detection . 31
4.2 Time Scheduling Concept . 32

4.2.1 Methodology . 32
4.2.2 Collision Types . 34

4.3 Two-Robot Collision Avoidance Algorithm 36
4.4 Simulation Results . 38

4.4.1 Simulation Experiment 1 . 38
4.4.2 Simulation Experiment 2 . 40

4.5 Discussion . 43

5 Two-Robot Deadlock Avoidance 48
5.1 Introduction . 48
5.2 Methodology . 50

5.2.1 Direction of Escaping . 50
5.2.2 Distance of Escaping . 51
5.2.3 Deadlock Avoidance Algorithm 54

5.3 Simulation Results . 56
5.3.1 Simulation Experiment 1 . 56
5.3.2 Simulation Experiment 2 . 57

5.4 Discussion . 64

6 n-Robot Collision and Deadlock Avoidance System 66
6.1 Introduction . 66
6.2 n-Robot Collision and Deadlock Avoidance Algorithm 67

6.2.1 Design of Algorithm . 67
6.2.2 Structure of Algorithm . 73
6.2.3 Workspace of n-robot . 75

6.3 n-Robot Deadlock Avoidance . 76
6.3.1 Introduction . 76
6.3.2 Methodology of n-Robot Deadlock Avoidance 77
6.3.3 Improving the Planning Method of Escaping Goal 80

6.4 Simulation Results . 80
6.4.1 Simulation with Three Robots . 84

Table of contents ix

6.4.2 Simulation with Four Robots . 86
6.5 Discussion . 91

7 Conclusions and Future Works 95
7.1 Summary of Dissertation . 95
7.2 Recommended Future Works . 96

Appendix A Calculating Minimum Distance between Two Line Segments 98

Appendix B Making Union of Two Ranges 106

Appendix C Approximating Sweeping Area of Robot Manipulator 110

List of Publications 114

References 115

List of figures

1.1 Highly-structured environment: Assembling part of the car in BMW auto-
motive [65] . 2

1.2 Unstructured environment: Bin picking application using Fanuc manipula-
tors [66] . 2

1.3 Controllers of different industrial robots. Right picture from [67]. Left
Picture from [68] . 4

2.1 Overview of collision and deadlock avoidance system. 13
2.2 Modes of robot. 14
2.3 Swept sphere volume using point, line, and rectangular primitives. 16
2.4 Modelling of robot arm using swept sphere volume. 16

3.1 Two Robot Paths(R1&R2) . 19
3.2 Collision map scheme of two robots . 20
3.3 Paths of robots in shared workspace. 21
3.4 Collision timing map for presenting the ranges of collision timings between

segment j of MR and segment i of SRcmd 24
3.5 Conversion map for changing from time space to travelling length space

using trajectory information of SRcmd’s EEF. 25
3.6 Advanced collision map of two robots showing collision area with original

trajectory of SRcmd assuming that tMR
tar > tSRcmd

tar 26
3.7 Advanced collision map scheme in the case of n-robot 28

4.1 Overview of collision avoidance system with two-robot. 30
4.2 Description of calculating necessary delay time to avoid collision area. . . . 33
4.3 Illustrative examples of unavoidable collision areas. 35
4.4 Brief flow chart of collision avoidance algorithm for one robot. 37
4.5 Snapshot of openGL-based simulator that shows two robots in their initial

posture. 38

List of figures xi

4.6 Command execution timing of R1 and R2 in Exp.1. 40
4.7 Snapshots for robots’ motion in Exp.1.1. 41
4.8 Snapshots for robots’ motion in Exp.1.2. 42
4.9 Commands execution timing of R1 and R2 in Exp.2. 44
4.10 Snapshots for robots’ motion in Exp. 2.1. 45
4.11 Snapshots for robots’ motion in Exp. 2.2. 46

5.1 Graphical example of deadlock situation in case of two robots 49
5.2 Approximated sweeping area of robot motion using cuboid 51
5.3 Proposed directions of escaping for deadlock avoidance 52
5.4 Possible collision areas in case of deadlock avoidance. 53
5.5 Description of deadlock avoidance concept using 2D-space 54
5.6 Flow chart of deadlock avoidance algorithm 55
5.7 Commands execution timing of R1 and R2 in Exp.1. 58
5.8 Snapshots for robots’ motion in Exp.1.1. 59
5.9 Snapshots for robots’ motion in Exp.1.2. 60
5.10 Commands execution timing of R1 and R2 in Exp.2. 61
5.11 Snapshots for robots’ motion in Exp.2.1. 62
5.12 Snapshots for robots’ motion in Exp.2.2. 63

6.1 Process 1: Command acquisition . 69
6.2 Process 2: Command detection . 71
6.3 Process 3: Deadlock avoidance . 72
6.4 Process 4: Command delaying . 73
6.5 Process 5: Command execution . 74
6.6 Structure of n-robot CA and DA algorithm 75
6.7 Entire algorithm of CA and DA system . 75
6.8 Shared workspace including four robot manipulators. 76
6.9 Overlapped workspace including four robot manipulators. 77
6.10 Description of essential steps of n-robots deadlock avoidance concept using

2D-space . 81
6.11 Illustrative example of advanced collision map of deadlock avoidance in case

of three robots . 82
6.12 Improved n-robot DA concept: This is an example of three robots in sequence 83
6.13 OpenGL-based simulator including three robot manipulators in shared workspace 83
6.14 Command execution timing of R1, R2, and R3 in Exp.1. 85
6.15 Snapshots for robots’ motion in Exp. 1.1 including three robots. 85

List of figures xii

6.16 Snapshots for robots’ motion in Exp. 1.2 including three robots. 86
6.17 OpenGL-based simulator including four robot manipulators in overlapped

workspace . 87
6.18 Command execution timing of R1, R2, R3, and R4 in Exp.2. 88
6.19 Time of building advanced collision map in Exp.2.2 88
6.20 Snapshots for robots’ motion in Exp. 2.1 including four robot manipulators. 89
6.21 Snapshots for robots’ motion in Exp. 2.2 including four robot manipulators. 90
6.22 Patterns in case of three robots . 92
6.23 Patterns in case of four robots . 92

A.1 Two lines P and Q in 3D-space . 99
A.2 Unit square to calculate minimum distance 101

B.1 Patterns of two ranges’ arrangements . 108

C.1 Main parameters which can form cuboid in 3D-sapce 111
C.2 Illustrative graph present how to form cuboid (In 2D-sapce) 113

List of tables

3.1 Collision timing map between each pair of links of MR and SRcmd 23
3.2 Ranges of collision timings obtained between each pair of segments of MR

and SRcmd . 24
3.3 Ranges of collision timings obtained between each pair of link of MRs and

SRcmd . 27

4.1 PTP commands that are used in Exp1 for R1 and R2. 39
4.2 Tracking results of minimum distance between the links of both robots before

applying collision avoidance system in Exp. 1.1. 41
4.3 Tracking results of minimum distance between the links of both robots after

applying collision avoidance system in Exp. 1.2. 42
4.4 PTP commands that are used in Exp.2 for R1 and R2. 43
4.5 Tracking results of minimum distance between the links of both robots before

applying collision avoidance system in Exp. 2.1. 45
4.6 Tracking results of minimum distance between the links of both robots after

applying collision avoidance system in Exp. 2.2. 46
4.7 Comparison between current and previous methods. 47

5.1 PTP commands which are used to control R1 and R2 in Exp.1-with DA system. 57
5.2 Tracking results of minimum distance between the links of both robots

without applying CA and DA system in Exp.1.1. 59
5.3 Tracking results of minimum distance between the links of both robots after

applying CA and DA system in Exp.1.2. 60
5.4 PTP commands which are used to control R1 and R2 in Exp.2-with DA system. 61
5.5 Tracking results of minimum distance between the links of both robots

without applying CA and DA system in Exp.2.1. 62
5.6 Tracking results of minimum distance between the links of both robots after

applying CA and DA system in Exp.2.2. 63

List of tables xiv

5.7 Comparison between current method including DA and previous method. . 64

6.1 PTP commands that are used in Exp1 for R1, R2, and R3. 84
6.2 PTP commands that are used in Exp2 for R1, R2, R3, and R4. 87
6.3 Experiments’ results of each pattern showing time of building ACMs . . . 93
6.4 Evaluation of each pattern based on local minima 94

Nomenclature

Acronyms / Abbreviations

ACM Advanced Collision Map

CA Collision Avoidance

CAD Computer Aided Design

CM Collision Map

DA Deadlcok Avoidance

EEF End-Effector

FA Factory Automation

MR Moving Robot

PTP Point-to-Point

SR Standby Robot

SRcmd Standby Robot with command

SSV Swept Sphere Volume

TL Travelling Length

Chapter 1

Introduction

1.1 Background

Factory Automation (FA) are widely increasing through the use of industrial manipulators.
Most applications rely on many robots operating in the same workspace, rather than having
one robot in an ad hoc space. This increases productivity and reduces that amount of space
needed in the factory. However, including multiple robot manipulators to achieve the tasks
will present the problem of collision between them. Thus, the collision avoidance becomes a
significant matter to be considered.

Here, it is worth mentioning that motion planning of robots can be categorized into two
types:

• Off-line motion planning, in which all commands and motion are decided prior to
running the system, This type of planning is common method which is widely used in
FA. But it requires highly-structured environments, which are exhaustive and expensive
to construct. One example for this environment is automotive assembling application
as shown in Fig. 1.1.

• On-line motion planning, in which unpredictable commands are sent to the system
during operation. In contrast to off-line planning, this kind of planning is better suited
to industrial applications that operate in unstructured environments e.g. bin picking as
shown in Fig. 1.2.

This dissertation highlights on the second kind of motion planning which are still under
development.

Meanwhile, point-to-point (PTP) command-based control is widely used for industrial
robot manipulators. These commands are sent from the application module which is responsi-
ble for distributing the commands to each robot based on the tasks.

1.1 Background 2

Fig. 1.1 Highly-structured environment: Assembling part of the car in BMW automotive [65]

Fig. 1.2 Unstructured environment: Bin picking application using Fanuc manipulators [66]

1.2 Research Motivation and Purpose 3

However, the controller of industrial robots is a black box i.e. no modification is possi-
ble in the controller system. Thus, the collision avoidance for such robots in on-line mode
becomes a significant issue. There are a few number of research papers have tackled that
issue. Zhou et al. [1] proposed a zone-blocking method. When one robot enters into the
common workspace, a flag is activated to prevent other robots from entering the workspace.
The method is simple and safe but not very efficient.

This work proposes an efficient method for on-line collision avoidance between
n-robot industrial manipulators considering the whole body. The robots are controlled
using unpredictable PTP commands which are sent after starting the system. Therefore,
an advanced collision map method has been developed in this dissertation for detecting
collisions between all links of the n-robot body. Furthermore, in some cases and due to
unpredictable control commands, the robots may reach to a deadlock situation i.e. the robots
become obstacles to each other. Consequently, the new map has been used intelligently to
avoid the deadlocks.

1.2 Research Motivation and Purpose

The diversity of industrial applications increases the demand on industrial manipulators. That
promoting different companies to compete for building end-user robot manipulators. The
controllers of those robots are unique for each company and they have been designed to be a
black box, i.e. no modification is possible in the controller system. Some examples of those
controller are shown in Fig. 1.3.

On the other hand, some applications require to acquire the commands on the fly with no
previous knowledge. That is because the robots are operating in an unstructured environment
e.g. bin picking. However, the existence of multiple manipulators in the same workspace
will increase the productivity but introduce the problem of collision between them. Those
problems are the key motivation to start the research.

Therefore, the research aims to build a system with on-line planner for detecting and
avoiding any collisions between n-robot industrial manipulators with independent controllers.
In addition, the research develops a method to avoid the deadlock situation which is common
issue in on-line planning. I believe that the contributions of this work will enhance the ad-
vancement of on-line motion planning in industrial applications where the robot manipulators
are operated in an unstructured environment with independent controllers.

1.3 Related Works 4

Fig. 1.3 Controllers of different industrial robots. Right picture from [67]. Left Picture
from [68]

1.3 Related Works

Collision and deadlock avoidance issue has been studied for decades. Many researchers have
addressed that issue in different field of robotics such as mobile robotic field [2][3][4][5] [6]
[7], humanoid robotic field [8][9], as well as industrial robotic field.

Regarding industrial robotic field, which is core of this research, many concepts have been
suggested for solving the problem of collisions and deadlocks, either using
off-line or on-line motion planning. In the following a brief introduction to those works:
Lee et al. [10] and Chang et al. [11] suggested a collision map scheme to detect
potential collisions between two robots. To avoid the collisions, a time scheduling method
of travelling speed along a planned trajectory has been proposed.
Roach et al. [12] reported the coordination of robot actions in sparse environment not in tight
space. The collision avoidance is performed by delaying or altering the path with restriction of
EEF’s path to ellipsoid. They interpreted the task-level command for avoiding the collisions.
Bien et al. [13] proposed a method which plans the time-optimal trajectory of each robot
independently under the constraints on actuator torques and velocities, and so,
the collision region defined in the coordination space is transformed into time-versus-travelled
space with the preplanned velocity of one robot. Thereafter, Lee [14] improved the work
of Bien to be more general cases of more than one collision region in coordination space.
Shiller et al. [15] presented a method for planning the motion of the robot manipulator consid-

1.3 Related Works 5

ering the presence of obstacles. His method relies on the dynamics, actuator constraint, joint
limits, and the obstacles. A small set of near-optimal paths are efficiently selected from a grid.
Onda et al. [16][17] proposed a general approach to planning collision-free path for
a multi-DOF manipulator with a large payload. The method is to find a path
practically by searching the most promising portion of the space.
Zurawski et al. [18] proposed a method for avoiding the collision between two robots
by assuming that the workspace is divided into discrete 2D regions, and thus these regions are
engaged as the robots move along their paths. If the regions of both robots are intersected, the
collision is existed. The collision are avoided by altering the path segments for slave robot.
Seshadri et al. [19] [20] presented optimum path planning algorithms for robot manipulators.
They addressed two different problem of path planning, the minimum-time path planning and
the minimum-energy path planning. The problems have been solved based on method of lo-
cal variations. However, collision check is performed for only the wrist and third link of robot.
Mohri et al. [21] proposed a method of planning collision-free trajectories of two
robots with specified joint paths using virtual coordination space[13]. The minimum
time trajectories for two manipulators are searched under joint torques/forces
constraints and collision-free condition by dynamic programming.
Lee et al. [22] describes the safety arc concept for avoiding collision between two de-
grees of freedom in planner manipulators. The safety arc is an arc-shaped set composed
of possible configuration points avoiding the given constraints in configuration space.
Shwarzer et al. [23] described a new dynamic collision checker to test path segments
in C-space or collections of such segments. The checker is designed to be general, but
particularly suited for probabilistic roadmap planners applied to manipulator arms. How-
ever, the method is dealing with a continuous path control for collision-free checking.
Asakawa et al. [24] [25] studied the automation of welding for large structure considering
the collision between tool and workpiece. The collision-free path is generated based on basis
of CAD workpiece data and the concept of potential field.

On the other hand, many methods and concepts have been
proposed regarding on-line collision and deadlock avoidance issue.
Khatib [26] presented a unique method for obstacle avoidance by manipulators and
mobile robots using artificial potential field concept. Then, Kalaycioglu et al. [27]
suggested a modified impedance control concept for solving the collision problem.
Collision-free robot trajectories are generated incorporating the robot dynamics, the robot
constraints, and avoidance of singular configurations. Thus, the problem of local sin-
gular configurations as resulted in Khatib’s approach has been solved by this technique.
Freund et al. [28] presented an approach for solving find-path problem in

1.3 Related Works 6

multi-robot systems based on suitable structuring of hierarchical overall system.
The system does a change of the basic control dynamics, the introduction of
useful couplings as well as the change of the input gains of the robots.
Chien et al. [29] proposed an on-line trajectory planning of multiple robot manipula-
tors in a loosely coordinated mode, which considers the tasks of the robot manipulators
are independent. A hierarchical control by means of PD-controllers are described.
The system is able to avoid the collisions but not the deadlocks.
Donnell et al. [30] described a method for coordinating the trajectories of two manipu-
lators for avoiding collisions and deadlocks between them. They assumed that the path of
the robots are planned off-line, and thus, the trajectories can modified on-line for avoidance.
Sun et al. [31] worked on non-heuristic motion planning of robot arms in unknown 3D envi-
ronments. The robot is 3-link type with sensor-based system for detecting the approaching of
the obstacles. They suggested to use free configuration space to perform the motion planning.
Czarnecki et al. [32] proposed a collision-free motion planning for two robots operating
in a common workspace. Initial time-optimal trajectories are constructed without attention
to potential collision. Collision free trajectories are obtained either by time scheduling
or alternatively, utilising a simple search technique to derive a new collision-free path.
Hoyer et al. [33] presented an online collision avoidance strategy for two robots with
six degree of freedom using reduced actual robot and virtual hinderance robot concepts,
which is proposed by Borgolte et al. [34], to compute the danger of collision.
Cheng [35] presented a new approach for on-line collision-free and deadlock-free
path planning of two-arm robots for service and assembly tasks, integrated in an
on-line task-level planner. He proposed a heuristic algorithm for collision-free path of
a robot based on 2D geometric model of swept region of the robot.
Li et al. [36] described an on-line planner for two cooperating arms whose task is to grab
parts on a conveyor belt and transfer them to their respective goals, while avoiding col-
lision with obstacles. The approach is based on breaking overall planning problem into
subproblems, each involving a low-dimensional configuration or configuration × time space.
Cellier et al. [37] proposed the reflex action theory. For example, when the second arm hap-
pens to collide with the first arm, the shape of the protection zones is modified.
Sugie et al. [38] presented new control method for achieving autonomous obstacle avoidance
for manipulator with rate constraints. The work is based on Fujimoto’s method [39], and it is
exploring the freedom of coordinate transformation in feedback linearization and cope with
the rate constraints simultaneously by adopting the state-dependent time scale transformation.
Hwang et al. [40] [41] proposed a collision-free trajectory planning method based on a speed
alternation strategy where on-going paths of the robots are fixed. In the first paper, he applied

1.3 Related Works 7

the method on two-planar robot then it is generalized to multi-joint manipulators. Further-
more, collision-trend index has been used to find optimal resolution in the proposed method.
Freund et al. [42] presented a new method CARE (Collision Avoidance in Real-time
Environment), as an extension of [43], to avoid collisions by changing the predetermined
path for endangered robots using the redundant kinematics of a robot.
Juang [44] presented collision avoidance method of multiple-manipulator by
integrating generic algorithm and repulsive force concept. Where, a repulsive
force is artificially created using the distances between the robot links and obstacles,
which are generated by a distance computation algorithm.
Chuang et al. [45] proposed a potential-based path planning algorithm of articulated
robots with 2-DOF joints. The proposed approach computes repulsive force and
torque between charged objects by using generalized potential model. A collision-free
path can be obtained by locally adjusting the robot configuration to search
for minimum potential configurations using these force and torque.
Leonard et al. [46] presented collision-free and occlusion-free algorithm for industrial
robot manipulator with specified pixellated regions of an eye-to-hand camera. The algo-
rithm uses probabilistic roadmap [47] with dynamic occlusion algorithm to determine which
pixels of the camera are occluded by the robot during motion.
Cascio et al. [48] presented a novel approach for robot manipulators trajectory planning
in the presence of static and dynamic obstacles based on Karush-Kuhn-Tucker conditions
to compute the proximity between line-swept spheres volumes used to model colliding objects.
Bosscher et al. [49] proposed an algorithm for collision avoidance with two
robot manipulators. The method is based on creating a set of linear inequality
constraints on the commanded velocity of the robot by formulating joint limits and
potential collisions imposed by nearby objects or joint constraints.
Chung et al. [50] proposed collision-free trajectory generation using receding horizon
strategy under dynamic environment. They employed the elliptical set to represent the
no-collision zone around each link, and explicitly formulate collision avoidance constraints
using state-space inequalities.

In tele-operated robot manipulators which normally required to operate within an
unstructured environment under the directions of human operator, e.g. in medical and
military applications, on-line collision avoidance has been considered and studied extensively.
Beaumont et al. [51] proposed collision avoidance solution which depends on the
individual links of the manipulators being modelled as a number of spheres.
Shaffer et al. [52] presented a safety system with real-time collision avoidance
based on data structure and update algorithm. The structure is N-objects octree. The goal

1.4 Outline of Dissertation 8

was not to perform robot path planning, but rather to support real-time
safety system to warn of imminent collisions between two robot arms.
Lemelsky et al. [53] proposed to use whole-sensitive arm manipulators whose whole bodies
are covered with a sensitive skin sensors to detect the nearby objects. And thus, collision
avoidance of robot manipulators’ tasks can be handled automatically.
Bon et al. [54] described an on-line approach to whole-arm collision avoidance for Ranger
Tele-robotic. That was based on virtual repulsive forces of obstacle to avoid collisions.
Spencer et al. [55] described the cooperative control of both tele-operated and autonomous
redundant manipulators with overlapping workspace.

All aforementioned methods and more which have proposed different methods of collision
and deadlock avoidance problem can be categorized into general methods e.g C-space and
workspace methods e.g potential field. In addition, most of previous methods have addressed
the problem for two robot manipulators only.

However, the restrictions of industrial robot manipulators in FA which is black box
characteristic of the controllers as well as PTP command-based control have rarely tackled
in previous literature papers. Some methods have been proposed e.g [1] and [56] which
addressed the problem for only two robot manipulators.

Therefore, In this dissertation, we are going to consider those restrictions to build an
efficient on-line collision and deadlock avoidance system of n-robot industrial manipulators
with independent controllers.

1.4 Outline of Dissertation

The structure of the dissertation is going to be as follows:

• In Chapter 2, the entire on-line collision and deadlock avoidance system of n-robot
manipulators is presented. The system structure, conditions and assumptions, and
strategies are explained in detail.

• In Chapter 3, an advanced collision map method which is described. It is one of the
most important contributions which have been developed is this work . The method of
advanced collision map is explained at first for two robot manipulators, and then, it is
generalized in the case of n-robot manipulators.

• In Chapter 4, the entire algorithm of on-line collision avoidance system including
two robot manipulators are described. Here, the algorithm is designed regardless the

1.4 Outline of Dissertation 9

deadlock situations. This algorithm is consists of two main parts, collision detection
and time scheduling which are going to be explained. Afterwards, the algorithm is
tested using openGL-based simulator to demonstrate the effectiveness.

• In Chapter 5, the deadlock avoidance method is proposed to improve the system which
is described in Chapter 4. The chapter starts with explaining the background of how do
the deadlock situation happens. Afterwards, the methodology of deadlock avoidance
is explained, followed by several simulations which prove the successfulness of the
proposed system.

• In Chapter 6, the proposed system which is explained in Chapter 4 and 5 are gener-
alized. The algorithm of n-robot on-line collision and deadlock avoidance system is
described in detail. This is done by explaining the necessary modifications which are
done to previous system: the modification to collision avoidance algorithm, and the
modification to deadlock avoidance system. Finally, the simulations including three
and four robot manipulators are presented.

Chapter 2

On-line System Description

Before starting to explain the methods and main algorithm of collision avoidance system,
it is important to understand the structure of proposed system. This chapter is described
the overall system for on-line collision and deadlock avoidance. Section 2.1 describes what
does on-line system mean in this work. In Section 2.2, the conditions and assumptions of
the system are explained. Those information are the key for building the main framework
of the algorithm. Then, Section 2.3 describes the structure of overall system. Afterwards,
Section 2.4 presents some necessary strategies which are relied on for implementing the
system in on-line mode. Finally, Section 2.5 is presenting some conclusions.

2.1 Introduction

Industrial applications which use robot manipulators are often controlled with point-to-point
(PTP) commands. Some applications are designed to acquire the commands on the fly
with no previous knowledge. That is because the robots are operating in an unstructured
environment e.g. bin picking. However, having more than one robot operating in the same
workspace will increase the productivity but introduce the problem of collision between these
robots. Therefore, there should be an on-line planner.

The main tasks of the on-line planner is to detect and avoid collisions and deadlocks
between the robots. The input of the planner are user or application commands to each robot.
Those commands are processed inside the planner before output them to robot controllers.
The on-line term in this scope doesn’t mean that the planner can deal with unforeseen events
as in real time systems but it can process the acquired commands, which are not predictable
before start up the system, on the fly to avoid any collisions and deadlocks.

Here, if the commands from user are all acquired at the same cycle time to process them
on-line, the algorithm is going to fall into very long and undesirable waste time of calculation.

2.2 System Conditions and Assumptions 11

To this end, the planner is set to acquire the command one by one from the user and process it
at this moment. Thus, the collision and deadlock avoidance is performed at each acquirement
of a command for one of the robot manipulators.

2.2 System Conditions and Assumptions

To built on-line collision and deadlock avoidance system, some conditions for that system
should be considered. These conditions are defined as follows:

1. The robots are controlled using PTP commands. These commands have information to
move the robots in a straight line in the workspace.

2. The controllers that are responsible to control the robots are all black box. That means
the controller design is not modifiable.

3. The controllers of the robots are independently operated. Thus, there is possibility to
have more than one kind of controller to control various robots in the workspace.

In addition to above mentioned conditions, the control restrictions of industrial robot systems
have considered as conditions to design the collision avoidance system as well.

1. When the robot executes a PTP command, the motion of the robot becomes restricted
and unchangeable until reaching the target.

2. Paths of the PTP commands which are sent from application module are not modifiable.
Thus, they are regarded as high priority in collision avoidance process.

This system has been built with some assumptions which are necessary to be considered
in the design as well:

1. The black box characteristic of the controller refers to impossibility to modify the
design of the controller according to the system condition. But that doesn’t mean the
impossibility of acquiring some information from the controller. In this work, it is
assumed that the controllers of the robots should have following specifications to suit
the system algorithm:

a The ability to provide some information of the robot to be used in collision and
deadlock avoidance process. These information are mainly robot posture which
include the position of each joint, in addition to acceleration and maximum velocity
of robot’s EEF.

2.3 System Structure 12

b The controller should provide the user with the inverse kinematics which is used to
move the robots’ EEFs point-to-point. Thus, it can be used to do collision detection.

c The correspondence with robot controllers usually have some delay time, in addition,
the time needed to execute the command may take some delay. In this work, we
assume that those time delays are neglected because the experiments are held using
simulator only. However, in case of testing that system using real robot manipulators,
the time delays should be considered as important parameter.

2. The system is operated in an environment which has no obstacles in the workspace.
That refers to both moving and static obstacles.

3. Paths of the robots regarding the PTP commands are straight lines. That means, when
the robot acquires a PTP command to move from initial to target positions, it will move
in a straight line. Note that deciding the path will have effect on designing the collision
and deadlock avoidance algorithm.

4. The system is assumed to work with the applications that robots’ tasks are independent
i.e. time constrained is not existed. Thus, There is no priorities are assigned to the
tasks.

The above mentioned conditions and assumptions draw the framework of the on-line
system. They help to design the algorithm for avoiding the collisions and deadlocks within
that framework.

2.3 System Structure

The ordinary system for controlling the robots industrially consists of two main modules.
One module is for sending specific tasks to the robots as commands and the other module is
for acquiring that commands, and executing them to accomplish the tasks.

To solve the problem of collisions and deadlocks between the robots, a new module are
proposed to be included between above mentioned modules. Thus, the entire system structure
is composed of three substantial modules as follows:

1. Application Module, which provides PTP commands for n-robot. These commands
are accumulated in n-message queues. Each message queue has the commands for one
of the robots. Then these commands are acquired by the next module.

2. Collision & Deadlock Avoidance Module, which is responsible to acquire the com-
mands which are sent by application module one after the other. This module is the

2.4 System Strategies 13

Fig. 2.1 Overview of collision and deadlock avoidance system.

planner which is responsible for detecting collisions between n-robot on the basis of
received commands as well as the current data acquired from the robots. Subsequently,
the scheduling of the commands’ execution timing for avoiding any collisions and
deadlocks is performed before sending the commands to the robot.

3. Robot Controllers Module are responsible for controlling the robots and providing the
planner with the necessary information from the robots such as posture, speed, and
acceleration in order to perform collision detection.

The system modules are illustrated in Fig. 2.1.

2.4 System Strategies

On-line motion planning requires the collision and deadlock avoidance process to be com-
pleted as fast as possible. That because long time planning is undesirable in on-line mode.
Thus, some strategies are proposed to carry out the planning.

2.4.1 Robot Mode Strategy

Modes of the robot are defined based on its situation under the system conditions. The main
purpose of this strategy is to design designing collision detection algorithm which will be
explained in next chapter. Those modes are:

2.4 System Strategies 14

(a) SR mode

(b) SRcmd mode

(c) MR mode

Fig. 2.2 Modes of robot.

1. Standby Robot (SR): The robot is denoted as SR if the robot is waiting for new
command from application module as shown in Fig. 2.2(a).

2. Standby-with-Command Robot (SRcmd): When the planner acquires a command
from application module, the robot immediately turns into SRcmd mode as shown
in Fig. 2.2(b).

3. Moving Robot (MR): After processing the acquired command in the planner, so that
the path that provided by the command is free of collision, the command will be sent
to the controller for execution. Then, the robot will have the MR mode as shown in
Fig. 2.2(c).

2.4.2 Command Acquisition Strategy

The way of acquiring the commands will have effect on the overall algorithm. In this
dissertation, the strategy which is proposed to acquire the commands is based on picking up
the commands which are sent by application module one by one. In other words, picking
up process is performed in sequence for the robots starting from robot number 1 to robot

2.4 System Strategies 15

number n. Therefore, the process of collision detection and avoidance will be started as soon
as acquiring a new PTP command by the planner for one of the robots.

According to this strategy, the number of SRcmd which can be existed is only one robot
among n-robot. Thus, the cycle of the robot modes will have the following flow:

1. SR, which is the initial mode of the robot at the start up of the system.

2. SRcmd , as soon as acquiring a command by the planner for one of the robots.

3. MR, after processing the command which is received by the planner, the command is
sent to the controller for execution. Hence, the robot will turn into MR mode. Then,
after accomplishing the command, the robot will turn into SR mode again.

2.4.3 Robot Modelling Strategy

Modelling of the robot arm plays a significant role in detecting possible collisions between
robots. The model should be precise while being based on a simple mathematical represen-
tation to minimize the calculation cost. For this to be feasible in an on-line system, many
researchers have suggested different modelling techniques, as described below.

• In spherical modelling e.g. [58] [63], two parameters are needed, namely, the center
and the radius of the sphere. Owing to the rotational invariance of the sphere, the
modelling is computationally simple but wasteful of volume.

• Cylindrical modelling involves an elegant shape whereby each link is covered with a
tube, but the mathematical expressions are complicated in 3D space.

• Polyhedral modelling [64], which represents each link by a huge number of polygons,
provides a very accurate representation but is computationally intensive.

• Discrete-orientation polytopes (DOP) [61], which is one of the bounding box volume
(BBV) type, has been utilized for deformed objects but are not useful for rigid bodies
such as robot arms.

• Oriented bounding box (OBB) [62] is also suitable for a rigid body and offers very
tight modelling and good rotational movement, except that mathematical computation
is very intensive.

In this work, the robot arms are modelled using the Swept Sphere Volume (SSV)[59],
which integrates both tightness and mathematical simplicity. SSV is a volume formed by
moving a sphere of a certain radius on a specified primitive such as a point, line, or rectangle

2.4 System Strategies 16

Fig. 2.3 Swept sphere volume using point, line, and rectangular primitives.

Fig. 2.4 Modelling of robot arm using swept sphere volume.

as shown in Fig. 2.3. By changing the primitive dimensions and radius of the sphere, it
is possible to model any designated object. The SSV modelling method has two main
advantages which are:

• Tightness: That because of the possibility of using any number of primitives to model
any robot manipulator. Therefore, by selecting appropriate values of sweeping shperes’
radii, it is possible to model the object as tight as possible.

• Mathematical Easiness: That is because we need to model any object using only two
parameters which are primitive dimension and radius of sweeping sphere over the
primitive.

The rotational invariant characteristic of the sphere gives simplicity of collision detection
using SSV. That characteristic facilitates the finding of the shortest distance between the

2.5 Conclusions 17

primitives and compares it with radii summation of the spheres which sweep on the primitives.
Thus, the computational cost for this model is low, which makes it appropriate for on-line
applications.

Since most industrial robot arms have a near-tube shape, a line primitive is utilized for
modelling the whole body of the robot. One example of robot modelling is applied on
Yaskawa Motoman arm. This arm is constructed of a base, two links, and an EEF. Thus, four
line segments are enough to model the arm with appropriate radii of swept spheres. The
robot’s CAD design is shown in Fig. 2.4 using SSV with four line primitives.

2.5 Conclusions

This chapter has described the overview of n-robot collision and deadlock avoidance system
that is working in on-line mode. The system has been designed regarding some conditions
and assumptions. To make this system feasible in on-line industrial applications, some
strategies have been proposed. Those strategies are robot modes, command acquisition, and
geometric modelling of the robot.

After understanding the system structure, the next chapters will describe the methods
which are proposed to detect and avoid collisions and deadlocks as well as the entire algorithm
of the system.

Chapter 3

Advanced Collision Map

This chapter describes Advanced Collision Map (ACM) method which is developed in this
work. The ACM is improved map based on the concept of Collision Map (CM) which has
been developed many years ago. The chapter starts with introduction to CM in Section .3.1. In
this section, the steps of designing the map is presented as well. Afterwards, in Section 3.2, the
ACM design is explained for the case of two robots and followed by generalized case which
is n-robot. Then, Section 3.3 is described the time of building ACM. Finally, Section 3.4 is
the conclusions of this chapter.

3.1 Collision Map Concept

3.1.1 Introduction of Collision Map

In 1987, Lee et al [10] has developed a method for representing the collisions between
two robots which are sharing common workspace. The notion is based on representing the
collisions which are happened in 3D coordinate as an area on 2D coordinate space, this
area called Collision Area which can be obtained from the path and trajectory information
of the two robots. The 2D coordinates scheme relates travelling lengths to corresponding
servo time of the robot that has not yet executed its command. That 2D scheme is called
Collision Map and it was designed to reveal the potential collisions only between the
end-effectors (EEFs) of two robots.

3.1 Collision Map Concept 19

3.1.2 Design of Collision Map

This section presents the way of designing CM according to our proposed system conditions.
The description of this design will help to understand the design of advanced collision map
which has been developed in this work.

According to our proposed system conditions, let assume there are two robots R1 and R2
in the workspace which are MR and SRcmd respectively, where robot R1’s EEF is moving in
a straight line from S1 to E1 with path length lMR, and the time needed to reach the target
is tMR

tar . While R2’s EEF is supposed to move according to the new PTP command from S2
to E2 with path length lSRcmd , and the requisite travelling time tSRcmd

tar . A simplified graph of
robot paths is shown in Fig. 3.1.

The collision between two robot EEFs may occur if the distance between them d(t) is
equal or less than the prohibited distance. This distance can be determined based on the way
of modelling the EEFs. If the EEFs has modelled using spheres with specific radius r1 and
r2 for the robots R1 and R2 respectively, the prohibited distance will be the radii summation
of modelled EEFs r1+ r2. Thus, there is collision if d(t) <= r1+ r2. Consequently, if a
sphere with radius r1+ r2 is centred at a point P1(t) on the R1’s path at time t, the collision
is existed if that sphere is intersected or contacted with R2’s path. Hence, the equation of
R2’s path is denoted as:

P2(λ) = P2(t0)+λ · (P2(t
SRcmd
tar)−P2(t0)) (3.1)

Where, t0 is initial time which is assumed to be t0 = 0, tSRcmd
tar is the requisite travelling time

of R2’s trajectory as mentioned before, P2(t0) and P2(t
SRcmd
tar) are initial and target positions

of R2’s path respectively, and 1 ≤ λ ≤ 0 is slope of the path. Here, in order to determine

Fig. 3.1 Two Robot Paths(R1&R2)

3.1 Collision Map Concept 20

Fig. 3.2 Collision map scheme of two robots

the collisions between two robots along servo time of R1 which is tMR
tar , it is necessary every

fixed sampling time dts to calculate the intersecting points between the sphere and R2’s path.
Assuming that (P2x(λ),P2y(λ),P2z(λ)) is the path of R2, and (P1x(t),P1y(t),P1z(t)) is the
position of R1 at time t, then, by solving the equation of the sphere which is:

(P2x(λ)−P1x(t))2 +(P2y(λ)−P1y(t))2 +(P2z(λ)−P1z(t))2 = (r1+ r2)2 (3.2)

Three possible solutions of λ as function of time can be obtained:

1. Two Roots λmin(t) and λmax(t): means that there is collision.

2. One Root λ (t): means there is tangential collision.

3. No Roots: so there is no collision between R1 and R2 at time t

Multiplying the roots every dts by R2’s path length will resulted to have collision lengths.
Thus, by drawing these lengths onto collision map, an area called Collision Area will be
formed as shown in Fig. 3.2. As a result, the robots R1 and R2 are collided if and only if the
trajectory of R2 passes through that collision area in the map.

3.2 Design of Advanced Collision Map 21

3.2 Design of Advanced Collision Map

Since the original CM is not able to detect the collisions between the whole bodies of the
robots, it is not feasible in the recent industrial applications. In addition, the original map is
able to reveal the collision between only two robots. That is not enough to suit the system
requirements which is collision avoidance of n-robot industrial manipulators. To solve these
weaknesses in that map, an advanced CM has been developed in this work. The new map
has the same scheme of original one with advantage of collision information between whole
bodies of n-robot industrial manipulators.

This work has performed the improvement on two steps. At first, the original CM has
been improved to be able to detect the collisions between the whole bodies of two robots.
Then, the concept of advanced collision map has been generalized for suiting the case of
n-robot.

3.2.1 Advanced Collision Map for Two-Robot

Let assume that the workspace is equipped with two robots, namely, R1 and R2. Assume
that a new PTP command has been acquired by the planner to move R2’s EEF from S2 to
E2 with path length lSRcmd , and requisite travelling time tSRcmd

tar . At this moment, the robot R1
has already adhered to its path so it is MR, where R1’s EEF is located at P1 and heading
toward E1. The necessary time to reach the target from P1 is tMR

tar . A simplified sketch of the
workspace with two robots and paths are shown in Fig. 3.3.

The danger between the robots can be estimated by measuring the minimum distance
between their links along traveling time of MR. If the distance has exceeded a prohibited
distance, it will be judged as a collision between the robots. The prohibited distance can be

Fig. 3.3 Paths of robots in shared workspace.

3.2 Design of Advanced Collision Map 22

determined with the radii summation of pair of links according to SSV modelling of that
links. Let us denote the SSV line segments that model R1 and R2 by segMR

j and segSRcmd
i ,

respectively. Where, i ∈ [1,m] and j ∈ [1,n] are indicated by segment number, and n and
m are the maximum number of segments for R1 and R2, respectively. To detect potential
collisions between the whole bodies of both robots, it is necessary to check each segment
pair of the MR and SRcmd under their original trajectory information. To detect collisions
between a pair of segments, first, a minimum distance between both segments is calculated
as dmin(segSRcmd

i ,segMR
j) [Appendix A]. Then, the minimum distance is compared with the

summation of the swept spheres radii for both segments. If that distance is equal to or less
than the result of the summation, then, there is a collision between two segments.

dmin

(
segSRcmd

i ,segMR
j

)
≤ ri + r j (3.3)

where, ri and r j are the radii of the spheres which sweep on segSRcmd
i and segMR

j , respectively.
Collision detection of whole bodies of two robots means including the links of that robots.

Thus, designing a map for including the collisions information of all links require the path
and trajectory information of each link. However, the ordinary map is able to detect the
collision only between EEFs of two robots. Consequently, creating the CM of each pair of
links of both robots will be resulted to have many CMs with different collision information.
Each CM is presented the collision information of pair of links. In order to get one CM with
all collision information could be get by combining all resulted CMs. And that is impossible
to be performed because the collision area of each resulted CM is created from different
trajectories information. Therefore, we define a new collision mapping concept namely
Collision Timing Map (CTM). CTM relates the servo time of MR with travelling time of
SRcmd . It aims to calculate the collision timing between the robots’ links. This new map
is created between pair of links of both robots MR and SRcmd . As a result, if there are m
links of SRcmd and n links of MR, a group of m×n CTMs are obtained for all pair of links
as listed in Table 3.1.

To design CTM, it is assumed that the SRcmd starts to move as soon as the planner
acquires the command, so, the SRcmd will move from initial position to target position within
a time period of tSRcmd

tar . The collision is tested every sampling time dts along servo time of
the MR t ∈ [0, tMR

tar]. Thus, at time t, the MR’s segment segMR
j has a specific posture which

can be acquired by the inverse kinematic. This segment posture is checked with the SRcmd’s
segment segSRcmd

i for all postures every time sample along τ ∈ [0, tSRcmd
tar]. As a result, ranges

of collision timings are obtained as Ti j(t,1),Ti j(t,2), . . . ,Ti j(t,rngi j(t)). Where, rngi j(t) is
the maximum number of ranges at time t for a checked pair (i j). The range at time t for pair

3.2 Design of Advanced Collision Map 23

Table 3.1 Collision timing map between each pair of links of MR and SRcmd .

PPPPPPPPPSRcmd

MR
Base Link1 · · · EEF

Base CT M11 CT M12 · · · CT M1n

Link CT M21 CT M22 · · · CT M2n

...
...

...
...

...

EEF CT Mm1 CT Mm2 · · · CT Mmn

(i j) is referred to as a continuous collision and starts from τstr
i j (t,k) and ends at τend

i j (t,k)
whereas k ∈ [1,rngi j(t)] refers to the range number. After finishing all collision checks for
every pair of segments, m×n collision range results are acquired, as listed in Table 3.2.

An illustrative graph of the CTM of pair (i j) is shown in Fig. 3.4. Afterwards, for
determining the potential collisions between the whole bodies of both robots, a union of
the ranges [Appendix B] every time sample within t ∈ [0, tMR

tar] for all pairs is calculated as
follows:

i=m⋃
i=0

j=n⋃
j=0

k=rngi j(t)⋃
k=0

Ti j(t,k)−→

TTotal(t,1)
TTotal(t,2)

...
TTotal(t,rngTotal(t))

 . (3.4)

The results is a group of total ranges of collision timings as illustrated in the following:

TTotal(t,1),TTotal(t,2), . . . ,TTotal(t,rngTotal(t)) (3.5)

Where, rngTotal(t) is the maximum number of total ranges at time t. In addition, each total
range has a boundary which starts from τstr

Total(t,kTotal) and ends at τend
Total(t,kTotal) whereas

kTotal ∈ [1,rngTotal(t)] refers to the total range number.
Since the original collision map scheme is related to the travelling length of EEF corre-

sponding to the servo time, the collisions between EEFs can only be illustrated. Thus, it is
necessary to covert the CTM scheme to have collision map scheme, i.e. converting from
travelling time space to travelling length space. To this end, trajectory information of the
SRcmd is used. At every time sample along t ∈ [0, tMR

tar], the range TTotal(t,kTotal) is used to
get the travelling length of the EEF’s trajectory only at start and end time τstr

Total(t,kTotal) and

3.2 Design of Advanced Collision Map 24

Table 3.2 Ranges of collision timings obtained between each pair of segments of MR and
SRcmd .

segMR
1 segMR

2 · · · segMR
n

(Base) (Link1) (EEF)

segSRcmd
1

(Base)
T11(t,k) T12(t,k) · · · T1n(t,k)

segSRcmd
2

(Link1)
T21(t,k) T22(t,k) · · · T2n(t,k)

...
...

...
...

...

segSRcmd
m

(EEF)
Tm1(t,k) Tm2(t,k) · · · Tmn(t,k)

Fig. 3.4 Collision timing map for presenting the ranges of collision timings between segment
j of MR and segment i of SRcmd .

3.2 Design of Advanced Collision Map 25

Fig. 3.5 Conversion map for changing from time space to travelling length space using
trajectory information of SRcmd’s EEF.

τend
Total(t,kTotal), respectively:

T Lmin
Total(t,kTotal) = fT L(τ

str
Total(t,kTotal)) (3.6)

T Lmax
Total(t,kTotal) = fT L(τ

end
Total(t,kTotal)) (3.7)

where, T Lmin
Total(t,kTotal) and T Lmax

Total(t,kTotal) are the minimum and maximum travelling
lengths of the range at time t, and fT L is the function for calculating the travelling length of
the SRcmd at a desired time assuming that fT L(0) = 0. A graph which relates the SRcmd’s
travelling length to the servo time of the MR by means of travelling time of the SRcmd is
illustrated in Fig. 3.5. It is shown how to obtain a range of collision lengths at time t, where
the SRcmd’s trajectory is shown as a curved line and the range is shown with a straight bold
line.

By drawing all the ranges on that graph, an area called the Collision Area will be formed
as shown in Fig. 3.6. This figure is a graph of the final Advanced Collision Map which
relates the SRcmd’s travelling length to the servo time of the MR. The final arrival time tMR

tar

of the MR might be smaller, equal to, or larger than the final arrival time tSRcmd
tar of the SRcmd .

3.2 Design of Advanced Collision Map 26

Fig. 3.6 Advanced collision map of two robots showing collision area with original trajectory
of SRcmd assuming that tMR

tar > tSRcmd
tar .

Here, the graph depicts the original trajectory of the SRcmd passing through the collision area
assuming that tMR

tar > tSRcmd
tar . It is notable that the advanced collision map has devolved to

resemble the original design of the map [10], and the collision area in the advanced collision
map includes all the information on potential collisions between the whole bodies of the
robots while the original map is limited to information on collisions between the EEFs. The
avoidance method of that area, is elucidated in the next chapter.

3.2.2 Advanced Collision Map for n-Robot

To generalize the concept of advanced collision map, it is improved to detect the collision of
n-robot. The concept is based on treating with all MRs in the workspace as moving segments.
Since the SSV modelling, which is utilized in this work, is able to model any robot with
suitable number of segments, thus, increasing the number of MRs in the same workspace will
increase the number of moving segments. To understand the concept, the steps of creating
n-robot ACM are explained as follows:

1. Determining the maximum number of MRs in the workspace at the moment of creating
ACM. Let indicates to that number as N.

3.2 Design of Advanced Collision Map 27

Table 3.3 Ranges of collision timings obtained between each pair of link of MRs and SRcmd .

❍
❍❍❍

❍❍SRcmd

MR1 · · · MRN

Base Link1 · · · EEF · · · Base Link1 · · · EEF

Base CT M1−11 CT M1−12 · · · CT M1−1n1 · · · CT MN−11 CT MN−12 · · · CT MN−1nN

Link CT M1−21 CT M1−22 · · · CT M1−2n1 · · · CT MN−21 CT MN−22 · · · CT MN−2nN

...
...

...
...

... · · · ...
...

...
...

EEF CT M1−m1 CT M1−m2 · · · CT M1−mn1 · · · CT MN−m1 CT MN−m2 · · · CT MN−mnN

2. Determining ni which is the number of segments of the MRi.

3. Doing collision check between SRcmd’s segments and all segments of every MR, and
thus, instead of having m× n CTMs as listed in Table 3.1, there will be NCT M as
illustrated in following equation:

NCT M = m×
N

∑
i=1

ni (3.8)

The CTMs for N number of MRs are listed in Table 3.3.

4. The union of aforementioned CTMs is performed. As a result, one single CTM is
obtained as the case of two robots ACM.

5. This CTM is converted to have final advanced collision map. This map relates the
travelling length of SRcmd with servo time of all MRs.

Here, It is very important to consider that there are many MRs’ servo times. Thus, the
collisions between SRcmd and all MRs should be checked to the very latest travelling time
among MRs. In the case of two robots ACM, the servo time of all CTMs is same, which is
servo time of MR, however, in this case, the servo time of all CTMs should be unified to
perform the union of those CTMs. Therefore, the servo time of all CTMs is set to be equal
which is the maximum travelling time among all MRs:

N
max
i=1

(tMRi
tar) (3.9)

As s result, the final ACM scheme after converting final single CTM will be as shown in
Fig. 3.7.

3.3 Time of Building Advanced Collision Map 28

Fig. 3.7 Advanced collision map scheme in the case of n-robot

3.3 Time of Building Advanced Collision Map

Due to working under on-line condition, time of building ACM should be considered well.
We refer to this time as dtm. This time is varying based on several factors as follows:

1. First factor is path length of robots, with which the time of building ACM is varying.
Thus, if the paths are long, they will increase the time of calculating dtm.

2. Second factor is the accuracy of calculating the ACM, meant the sampling time dts
which is used to build the map. The smaller the sampling time, the longest calculating
time dtm.

3. Third factor is the number of segments which are modelled the robot’s whole body.
Also, increasing the number of segments will affect to increase the time dtm because
the number of checking pair will increase.

4. Fourth factor is very important that is the PC power. This factor affects on the time of
performing one cycle which is tprocess. Relying on recent development of PC power,
the time of calculating ACM could be decreased much. Even though it can not be
neglected in overall collision avoidance algorithm.

3.4 Conclusions 29

The above factors are arranged in an equation to calculate the approximate time of
building ACM. This equation is:

dtm = tprocess× (nSRcmd
seg ×

n

∑
i=1

nMRi
seg ×max(nMRi

sample)×nSRcmd
sample) (3.10)

Where, nSRcmd
seg refers to the number of segments which models SRcmd , nMRi

seg is the number
of segments which models MRi, nMRi

sample is the number of sampling time of MRi robot, and

nSRcmd
sample is the number of sampling time of SRcmd .

Although the time dtm is very small but it is going to be included in the design of collision
avoidance algorithm which is going to be explained in next chapter.

3.4 Conclusions

This chapter has presented a novel concept of collision detection which is advanced collision
map. The design procedure of advanced collision map in described in the case of two robots
in the workspace, and then the concept is generalized to include unlimited number of robots
in the workspace. This method is feasible in on-line applications which utilized industrial
robot manipulators because of computational simplicity and ability to be applied for any
shape of robot manipulator. In addition, and due to recent high power PCs, the time which is
required to create ACM is short enough to be applied in industry.

Next chapters will utilize the ACM method in collision detection procedure of the system.
That is done in the combination case SRcmd-MR.

Chapter 4

Two-Robot Collision Avoidance System

In chapter 2, the on-line system of collision avoidance has been described. The core of
that system is the planner which is responsible to do collision avoidance process. This
chapter describes the overall algorithm for detecting and avoiding the collisions between two
industrial robot manipulators. It is necessary to start building the system for two-robot for
establishing the main base of collision avoidance algorithm. That will help for generalizing
the current algorithm to suit n-robot case. The system overview of two-robot system is
illustrated in Fig. 4.1. The system structure itself is same as n-robot system that is composed
of three main modules: application module, planner, and controller.

This chapter is divided into five main sections. Section 4.1 is presenting the collision
detection algorithm. Section 4.2 describes the concept of avoiding the collisions using time
scheduling method. Afterwards, Section 4.3 explains the entire algorithm of the two robots
collision avoidance system. Section 4.4 demonstrates the simulation results of two-robot
collision avoidance system using openGL-based simulator. Finally, Section 4.5 is discussing
the results and evaluating them comparing with previous methods.

Fig. 4.1 Overview of collision avoidance system with two-robot.

4.1 Collision Detection 31

4.1 Collision Detection

The collision check between the robots is key for avoidance process. The detection should be
precise to avoid any undesirable or sudden collision between the robots.

According to system strategies which are introduced in Section 2.4, the collision detection
and avoidance should start as soon as acquiring a command by the planner for one of the
robots. Thus, that robot will turn into SRcmd . Then, this robot will check the other robot
mode. Here, three different combinations could be obtained:

1. SRcmd-SR

2. SRcmd-MR

3. SRcmd-SRcmd

But regarding the system strategy of command acquisition method, the third combination
can not exist. That because the commands are processed one by one before sending it to the
controller for execution. In other words, only one SRcmd will detect and avoid the collisions
before turning into MR.

In this dissertation, the collision detection is divided into two methods based on the above
mentioned combinations. The methods are as follows:

1. Advanced Collision Map, which is already described and explained in detail in previous
chapter. This method is applied with case of SRcmd-MR combination.

2. Simple Collision Detection, which is applied with case of SRcmd-SR combination.

The second method is based on simple distance check between a pair of links of both robots
and then compare the distance with prohibited distance of those links.

To understand the second method, let assume that the workspace has two robots R1 and
R2. Both robots are SR mode initially. If the planner acquires a PTP command for one of the
robots; impose it is R1, meant that R1 is SRcmd , then, the other robot R2 becomes a static
object in front of R1. Hence, SRcmd-SR is obtained. Here, the detection is only performed
between the current posture of R2 and each posture of R1 along entire travelling time of R1.
Every sampling time dts the minimum distance [Appendix A] between each pair of links
of both robots is calculated under the original trajectory of R1. The method is sufficed to
detect at least one collision between any pair of links at any time to judge that there is an
Unavoidable Collision which cannot be avoided i.e. the newly acquired command can not be
executed. It can be concluded that the method is starting as soon as obtaining SRcmd-SR, and
the output of the method could be No Collision or Unavoidable Collision.

4.2 Time Scheduling Concept 32

4.2 Time Scheduling Concept

4.2.1 Methodology

Collision avoidance methods have been studied over years in literature (See Section 1.3).
Those methods can be divided into two categories:

• Time Scheduling Method: modifying the trajectory while fixing the geometric path.

• Path Modification Method: modifying the geometric path of the robot.

The condition of this work, as mentioned in Section 2.2, is to deal with the PTP commands
which are sent by application module as they are. This means no change is allowed to the
geometric path which are given by the PTP command. Therefore, time scheduling method
has been applied due to suitability of this method regarding proposed system conditions.
Time scheduling method is depends on modifying the command’s execution time while fixing
the geometric path which is given by PTP command.

With the SRcmd-MR combination, to avoid the collision area on ACM, the original
trajectory of the SRcmd is shifted by dtc f , which is the necessary delay time required to
produce a collision-free path for the SRcmd . Thus, the delay time is calculated as follows:

Reference to the previous assumption where R1 is MR which adheres to its original
trajectory, and R2 is SRcmd which must modify its trajectory to avoid the collision area,
assuming an initial value of delay time dtc f = 0. the method starts by getting the start and
end times of the collision area which are tstr

ca and tend
ca , respectively. To check whether the

trajectory of R2 passes through the area within that period, the travelling length of R2’s
trajectory by means of the function fT L(t) is calculated at every time sample dts:

T L(t−dtc f) = fT L(t−dtc f) : t ∈ [tstr
ca , t

end
ca], tstr

ca ≥ dtc f (4.1)

where, fT L, as mentioned in Section 3.2, is the function for calculating the travelling length
of the SRcmd at a desired time assuming that fT L(0) = 0. Subsequently, T L(t − dtc f) is
compared with all available ranges of the collision lengths at time t. The range is determined
with the minimum and maximum lengths, which are T Lmin

Total(t,kTotal) and T Lmax
Total(t,kTotal)

as described in Eqs. (3.6) and (3.7). Therefore, a collision exists if T L(t−dtc f) is within the
range defined as follow:

T Lmin
Total(t,kTotal)≤ T L(t−dtc f)≤ T Lmax

Total(t,kTotal) (4.2)

If any collision is detected, the original trajectory of R2 will be shifted by one time sample
1× dts, and the delay time is increased by dtc f = dtc f + dts. The next step is a repetition

4.2 Time Scheduling Concept 33

Fig. 4.2 Description of calculating necessary delay time to avoid collision area.

of the last steps but this time the check is done with a new position of travelling length
considering that, after each shift, if tstr

ca < dtc f , the time range check is reduced to become
t ∈ [tstr

ca + dts, tend
ca]. Thus, by continuing to shift the trajectory every time a collision is

detected, we get a final collision-free trajectory of R2 as illustrated by a curved line in
the rightmost of Fig. 4.2. The algorithm which presents the time scheduling method for
calculating the necessary delay time dtc f is illustrated in Algorithm 1.

Algorithm 1 Calculating the delay time dtc f to produce collision-free trajectory

Require: Start and end timing of Collision area tstr
ca and tend

ca
1: Initializing: dtc f = 0;collision = true
2: while (collision) do
3: for (t = tstr

ca to tend
ca]) do

4: collision← f alse; T L← fT L(t−dtc f)
5: if (T Lmax

Total(t,kTotal)≥ T L≥ T Lmin
Total(t,kTotal)) then

6: Increase dtc f by one sampling time 1×dts
7: collision← true
8: break
9: end if

10: end for
11: end while

4.2 Time Scheduling Concept 34

4.2.2 Collision Types

Advanced collision map could have either collision area or not. In the case of existence of
collision area, Algorithm 1 can be applied to have the necessary delay time dtc f . This delay
could get three possible cases:

1. dtc f = 0: means that there is collision area on the map with no collision between the
robots.

2. dtc f > 0: means that there is collision, and the time of command execution should be
postponed.

3. dtc f = ∞: means there will be an unavoidable collision if the command is executed
immediately.

The third case may happen in two situations:

1. If the original trajectory of SRcmd passes through the collision area which has an end
time tend

ca = tMR
tar i.e. the collision still exists even after the end travelling of MR. We

refer to this area as Unavoidable Collision Area. Some examples for unavoidable
collision areas are shown in Fig. 4.3(a) and Fig. 4.3(b).

2. If the original trajectory of SRcmd passes through the collision area which is located
at the bottom of ACM as shown in Fig. 4.3(c). This means SRcmd will collide with
other robot even if it doesn’t move. Thus, delaying the execution time of SRcmd is not
effective. However, this situation is not possible with SRcmd-MR combination because
MR is executed after make sure that its path is free of collision. But this situation
will exist in the deadlock avoidance process which will be discussed in detail in next
chapter.

Consequently, in the first situation, SRcmd will be prevented to move, so, we get a
deadlock situation which will be discussed in the next chapter. The deadlock may happen in
the SRcmd-SR combination as well, if the collision is detected between both robots.

Since the collision map is built while the system is operating, it is necessary to consider
the time of building the ACM dtm which has explained in Section 3.3. The time dtm should
be included to calculate the final delay time for obtaining collision-free trajectory of SRcmd .
To this end, a software timer has been added. Thus, the final delay time required to avoid the
collision area in on-line mode is:

dt = dtc f −dtm (4.3)

4.2 Time Scheduling Concept 35

(a)

(b)

(c)

Fig. 4.3 Illustrative examples of unavoidable collision areas.

4.3 Two-Robot Collision Avoidance Algorithm 36

4.3 Two-Robot Collision Avoidance Algorithm

The previous sections have described the necessary steps to achieve the main goal. To
understand the flow of on-line collision avoidance system for two robots; meant the algorithm
of the planner itself, the overall algorithm is described in this section.

As elucidated in Chapter 2, the planner is designed to be centralized structure. Thus,
the algorithm of the planner, which is contains two robots in the workspace, is divided into
two main parts. Each part is responsible for one of both robots. Both parts have the same
structure which consists of four essential stages as follows:

1. Command Acquisition, in which the message queue is read for acquiring any new
command.

2. Collision Detection, in which the collision with other robot is examined.

3. Command Scheduling, in which the time scheduling method is applied for avoiding
any collisions.

4. Command Execution, in which the command is executed by the robot, and then, it
verifies the end of command execution time before transferring to the first stage again
which is command acquisition.

A brief flow chart of this algorithm is shown in Fig. 4.4. Both parts of the algorithm
are connected together in complicated structure which is going to be explained in detail in
Chapter 6. But briefly say, when each stage task is performed, it will be saved and then the
process is transferred to next robot algorithm which is the second part of the algorithm. After
finishing a stage task in second robot, it will be saved and then the process is transferred to
the first robot stage where it has been left and so on.

The flow of one part of the algorithm is starting with initializing, here, the robot is SR
mode. Then, the message queue is read for any command. If a command is acquired, the
robot turn into SRcmd and the other robot mode is checked. Therefore, if the combination is:

1. SRcmd-SR: simple collision check is performed. If any collision is detected it will be
judged as deadlock. on other side, if there is no collision, the command is executed
immediately.

2. SRcmd-MR: advanced collision map is created. Then the collision type is estimated. If
it is unavoidable collision, the algorithm will wait other robot to get new command.
But if there is collision, the command will be delayed with necessary delay time
before execution. on other side, if there is no collision the command will be executed
immediately.

4.3 Two-Robot Collision Avoidance Algorithm 37

After executing the command the robot is turned into MR mode. Thus, the algorithm will
wait for accomplished the command before transferring to the beginning.

Fig. 4.4 Brief flow chart of collision avoidance algorithm for one robot.

4.4 Simulation Results 38

Fig. 4.5 Snapshot of openGL-based simulator that shows two robots in their initial posture.

4.4 Simulation Results

The collision avoidance system has been tested and evaluated with two robots using an
OpenGL-based simulator. The simulator can emulate the motion of any robot by providing
3D-CAD model of the robot as well as the joint angles of the robot every time sample of
motion. In this work, the simulator is used to imitate two Yaskawa Motoman robots (HP3J
and UPJ). The robots are fixed on a board, with a distance between the central axis of the
robots’ bases being 500 mm. The global coordinate system is located in the middle between
both robot bases. A snapshot of the simulator is shown in Fig. 4.5.

4.4.1 Simulation Experiment 1

The experiment is divided into two parts. The first part is performed without a collision
avoidance module, so the commands are sent directly to the robot controller, after which
the motion is monitored. The second part is performed with a collision avoidance module.
Let us assume that R1 is the gray color robot and R2 is the blue robot, and the maxi-
mum velocity and acceleration of each robot EEF are set as V 1max = V 2max = 100 mm/s
and a1 = a2 = 100 mm/s2, respectively. Both robots have the same length of links which are
lbase- joint1 = 290 mm, l joint1- joint2 = 260 mm, l joint2- joint3 = 270 mm, and
l joint3-EEF = 90 mm. The radii of the spheres which sweep on the line primitives that model
the robot are rbase = 112 mm, rlink1 = 117 mm, rlink2 = 100 mm, and

4.4 Simulation Results 39

Table 4.1 PTP commands that are used in Exp1 for R1 and R2.

RRR111-Commands RRR222-Commands
(xxx, yyy, zzz, roll, pitch, yaw) (xxx, yyy, zzz, roll, pitch, yaw)

C11 (300,250,300,0,0,0) C21 (300,−250,300,0,0,0)
C12 (500,−50,360,0,−20,0) C22 (500,0,250,0,−20,0)
C13 (300,250,300,0,0,0) C23 (300,−250,300,0,0,0)
C14 (500,15,360,0,0,0) C24 (500,−15,300,0,0,0)
C15 (300,250,300,0,0,0) C25 (300,−250,300,0,0,0)

rEEF = 48 mm. Thus, PTP commands are sent to the robots as shown in Table 4.1. Each
command includes information of EEF posture according to the global coordinate system
[x [mm],y [mm],z [mm], roll [deg],pitch [deg],yaw [deg]]. The initial posture of each robots
is assumed to be: R1init (450,250,300,0,0,0) and R2init (450,−250,300,0,0,0).

In the first part of the experiment (Exp.1.1), the commands are sent directly to the
controller. The execution timing of the commands from the startup of the system are
illustrated in Fig. 4.6(a). It is worth mentioning that the period before the execution of
the first command is that time required to initialize the system. The minimum distance
between each pair of segments of the robots is tracked, and the results for all possibilities
of pairs are acquired as shown in Table 4.2. The distance curve is shown as a solid line,
and the prohibited distance, which is the radii summation of spheres that model the tracked
segments, is shown as a dashed line. We can notice that several curves have passed through
the prohibited distance, which means that collisions are happened between the robots.

The second part of the experiment (Exp.1.2) has been done after including the collision
avoidance module. The execution timing of the commands after applying the collision
avoidance method are shown in Fig. 4.6(b). The results of the distance curve of each pair
are illustrated in Table 4.3. It is observable that all the curves are navigating away from the
prohibited distance.

To evaluate the experiment visually, the snapshots of robots’ motion are taken in both
parts of the experiment. The snapshots are shown in Fig. 4.7 and Fig. 4.8 for Exp.1.1 and
Exp.1.2 respectively. It is clear that the system can successfully avoid all potential collisions.

4.4 Simulation Results 40

(a) Exp1.1: Command chart before applying collision avoidance method.

(b) Exp1.2: Command chart after applying collision avoidance method.

Fig. 4.6 Command execution timing of R1 and R2 in Exp.1.

4.4.2 Simulation Experiment 2

Another simulation experiment is presented. It imitates the same experiment which is
performed in [1]. The results will be used for making the final comparison and evaluation
between our proposed system and previous system.

Eight PTP commands as illustrated in Table 4.4 are sent to the system. The maximum
velocity, acceleration, and initial position of both robots are set as experiment 1.

In the first part of experiment (Exp.2.1), the commands are sent directly to the controller
without applying CA method. The execution timing of the commands are illustrated in
Fig. 4.9(a). In addition,the minimum distance between each pair of links are tracked. The
distance curves result are shown in Table 4.5. It is clear that many distance curves exceed
the prohibited distance of pair of links. The snapshot of robots’ motion which are illustrated
in Fig. 4.10 showing the visual collision between the robots.

In the second part of experiment (Exp.2.2), the commands are sent to the planner. Thus,
the execution timing of the commands are illustrated in Fig. 4.9(b). The tracking result of
minimum distance between each pair of links are calculated and they are shown in Table 4.6.

4.4 Simulation Results 41

Table 4.2 Tracking results of minimum distance between the links of both robots before
applying collision avoidance system in Exp. 1.1.

segMR
1 segMR

2 segMR
3 segMR

4
(base) (Link1) (Link2) (EEF)

 0

 200

 400

 600

 0 5 10 15 20 25 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 800

 0 5 10 15 20 25 30

 0

 200

 400

 600

 0 5 10 15 20 25 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30

 0

 200

 400

 600

 0 5 10 15 20 25 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30

 0

 200

 400

 600

 800

 0 5 10 15 20 25 30

[D
is

ta
n

c
e

(m
m

)]

[Time(s)]

 0

 200

 400

 600

 0 5 10 15 20 25 30

[Time(s)]

Minimum distance between two segments

 0

 200

 400

 600

 0 5 10 15 20 25 30

[Time(s)]

Prohibited distance

 0

 200

 400

 600

 0 5 10 15 20 25 30

[Time(s)]

segSRcmd
1

(Base)

segSRcmd
2

(Link1)

segSRcmd
3

(Link2)

segSRcmd
4

(EEF)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.7 Snapshots for robots’ motion in Exp.1.1.

4.4 Simulation Results 42

Table 4.3 Tracking results of minimum distance between the links of both robots after
applying collision avoidance system in Exp. 1.2.

segMR
1 segMR

2 segMR
3 segMR

4
(base) (Link1) (Link2) (EEF)

 0

 200

 400

 600

 0 5 10 15 20 25 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 800

 0 5 10 15 20 25 30

 0

 200

 400

 600

 0 5 10 15 20 25 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30

 0

 200

 400

 600

 0 5 10 15 20 25 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30
 0

 200

 400

 600

 0 5 10 15 20 25 30

 0

 200

 400

 600

 800

 0 5 10 15 20 25 30

[D
is

ta
n

c
e

(m
m

)]

[Time(s)]

 0

 200

 400

 600

 0 5 10 15 20 25 30

[Time(s)]

Minimum distance between two segments

 0

 200

 400

 600

 0 5 10 15 20 25 30

[Time(s)]

Prohibited distance

 0

 200

 400

 600

 0 5 10 15 20 25 30

[Time(s)]

segSRcmd
1

(base)

segSRcmd
2

(Link1)

segSRcmd
3

(Link2)

segSRcmd
4

(EEF)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.8 Snapshots for robots’ motion in Exp.1.2.

4.5 Discussion 43

Table 4.4 PTP commands that are used in Exp.2 for R1 and R2.

RRR111-Commands RRR222-Commands
(xxx,yyy,zzz,roll,pitch,yaw) (xxx,yyy,zzz,roll,pitch,yaw)
C11(300,250,330,0,0,0) C21(300,−250,330,0,0,0)
C12(350,0,200,0,0,0) C22(350,0,200,0,0,0)
C13(350,−51,200,0,0,0) C23(350,51,200,0,0,0)
C14(400,250,330,0,0,0) C24(400,−250,330,0,0,0)

As in the experiment 1, the proposed system could avoid all collisions successfully. Additional
visual evaluation of robots’ motion showing that both robots are navigating without any
collisions. The Fig. 4.11 illustrates the snapshots of second part of experiment 2.

4.5 Discussion

The aforementioned simulation results implemented ACM many times for achieving collision
avoidance. The observation of the time dtm which is required to build each ACM indicates
many values. These values are ranging from [1 ∼ 25] ms for creating one ACM. The PC,
which is used to achieve those experiment, has feature of Intel Core i5, 2.5GHz with memory:
4Gb. The resulted values for the time dtm is acceptable to be implemented in on-line. These
values can be decreased more with usage of high tech PC.

The proposed system has been evaluated using openGL-based simulator and real
measuring of minimum distances between the links of both robots. It becomes obvious
that the proposed system can overcome the previously discussed limitation of the collision
detection method that developed by Lee et al. [10]. The original collision map devised by
Lee illustrates the information on potential collisions between only the EEFs of both robots,
whereas in the proposed system, the original map has been improved to have an advanced
collision map. The ACM has the same scheme as the original map plus significant advantage
of the ability to show the collisions between the whole bodies of the two robots.

A comparison with the work of Zhou et al. [1], a system which has the same problem
formulation as our work, shows that the proposed system proves an advantage in terms of
time efficiency. The method proposed by Zhou [1], which is zone-blocking, is avoiding the
collisions by determining a specific area in the workspace. If any of both robots is entered
inside that area, the flag is activated for preventing other robot to enter that area. Zhou’s
method is simple and safe but large amounts of time are wasted due to the inability of the

4.5 Discussion 44

(a) Exp2.1: Command chart without collision avoidance system.

(b) Exp2.2: Command chart after applying collision avoidance system.

(c) Command chart by applying previous method [1].

Fig. 4.9 Commands execution timing of R1 and R2 in Exp.2.

4.5 Discussion 45

Table 4.5 Tracking results of minimum distance between the links of both robots before
applying collision avoidance system in Exp. 2.1.

segMR
1 segMR

2 segMR
3 segMR

4
(base) (Link1) (Link2) (EEF)

segSRcmd
1

(Base)

segSRcmd
2

(Link1)

segSRcmd
3

(Link2)

segSRcmd
4

(EEF)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.10 Snapshots for robots’ motion in Exp. 2.1.

4.5 Discussion 46

Table 4.6 Tracking results of minimum distance between the links of both robots after
applying collision avoidance system in Exp. 2.2.

segMR
1 segMR

2 segMR
3 segMR

4
(base) (Link1) (Link2) (EEF)

segSRcmd
1

(Base)

segSRcmd
2

(Link1)

segSRcmd
3

(Link2)

segSRcmd
4

(EEF)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4.11 Snapshots for robots’ motion in Exp. 2.2.

4.5 Discussion 47

Table 4.7 Comparison between current and previous methods.

Without Previous Proposed
Method Method Method

CA Method
None Zone- Advanced

blocking collision map

Geometric Modelling None None SSV

Time spent to execute
24.3 s 40.7 s 33.1 s

commands in Exp2

robot to enter the workspace if another robot is operating in it. The experiment described in
Zhou’s paper [1] has been performed with the same configuration but using our proposed
system. The results of this experiment is already demonstrated in Section 4.4.2. The time
required to execute all the commands is calculated for both method. Then, a comparison
between the proposed method and Zhou’s method is performed. The results are shown in
Table 4.7. As it is illustrated in that table, our proposed method shows a good efficiency
comparing with Zhou’s mehtod.

Chapter 5

Two-Robot Deadlock Avoidance

This chapter presents the solution for deadlock problem which is common in on-line system.
The structure of the chapter starting from Section 5.1 which introduces the deadlock problem
of two robots. Section 5.2 describes the method of deadlock avoidance which is developed
in this work. Afterwards, some simulation results are illustrated in Section 5.3. Finally,
Section 5.4 gives some discussions and conclusions of deadlock avoidance algorithm.

5.1 Introduction

The deadlock is an expression that refers to a situation in which two or more actions are
each waiting for the other to finish, and thus neither of them is completed. That means the
algorithm is stuck in endless loop with no solution.

In this dissertation, deadlock means the situation in which each robot becomes obstacle
to the other, and hence both of them are not able to complete any command as shown in
Fig. 5.1. The deadlock is common problem in industrial applications which are operated
either under off-line or on-line mode. Unlike on-line mode environment, the motion of
the robots with off-line mode applications can be planned in advance, and therefore, the
deadlocks are avoided before starting the system.

In the previous chapter, two robots collision avoidance system is built neglecting the
deadlock cases. The simulation examples in previous chapter have been chosen to be with
no deadlock case. But those kind of examples are rare and don’t reflect the real application
examples which are being used in industry.

To solve the problem of deadlock between two robots, it should be clear when the
deadlock happens. In the proposed system, the deadlock situation may occur in two cases
regarding the system design as follows:

5.1 Introduction 49

Fig. 5.1 Graphical example of deadlock situation in case of two robots

1. SRcmd-MR combination: When an unavoidable collision areas are obtained from ACM,
it will cause deadlock. That means if the output of collision avoidance algorithm is
dtc f = ∞ as described in Section 4.2.

2. SRcmd-SR combination: According to Section 4.1, if any collision is detected between
the robots, it will be judged as unavoidable collision, and thus the robots are in deadlock
situation.

In both cases the SRcmd can not execute its command. Those are the only case which causes
the system to enter in deadlock situation. Here, the Deadlock Avoidance (DA) algorithm
is added to previously describe two-robot on-line collision avoidance system. That means,
the overall algorithm is able to avoid any collisions and deadlocks between two robots in
on-line mode. In the next section, the methodology for avoiding the deadlocks are described
in details.

5.2 Methodology 50

5.2 Methodology

There is no way to avoid deadlock in on-line mode except allowing one robot to escape
because the system has no prior knowledge of the PTP commands which will be sent. Thus,
the motion of the robots can not be planned before operating the system.

In this dissertation, an Escaping Technique is proposed to avoid the deadlocks. The
condition for starting the DA process is set to be when the combination is SRcmd-SR only.
Therefore, in the first case of deadlock occurrence, SRcmd will wait the MR to accomplish its
command and turn into SR mode, and then SRcmd-SR combination can be get. Here, it can
be said that SR is the main reason to cause deadlock to other robot. The merit of choosing
this combination to start the deadlock process is that both robots are in stopping conditions
which gives the generosity of calculation time. That means even if the calculation time is
long it will not result to have collision between the robots because both of them are in stop
condition.

The key for avoiding any deadlock is to find a safe position of SR, then, command SR
to move toward the that position at suitable timing. This position is referred as Escaping
Position. In this scope, two indispensable information should be decided for calculating the
escaping position: The direction of escaping and the distance needed to escape.

The algorithm proposes six directions for escaping, the collision is checked to designated
direction. If it is free of collision, it will be the direction of escaping, and then the goal of
escaping is set to be the most far point where the robot can reach. On other hand, if proposed
direction is not free of collision, the next direction is chosen and so on. Here, ACM is used
intelligently to decrease the meaningless travelling if the proposed goal of escaping is far.

The way of deciding direction and distance is going to be explained in next subsections
assuming that SRcmd has a PTP command to move from initial position S to target position E
with path length lSRcmd and the time needed to reach the target is tSRcmd

tar .

5.2.1 Direction of Escaping

The direction of deadlock avoidance is decided based on approximated sweeping area of
SRcmd and current position of SR which is obstacle in front of SRcmd . The sweeping area of
SRcmd is an area which the robot occupies during the motion from initial to target position if
the command is executed.

The sweeping area is approximated by a cuboid [Appendix C]. The initial form of the
cuboid fits the initial posture of SRcmd . This cuboid is re-formed at each time sample along
tSRcmd
tar based on the calculation result of SRcmd’s posture at that time. In other words, the
cuboid is expanded at each time a joint of the robot exceeds the borders of the cuboid. Thus,

5.2 Methodology 51

Fig. 5.2 Approximated sweeping area of robot motion using cuboid

at the end of travelling time, a final cuboid is calculated as shown in Fig. 5.2. The purpose of
forming the cuboid is to inform the other robot, which is SR, about the danger area which
should be avoided. Here, the question is: In which direction the SR should escape to avoid
the deadlock?

To solve that issue, the distances between the EEF of SR and all sides of the cuboid are
calculated. As a result, six possible directions for escaping can be proposed for escaping:
X, -X, Y, -Y, Z and -Z as shown in Fig. 5.3. Those directions are arranged in ascending order
regarding the distances, and then the direction with minimum distance will be suggested to
be the direction of escaping at first. Afterwards, collision detection is performed to assure
that this direction has no collision. However, if that direction is not collision-free, the next
direction will be chosen and so on. If all directions are not free of collision, the algorithm
will enter in Warning Situation for intervention of human factor to solve the problem.

5.2.2 Distance of Escaping

The distance of escaping can be obtained using advanced collision map. For simplicity, we
are going to explain the concept using 2D-space.

Assuming SRcmd will move from S to E. First, the direction of escaping is decided
based on the cuboid, then, the escaping goal P is proposed to be a position on the boundary
of the workable area of SR in the direction of escaping . This position is referred as

5.2 Methodology 52

Fig. 5.3 Proposed directions of escaping for deadlock avoidance

Maximum Reachable Goal. However, moving the robot to that goal may fall into wasteful
travelling length.

To this end, ACM is used intelligently to decrease the travelling length. As mentioned
before, the deadlock is caused by the SR, so that, it becomes obstacle to SRcmd . That means,
there is unavoidable collision if SRcmd is executed its command while SR is being at the
same position. Thus, creating the ACM for SRcmd-SR combination with newly proposed
maximum reachable goal of SR will form a collision area in the lower part of the map. Based
on the area, the collision can be avoided. Thus, three possible collision areas can be obtained:

(a) Safe collision area: When the trajectory of SR does not pass through the collision area
as shown in Fig. 5.4(a). In this case, decreasing the travelling length of escaping is
main goal. By using the characteristic of the ACM, the maximum height of the area
hmax is calculated. This indicates the maximum travelling length among all collision
ranges of the area. Since the trajectory of SR is safe after that travelling length. Thus,
the trajectory is modified to start deceleration at t∗ whose travelling length is hmax. As a
result, the modified trajectory will determine final distance of escaping i.e. the final goal
for avoiding the deadlock. This goal is called Real Escaping Goal.

(b) Avoidable collision area: When the trajectory of SR passes through the collision area
which has maximum height hmax < lSR as shown in Fig. 5.4(b). Where, lSR is the
maximum travelling length of SR to reach maximum reachable goal. Since both robots
are in stopping condition, the trajectories of both of them is modifiable. Here, the area
can be avoided if the trajectory is shifted back to t < 0 which means executing SR before
SRcmd with necessary delay time dtc f . Furthermore, the trajectory of SR can be modified
based on the maximum height of the area as mentioned in the case (a).

5.2 Methodology 53

(a) Safe collision area

(b) Avoidable collision area

(c) Unavoidable collision area

Fig. 5.4 Possible collision areas in case of deadlock avoidance.

5.2 Methodology 54

Fig. 5.5 Description of deadlock avoidance concept using 2D-space

(c) Unavoidable collision area: When the maximum height of collision area is equal to
maximum travelling length of SR, i.e. hmax = lSR as shown in Fig. 5.4(c). This means
there is unavoidable collision, so, the direction of escaping should be changed to the next
proposed one as mentioned in previous subsection.

An illustrative figure of deciding escaping position in 2D-space is shown in Fig. 5.5.

5.2.3 Deadlock Avoidance Algorithm

To understand the methodology of DA, the algorithm is described. As it is illustrated in
Fig. 5.6, the algorithm of DA start with creating the cuboids of sweeping area of SRcmd . The
sweeping area which is the area where the robot is occupied during executing the command.
Afterwards, the distances between SR’s EEF and all sides of the cuboids are measured. Those
distances are arranged in ascending order. Then, the algorithm is entered in a loop to check
the collision-free direction starting from direction k = 1. The steps are as follows:

1. The algorithm will proposed the maximum reachable goal for escaping to be on the
boundary of workable range of SR in the designated direction k.

2. Creating ACM assuming the higher priority is given to SRcmd , so it is MR. And SR
with new proposed goal is treated as lower priority, so it is SRcmd .

5.2 Methodology 55

Start

Creating cuboids of

sweeping area

Calculating

“dtdl”

Unavoidable

Collision
Avoidable

 Collision

K=K+1

Collision case

estimation

Collision

Case?

No

Collision

Measuring distances

SR’EEF↔cuboid’s sides

Arranging the distances

in ascending order

Choose direction “K”

Calculating

max. reachable goal

Create

advanced collision map

Calculating

hmax

Calculating

“Real Escaping Goal”

K>6

Yes

Deadlock is

unavoidable

Warning

No

End

K=1

Fig. 5.6 Flow chart of deadlock avoidance algorithm

5.3 Simulation Results 56

3. The collision case is examined based on ACM result.

(a) If the collision case is "No Collision", the possibility of reducing travelling length
is examined.

(b) Thus, hmax which is the maximum height of collision area on the ACM is calcu-
lated.

(c) Based on hmax the trajectory is modified to start deceleration at that travelling
length, and so, the "Real Escaping Goal" is calculated that guarantees deadlock-
free path.

(d) If the collision case is "Avoidable Collision", the necessary delay time dtdl for
avoiding the collision area is calculated. Then , steps 3(b) and 3(c) are performed.

(e) If the collision case is "Unavoidable Collision", the next proposed direction is
selected; meant k = k+1

4. In the case that all the directions are not free of collision, the deadlock is not able to be
avoided in this algorithm. Thus, the algorithm gives Warning in order to allow human
factor intervention to solve the problem.

5.3 Simulation Results

The CA system of two robots is tested and evaluated including DA algorithm. Testing is
performed using openGL-based simulator which has been already described in Section 4.4.

The simulations imitate movement of two robots that are fixed on a board, with a distance
between the central axis of the robots’ bases being 500mm. The global coordinate system is
located in the middle between both robot bases.

5.3.1 Simulation Experiment 1

This example uses the PTP commands which are illustrated in the Table 5.1. Each
command includes information of EEF posture according to the global coordinate system
[x(mm),y(mm),z(mm),roll(deg), pitch(deg),yaw(deg)]. The experiment is divided into two
parts. The first part is performed without collision & deadlock avoidance module; meant
with no planner, so, the commands are sent directly to the robot controller. The second part
is carried out including collision & deadlock avoidance module.

Let us assume that R1 is the gray color robot and R2 is the blue robot as shown in
Fig. 4.5, and the maximum velocity and acceleration of each robot EEF are set to be

5.3 Simulation Results 57

Table 5.1 PTP commands which are used to control R1 and R2 in Exp.1-with DA system.

R1-Commands R2-Commands
(x,y,z,roll,pitch,yaw) (x,y,z,roll,pitch,yaw)
C11(300,250,300,−90,0,0) C21(300,−250,300,90,0,0)
C12(400,−50,300,−90,0,0) C22(400,50,300,90,0,0)
C13(400,−50,100,−90,0,0) C23(400,50,100,90,0,0)
C14(400,400,100,0,0,0) C24(400,−400,100,0,0,0)
C15(300,250,300,0,0,0) C25(300,−250,300,0,0,0)

V 1max = V 2max = 100mm/s and a1 = a2 = 100mm/s2 respectively. The initial posture of
the robots’ EEFs are R1init(450,250,300,0,0,0) and R2init(450,−250,300,0,0,0).

In the first part of the experiment (Exp.1.1), the PTP commands are sent double times
directly to the controller. Thus, the commands operation times from the start up of the system
are illustrated in Fig. 5.7(a). It is worth mentioning that the period before executing the first
command is the time required for initializing the system. The minimum distance between
each pair of segments of the robots is tracked, and the results for all possibilities of pairs
are acquired as shown in Table 5.2. The distance curve is illustrated in a solid red line, and
the prohibited distance, which is the radii summation of spheres which model the tracked
segments, is shown as a dashed green line. It is notable that several curves have passed
through the prohibited distance, which means there are unavoidable collisions.

The second part of the experiment (Exp.1.2) has been done with including the
collision & deadlock avoidance module. Thus, the commands operation times for this
experiment are shown in Fig. 5.7(b). It can be noticed that there are two deadlocks have
been avoided by adding two new commands. The results of the distance curve of each
pair are illustrated in Table 5.3. It is observable that all curves are navigating away from
the prohibited distance. This means the system is able to avoid all potential collisions and
deadlocks successfully.

To evaluate the experiment visually, the snapshots of robots’ motion are taken in both
parts of the experiment. The snapshots are shown in Fig. 5.8 and Fig. 5.9 for Exp.1.1 and
Exp.1.2 respectively. It is clear that the system can successfully avoid all potential collisions.

5.3.2 Simulation Experiment 2

Another simulation experiment is presented. It imitates the same experiment which is
performed in [1]. The results will be used for making the final comparison and evaluation
between our proposed system and previous system.

5.3 Simulation Results 58

(a) Exp.1.1: Command chart without CA and DA system.

(b) Exp.1.2: Command chart of applying CA and DA system.

Fig. 5.7 Commands execution timing of R1 and R2 in Exp.1.

This example uses the PTP commands which are illustrated in the Table 5.4. The
experiment 2 is carried out with the same assumption of experiment 1. Again, the experiment
is divided into two parts. The first part is performed without collision & deadlock avoidance
module; meant with no planner. Conversely, the second part is carried out including collision
& deadlock avoidance module.

In the first part of the experiment (Exp.2.1), the PTP commands are sent double times
directly to the controller. Thus, the commands operation times from the start up of the system
are illustrated in Fig. 5.10(a). It is worth mentioning that the period before executing the first
command is the time required for initializing the system. The minimum distance between
each pair of segments of the robots is tracked, and the results for all possibilities of pairs
are acquired as shown in Table 5.5. The distance curve is illustrated in a solid red line, and
the prohibited distance, which is the radii summation of spheres which model the tracked
segments, is shown as a dashed green line. It is notable that several curves have passed
through the prohibited distance, which means there are unavoidable collisions.

The second part of the experiment (Exp.2.2) has been done with including the
collision & deadlock avoidance module. Thus, the commands operation times for this

5.3 Simulation Results 59

Table 5.2 Tracking results of minimum distance between the links of both robots without
applying CA and DA system in Exp.1.1.

segMR
1 segMR

2 segMR
3 segMR

4
(base) (Link1) (Link2) (EEF)

segSRcmd
1

(Base)

segSRcmd
2

(Link1)

segSRcmd
3

(Link2)

segSRcmd
4

(EEF)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.8 Snapshots for robots’ motion in Exp.1.1.

5.3 Simulation Results 60

Table 5.3 Tracking results of minimum distance between the links of both robots after
applying CA and DA system in Exp.1.2.

segMR
1 segMR

2 segMR
3 segMR

4
(base) (Link1) (Link2) (EEF)

segSRcmd
1

(Base)

segSRcmd
2

(Link1)

segSRcmd
3

(Link2)

segSRcmd
4

(EEF)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5.9 Snapshots for robots’ motion in Exp.1.2.

5.3 Simulation Results 61

Table 5.4 PTP commands which are used to control R1 and R2 in Exp.2-with DA system.

R1-Commands R2-Commands
(x,y,z,roll,pitch,yaw) (x,y,z,roll,pitch,yaw)
C11(300,250,330,0,0,0) C21(300,−250,330,0,0,0)
C12(350,0,200,0,0,0) C22(350,0,200,0,0,0)
C13(350,−51,200,0,0,0) C23(350,51,200,0,0,0)
C14(400,250,330,0,0,0) C24(400,−250,330,0,0,0)

(a) Exp.2.1:Command chart without CA and DA system.

(b) Exp.2.2:Command chart of applying CA and DA system.

(c) Exp.2.3:Command chart of applying previous method (Zone-
blocking [1]).

Fig. 5.10 Commands execution timing of R1 and R2 in Exp.2.

5.3 Simulation Results 62

Table 5.5 Tracking results of minimum distance between the links of both robots without
applying CA and DA system in Exp.2.1.

segMR
1 segMR

2 segMR
3 segMR

4
(base) (Link1) (Link2) (EEF)

 0

 200

 400

 600

 0 10 20 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 10 20 30
 0

 200

 400

 600

 0 10 20 30
 0

 200

 400

 600

 800

 0 10 20 30

 0

 200

 400

 600

 0 10 20 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 10 20 30
 0

 200

 400

 600

 0 10 20 30
 0

 200

 400

 600

 0 10 20 30

 0

 200

 400

 600

 0 10 20 30

[D
is

ta
n

c
e

(m
m

)]

 0

 200

 400

 600

 0 10 20 30
 0

 200

 400

 600

 0 10 20 30
 0

 200

 400

 600

 0 10 20 30

 0

 200

 400

 600

 800

 0 10 20 30

[D
is

ta
n

c
e

(m
m

)]

[Time(s)]

 0

 200

 400

 600

 0 10 20 30

[Time(s)]

Minimum distance between two segments

 0

 200

 400

 600

 0 10 20 30

[Time(s)]

Prohibited distance

 0

 200

 400

 600

 0 10 20 30

[Time(s)]

segSRcmd
1

(Base)

segSRcmd
2

(Link1)

segSRcmd
3

(Link2)

segSRcmd
4

(EEF)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.11 Snapshots for robots’ motion in Exp.2.1.

5.3 Simulation Results 63

Table 5.6 Tracking results of minimum distance between the links of both robots after
applying CA and DA system in Exp.2.2.

segMR
1 segMR

2 segMR
3 segMR

4
(base) (Link1) (Link2) (EEF)

 0

 200

 400

 600

 0 10 20 30 40

[D
is

ta
n
c
e
(m

m
)]

 0

 200

 400

 600

 0 10 20 30 40
 0

 200

 400

 600

 0 10 20 30 40
 0

 200

 400

 600

 800

 0 10 20 30 40

 0

 200

 400

 600

 0 10 20 30 40

[D
is

ta
n
c
e
(m

m
)]

 0

 200

 400

 600

 0 10 20 30 40
 0

 200

 400

 600

 0 10 20 30 40
 0

 200

 400

 600

 0 10 20 30 40

 0

 200

 400

 600

 0 10 20 30 40

[D
is

ta
n
c
e
(m

m
)]

 0

 200

 400

 600

 0 10 20 30 40
 0

 200

 400

 600

 0 10 20 30 40
 0

 200

 400

 600

 0 10 20 30 40

 0

 200

 400

 600

 800

 0 10 20 30 40

[D
is

ta
n
c
e
(m

m
)]

[Time(s)]

 0

 200

 400

 600

 0 10 20 30 40

[Time(s)]

Minimum distance between two segments

 0

 200

 400

 600

 0 10 20 30 40

[Time(s)]

Prohibited distance

 0

 200

 400

 600

 0 10 20 30 40

[Time(s)]

segSRcmd
1

(Base)

segSRcmd
2

(Link1)

segSRcmd
3

(Link2)

segSRcmd
4

(EEF)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5.12 Snapshots for robots’ motion in Exp.2.2.

5.4 Discussion 64

Table 5.7 Comparison between current method including DA and previous method.

Without Zhou’s Proposed
CA & DA Method Method

CA Method
None Zone- Advanced

blocking collision map

Geometric Modelling None None SSV

Time spent to execute
24.3 s 40.7 s 36.2 s

commands in Exp2

experiment are shown in Fig. 5.10(b). It can be noticed that there are two deadlocks have
been avoided by adding two new commands. The results of the distance curve of each
pair are illustrated in Table 5.6. It is observable that all curves are navigating away from
the prohibited distance. This means the system is able to avoid all potential collisions and
deadlocks successfully.

As in the experiment 1, additional visual evaluation of robots’ motion shows that both
robots are navigating without any collisions. The snapshots of those motion are illustrated in
Fig. 5.11 and Fig. 5.12 for Exp.2.1 and Exp.2.2 respectively.

5.4 Discussion

Two-robot CA system has been improved. It can detect and avoid the collision between
whole body of both robot besides the ability to avoid the deadlocks between the robots which
may happen due to unpredictable control commands. The simulations have proved successful
results for avoiding the collisions and deadlocks although the distance between the robot
manipulators is short. However, some experiments have fallen into local minima situations,
i.e. six proposed directions for avoiding the deadlock could not provide collision-free path.
In this case, the algorithm will gave up and rely on human factor for helping. Increasing
the number of escaping directions could be one solution to decrease the situation of local
minima but on other hand a big time cost for calculating collision-free paths should be take
into consideration.

The proposed system with CA and DA has been evaluated. The experiment described in
Zhou’s paper [1] has been performed with the same configuration but using our proposed

5.4 Discussion 65

system. The results of this experiment have already presented in Section 5.3.2. The time
required to execute all the commands has been calculated for both methods. Then, a
comparison between the proposed method and Zhou’s methods has been performed. The
results are shown in Table 5.7. As it is illustrated in that table, our proposed method
demonstrates good efficiency performance even with the presence of DA algorithm.

Chapter 6

n-Robot Collision and Deadlock
Avoidance System

In the previous chapters 4 and 5, the two-robot collision and avoidance system has been
described. That was necessary to be performed before generalizing the problem. This
chapter explains the final form of on-line collision and deadlock avoidance system including
n-robot manipulators. The structure of this chapter starts with Section 6.1 which introduces
the necessary modifications for generalizing the concept. Section 6.2 describes detailed de-
sign of entire on-line collision and deadlock avoidance (CA and DA) algorithm. Followed by
Section 6.3 which presents the new concept of n-robot DA algorithm.Afterwards, Section 6.4
demonstrates some simulations examples to prove the successfulness of proposed system.
Finally, some discussions are presented in Section 6.5.

6.1 Introduction

Generalizing the concept of collision and deadlock avoidance to include n-robot in the
system playing significant role for future use in the industry. That because many industrial
applications devote multiple robot manipulators in the common workspace to perform the
tasks.

In Chapter 2, the structure of the system has been described for n-robot case. Then,
the problem of collision and deadlock has been addressed only for two robots i.e. n = 2.
Therefore, the entire algorithm of CA and DA, which is limited to two robots, requires to be
modified to suit the case of unlimited robots in the workspace i.e. n = [2∼ ∞].

Mainly the proposed system includes three techniques that are integrated together using
intelligent algorithm to achieve the main goal which is on-line CA and DA. Those techniques

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 67

have already been used in case of 2 robots CA and DA system. Therefore, the main
modifications in case of n-robot should be performed on those techniques, as well as the
entire algorithm which integrates those techniques. As a reminder to those techniques, we
are going to list them as follows:

1. Advanced Collision Map (ACM): This has been developed in this work to perform
collision detection between the robots. The detail design of ACM in case of two robots
has already been explained in Section 3.2.1. Then, the modification which is needed to
design n-robot ACM has been explained in Section 3.2.2.

2. Time Scheduling: This technique has been applied to avoid the collision areas on ACM
(see Section 4.2). As mentioned in Section 3.2.2, the final form of ACM in case of
n-robot is a single map which relates travelling length to servo time. Although with
the case of n-robot the number of collision areas on ACM could be more than one,
time scheduling technique is valid with no modification. That because this technique
is based on shifting the trajectory at each detection of intersection with collision areas
on ACM.

3. Escaping Technique: This is also has been invented in this work to avoid the dead-
locks which may occur between the robots in on-line systems. The description of
modifications of this technique is presented later in Section 6.3.

6.2 n-Robot Collision and Deadlock Avoidance Algorithm

6.2.1 Design of Algorithm

To design n-robot CA and DA algorithm, some strategies are put as follows:

1. The permissible number of SRcmd is only one robot among n-robot which can be MRs
or SRs or both of them together. That means, the collision detection starts as soon as
having SRcmd .

2. According to our definition of robot modes, having more than two robots in the
workspace will result in many combinations. Thus, collision detection is performed
for SRcmd-SRs combination at first before SRcmd-MRs combination. That because the
detection procedure of SRcmd-SRs is simpler and faster, and thus, if any collision is
detected, the collision detection procedure will stop immediately.

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 68

3. Owing to existence of many robots in the workspace, decreasing the calculation cost is
desired. Thus, the collision detection is performed with close robots. This strategy will
be explained in detail in next subsection.

4. Deadlock situation is assumed if unavoidable collision is obtained in either SRcmd-SRs
or SRcmd-MRs combinations.

5. DA procedure can only start if the robots’ combination is SRcmd−SRs, i.e. all robots
are in stopping condition.

The n-robot CA and DA algorithm consists of five main processes for each robot in
the workspace; which meant the total processes are 5×n. The five processes are listed as
follows:

1. Command Acquisition, which is responsible to read the control commands.

2. Collision Detection, which is specialized to do collision checking between the robots
using ACM and simple collision detection based on robots’ combinations.

3. Deadlock Avoidance, in which the deadlocks between the robots are avoided using a
new concept that is developed in this work.

4. Command Delaying, which is responsible for avoiding the collisions on ACM.

5. Command Execution, in which the acquired command is executed in the controller.

The detailed explanation of each process and how those processes are connected together are
presented in next paragraphs.

Command Acquisition

The control commands of each robot are sent by application module to the planner. Those
commands are distributed and accumulated in many queues according to the robot which
is going to execute them. Those queues are called Main Message Queues. Command
acquisition process starts with resetting all variables to its initial values except the variables
which are dealing with DA process. Then, the process checks two things before starting to
read the main message queue of designated robot which are:

1. First, if there is deadlock warning. Here, the process will wait for the DA process
to be finished before acquiring commands from Sub Message Queue. This queue is
responsible for saving the command of DA process, i.e. the command with which the

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 69

Fig. 6.1 Process 1: Command acquisition

deadlock is avoided if it is executed at suitable time. If there is a command in sub
message queue, the process is ended, Otherwise, the process flows to read the main
message queue.

2. Second, if there is any SRcmd among the other robots. Here, the process is ended
immediately because the condition of n-robot system is to have only one SRcmd in the
workspace.

The output of this process is a command information which is acquired from main or sub
message queue, and thus robot mode is turned into SRcmd . The description flow chart of this
process is shown in Fig. 6.1.

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 70

Collision Detection

This process starts as soon as acquiring a command by command acquisition process. Here,
the other robots’ mode are examined. As explained in algorithm strategies, the collision
detection will start with SRcmd-SRs combination before SRcmd-MRs as follows:

• First step is for SRcmd-SRs combination. If there is at least one SR, a simple collision
detection is performed. Otherwise going to next step directly. That method has already
been explained in detail in Section 4.1. The concept is exactly similar but in case of
n-robot, the number of checking distances will be increased because there are more
than one SR; which meant there are more link segments. Thus, if at least one collision
is detected, deadlock warning flag is activated to warn all other robots that there is
deadlock situation before ending this process. Otherwise, the process flows to the next
step of detection.

• Second step is for SRcmd-MRs combination. If there is at least one MR, ACM is
created, otherwise this process is ended. After creating ACM, time scheduling method
(see Section 4.1) is applied to estimate the case of collision. Here, three possible
collision cases can be obtained as follows:

1. No Collision, with which the process of collision detection ends.

2. Unavoidable Collision, with which the deadlock warning is activated before
ending the process.

3. Avoidable Collision, with which the process ends with output dtc f ; the necessary
delay time to avoid the collision areas on ACM.

The brief flow chart of this process is shown in Fig. 6.2.

Deadlock Avoidance

The management of this process is only held by SRcmd . In this process, the deadlocks are
avoided using n-robot DA method which will be explained later in Section 6.3. Since the
DA method cannot be applied until the combination is SRcmd-SRs. Therefore, if there is
any MRs, the process keeps looping until all MRs in the workspace stop and turn into SRs.
Afterwards, the DA method is applied. In general, the output of DA method is escaping
commands which are sent to sub message queues. And necessary delay times dtdl , if any, for
the robots which are going to escape.

Hence, the delay time dtdl is linked with execution timing of one of the robots, we refer
to that robot as Reference Robot. It is the robot that is going to execute escaping command at

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 71

Fig. 6.2 Process 2: Command detection

first before any other robots. Thus, the delay dtdl is performed after assuring that the reference
robot is executed. That is managed by command delaying process which is explained next.
The flow chart of deadlock avoidance process is illustrated in Fig. 6.3.

Command Delaying

Command delaying process is the process where the command, which is acquired for
designated robot, is delayed before sending it to the controller. Although the command of
the robot is not executed yet in this process the execution time is already decided by previous

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 72

Fig. 6.3 Process 3: Deadlock avoidance

processes; which are collision detection or deadlock avoidance. Therefore, keeping the robot
mode as SRcmd causes other robots to wait until the command of SRcmd is executed. That is
lose of time, and therefore the robot mode is turned into MR.

To delay the command, a real-time software timer is put in this process. At each cycle,
the timer time is compared with the necessary delay time dtc f . If the timer time reaches to
delay time the ,process ends. Here, the cycle time is already fixed same as sampling time dts
to simplify the process of delaying. Therefore, by indicating the cycle time as tcycle and the
number of cycles to perform delay time dtc f as ncycle, then:

ncycle =
dtc f

tcycle
(6.1)

The process is looping ncycle times before ending.
In case that there is delay time dtdl , as it is explained in previous paragraph, this process

will wait a while to ensure that the reference robot executes its command. Then, the delaying
starts using software timer same as described before. The description flowchart of this
process is shown Fig. 6.4.

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 73

Fig. 6.4 Process 4: Command delaying

Command Execution

Here, the command is going to be executed by sending it to the controller of designated robot,
and thus, the robot mode is turned into MR. Then the process loops to check if the executed
command is accomplished. That is done by communicating with the controller. As a result,
if the command is accomplished, the process ends. The description flowchart of this process
is shown Fig. 6.5.

6.2.2 Structure of Algorithm

The previous subsection has described the algorithm of each process of a robot; which are
five processes. Here, the way of connecting all processes of n-robot is explained.

As mentioned in Chapter 2, the planner is designed to be centralized system, and thus,
all robots’ processes should be run inside the planner. The problem is how to perform that

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 74

Fig. 6.5 Process 5: Command execution

connection in harmony with other robots and without affecting functionalities of other robots’
processes ?

An innovative strategy is put to solve this problem. The entire algorithm consists
of n similar sub algorithms; referred to as S-algo. Each S-algo includes 5 processes as
shown in Fig. 6.6. The strategy is to allow only one process of a robot to be run at each
cycle time of the planner. In other words, the planner is running within a fixed-time loop
which is cycle time tcycle, and thus, at each cycle time, only one process among 5× n
processes is run. Then, next cycle time, a process of next robot is run and so on. Here, it
is necessary to set a Returning Point for each robot in order to inform the entire algorithm
which process of the robot should be run next time. The returning point is set in every process
algorithm before ending it. It can be noticed that every algorithm has some outputs with label
"Next Process is:...".

Regarding the order of the robots in the entire algorithm is set to be in sequence from
1 to n. That means the priority of robots’ order is neglected. This is normal in the proposed
system because the condition is independence in work of each robot (see Section 2.2). That
means each robot task is performed independently without cooperation with other robots in
the workspace.

Based on aforementioned strategy, the final form of entire algorithm is shown in Fig. 6.7.

6.2 n-Robot Collision and Deadlock Avoidance Algorithm 75

Fig. 6.6 Structure of n-robot CA and DA algorithm

Fig. 6.7 Entire algorithm of CA and DA system

6.2.3 Workspace of n-robot

Some applications devote many robots to be included in the same workspace. On he other
hand, others arrange the robots in series to have more than one workspace. Hence, the
workspace definition in the proposed system is divided into two classifications as follows:

1. Shared Workspace: This contains all robots in the same workspace. That means the
workable area of each robot is overlapped with all other robots as shown in Fig. 6.8.

2. Overlapped Workspace: This contains different number of robots in different workspaces.
In this case, the workable area of a robot may overlap with some other robots or all
robots as shown in Fig. 6.9.

6.3 n-Robot Deadlock Avoidance 76

Fig. 6.8 Shared workspace including four robot manipulators.

This classification is put to decrease the calculation cost of collision detection process.
The workable areas which are overlapped with each others are determined and put into
the database of the system before start up. Consequently, in shared workspace, if a robot
turns into SRcmd , it has to perform collision detection with all other robots. Conversely, in
overlapped workspace, the robot which turns into SRcmd should perform collision detection
with close robots; which meant with the robots that workable areas are overlapped with
SRcmd .

Some industrial applications contain huge number of robots in series. Thus, a lot of
time is required to do collision detection for that number of robots. However, in reality the
maximum number of robot manipulators which can share same workspace will be around
eight robots or fewer more. Therefore, with implementing aforementioned strategy, the
calculation burdensome is decreased significantly.

6.3 n-Robot Deadlock Avoidance

6.3.1 Introduction

One of the important modifications to n-robot CA and DA system is escaping technique.
This technique has been described in detail for two robots (see Chapter 5). With case of two
robots, there is only one robot that could cause the deadlock situation. However, including

6.3 n-Robot Deadlock Avoidance 77

Fig. 6.9 Overlapped workspace including four robot manipulators.

many robots in the proposed system may introduce the deadlock situation by more than one
robot at same time. Thus, it is necessary to develop a concept that can solve this problem.

6.3.2 Methodology of n-Robot Deadlock Avoidance

Owing to dividing the collision detection into two steps based on the combination type, the
deadlock may occur only in one of both steps:

1. Case of SRcmd-SRs combination: The deadlock occurs if at least one collision is
detected for any pair SRcmd-SRi combination. Where, i = [1− n] indicates the
robot ID.

2. Case of SRcmd-MRs combination: Here, the deadlock occurs if an unavoidable collision
is obtained after applying time scheduling method (see Section 4.2) on ACM.

As described in previous subsection, The DA process cannot start unless the combination is
SRcmd-SRs only. Therefore, in the second case of deadlock occurrence, SRcmd will wait for
all MRs to accomplish their commands and turn into SRs mode, then, the combination be
SRcmd-SRs.

The previous concept of escaping technique, which is described in Chapter 5, is to find
safe position of SR which causes the deadlock, and then, command it to move toward the
new position at suitable timing. We referred to this position as Escaping Position.

6.3 n-Robot Deadlock Avoidance 78

The modified concept of escaping technique is to decide the escaping positions of all
obstructive SRs one by one and fix it. In other words, the DA process will be performed
for a pair of SRcmd-SRi regarding all other SRs as obstacles. Then, calculating the escaping
position and the time of execution of that SRi, then fixing it. Next, another pair of SRcmd-SR j

will be considered for deadlock avoidance regarding that SRcmd and previous SRi have fixed
paths and trajectories. This procedure will be repeated until finding escaping positions for
all obstructive SRs. Also, with modified concept, the escaping position could be calculated
based on two significant parameters: The direction of escaping and the distance needed to
escape. Those information are necessary either in previous or modified concept of escaping
technique.

To simplify the concept, we are going to explain the steps using 2D space assuming that
there are three robots, two of them are obstructive robots SR1 and SR2. In addition, the
SRcmd has a PTP command to move from S to E with path length lSRcmd and the time needed
to reach the target is tSRcmd

tar . The steps are going to be explained according to Fig. 6.10 as
follows:

1. Forming Cuboid: First step is to approximate the sweeping area occupied by SRcmd

during the motion from initial to target position. The method of approximation is based
on forming a cuboid which has been described in Section 5.2. The illustrative picture
of cuboid is shown in Fig.5.2. The purpose of forming the cuboid is informing the
other robots about the danger area which should be avoided.

2. Deciding Direction of Escaping: This step is based on the cuboid. Here, six directions
for escaping are proposed for each obstructive SR which are X, -X, Y, -Y, Z and -Z as
mentioned before in Fig. 5.3. To decide which direction should be chosen to be the
direction of escaping, it is necessary to consider that there could be many obstructive
SRs. Thus, which robot should be selected first?

To solve that issue, the distances between the EEF of each SR and all sides of the
cuboid are calculated. Each distance is linked to one direction among the proposed
directions. Then the directions of all SRs are arranged in ascending order regarding the
distances. Thus, the direction with minimum distance is suggested to be the direction
of escaping at first. Accordingly, the escaping order of the SRs will be based on
the result of calculated distances. In proposed example, the result of arranging the
distances are d1 < d1′ < d2 < d2 < d3 < d3′ < d4′ < d4. Where, d1,d2,d3, and d4
are distances between SR1’s EEF and all sides of approximated area. And d1′,d2′,d3′,
and d4′ are the distances between SR2’s EEF and all sides of that area. Thus, the

6.3 n-Robot Deadlock Avoidance 79

minimum distance is d1 which means SR1 should be selected first to escape in the
direction of -Y.

3. Proposing Goal: After choosing a direction for one of the robots, a proposed goal for
escaping is set to be a position P on the boundary of the workable area of considered
SR in the direction of escaping, i.e. SR1 in -Y direction. We refer to this position as
Maximum Reachable Goal which indicates to maximum distance of escaping.

4. Collision Detection: In this step, collision detection is performed between SRcmd and
selected robot with newly proposed goal regarding all other robots in the workspace as
obstacles. To this end, we assume implicitly that SRcmd as MR because it is the robot
which should accomplish its command, so it has high priority. And selected robot
as SRcmd whereas all other robots are kept as SRs. According to collision detection
strategy which has been mentioned in previous section, the collisions are checked
with SRs before MRs. If there is no collision with all SRs, then ACM is created.
In this example, collision detection is done for SRcmd-SR2 at first, then SRcmd-SR1
combination.

5. Deciding Distance of Escaping: Maximum reachable goal is proposed for escaping,
but it may fall into long travelling distance as explained in previous method of escaping
technique (see Section 5.2). However, the deadlock is caused by SR1 and SR2,
therefore there are unavoidable collisions if they didn’t move. Thus, by creating ACM
for selected robot SR1 with new proposed goal, an collision area is formed in the lower
right part of the map. If a safe or avoidable collision area is obtained, as shown in
Fig. 5.4(a) and Fig. 5.4(b), the characteristic of ACM is utilized to decrease the long
travelling distance if possible. In this example, an avoidable collision area is presented
as shown in Fig. 6.11(a). The height hmax, which is maximum height of collision area,
is used to modify the trajectory of selected robot SR1. As a result, escaping goal is
re-calculated to get Real Escaping Goal.

6. Fixing Escaping Goal: In this step, the real escaping goal of selected robot SR1 is
fixed; which meant the path and trajectory of SR1 is fixed. In addition, the trajectory
of SRcmd is fixed. That means both robots can be implicitly assumed as MRs.

7. Finding Escaping Goal of Next SR: After deciding the path and trajectory of SR1 and
fixing them, SR2’s escaping goal is calculated using same steps 2, 3, 4, and 5. Here,
the only distances d1′,d2′,d3′, and d4′ are arranged in ascending order to choose the
direction, and then, the maximum reachable goal is proposed. But, to calculate the real
escaping goal, it should be considered carefully that the paths and trajectories of SRcmd

6.4 Simulation Results 80

and SR1 have already been fixed. Therefore, creating ACM for SR2 while considering
SRcmd and SR1 as MRs. An illustrative ACM is shown in Fig. 6.11(b).

6.3.3 Improving the Planning Method of Escaping Goal

The direction of escaping is limited in this method to six directions. Thus, the algorithm
should exploit those directions intelligently to provide safe escaping goal for avoiding the
deadlocks.

According to the methodology of finding escaping positions, which has been explained
in previous Section 6.3.2, it proposes the escaping goal to be maximum reachable position
of the robot, then, the collision is examined for that goal, and thus, if there is unavoidable
collision, the next direction is chosen. However, in some cases, the maximum reachable goal
could be free of collision if it is proposed to be at a shorter position than maximum reachable
goal. Those cases usually happen if a robot manipulator is positioned at near maximum
reachable goal.

The DA methodology is improved to suit aforementioned cases. Let us assume that there
are three robot manipulators R1, R2, and R3 that are positioned in sequence. R2 (SR2)
causes deadlock to robot R1 which is SRcmd . R3 (SR3) is positioned near the boundary of
workable area of R2. Applying the proposed DA methodology, the algorithm is suggested to
make the escaping goal at position P which is not free of collision because R3 is very near to
that position. Here, the improved methodology suggests to perform simple collision check
between R3 and R2 which is proposed to move to maximum reachable goal. And then, when
first collision is detected at certain time t∗, it will indicate that all travelling length before that
time is safe and free of collision. Thus, the algorithm sets a new proposed goal of to be at
travelling length T L(t∗−dts), where dts is sampling time. This goal is called Safe Reachable
Goal as shown in Fig. 6.12. Afterwards, collision detection of SRcmd-SR2 is performed for
newly proposed safe reachable goal. Then the improved methodology follows the same steps
5, 6, and 7 of aforementioned methodology as explained in previous Section 6.3.2.

6.4 Simulation Results

Many experiments have been performed with new n-robot CA and DA system. The same
openGL-based simulator as in case of two robots is used for monitoring the motion, but the
number of the robots are increased in the workspace.

Two experiments are presented in this work with different number of robots in different
positions to prove the successfulness of the proposed system. Each experiment is divided

6.4 Simulation Results 81

(a) Step 1

(b) Step 2

Fig. 6.10 Description of essential steps of n-robots deadlock avoidance concept using 2D-
space

6.4 Simulation Results 82

(a) Advanced collision map of SRcmd and SR1

(b) Advanced collision map of SRcmd and SR2

Fig. 6.11 Illustrative example of advanced collision map of deadlock avoidance in case of
three robots

6.4 Simulation Results 83

Fig. 6.12 Improved n-robot DA concept: This is an example of three robots in sequence

into two parts. The first part is performed without n-robot CA and DA algorithm, so the
commands are sent directly to the robot controller, after which the motion is monitored. The
second part is performed with CA and DA algorithm.

Fig. 6.13 OpenGL-based simulator including three robot manipulators in shared workspace

6.4 Simulation Results 84

Table 6.1 PTP commands that are used in Exp1 for R1, R2, and R3.

RRR111-Commands RRR222-Commands RRR333-Commands
(xxx, yyy, zzz, roll, pitch, yaw) (xxx, yyy, zzz, roll, pitch, yaw) (xxx, yyy, zzz, roll, pitch, yaw)

C11 (300,250,300,0,0,0) C21 (300,−250,300,0,0,0) C31 (300,0,300,−180,0,0)
C12 (300,400,360,30,0,0) C22 (300,−400,150,−30,0,0) C32 (200,0,200,−180,0,0)
C13 (300,0,150,0,0,0) C23 (300,0,150,0,0,0) C33 (450,−300,200,90,0,0)
C14 (300,250,300,0,0,0) C24 (300,−250,300,0,0,0) C34 (300,0,300,−180,0,0)

6.4.1 Simulation with Three Robots

The robot manipulators in this experiment are set in shared workspace. In other words, all
workable areas of the robots are overlapping with each others. The snapshot of the simulator
including three robots is shown in Fig. 6.13. Let us assume that R1 is the blue color robot in
the rightmost of the simulator figure, R2 is the gray robot in the leftmost of the figure, and
R3 is the yellow robot. The maximum velocity and acceleration of each robot EEF are set
as V 1max =V 2max =V 3max = 100 mm/s and a1 = a2 = a3 = 100 mm/s2, respectively. All
robots have the same length of links which are lbase- joint1 = 290 mm, l joint1- joint2 = 260 mm,
l joint2- joint3 = 270 mm, and l joint3-EEF = 90 mm. The radii of the spheres which sweep on the
line primitives that model the robot are rbase = 112 mm, rlink1 = 117 mm, rlink2 = 100 mm,
and rEEF = 48 mm. The global coordinate system is set to be in mid distance between the
bases of R1 and R2, where x-axis is directed to R3 and y-axix is directed to R1. The PTP
commands which are going to be used in this experiments are illustrated in Table 6.1. Each
command includes information of EEF posture according to the global coordinate system
[x [mm],y [mm],z [mm], roll [deg],pitch [deg],yaw [deg]]. The initial posture of each robot
is assumed to be: R1init (450,250,300,0,0,0), R2init (450,−250,300,0,0,0), and
R3init (150,0,300,−180,0,0).

In the first part of the experiment (Exp.1.1), the commands are sent directly to the
controller double times. The execution timing of the commands from the startup of the
system is illustrated in Fig. 6.14(a). It is worth mentioning that the period before the
execution of the first command is the time required to initialize the system.

The second part of the experiment (Exp.1.2) are done after applying n-robot CA and DA
algorithm. The execution timing of the commands after applying the collision avoidance
method is shown in Fig. 6.14(b). The black solid boxes in command chart refer to deadlock
avoidance commands which are added to original PTP commands. The snapshots of robots’
motion are taken to evaluate the system visually. That are taken in both parts of experiments

6.4 Simulation Results 85

C11 C12 C13 C14 C11 C12 C13 C14

C21 C22 C23 C24 C21 C22 C23 C24

C31 C32 C33 C34 C31 C32 C33 C34

(a) Exp1.1: Command chart before applying n-robot CA and DA algorithm.

(b) Exp1.2: Command chart after applying n-robot CA and DA algorithm.

Fig. 6.14 Command execution timing of R1, R2, and R3 in Exp.1.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6.15 Snapshots for robots’ motion in Exp. 1.1 including three robots.

as shown in Fig. 6.15 and Fig. 6.16 respectively. It is clear that all robot manipulators

6.4 Simulation Results 86

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 6.16 Snapshots for robots’ motion in Exp. 1.2 including three robots.

are completing the commands with no collision or deadlock. That means the system is
successfully working.

6.4.2 Simulation with Four Robots

The robot manipulators in this experiment are set at sequence positions; meant overlapped
workspace. So that the workable area of a robot is overlapped with some other robots in
the workspace. The snapshot of the simulator including four robots is shown in Fig. 6.17.
Let us assume that R1 is the Blue color robot on the rightmost of the simulator figure, R2
is the gray robot, R3 is the yellow robot, and R4 is the dark red robot in the left most
of the figure. The global coordinate system is located at mid distance between the bases
of R2 and R3. The maximum velocity and acceleration of each robot EEF are set as
V 1max = V 2max = V 3max = V 4max = 100 mm/s and a1 = a2 = a3 = a4 = 100 mm/s2, re-
spectively. All robots have the same length of links which are same as described in previous
experiment. The radii of the spheres which sweep on the line primitives that model the robot
are also same as previous experiment. In this experiment, we are going to use PTP com-
mands which are illustrated in Table 6.2. The initial posture of each robot is assumed to be:

6.4 Simulation Results 87

Table 6.2 PTP commands that are used in Exp2 for R1, R2, R3, and R4.

RRR111-Commands RRR222-Commands RRR333-Commands RRR444-Commands
(xxx, yyy, zzz, roll, pitch, yaw) (xxx, yyy, zzz, roll, pitch, yaw) (xxx, yyy, zzz, roll, pitch, yaw) (xxx, yyy, zzz, roll, pitch, yaw)

C11 (300,750,300,0,0,0) C21 (300,250,300,0,0,0) C31 (300,−250,300,0,0,0) C41 (300,−750,300,0,0,0)
C12 (400,1000,150,30,0,0) C22 (400,0,150,−30,0,0) C32 (400,0,200,30,0,0) C42 (400,−1000,200,−30,0,0)
C13 (400,500,150,−30,0,0) C23 (400,500,150,30,0,0) C33 (400,−500,200,−30,0,0) C43 (400,−500,200,30,0,0)
C14 (400,750,300,0,0,0) C24 (400,250,300,0,0,0) C34 (400,−250,300,0,0,0) C44 (400,−750,300,0,0,0)

R1init (450,750,300,0,0,0), R2init (450,250,300,0,0,0), R3init (450,−250,300,0,0,0), and
R4init (450,−750,300,0,0,0).

In the first part of the experiment (Exp.2.1), the commands are sent to the controller
double directly, i.e there is no CA and DA system. The execution timings of the commands
from the start up of the system is illustrated in Fig. 6.18(a). It is worth mentioning that the
period before the execution of the first command is the time required to initialize the system.
The snapshot of this part of the experiment is shown in Fig. 6.20.

The second part of the experiment (Exp.2.2) is done after applying n-robot CA and DA
algorithm. The execution timing of the commands after applying the collision avoidance
method is shown in Fig. 6.18(b). The snapshots of robots’ motion are taken for this part of
the experiment as well which is shown in Fig. 6.21. It is clear that all robots are moving
without any collisions or deadlocks, thus the system schedules the commands perfectly using

Fig. 6.17 OpenGL-based simulator including four robot manipulators in overlapped
workspace

6.4 Simulation Results 88

C11 C12 C13 C14 C11 C12 C13 C14

C21 C22 C23 C24 C21 C22 C23 C24

C31 C32 C33 C34 C31 C32 C33 C34

C41 C42 C43 C44 C41 C42 C43 C44

(a) Exp2.1: Command chart before applying n-robot CA and DA algorithm.

C41 C42 C43 C44 C41 C42 C43 C44

C31 C32 C33 C34 C31 C32 C33 C34

C21 C22 C23 C24 C21 C22 C23 C24

C11 C12 C13 C14 C11 C12 C13 C14

(b) Exp2.2: Command chart after applying n-robot CA and DA algorithm.

Fig. 6.18 Command execution timing of R1, R2, R3, and R4 in Exp.2.

Fig. 6.19 Time of building advanced collision map in Exp.2.2

proposed algorithm. Because the number of the robots has increased, the time of building
ACM has been memorized at each creation of the map to show the incremental of building
time comparing with 2-robot. The result of ACM building time is shown in Fig. 6.19. The
average time of building the map in this case is 100ms.

6.4 Simulation Results 89

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 6.20 Snapshots for robots’ motion in Exp. 2.1 including four robot manipulators.

6.4 Simulation Results 90

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 6.21 Snapshots for robots’ motion in Exp. 2.2 including four robot manipulators.

6.5 Discussion 91

6.5 Discussion

The aforementioned simulations have demonstrated successful results to avoid any collisions
or deadlocks. The proposed method of n-robot CA and DA system has proved that the system
is able to detect and avoid the collisions and deadlocks between multiple number of robots.
This advantage gives superiority to proposed system comparing with previous on-line CA
and DA systems such as Lee’s system [10] and Zhou’s system [1] [56], which are limited to
address the problem of CA and DA for only two robot manipulators.

The evaluation of collision detection algorithm has showed that ACM is feasible method
regarding proposed system conditions and assumptions. ACM can be applied for any kind
and any number of robots because it deals with the robots in the workspace as moving
segments which are modelled using SSV modelling. However, the time of building ACM,
which is dtm, registered incremental values by including more robots in workspace. The
observation of the dtm has showed that increasing the number of robot manipulators in the
workspace are affected on dtm linearly, i.e. the mapping time is doubled by increasing one
robot manipulator in the workspace. That is true based on Equation 3.10 which has been
described in Section 3.3. Consequently, to determine the suitability of proposed system in
industry, we did many experiments for different patterns of robots’ positions using a PC with
normal power whose specification is Intel Core i5, 2.5GHz with memory: 4Gb. The robots’
positions are chosen to be same as industrial applications. Thus, many patterns are obtained.
The pattern for 3-robot are as follows:

1. Triangle pattern as shown in Fig. 6.22(a)

2. Serial pattern as shown in Fig. 6.22(b)

And the patterns for 4-robot are:

1. Zigzag pattern as shown in Fig. 6.23(a)

2. Square pattern as shown in Fig. 6.23(b)

3. Serial pattern as shown in Fig. 6.23(c)

Three experiments of each pattern are presented to evaluate the suitability. In each experiment,
many ACMs have been created during operating the robots to avoid the collisions and
deadlocks. The time of building each ACM, which is dtm, is calculated, and the average of
those times are taken as well. The PTP commands which are used for each experiment are
different from the other, that is done to evaluate the pattern for different ways of movement.
The results of those experiments are illustrated in Table 6.3. The resulted values of dtm are

6.5 Discussion 92

(a) Triangle pattern

(b) Serial pattern

Fig. 6.22 Patterns in case of three robots

(a) Zigzag pattern pattern (b) Sequence pattern

(c) Serial pattern

Fig. 6.23 Patterns in case of four robots

acceptable to be used in industry according to application type. But if the application needs
very fast calculation, it is possible to decrease those values by increasing the PC power. On
the other hand, the presented experiments showing the successful results which have no

6.5 Discussion 93

Table 6.3 Experiments’ results of each pattern showing time of building ACMs

Number of Robots Pattern Type Exp. No. dddtttmmm-Range[ms] dddtttmmm-Average[ms]

3 Triangle Exp.1 6∼ 153 56
3 Triangle Exp.2 2∼ 140 92
3 Triangle Exp.3 3∼ 278 52
3 Serial Exp.1 23∼ 137 67
3 Serial Exp.2 21∼ 88 48
3 Serial Exp.3 16∼ 82 49
4 Zigzag Exp.1 9∼ 176 74
4 Zigzag Exp.2 7∼ 305 104
4 Zigzag Exp.3 11∼ 285 112
4 Square Exp.1 9∼ 203 77
4 Square Exp.2 11∼ 207 118
4 Square Exp.3 7∼ 202 71
4 Serial Exp.1 22∼ 303 100
4 Serial Exp.2 23∼ 111 67
4 Serial Exp.3 17∼ 164 65

deadlock warning situation. This situation takes place if the deadlock is unavoidable, and so,
the algorithm will ask for human factor help as shown in Fig. 5.6.

Time scheduling method which is applied to avoid collision areas on ACM is valid with
n-robot in the workspace. That is because the ACM scheme, which relates the travelling
length with servo time, is fixed with any number of robots. Therefore we can evaluate that
time scheduling method is very suitable to be used with proposed system.

The evaluation of DA system shows ability to avoid the deadlocks even with short
distances between the robots’ positions. Proposing only six directions for escaping is feasible
to be applied with on-line system because applying general methods of motion planning, i.e.
C-space [57] and potential field [26], will fall into very burdensome and long planning time
that is not desirable in on-line systems. The intelligent use of ACM in DA process could
provide the system with suitable escaping goals without meaningless travelling. In addition,
the improvement which is described in Section 6.3.3 could exploit the escaping directions
more effectively. However, the local minima issue which means inability of the algorithm
to find a safe escaping goal has happened with some simulations according to the patterns
which have been described before. That issue is common with on-line motion planning

6.5 Discussion 94

Table 6.4 Evaluation of each pattern based on local minima

Number of Robots Pattern Type Local Minima Quantity

3 Triangle few
3 Serial rare
4 Zigzag High
4 Square Normal
4 Serial rare

methods but not desirable for use in industry, and thus, the pattern with low number of local
minima is desirable. consequently, after performing many experiments with aforementioned
patterns we get results as shown in Table 6.4. Those results could give an insight that the
proposed DA system is very suitable to be used with serial pattern either with 3, 4, or more
robots. The triangle pattern is still suitable with some applications. But the zigzag and
square patterns are not suitable to be used in industry and need to consider them in the future.
In proposed DA system, the local minima could be decreased if the number of proposed
escaping directions are increased. But conversely, that incremental will affect the time needed
to calculate escaping positions.

The proposed system is designed regardless the priority of PTP commands to achieve the
cooperative tasks between the robots. That is because the overall assumption of the system is
the independence of robots’ tasks from each other. Even though, the proposed system could
be used with the application that needs task priority if some modifications are performed on
overall algorithm.

Finally, we can conclude that the proposed system of on-line CA and DA is successful
and suitable to be used in industry with many robot manipulators that are controlled using in-
dependent controllers with PTP commands. Especially, if the robot number in the workspace
is two, three, or four-with serial pattern. We can say that the goal of this research has been
accomplished.

Chapter 7

Conclusions and Future Works

7.1 Summary of Dissertation

We have proposed a novel concept for on-line avoidance of collisions and deadlocks between
n-robot industrial manipulators. The robots are controlled using PTP commands, and have
no prior knowledge of commands that are going to be sent. Therefore, the advanced collision
map has been created for detecting potential collisions between the whole robot bodies.
Furthermore, the map has been used skilfully to avoid the deadlocks which may happen
if the robots become obstacles to each other. To decrease the computational cost of the
collision detection, the robot links have been approximated geometrically using SSV with
line primitives which is tight modelling for a near-tube robot shape. Owing to restricted
conditions of overall system i.e. black box characteristic of the controllers and using
PTP commands for controlling, it was successful to apply time scheduling method for the
execution time of PTP commands to avoid the collision areas on advanced collision map.
The simulations have demonstrated a successful avoidance of the collisions and deadlocks as
well as an advantage in time efficiency comparing to previous methods.

In Chapter 2, the overall on-line collision and deadlock avoidance system has been
described. The conditions and assumptions have been presented to determine the main
framework. In addition, the essential strategies have been put to be used in overall design
of the algorithm. Those strategies are: Command Acquisition, Robot Modes, and Robot
Modelling.

In Chapter 3, the advanced collision map (ACM) concept which is the main contribution
of this work has been presented before explaining the design of the main algorithm. Basically,
ACM was created from collision map concept which was developed to detect the collisions
between only EEFs of two robot manipulators. ACM has been developed at first to detect

7.2 Recommended Future Works 96

the collision between whole bodies of two robot manipulators. Then, the concept has been
generalized to suit the case of n-robot manipulators in the workspace.

In Chapter 4, the algorithm of on-line collision avoidance between two robot manipulators
has been explained. This step was very important to be performed before building the
generalized system of n-robot collision avoidance system. The algorithm which mainly
consists of 4 stages, Command Acquisition, Collision Detection, Command Scheduling, and
Command Execution, have been explained. The system has been tested and evaluated using
openGL-based simulator. In addition, the proposed system has been compared with previous
method. That proved the effectiveness of proposed system.

In Chapter 5, the deadlock situation in which both robots become obstacles for each other
has been addressed. The method is based on escaping one of the robots to safer position
to allow another robot to complete its command. The ACM has been used intelligently
in deadlock avoidance process to detect the collisions in addition to decrease meaningless
travelling of the robot.

In Chapter 6, the on-line collision and deadlock avoidance system, which has been
addressed for two robots in previous chapters, has been improved to include n-robot manip-
ulators in the workspace. That was very important to be performed in order to make the
generalized system more feasible for industrial use where many robots are operating the
workspace. The necessary modifications on the techniques have been described. Then, the
system has been tested with several number of robots in different situations to prove the
success of the proposed system.

7.2 Recommended Future Works

The proposed system has been designed to be useful and feasible for industrial use. Therefore,
some points for consideration as future works are recommended. Those points are:

• The proposed system has been tested using openGL-based simulators, therefore, it is
recommended to check the system with real robot manipulators. Since the proposed
system depends completely on time space to avoid the collisions and deadlocks, thus,
the time factor is very important. Therefore, with real robot manipulators, the time of
correspondence between the PC and robots’ controllers should be considered strongly.
That because there is usually a bit of delay of correspondence to acquire and send
information from and to the robot manipulators.

• One of the assumptions which have been put is the independency; meant that the
tasks of all robot manipulators are performed without any priorities. This assumption

7.2 Recommended Future Works 97

is useful and feasible with many industrial applications where the robots’ tasks are
independent. However, some applications require to have tasks’ priority to complete
the work. Therefore, to allow the proposed system to have wider use in different
kind of applications, it is recommended to include the concept of task priority in the
proposed algorithm.

• By increasing the number of the robots in the shared workspace, the overlapped
workable areas of the robot are increased. However, the deadlock avoidance becomes
very complicated to find solution, and thus, it may fall into the problem of local
minima where the deadlock avoidance algorithm cannot find solution. This situations
are normal with any methods of motion planning. Therefore, it is recommended
to improve the proposed method of deadlock avoidance to exploit the directions of
escaping more efficiently. So, the local minima problem could be decreased as much
as possible.

Appendix A

Calculating Minimum Distance between
Two Line Segments

Introduction

Minimum distance between lines or line segments are necessary to be obtained in some appli-
cations. In this work, the robot manipulator bodies have been modelled geometrically using
swept sphere volume (SSV) modelling with line primitives. Although some previous works
have discussed the methods of calculating distance between SSV primitives e.g. [59] [60] but
they are complicated. The complexity is not required in this work. That because the proposed
modelling uses only line primitive which can be considered as line segment. Therefore, in
order to make collision detection it is necessary to calculate the minimum distance between
the robots’ links, i.e. the line segments which modelled those links.

In this appendix, the steps of finding minimum distance between two line segments are
explained. The steps are adopted from [69].

Distance between Lines

To understand how to calculate the minimum distance between two line segments, it is
important to know how to calculate the minimum distance between lines in 3D space.

Consider two lines in 3D-space as shown in Fig. A.1 as follows:
L1 : P(λ) = P0 +λ (P1−P0) = P0 +λu
L2 : Q(ξ) = Q0 +ξ (Q1−Q0) = Q0 +ξ v
Let W (λ ,ξ) = P(λ)−Q(ξ) be a vector between points on the two lines. The purpose is to
find the W (λ ,ξ) that has a minimum length for all λ and ξ . In any 3D-space, the two lines

99

Fig. A.1 Two lines P and Q in 3D-space

L1 and L2 are closest to each other with a line segment that is perpendicular to both of them.
In other words, the lines are closest at unique points PC = P(λC) and QC = Q(ξC) for which
W (λC,ξC) is the unique minimum for W (λ ,ξ). Moreover, if L1 and L2 are not parallel and
do not intersect each other, then the segment PCQC is simultaneously perpendicular to both
lines. That is, the vector wC = W (λC,ξC) is uniquely perpendicular to the line direction
vectors u and v, and this is equivalent to it satisfying the two equations:

u ·WC = 0 (A.1a)

v ·WC = 0 (A.1b)

The equations can be solves by substituting WC = P(λC)−Q(ξC) =W0 +λCu−ξCv, where
W0 = P0−Q0, into each one to get two simultaneous linear equations:

(u ·u)λC− (u · v)ξC =−u ·W0 (A.2a)

(v ·u)λC− (v · v)ξC =−v ·W0 (A.2b)

Then, putting a = u ·u, b = u · v, c = v · v, d = u ·W0, and e = v ·W0, we solve for λC and ξC

as:

λC =
be− cd
ac−b2 (A.3a)

ξC =
ae−bd
ac−b2 (A.3b)

whenever the denominator ac−b2 is non-zero.

100

When ac–b2 = 0, the two lines are parallel, and the distance between the lines is constant.
The solution is by fixing the value of one parameter and using either equation to solve for the
other. Selecting λC = 0, we get ξC = d/b = e/c.

Having solved for λC and ξC, we have the points PC and QC on the two lines L1 and L2
where they are closest to each other. Then the distance between them can be calculated as
follows:

d(L1,L2) = |P(λC)−Q(ξC)| (A.4)

Distance between Line Segments

The distance between segments are not same as the distance between their extended lines.
That because the closest points on the extended infinite lines may be outside the range of the
segments. Let assume that:

• First segment Seg1= [P0,P1] is represented P(λ) = P0+λ (P1−P0) = P0+λu whereas
0≤ λ ≤ 1.

• Second segment Seg2 = [Q0,Q1] is represented Q(ξ) = Q0 +ξ (Q1−Q0) = Q0 +ξ v
whereas 0≤ ξ ≤ 1.

The steps of calculating minimums distance between two segments are as follows:

1. First step in computing a distance including segments is to get the closest points for
the infinite lines that they lie on. So, computing λC and ξC for L1 and L2.

2. If those points are both in the range of the respective segment, then they give closest
points. But if they lie outside the range of either, then they are not and we have
to determine new points that minimize W (λ ,ξ) = P(λ)−Q(ξ) over the ranges of
interest.

3. Minimizing the length of W , i.e. minimizing
|W 2|=W ·W = (W0 +λu−ξ v)(W0 +λu−ξ v). This is quadratic function of λ and
ξ .

In fact, |W 2| defines a parabaloid over the (λ ,ξ)-plane with a minimum at C =(λC,ξC),
and which is strictly increasing along rays in the (λ ,ξ)-plane that start from C and go
in any direction. But, when segments are involved, it is necessary to be the minimum
over a subregion A of the (λ ,ξ)-plane, and the global absolute minimum at C may lie
outside of A. However, in these cases, the minimum always occurs on the boundary of
A, and in particular, on the part of A’s boundary that is visible to C

101

Fig. A.2 Unit square to calculate minimum distance

4. Forming the area A = {(λ ,ξ)|0 ≤ λ ≤ 1 and 0 ≤ ξ ≤ 1 = [0,1]× [0,1]} is the unit
square as shown in Fig. A.2. The four edges of the square are given by λ = 0, λ = 1,
ξ = 0, and ξ = 1.

5. Determining the candidate edge for a minimum of |W 2| based on the position of C. So,
if C = (λC,ξC) is outside A, then it can see at most two edges of A.
If λ < 0, C can see the λ = 0 edge; if λ > 1, C can see the λ = 1 edge.
If ξ < 0, C can see the ξ = 0 edge; if ξ > 1, C can see the ξ = 1 edge.
Clearly, if C is not in A, then at least 1 and at most 2 of these inequalities are true.

6. Calculating the position of minimum occurrence on each candidate edge, either in its in-
terior or at an endpoint. Consider the edge λ = 0, along which
|W 2|= (W0−ξ v)(W0−ξ v). Taking the derivative with ξ we get a minimum when:

0 =
d
dt
|W 2|=−2v · (W0−ξ v) (A.5)

which gives a minimum on the edge at (0,ξ0) where:

ξ0 =
v ·W0

v · v
(A.6)

If 0≤ ξ ≤ 1, then this will be the minimum of |W 2|on A, and P(0) and Q(ξ0) are the
two closest points of the two segments. However, if ξ0 is outside the edge, then an
endpoint of the edge, (0,0) or (0,1), is the minimum along that edge; and further, we

102

will have to check a second visible edge in case the true absolute minimum is on it.
The other edges are treated in a similar manner.

Code of Calculating Minimum Distance

To understand the idea deeply, here is the code which is written using C++ programming
language. The code is showing the function seg2segmindis(seg1,seg2) which calculate the
minimum distance between two line segments using aforementioned method. The following
functions are needed for some arithmetic calculation of two vectors: The dot(a,b) calculates
the dot product of two vectors, minus(a,b) calculates the result of subtraction of two vectors,
and plus(a,b) calculates the result of addition of two vectors.

The code is as follows:

/ / ==========S t r u c t u r e d e f i n i t i o n ==========\
s t r u c t xyz {

double x , y , z ;
} ;

/ / ==========C a l c u l a t i n g t h e minimum d i s t a n c e ==========\
double s e g 2 s e g _ m i n d i s (xyz s e g 1 _ s t r , xyz s e g 1 _ t a r ,

xyz s e g 2 _ s t r , xyz s e g 2 _ t a r) {

/ / >>Loca l V a r i b a l e s
double a , b , c , d , e ;
double Sc , Tc ; \ \ Where , Sc means lambda & Tc i s x i
double dmin ;

/ / >> D e f i n i t i o n s
P0 . x = s e g 1 _ s t r . x ;
P0 . y = s e g 1 _ s t r . y ;
P0 . z = s e g 1 _ s t r . z ;
P1 . x = s e g 1 _ t a r . x ;
P1 . y = s e g 1 _ t a r . y ;
P1 . z = s e g 1 _ t a r . z ;

Q0 . x = s e g 2 _ s t r . x ;

103

Q0 . y = s e g 2 _ s t r . y ;
Q0 . z = s e g 2 _ s t r . z ;
Q1 . x = s e g 2 _ t a r . x ;
Q1 . y = s e g 2 _ t a r . y ;
Q1 . z = s e g 2 _ t a r . z ;

/ / >> C a l c u l a t i n g t h e s t a t i s t i c s o f each segment
minus (P1 , P0 ,&u) ;
minus (Q1 , Q0,&v) ;
minus (P0 , Q0,&W0) ;
a = d o t (u , u) ;
b = d o t (u , v) ;
c = d o t (v , v) ;
d = d o t (u ,W0) ;
e = d o t (v ,W0) ;

/ / >>Determine i f t h e two l i n e i n t e r s e c t e d or p a r a l l e l
i f ((a *c−pow (b , 2)) == 0){

/ / f i x i n g one v a l u e and c a l c u l a t e t h e o t h e r
Sc = 0 ;
i f (b ! = 0) Tc = d / b ; e l s e i f (c ! = 0) Tc = e / c ;

} e l s e {
Sc = (b* e − c *d) / (a *c−pow (b , 2)) ;
Tc = (a * e − b*d) / (a *c−pow (b , 2)) ;

}

/ / >>Determine t h e area o f Sc && Tc and mo d i f y i t i f needed
i f (Sc>= 0 && Sc <= 1 && Tc>=0 && Tc <=1){

p r i n t f (" The minimum d i s t a n c e v e c t o r i s i n s i d e segmen t s ") ;
} e l s e {

i f (Tc >1){
Tc = 1 ;
Sc = (b − d) / a ;
i f (Sc >1) Sc =1; e l s e i f (Sc <0) Sc =0;

} e l s e i f (Tc <0){
Tc = 0 ;

104

Sc = −d / a ;
i f (Sc >1) Sc =1; e l s e i f (Sc <0) Sc =0;

} e l s e {
i f (Sc <0){
Sc = 0 ;
Tc = e / c ;
i f (Tc >1) Tc =1; e l s e i f (Tc <0) Tc =0;

} e l s e i f (Sc >1){
Sc = 1 ;

Tc = (e+b) / c ;
i f (Tc >1) Tc =1; e l s e i f (Tc <0) Tc =0;

}
}

}

/ / >> C a l c u l a t i n g t h e minimum d i s t a n c e and
/ / >> i t s p o i n t s p o s i t i o n on bo th s e g m e n t s

Pc . x = P0 . x + Sc*u . x ;
Pc . y = P0 . y + Sc*u . y ;
Pc . z = P0 . z + Sc*u . z ;
Qc . x = Q0 . x + Tc* v . x ;
Qc . y = Q0 . y + Tc* v . y ;
Qc . z = Q0 . z + Tc* v . z ;
minus (Pc , Qc,&Wc) ;
dmin = s q r t (pow (Wc. x , 2) + pow (Wc. y , 2) + pow (Wc. z , 2)) ;
re turn dmin ;

}

/ / ==========d o t p r o d u c t be tween two m a t r i x==========\
double d o t (xyz a , xyz b) {

double r e s = a . x*b . x + a . y*b . y + a . z *b . z ;
re turn r e s ;

}
/ / ==========a d d i t i o n o f two m a t r i x==========\

105

void p l u s (xyz a , xyz b , xyz * r e s) {
r e s−>x = a . x + b . x ;
r e s−>y = a . y + b . y ;
r e s−>z = a . z + b . z ;

}
/ / ==========s u b t r a c t i o n o f two m a t r i x==========\
void minus (xyz a , xyz b , xyz * r e s) {

r e s−>x = a . x − b . x ;
r e s−>y = a . y − b . y ;
r e s−>z = a . z − b . z ;

}

Appendix B

Making Union of Two Ranges

Introduction

The definition of the range is a continuous possible collisions every sampling time dts which
starts from minimum value mini and ends at maximum value maxi, where i indicates the
range number. It has been explained in the procedures of advanced collision map design that
creating many collision timing maps (CTMs) will result to have many ranges of continuous
collisions. Thus, to have single CTM, it is necessary to make union of the ranges at each
sampling time.

In this appendix, the method and the code of making union of two ranges are going to be
explained.

Methodology

To make union of two ranges, it is necessary to understand how many patterns of arrangement
could the ranges have. Therefore, let assume that we have two ranges as follows:

• range1 starts from min1 and ends at max1

• range2 starts from min2 and ends at max2

The patterns of both ranges could be in six total as follows:

1. Pattern 1: When min1 ≤ min2 & min2 < max1 ≤ max2 as show in Fig. B.1(a).

2. Pattern 2: When min2 ≤ min1 ≤ max2 & max1 > max2 as shown in Fig.B.1(b).

3. Pattern 3: When min1 > min2 & max1 < max2 as shown in Fig.B.1(c).

107

4. Pattern 4: When min1 < min2 & max1 > max2 as shown in Fig.B.1(d).

5. Pattern 6: When max1 < min2 as shown in Fig.B.1(e).

6. Pattern 5: When min1 > max2 as shown in Fig.B.1(f).

The results of union of two ranges based on aforementioned patterns are as follows:

1. Pattern 1 will result to have one single range starts from min1 and ends at max2.

2. Pattern 2 will result to have one single range starts from min2 and ends at max1.

3. Pattern 3 will result to have one single range starts from min2 and ends at max2.

4. Pattern 4 will result to have one single range starts from min1 and ends at max1

5. Pattern 5 will result to have exactly same ranges that are range1 and range2.

6. Pattern 6 will result to have two ranges but range2 comes before range1, i.e. we get
two ranges, first one starts from min2 and ends with max2, then second one starts from
min1 > max2 and ends at max1.

Code of Two-Range Union

The code of getting the result of two ranges union is illustrated. The programming language
is C++. In the following is the detail code of function U2ranges(), where the inputs are
range1 and range2. And the output is variable res[2] which is matrix of two ranges. The
code is:

s t r u c t r a n g e {
double min ;
double max ;

} ;
void U2range (r a n g e range1_min , r a n g e range2 , r a n g e r e s [2]) {
\ \ p a t t e r n 1
i f (r an ge 1 . min<= r an ge 2 . min && r an g e1 . max <= r an g e2 . max) {

r e s [0] . min = r an ge 1 . min ;
r e s [0] . max = r an ge 2 . max ;
r e s [1] . min = 0 ;
r e s [1] . max = 0 ;

108

(a) Pattern 1 (b) Pattern 2

(c) Pattern 3 (d) Pattern 4

(e) Pattern 5 (f) Pattern 6

Fig. B.1 Patterns of two ranges’ arrangements

109

\ \ p a t t e r n 2
} e l s e i f (r an ge 1 . min>= r an ge 2 . min && r an g e1 . max >= r an g e2 . max) {

r e s [0] . min = r an ge 2 . min ;
r e s [0] . max = r an ge 1 . max ;
r e s [1] . min = 0 ;
r e s [1] . max = 0 ;

\ \ p a t t e r n 3
e l s e i f (r an ge 1 . min>= r an ge 2 . min && r an g e1 . max<= r an g e2 . max) {

r e s [0] . min = r an ge 2 . min ;
r e s [0] . max = r an ge 2 . max ;
r e s [1] . min = 0 ;
r e s [1] . max = 0 ;

\ \ p a t t e r n 4
} e l s e i f (r an ge 1 . min<= r an ge 2 . min && r an g e1 . max>= r an g e2 . max) {

r e s [0] . min = r an ge 1 . min ;
r e s [0] . max = r an ge 1 . max ;
r e s [1] . min = 0 ;
r e s [1] . max = 0 ;

\ \ p a t t e r n 5
} e l s e i f (r an ge 1 . max< r an ge 2 . min) {

r e s [0] . min = r an ge 1 . min ;
r e s [0] . max = r an ge 1 . max ;
r e s [1] . min = r an ge 2 . min ;
r e s [1] . max = r an ge 2 . max ;

}
\ \ p a t t e r n 6
} e l s e i f (r an ge 1 . min> r an ge 2 . max) {

r e s [0] . min = r an ge 2 . min ;
r e s [0] . max = r an ge 2 . max ;
r e s [1] . min = r an ge 1 . min ;
r e s [1] . max = r an ge 1 . max ;

}
}

Appendix C

Approximating Sweeping Area of Robot
Manipulator

Introduction

The sweeping area of robot manipulator as defined in this dissertation is an area which
the robot manipulator occupies during motion from initial to target position. However,
calculating this kind of area is very burdensome and complicated, and thus, it is necessary to
approximate the area as simple as possible. Knowing this area helps to inform other robot
manipulators with the danger area that is necessary to be avoided.

In this dissertation, the sweeping area is approximated using cuboid shape. The remain
of this appendix is the steps of forming that cuboid.

Main Parameters of Cuboid

The cuboid consists of six quadrilateral faces. Therefore, to form cuboid it is sufficient to
calculate the coordinates of two faces only; meant the coordinates of eight points. That can
be done using six parameters which are xmin,xmax,ymin,ymax,zmin, and zmax. As a result, the
coordinates of the points according to those parameters are :

1. Face1: (xmin,ymin,zmin),(xmax,ymin,zmin),(xmax,ymax,zmin),(xmin,ymax,zmin).

2. Face2: (xmin,ymin,zmax),(xmax,ymin,zmax),(xmax,ymax,zmax),(xmin,ymax,zmax).

The illustrative graph of cuboid parameters is shown in Fig. C.1.

111

Fig. C.1 Main parameters which can form cuboid in 3D-sapce

Steps of Forming Cuboid

The following steps could be used to form a cuboid of sweeping area for any robot manipula-
tor. Those steps are:

1. Determining the maximum number of robot’s joints n joint .

2. Geometric modelling of the robot. The robot is modelled using swept sphere volume
(SSV) with line primitives. That means each link is modelled using a line and sphere
with specific radius, and thus, each link has thickness which should be considered to
form the cuboid.

3. Determining the trajectory of robot manipulator. Regarding path, velocity, and
acceleration the trajectory of the robot is determined. Here, every sampling time
dts the posture of the robot manipulator; meant joints’ positions are calculated.

4. Forming initial cuboid, with which the initial posture of the robot manipulator is
covered as tight as possible. To simplify the matter, it is going to be explained using
2D space.

112

Let assume that there is a robot manipulator with two links and n joint = 3, the basement
joint, link joint, and EEF. Let assume also that:

• link1 is modelled using line l1 and sphere with radius r1.

• link2 is modelled using line l2 and sphere with radius r2.

• EEF is modelled using line l3 and spheres with radius r3.

Here, the position of each joint is acquired:

• joint1 position is (x1,y1,z1).

• joint2 position is (x2,y2,z2).

• joint3 position is (x3,y3,z3).

Then, those positions are used to form the initial cuboid with consideration of links’
thickness. It should be noticed that joint1 connects link1 with link2 and joint2 connects
link2 with EEF, that means the modelling spheres in those joints are intersected. Thus,
to form the cuboid, it is important also to consider that point. Based on previous
considerations, the parameters which are necessary to form the cuboid are calculated
as follows:

xmin = Min(x1 + r1,x2 + r1,x2 + r2,x3 + r2,x3 + r3) (C.1a)

xmax = Max(x1 + r1,x2 + r1,x2 + r2,x3 + r2,x3 + r3) (C.1b)

ymin = Min(y1 + r1,y2 + r1,y2 + r2,y3 + r2,y3 + r3) (C.1c)

ymin = Min(y1 + r1,y2 + r1,y2 + r2,y3 + r2,y3 + r3) (C.1d)

zmin = Min(z1 + r1,z2 + r1,z2 + r2,z3 + r2,z3 + r3) (C.1e)

zmax = Max(z1 + r1,z2 + r1,z2 + r2,z3 + r2,z3 + r3) (C.1f)

We are going to refer to this cuboid as reference cuboid.

5. Expanding the cuboid. In this step, the cuboid is expanded, if necessary, according to
the motion of the robot. At each sampling time t, the positions of all joints are used.
Then, Eq. C.1 is applied to calculate the parameters of the cuboid at that time; let call it
cuboid(t). Afterwards, those parameters are compared with the same parameter which
have formed last cuboid. The comparison provides new parameter values which form
a new reference cuboid. This cuboid is going to be compared with cuboid(t +dts) and
so on until reaching the cuboid at final time.

113

The final cuboid is the approximated sweeping area which the other robots should avoid.
The illustrative graph of forming the cuboid is shown in Fig. C.2.

Fig. C.2 Illustrative graph present how to form cuboid (In 2D-sapce)

List of Publications

Journal Papers (Peer Reviewed)

[1] A . Y. Afaghani and Y. Aiyama, “On-line collision avoidance of two command based

industrial robotic arms using advanced collision map,” Int. J. of Robotics and

Mechatronics (JRM), pp. 321-330, vol.26, no.3, Jun 2014.

Conference Proceedings (Peer Reviewed)

[1] A. Y. Afaghani and Y. Aiyama, “On-line collision avoidance between two robot

manipulators using collision map and simple escaping method,” In Proc. IEEE/SICE

Int. Symp. on System Integration (SII), pp. 105-110, 15-17 Dec 2013.

[2] A. Y. Afaghani and Y. Aiyama, “Advanced-collision-map-based on-line collision and

deadlock avoidance between two robot manipulators with ptp commands,” In Proc.

IEEE Int. Conf. on Automation Science and Engineering (CASE), pp. 1244-1251, 18-22

Aug 2014.

Other Publications (Without Peer Review System)

[1] A. Y. Afaghani and Y. Aiyama, “On-line collision-free motion of two command-based

industrial manipulators,” In JSME Conf. on Robotics and Mechatronics (Robomech),

no. 12-2, pp. 2A1-W03(1-4), 25-29 May 2014.

[2] Y. Aiyama, Z. Jianing, and A. Y. Afaghani, “Collision avoidance for manipulators

which have independent controllers,” In Proc. SICE Symp. on System Integration (SI),

pp. 537-541, Dec 2013.

References

[1] J. Zhou, K. Nagase, S. Kimura, and Y. Aiyama, “Collision avoidance of two ma-
nipulators using rt-middleware,” in IEEE/SICE Int. Symp. on System Integration.,
pp. 1031–1036, 20-22 Dec 2011.

[2] T. Tsubouchi, S. Kuramochi, and S. Arimoto, “Iterated forecast and planning algorithm
to steer and drive a mobile robot in the presence of multiple moving objects,” in Proc.
IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pp. 33–38, 8-13 May 1995.

[3] M. Jager and B. Nabel, “Decentralized collision avoidance, deadlock detection, and
deadlock resolution for multiple mobile robots,” in Proc. IEEE/RSJ Int. Conf on Intelli-
gent Robots and Systems, vol. 3, pp. 1213–1219, 29 Oct- 03 Nov 2001.

[4] S.-H. Park and B.-H. Lee, “A new analytical representation to robot path generation
with collision avoidance through the use of the collision map,” J. of Control, Automation
and Systems, vol. 4, pp. 77–86, February 2006.

[5] K. Sakurama and K. Nakano, “Online modification of reference trajectories for multiple
robots with collision avoidance,” in Proc. IEEE Int. Conf. on Decision and Control,
pp. 2412–2416, 13-15 Dec 2006.

[6] K. Sakurama and K. Nakano, “Online modification of reference trajectories of multiple
robots for collision avoidance,” in Proc. IEEE Int. Conf. on Decision and Control,
pp. 1416–1422, 12-14 Dec 2007.

[7] K. Sakurama and K. Nakano, “Deadlock-free path-following control for collision
avoidance of multiple robots,” in Proc. IEEE Int. Conf on Decision and Control,
pp. 5673–5678, 15-18 Dec 2009.

[8] A. Sahara, M. Imai, and Y. Anzai, “Cahra: Collision avoidance system for humanoid
robot arms with potential field,” in Proc. IEEE Int. Conf. on Systems, Man and Cyber-
netics, vol. 3, pp. 2889–2895, 10-13 Oct 2004.

[9] H. Taubig, B. Bauml, and U. Frese, “Real-time swept volume and distance computation
for self collision detection,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems(IROS), pp. 1585–1592, 25-30 Sep 2011.

[10] B. H. Lee and C. S. G. Lee, “Collision-free motion planning of two robots,” IEEE Trans.
Systems, Man and Cybernetics, vol. 17, pp. 21–32, Jan 1987.

[11] C. Chang, M. J. Chung, and B. H. Lee, “Collision avoidance of two general robot
manipulators by minimum delay time,” IEEE Trans. Systems, Man and Cybernetics,
vol. 24, pp. 517–522, Mar 1994.

References 116

[12] J. Roach and M. Boaz, “Coordinating the motions of robot arms in a common
workspace,” Proc. IEEE Int. J. of Robotics and Automation, vol. 3, pp. 437–444,
Oct 1987.

[13] Z. Bien and J. Lee, “A minimum-time trajectory planning method for two robots,” IEEE
Trans. Robotics and Automation, vol. 8, pp. 414–418, June 1992.

[14] J. Lee, “A dynamic programming approach to near minimum-time trajectory planning
for two robots,” IEEE Trans. Robotics and Automation, vol. 11, pp. 160–164, Feb 1995.

[15] Z. Shiller and S. Dubowsky, “On computing the global time-optimal motions of robotic
manipulators in the presence of obstacles,” IEEE Trans. Robotics and Automation,
vol. 7, pp. 785–797, Dec 1991.

[16] H. Onda, T. Hasegawa, and T. Matsui, “Collision avoidance for a multiple-dof manip-
ulator based on empty space analysis of the 3-d real world,” Int. J. of Robotics and
Mechatronics, vol. 4, no. 5, pp. 430–436, 1992.

[17] H. Onda, T. Hasegawa, and T. Matsui, “Collision avoidance for a 6-dof manipulator
based on empty space analysis of the 3-d real world,” in Proc. IEEE Int. Workshop on
Intelligent Robot and System(IROS), pp. 583–589, 3-6 Jul 1990.

[18] R. Zurawski and S. Phang, “Path planning for robot arms operating in a common
workspace,” in Proc. IEEE Int. Conf on Industrial Electronics, Control, Instrumentation,
and Automation. Power Electronics and Motion Control, pp. 618–623, 9-13 Nov 1992.

[19] C. Seshadri and A. Ghosh, “Minimum-time trajectory planning for two robots,” in
Annual Conf. of IEEE on Industrial Electroincs Society, vol. 1, pp. 676–681, 27-30 Nov
1990.

[20] C. Seshadri and A. Ghosh, “Optimum path planning for robot manipualtors amid
static and dynamic obstacles,” IEEE Trans. Systems, Man, and Cybernetics, vol. 23,
pp. 576–584, Apr 1993.

[21] A. Mohri, M. Yamamoto, and S. Marushima, “Collision-free trajectory planning for two
manipulators using virtual coordination space,” in Proc. IEEE Int. Conf on Robotics
and Automation(ICRA), vol. 2, pp. 674–679, 2-6 May 1993.

[22] S. W. Lee, Y. S. Nam, K. D. Lee, and B. H. Lee, “A safety arc based collision avoidance
algorithm of a two-arm robot manipulator,” in Proc. 35th SICE Annual Conf. Int. Session
Papers, pp. 1167–1172, 1996.

[23] F. Schwarzer, M. Saha, and J.-C. Latombe, “Adaptive dynamic collision checking for
single and multiple articulated robots in complex environments,” IEEE Trans. Robotics,
vol. 21, pp. 338–353, June 2005.

[24] N. Asakawa and Y. Kanjo, “Collision avoidance of a welding robot for a large struc-
ture(application of human experience),” Int. J. of Automation Technology, vol. 7, no. 1,
pp. 88–94, 2013.

References 117

[25] N. Asakawa and Y. Kanjo, “Collision avoidance of a welding robot for a large struc-
ture(application of potential field),” Int. J. of Automation Technology, vol. 7, no. 2,
pp. 190–195, 2013.

[26] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proc.
IEEE Int. Conf. on Robotics and Automation(ICRA), vol. 2, pp. 500–505, Mar 1985.

[27] S. Kalaycioglu, M. Tandirci, and D. Nesculescu, “Real-time collision avoidance of
robot manipulators for unstructured environments,” in Proc. IEEE Int. Conf. on Robotics
and Automation, vol. 1, pp. 44–51, 2-6 May 1993.

[28] E. Freund and H. Hoyer, “Pathfinding in multi-robot systems: Solution and applications,”
in Proc. IEEE Int. Conf. on Robotics and Automation(ICRA), vol. 3, pp. 103–111, Apr
1986.

[29] Y. P. Chien and A. J. Koivo, “On-line generation of collision-free trajectories for
multiple robots,” in Proc. IEEE Int. Conf. on Robotics and Automation(ICRA), vol. 1,
pp. 209–214, 24-29 Apr 1988.

[30] P. A. O’Donnell and T. Lozano-Periz, “Deadlock-free and collision-free coordination of
two robot manipulators,” in Proc. IEEE Int. Conf on Robotics and Automation(ICRA),
vol. 1, pp. 484–489, 14-19 May 1989.

[31] K. Sun and V. J. Lumelsky, “Motion planning for three-link robot arm manipulators
operating in an unknown three-dimensional environment,” in Proc. IEEE Int. Conf on
Decision and Control, vol. 1, pp. 1019–1026, 11-13 Dec 1991.

[32] C. Czarnecki, “Collision free motion planning for two robots operating in a common
workspace,” in Int. Conf. on Control (Control’94), vol. 2, pp. 1006–1011, 21-24 Mar
1994.

[33] H. Hoyer, M. Gerke, and U. Borgolte, “Online collision avoidance for industrial robots
with six degrees of freedom,” in Proc. IEEE Int. Conf. on Robotics and Automa-
tion(ICRA), vol. 2, pp. 1258–1265, 8-13 May 1994.

[34] U. Borgolte, H. Hoyer, and F. Wrosch, “Online collision avoidance for two robots
in 3d-space,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robot and Systems (IROS),
pp. 1919–1926, 26-30 Jul 1993.

[35] X. Cheng, “On-line collision-free path planning for service and assembly tasks by a two-
arm robot,” in Proc. IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1523–1528,
21-27 May 1995.

[36] L. Tsai-Yen and J.-C. Latombe, “On-line manipulation planning for two robot arms
in a dynamic environment,” in Proc. IEEE Conf. on Robotics and Automation, vol. 1,
pp. 1048–1055, 21-27 May 1995.

[37] R. Z. Lise Cellier, Pierre Dauchez and M. Uchiyama, “Collision avoidance for a two-
arm robot by reflex actions: Simulations and experimentations,” J. of Intelligent and
Robotic Systems, vol. 2, no. 14, pp. 219–238, 1995.

References 118

[38] T. Sugie, K. Fujimoto, and Y. Kito, “Obstacle avoidance of manipulators with rate
constraints,” IEEE Trans. Robotics and Automation, vol. 19, pp. 168–174, Feb 2003.

[39] K. Fujimoto and T. Sugie, “Freedom in coordinate transformation for exact linearization
and its application to transient behavior improvement,” Automatica, vol. 37, pp. 137–
144, 2001.

[40] K.-S. Hwang and M.-D. Tsai, “On-line collision-avoidance trajectory planning of two
planar robots based on geometric modeling,” J. of Information Science and Engineering,
vol. 15, pp. 131–152, 1999.

[41] K.-S. Hwang, M.-Y. Ju, and Y.-J. Chen, “Speed alteration strategy for multijoint robots
in co-working environment,” IEEE Trans. Industrial Electronics, vol. 50, pp. 385–393,
Apr 2003.

[42] E. Freund and J. Rossman, “The basic ideas of a proven dynamic collision avoidance ap-
proach for multi-robot manipulator systems,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, vol. 2, pp. 1173–1177, 27-31 Oct 2003.

[43] J. Rossmann, “On-line collision avoidance for multi-robot systems: a new solution
considering the robots’ dynamics,” in Proc. IEE/SICE/RSJ Int. Conf. on Multisensor
Fusion and Integration for Intelligent Systems, pp. 249–256, 8-11 Dec 1996.

[44] J.-G. Juang, “Application of repulsive force and genetic algorithm to multi-manipulator
collision avoidance,” in Proc. Asian Control Conference, vol. 2, pp. 971–976, 20-23 Jul
2004.

[45] J.-H. Chuang, C. C. Lin, J. H. Kao, and C. T. Hsieh, “A potential-based path planning
of articulated robots with 2-dof joints,” in Proc. IEEE Int. Conf. on Robotics and
Automation(ICRA), pp. 1815–1820, 18-22 Apr 2005.

[46] S. Leonard, E. A. Croft, and J. J. Little, “Planning collision-free and occlusion-free
paths for industrial manipulators with eye-to-hand configuration,” in Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems(IROS), pp. 5083–5088, 10-15 Oct 2009.

[47] J.-C. L. L. E. Kavraki, P. Svestka and M. H. Overmars, “Probabilistic roadmaps for
path planning in high-dimensional configuration space,” IEEE Trans. on Robotics and
Automation, vol. 12, pp. 566–580, Aug 1996.

[48] J. Cascio, M. Karpenko, Q. Gong, P. Sekhavat, and I. Ross, “Smooth proximity com-
putation for collision-free optimal control of multiple robotic manipulators,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems(IROS), pp. 2452–2457, 10-15
Oct 2009.

[49] P. Bosscher, D. Hendman, H. Corporation, and P. Bay, “Real-time collision avoidance
algorithm for robotic manipulators,” in Proc. IEEE Int. Conf. on Technologies for
Practical Robot Applications (TePRA 2009), pp. 113–122, 9-10 Nov 2009.

[50] H. Chung and S. Jeon, “Collision-free trajectory generation of robotic manipulators
using receding horizon strategy,” in Proc. American Control Conference, pp. 1692–1997,
2011.

References 119

[51] R. G. Beaumont and R. M. Crowder, “Real-time collision avoidance in two-armed
robotic systems,” J. of Computer-Aided Engineering, vol. 8, pp. 233–240, Dec 1991.

[52] C. A. Shaffer and G. M. Herb, “A real-time robot arm collision avoidance system,”
IEEE Trans. Robotics and Automation, vol. 8, pp. 149–160, Apr 1992.

[53] V. J. Lumelsky and E. Cheung, “Real-time collision avoidance in teleoperated whole-
sensitive robot arm manipulators,” IEEE Trans. Systems, Man, and Cybernetics, vol. 23,
pp. 194–203, Feb 1993.

[54] B. Bon and H. Seraji, “On-line collision avoidance for the ranger telerobotic flight
experiment,” in Proc. IEE Int. Conf. on Robotics and Automation (ICRA), pp. 2041–
2048, Apr 1996.

[55] A. Spencer, M. Pryor, C. Kapoor, and D. Tesar, “Collision avoidance techniques for
tele-operated and autonomous manipulators in overlapping workspaces,” in Proc. IEEE
Int. Conf. on Robotics and Automation, pp. 2910–2915, 19-23 May 2008.

[56] J. Zhou and Y. Aiyama, “Efficient collision avoidance method of two command-based
manipulators using partitioned workspace,” in 31th Annual Conf. of the Robotics Society
of Japan (RSJ 2013), pp. 2–5, 04-06 Sep 2013(In Japanese).

[57] T. Lozano-Perez, “Spatial planning: A configuration space approach,” IEEE Trans.
Computers, vol. C-32, pp. 108–120, Feb 1983.

[58] M. Perez-Francisco, A. P. del Pobil, and B. Martinez, “Fast collision detection for
realistic multiple moving robots,” in Proc. IEEE Int. Conf. on Advanced Robotics(ICAR),
pp. 187–192, 7-9 Jul 1997.

[59] M. C. L. E. Larsen, S. Gottschalk and D. Manocha, “Fast proximity queries with swept
sphere volumes,” tech. rep., Department of Computer Science, UNC Chapel Hill, 1999.

[60] E. Larsenand S. Gottschalk, M. Lin, and D. Manocha, “Fast distance queries with rect-
angular swept sphere volumes,” in Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA), vol. 4, pp. 3719–3726, 2000.

[61] J. Klosowski, Efficient Collision Detection for Interactive 3D Graphics and Virtual
Environments. PhD thesis, State University of New York, 1998.

[62] S. Gottschalk, Collision Queries using Oriented Bounding Boxes. PhD thesis, Dept. of
Computer Science , University of North Carolina, 2000.

[63] G. Bradshaw, Bounding Volume Hierarchies for Level-of-Detail Collision Handling.
PhD thesis, Trinity College , University of Dublin, 2002.

[64] B. Mirtich, “V-clip: Fast and robust polyhedral collision detection,” vol. 17, no. 3,
pp. 177–208, 1998.

[65] GD Robotics. http://www.gdrobot.com/Upload/Bg/gd_robotics_1362012161126446.
jpg. Accessed: 2015-01-30.

[66] Fanuc Corporation. http://www.fanuc.co.jp/en/product/robot/baradumi.html. Accessed:
2015-01-30.

http://www.gdrobot.com/Upload/Bg/gd_robotics_1362012161126446.jpg
http://www.gdrobot.com/Upload/Bg/gd_robotics_1362012161126446.jpg
http://www.fanuc.co.jp/en/product/robot/baradumi.html

References 120

[67] RobotWorx. http://www.robots.com/articles/viewing/manufacturing-or-replicating. Ac-
cessed: 2015-01-30.

[68] Global Robots LTD. http://www.robotsltd.co.uk/product.aspx?product=22188. Ac-
cessed: 2015-01-30.

[69] D. Sunday, “Distance between 3d lines and segments.” http://geomalgorithms.com/
a07-_distance.html, 2012. Accessed: 2015-01-01.

http://www.robots.com/articles/viewing/manufacturing-or-replicating
http://www.robotsltd.co.uk/product.aspx?product=22188
http://geomalgorithms.com/a07-_distance.html
http://geomalgorithms.com/a07-_distance.html

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Research Motivation and Purpose
	1.3 Related Works
	1.4 Outline of Dissertation

	2 On-line System Description
	2.1 Introduction
	2.2 System Conditions and Assumptions
	2.3 System Structure
	2.4 System Strategies
	2.4.1 Robot Mode Strategy
	2.4.2 Command Acquisition Strategy
	2.4.3 Robot Modelling Strategy

	2.5 Conclusions

	3 Advanced Collision Map
	3.1 Collision Map Concept
	3.1.1 Introduction of Collision Map
	3.1.2 Design of Collision Map

	3.2 Design of Advanced Collision Map
	3.2.1 Advanced Collision Map for Two-Robot
	3.2.2 Advanced Collision Map for n-Robot

	3.3 Time of Building Advanced Collision Map
	3.4 Conclusions

	4 Two-Robot Collision Avoidance System
	4.1 Collision Detection
	4.2 Time Scheduling Concept
	4.2.1 Methodology
	4.2.2 Collision Types

	4.3 Two-Robot Collision Avoidance Algorithm
	4.4 Simulation Results
	4.4.1 Simulation Experiment 1
	4.4.2 Simulation Experiment 2

	4.5 Discussion

	5 Two-Robot Deadlock Avoidance
	5.1 Introduction
	5.2 Methodology
	5.2.1 Direction of Escaping
	5.2.2 Distance of Escaping
	5.2.3 Deadlock Avoidance Algorithm

	5.3 Simulation Results
	5.3.1 Simulation Experiment 1
	5.3.2 Simulation Experiment 2

	5.4 Discussion

	6 n-Robot Collision and Deadlock Avoidance System
	6.1 Introduction
	6.2 n-Robot Collision and Deadlock Avoidance Algorithm
	6.2.1 Design of Algorithm
	6.2.2 Structure of Algorithm
	6.2.3 Workspace of n-robot

	6.3 n-Robot Deadlock Avoidance
	6.3.1 Introduction
	6.3.2 Methodology of n-Robot Deadlock Avoidance
	6.3.3 Improving the Planning Method of Escaping Goal

	6.4 Simulation Results
	6.4.1 Simulation with Three Robots
	6.4.2 Simulation with Four Robots

	6.5 Discussion

	7 Conclusions and Future Works
	7.1 Summary of Dissertation
	7.2 Recommended Future Works

	Appendix A Calculating Minimum Distance between Two Line Segments
	Appendix B Making Union of Two Ranges
	Appendix C Approximating Sweeping Area of Robot Manipulator
	List of Publications
	References

