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Abstract 

The organisms acquired evolutionarily new characters which are never seen in other 

lineages. Such novel characters are important for survival and adaptation. However, the 

origin and evolutionary causes for novelty is still unknown in many structures. In this 

thesis, I investigated the evolutionary mechanisms for acquisition of novelties by 

focusing on two novel structures of molluscs, the operculum and two shell plates. The 

operculum is one of the novelties in gastropods. Because the operculum shows notable 

similarities to shell, I asked whether there were evolutionary link between these two 

secretory structures by molecular developmental approaches. I found some of the genes 

which are expressed in shell glands were also expressed in operculum glands. Moreover, 

RNAi experiment showed the dpp homolog, Nf-dpp, had critical roles for development of 

both structures. Based on these observations, I suggest that co-option of dpp signaling 

pathway contributed to the innovation of the operculum in gastropods. Bivalves have 

two shell plates and they are thought to have evolved from single shelled ancestor. 

Because it is thought that modification of cleavage pattern involved this evolutionary 

event, I researched regulatory mechanism of cleavage pattern in bivalves. I performed 

cell isolation experiments to determine whether the unique cleavage pattern of X 
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blastomere is regulated depending on the interaction with other cells or by cell 

autonomous mechanism. When focusing on the largest derivatives of D blastomeres, 

isolated D blastomeres followed the cleavage pattern of normal development up to 

bilateral cleavage. This result suggests that D blastomeres control their unique 

cleavage pattern including the reversions of the cell size polarity through intrinsic 

mechanisms.   
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General Introduction 

Although development of all animals starts from simple spherical form, an egg, 

animals show a huge diversity of adult body forms. To understand how unique 

morphologies were evolved is one of the most interesting issues of evolutionary biology. 

It is thought that these variations were acquired gradually by descent with modification 

(Darwin, 1859). Evolutionary developmental (EvoDevo) studies have been uncovering 

the genetic bases for variations of homologous tissues (Carroll et al., 2001). On the other 

hand, there are evolutionarily new characters which are never seen in other lineages. 

Such new characters are called novelty which is defined as “a new constructional 

element in a bodyplan that neither has a homologous counterpart in the ancestral 

species nor in the same organism” (Muller and Wagner, 1991). Many of novelties 

characterize specific taxa because these structures are conserved among descendants. 

That is, acquisition of novelty is the seeds of variation of the organism. However, the 

origin and evolutionary causes for novelty is still unknown in many structures. In this 

thesis, I investigated how animal development was modified for acquisition of novelty 

by focusing on the development of molluscs. 

Mollusca is one of the most divergent animal phyla adapting to various 

3 
 



environment from deep sea to land (Ponder and Lindberg, 2008). Most molluscs form 

calcified shells on the dorsal side. Based on the shell morphologies, molluscs are 

grouped into eight classes. Recent genome-wide phylogenetic studies indicated that 

these eight classes are categorized into two higher groups; Aculifera and Conchifera 

(Kocot et al., 2011; Smith et al., 2011). Well-known taxa are included in the latter group, 

including Monoplacophora, Cephalopoda, Gastropoda, Scaphopoda and Bivalvia, while 

Chaetodermomorpha, Neomeniomorpha and Polyplacophora are classified into the 

former group. Common ancestors of the Conchifera are generally believed to possess a 

single shell on the dorsal side (Waller, 1998). The hard shell is an effective structure to 

protect the soft body from predators. However, the shell does not cover the whole body, 

allowing uptake of food/oxygen and the excretion of waste. To better protect the body 

against predators, gastropods and bivalves take distinct strategies. Gastropods 

acquired the operculum, which is formed in the posterior part of foot. On the other hand, 

bivalves separated shell into two plates. I focused on these two novel structures and 

investigated evolution of them by the methods of developmental biology 

Early embryogenesis of molluscs has been studied for more than 100 years 

(Conklin, 1897; Lillie, 1895; Meisenheimer, 1901). Traditional studies indicated that 
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their early development is through spiral cleavage pattern, which is also observed in 

other phyla (Nielsen, 2010). In this type of cleavage, the first two divisions make four 

blastomeres, called A, B, C and D, which usually correspond to the left, ventral, right, 

and dorsal side of larvae, respectively (Dictus and Damen, 1997; Hejnol et al., 2007; 

Lillie, 1895; Render, 1991). After the four-cell stage, each four macromeres bud off a 

small micromere at its animal side. Each blastomere is labeled according to the rule 

proposed by Conklin (1897). For example, the D blastomere is divided into 1D 

macromere and 1d micromere. Because the orientation of the spindle is inclined, 

micromeres are displaced to the left or right of its sister macromere. After the 

generation of the first quartet of micromeres, the macromeres continue unequal 

cleavage to generate small micromeres on the animal side (1D is divided into 2D and 2d, 

and 1d is split into 1d1 and 1d2.). Moreover, fates of each blastomere are also well 

studied (Dictus and Damen, 1997; Hejnol et al., 2007; Henry et al., 2004; Lillie, 1895; 

Lyons et al., 2012; Render, 1991; Render, 1997). According to these studies, shell 

forming cells are mainly originated from 2d blastomere (Dictus and Damen, 1997; 

Hejnol et al., 2007; Henry et al., 2004; Lillie, 1895). 

Although the cleavage pattern and the fate of blastomeres were well studied, 
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there were few studies for morphogenesis of molluscs by molecular techniques. Some 

studies reported genes which are expressed around the shell in the trochophore larvae 

stage (Hinman et al., 2003; Iijima et al., 2008; Jacobs et al., 2000; Kin et al., 2009; 

Nederbragt et al., 2002; Samadi and Steiner, 2009; Wanninger and Haszprunar, 2001). 

However, none of these genes has been examined by gene specific knockdown 

experiments. So there are still little understandings about molecular mechanism for 

shell morphogenesis of molluscs. 

In the first chapter, I discussed mechanism for evolution of the operculum in 

gastropod based on the methods of molecular developmental biology including RNAi. In 

the second chapter, I tried to uncover the regulatory mechanism for early cleavage 

pattern which is thought to be related to the evolution of bivalve shell morphology. 
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Chapter 1: 

The co-option of the dpp signaling pathway 

in the evolution of the operculum 

Introduction 

The operculum is one of the novelties in gastropods. It is a proteinaceous and 

sometimes calcified structure that is secreted by specific gland cells on the posterior 

part of the foot (Voltzow, 1994). Gastropods can protect their soft body perfectly against 

predators by blocking their shell opening with the operculum. Although some species, 

such as a limpet and a sea slug, do not have an operculum in adult stage, they form it in 

larval stage (Collier, 1997). Additionally, just as the shell coils in many gastropod 

species, the operculum also shows a spiral growth pattern. Thus, because the operculum 

shows notable similarities to the shell, there was an old argument stressing that the 

operculum was homologous with the shell, and that shell and operculum were together 

indicative of an original bivalve condition (Fleischmann, 1932; Gray, 1850). Here, 

including a test of the above hypothesis, I examined the evolutionary link between the 

shell plate and the operculum. In support of the link, several genes are expressed in 

both the shell field and the operculum, such as ubfm and ferritin (Jackson et al., 2007). 
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In all molluscan groups, the shell develops on the dorsal ectoderm (Kniprath, 

1981). In gastropods, the first sign of shell morphogenesis is observed as shell-field 

invagination, which occurs at the gastrula stage as an invagination of dorsal epidermal 

cells (Kniprath, 1981; Nederbragt et al., 2002). Accompanied by shell matrix secretion 

into the invaginated extracellular space, shell-field cells evaginate, and subsequently, 

shell plate covers a wide area of the larval body (Kniprath, 1981). After the evagination 

of the shell field, cells along the margin of shell field are responsible for further 

secretion of the shell plate matrix. Histological observation of shell formation is well 

studied. On the other hand, there are few studies about operculum formation (Kano, 

2006; Voltzow, 1994). The operculum is secreted by specific glands located on the 

posterior part of foot (Voltzow, 1994). However, there is no information when operculum 

glands differentiate or whether the operculum glands are developed from a part of shell 

glands. Several genes have been identified to be involved in the development of 

shell-field cells. Engrailed is expressed in cells responsible for shell matrix secretion in 

chitons, scaphopods, and bivalves as well as in gastropods (Iijima et al., 2008; Jacobs et 

al., 2000; Kin et al., 2009; Nederbragt et al., 2002; Wanninger and Haszprunar, 2001). 

Hox1 has also been shown to be expressed in the shell-field margin of gastropods 
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(Hinman et al., 2003; Samadi and Steiner, 2009). In gastropods, dpp is expressed in cells 

surrounding the engrailed-positive cells (Iijima et al., 2008; Nederbragt et al., 2002). 

However, none of these genes has been examined in terms of function, such as through 

RNAi knockdown experiments.  

To analyze the evolutionary link between the operculum and shell, I compared 

developmental process of them. First, I described development of the operculum glands 

histologically. Next, I compared gene expressions between shell glands and operculum 

glands. In addition to engrailed, Hox1, and dpp, I analyzed grainyhead. grainyhead is a 

transcription factor and has been proposed to have a conserved role in the 

differentiation of exocrine cells (Yamaguchi et al., 2006). Because the shell glands and 

operculum glands are both secretory organs, I reasoned that grainyhead may be 

involved in the development of both. As markers for shell and operculum glands, I used 

ferritin and chitin synthase. Ferritin is involved with shell calcification in chiton and 

bivalve (Kyung-Suk et al., 1986; Zhang et al., 2003), and expressed in both of shell and 

operculum glands in abalone (Jackson et al., 2007). Because chitin is the main 

component of shell and operculum matrix, I used chitin synthase as a glands marker. 

Finally, I performed gene function analysis by RNAi and discussed evolution of the 
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operculum.  
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Materials and Methods 

Animals and in vitro fertilization 

Sexually mature individuals of Nipponacmea fuscoviridis were collected in 

Yoshidahama Harbor, Miyagi Prefecture, Japan, during the breeding season (April–

June and September–November). They were cultured in artificial sea water (ASW) at 

room temperature. In vitro fertilization was performed following the methods described 

by Deguchi (2007). Eggs and sperm were collected by cutting adult’s foot and squeezing 

the gonads. To induce meiotic maturation, collected eggs were treated by ASW 

containing 5 mM NH4Cl and 10 mM Tris-HCl (pH9.0) for 10 min. Eggs were washed by 

ASW three times, and incubated in ASW for about 1h. After fertilization, embryos were 

cultured in filtered sea water (FSW) at 22°C. Embryos were fixed in a solution 

containing 4% paraformaldehyde, 0.1 M MOPS (pH 7.5), 2 mM EGTA, and 0.5 M NaCl, 

and stored in 80% ethanol at -20°C. 

 

Histology 

Specimens were observed under Nomarsky optics using Nikon E-800. Matrix of 

shell plate and operculum were observed as refringent matrix under Nomarsky optics. 

11 
 



Fixed embryos were embedded in 2% agar. They were dehydrated through a graded 

ethanol series, which were then replaced by a graded ethanol-n-butanol series. Then, 

the agar blocks were embedded in paraffin. Sections (3 µm thick) were stained with 

Mayer’s hematoxylin and eosin.  

 

Cloning of genes and in situ hybridization 

Using the primers shown in Table 1, Nf-dpp, Nf-engrailed, Nf-Hox1, 

Nf-grainyhead, Nf-chitin synthase 1 (Nf-CS1), and Nf-ferritin were amplified with PCR. 

The primers were designed with reference to genome sequences from another species of 

limpet, Lottia gigantia (Simakov et al., 2013). GenBank/EMBL/DDBJ accession 

numbers are described in Table 1. In situ hybridization was performed as described by 

Kin et al. (2009). Digoxigenin-labeled RNA probes were synthesized in vitro from the 

cDNA clones using the Digoxigenin RNA labeling kit (Roche, Mannheim, BRD). After 

rehydration, embryos were treated by 2 µg/ml Proteinase K at 37°C for 20 min and then 

fixed in 4% paraformaldehyde for 1 hour. After prehybridization, the embryos were 

hybridized with digoxigenin-labeled probes at 55°C. The composition of hybridization 

buffer is as follows; 50% formamide, 6 × SSC, 5 × Denhart’s solution, 900 µg/ml yeast 
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RNA, and 0.1% Tween 20. Excess probes were removed by washing the embryos twice in 

50% formamide, 4 × SSC, and 0.1% Tween 20, twice in 50% formamide, 2 × SSC, and 

0.1% Tween 20, and twice in 50% formamide, 1 × SSC, and 0.1% Tween 20. The embryos 

were incubated with 0.5% blocking reagent in PBT for 1 hour at room temperature. 

After blocking, embryos were incubated with alkaline phosphate-conjugated 

antidigoxigenin antibodies, and positive immunoreactions were visualized using Nitro 

blue tetrazolium/5-Bromo-4-chloro-3-indolyl phosphate (NBT/BCIP) solution (Roche, 

Mannheim, BRD). 

 

Immunohistochemistry 

After rehydration, the embryos were incubated in PBT with 3% BSA for 1 h. 

The specimens were incubated with 1/200 rabbit anti-FMRF-amid antibody 

(ImmunoStar, Hudson, WI, USA) in PBT for 1h. After rinsing four times in PBT, the 

samples were incubated with secondary antibody with Alexa 488 (Molecular Probes, 

Eugene, OR, USA) diluted 1/200 in PBT for 1 h. The samples were washed four times in 

PBS and mounted on slides in 50% glycerol in PBS for observation. 
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RNAi 

Template cDNAs of each gene for double-stranded RNA (947 bp for Nf-dpp and 

667 bp for the control hedgehog gene from the Japanese purple mussel, Septifer 

virgatus) were amplified using the primers shown in Table 1. Double-stranded RNA 

(dsRNA) was generated following Clemens et al. (2000). dsRNA dissolved in water was 

injected into fertilized eggs following Sweet et al. (2004). Microinjection was performed 

using micromanipulators (Narishige, Setagaya, Tokyo, JAP) and an injection apparatus 

(Femtojet; Eppendorf, Barkhausenweg, Hamburg, BRD). After injection, embryos were 

cultured in FSW (22°C) until fixed at 12, 16, or 20 h post-fertilization (hpf). 
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Results 

Development of the operculum 

First, I observed the developmental time-course of the shell and the operculum 

in N. fuscoviridis. At 8 hpf, the shell field was observed as a small invagination on the 

dorsal side (Fig. 1A and B). The ventral part was flat, and I could not find any sign of 

foot development or the operculum at this stage. At 10 hpf in the trochophore larva, 

when the shell-field invagination became more prominent, development of the foot 

began to be observed as a small protrusion in the ventral part (Fig. 1C and D). At 14 hpf, 

the shell field evaginated and expanded (Fig. 1E and F). Due to the expansion of the 

shell field, the telotroch moved upward and the mantle cavity began to form. At this 

stage, in the posterior part of the foot, I recognized cells of a distinct shape, specifically, 

long and columnar, oriented along the apical–basal axis (Fig. 1F). Note that the 

shell-field cells at 10 hpf showed a similar morphology (Fig. 1D). At 18 hpf in veliger 

larvae, the shell matrix covered a wide part of the body, and the mantle cavity became 

prominent (Fig. 1G and H). In the posterior part of the foot, I could recognize secretion 

of the operculum matrix, which was underlain by tall columnar cells (Fig. 1G and H). 
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Gene expression patterns  

Expression of Nf-engrailed was detected in the shell-field margin and anterior 

ectoderm cells at the trochophore stage (10 hpf; Fig. 2A). At 14 hpf, as operculum 

development proceeded, expression was newly detected in the foot (black arrowhead in 

Fig. 2B). The signal persisted until 18 hpf, with the expression clear inside the foot and 

not in the epidermal layer (Fig. 2C). Thus, this Nf-engrailed expression did not mark 

cells involved in the matrix secretion of the operculum. FMRF-positive nerve cells were 

detected in a similar part of the foot at 22 hpf (white arrowhead in Fig. 2D), when 

Nf-engrailed expression was no longer detected. This suggests that this later expression 

of Nf-engrailed may be involved in neurogenesis in the foot ganglion.  

Nf-dpp expression was detected in cells surrounding the shell field at 10 hpf 

(Fig. 3A). Subsequently, from 14 hpf, I detected new expression of Nf-dpp in the ventral 

epidermis of the foot (arrowhead in Fig. 3B). Expression in the shell-field margin was no 

longer detected at this stage. Expression in the posterior foot was detected at 18 hpf, 

when operculum matrix secretion was also observed. The cells underlying the 

operculum were marked by Nf-dpp expression (Fig. 3C).  

I detected expression of Nf-grainyhead in the shell field and operculum glands. 
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At 10 hpf, expression was detected in cells adjacent to the shell field and in the most 

anterior region of shell field (Fig. 3D). At 14 hpf, expression was detected in the 

posterior part of the foot, and stronger expression was detected in a more limited part of 

the foot epithelium as the foot region grew bigger (Fig. 3E). At 18 hpf, expression was 

observed in cells underlying the operculum, but the expression was more restricted 

compared with Nf-dpp (Fig. 3F; compare with Fig. 3C). 

The 10 hpf trochophore larvae show a half circle of Nf-Hox1-positive cells in the 

shell field (Fig. 3G). At the veliger stage (14–18 hpf), Nf-Hox1 expression remained at 

the edge of the mantle, corresponding to the position of the shell glands, but I did not 

detect Nf-Hox1 expression in the foot region (Fig. 3H and I). 

I also examined developmental expression of two shell plate effector genes, 

Nf-ferritin and Nf-chitin synthase 1 (Nf-CS1). At 10 hpf, both Nf-ferritin and Nf-CS1 

were expressed in cells surrounding the shell (Fig. 3J and M). At 14–18 hpf, expression 

of both genes were detected in the shell field margin, while only Nf-ferritin expression 

was detected in the operculum glands (Fig. 3K, L, N and O). 
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Function of dpp in the shell and operculum 

Because Nf-dpp is expressed in the operculum as well as in the shell field 

margin, I examined the function of Nf-dpp in these organs. I found that inhibition of 

Nf-dpp by RNAi resulted in the failure of shell field development, which was not 

observed with a control RNAi using bivalve hedgehog (Fig. 4A and B, Table 2). I 

confirmed that 0.5 mg/ml of dsRNA was sufficient to degrade endogenous Nf-dpp (Fig. 

5A and B, Table 3), and I performed further analyzes injecting this concentration of 

dsRNA. At this concentration, after injecting any dsRNAs, approximately 80% of larvae 

survived and kept swimming up to 20 hpf (Table 2). Among the survivors, the 

development of 10–20% larvae was apparently arrested at the trochophore stage 

(comparable to 10 hpf in normal development) and they failed to form a mantle cavity, 

although they continued to swim. When injected with Nf-dpp-dsRNA, more than half of 

the larvae (62/94: 66%, arrested larvae excluded) showed abnormal and smaller shell 

plates, whereas no such effect was observed in control dsRNA-injected larvae (Fig. 4 

and Table 2). However, in Nf-dpp-dsRNA-injected larvae, some matrix was still 

observed (Fig. 4B), and thus shell development was not completely abolished. Nf-CS1 

expression was impaired in more than half of the injected larvae examined (14/23: Fig. 
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5G and H). Thus, Nf-CS1 expression is likely to be under the control of dpp signaling. 

Expression of Nf-grainyhead in the shell-field margin was also severely affected in 

Nf-dpp-dsRNA-injected larvae; in most of the injected larvae (35/42), expression was not 

detected (Fig. 5M and N). On the other hand, expression of the other shell effector gene, 

Nf-ferritin, was unaffected (0/37: Fig. 5I and J). No effect was observed in the 

expression of Nf-engrailed or Nf-Hox1 (Fig. 5C–F and Table 3). Thus, Nf-dpp appears to 

function in matrix secretion, where Nf-CS1 is involved. However, secretion of some 

other matrix component in which ferritin is involved is not dependent on dpp signaling. 

Operculum development was also impaired by Nf-dpp-dsRNA. In larvae 

surviving up to 20 hpf after being injected with 0.5 mg/ml Nf-dpp-dsRNA, 

approximately 40% of the larvae (47/117) showed no matrix secretion in the operculum, 

whereas the shell plate developed to some degree (Fig. 4B and D). No control dsRNA 

injected larvae showed such a phenotype without an operculum (Fig. 4A and C). 

Additionally, Nf-grainyhead expression was almost abolished in Nf-dpp-dsRNA larvae 

when examined at 16 hpf (24/29; Fig. 5O and P). However, expression of Nf-ferritin in 

the operculum was not affected (Fig. 5K and L), while morphology of the larvae was 

deformed due to the effect on shell field expansion. In addition, I observed tall columnar 
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cells in the posterior part of the foot even when dpp function of inhibited (Fig. 4D). Thus, 

Nf-dpp has certain roles for the matrix secretion in the operculum, but cell 

differentiation was not completely abolished by Nf-dpp-dsRNA. 
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Discussion 

Developmental role of dpp in shell-field cell development 

In this chapter, I provide evidence that dpp plays an important role in 

shell-field development. I found that expansion of mantle epithelium was significantly 

suppressed by Nf-dpp-dsRNA (Fig. 4). Cell proliferation of the shell-field margin is 

important for normal morphogenesis of gastropods to cover and protect the posterior 

body mass (Kniprath, 1981). In fact, Kurita (2011) showed dpp contributed cell 

proliferation in shell field in gastropod and bivalve. I also found that, although shell 

matrix secretion was not completely abolished by Nf-dpp-dsRNA, expression of one of 

the shell matrix effectors, Nf-CS1, was impaired (Fig. 5G and H). Thus, Nf-dpp 

signaling performs an important, but limited, role in shell matrix secretion. That is, 

shell matrix secretion is likely controlled in a complex and hierarchal manner. It is 

likely that dpp signaling is involved in certain aspect of matrix secretion, such as chitin 

synthesis. Shimizu et al. (2011) indicated that chemical inhibition of dpp signaling 

resulted in failure of calcification of the shell plate in pond snail. On the other hand, 

other aspects of shell development processes are not dependent on dpp signaling, such 

as the expression of Nf-ferritin (Fig. 5I and J). Several transcription factors are also 
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shown to be expressed in the shell field, including Nf-engrailed and Nf-Hox1. Although I 

tested inhibition of Nf-dpp expression by in situ hybridization (Fig. 5 and Table 3), 

Nf-dpp might be still expressed very low level which could not be detected by this 

method. Namely, abnormal shell formation might be due to low level expression of 

Nf-dpp. It is necessary to confirm by quantitative method such as qPCR whether Nf-dpp 

was completely abolished by RNAi. However, in Nf-dpp-dsRNA larvae, expression of 

Nf-grainyhead was not detected in 83% larvae, whereas expression of other 

transcription factors were expressed (Table 3). This result implied that there is another 

gene network for shell formation which is independent of dpp signaling. Indeed, 

engrailed shows conserved expression in the shell field of several molluscs (Jacobs et al., 

2000; Kin et al., 2009; Nederbragt et al., 2002; Wanninger and Haszprunar, 2001); thus, 

it may perform a key role in shell formation. To understand shell development, future 

works on the function analysis of these genes should be necessary. 

 

Development and evolution of the operculum 

Because the operculum shows notable similarities with the shell, I explored the 

idea that co-option of the shell-field developmental process may account for the 
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evolution of the operculum by comparing developmental mechanisms of these two 

tissues. Development of the operculum begins at about 14 hpf with differentiation of 

thick cells in the posterior part of the foot (Fig. 1). In addition to the similarity in 

morphology of the thick columnar cells, I observed co-expression of Nf-dpp, 

Nf-grainyhead, and Nf-ferritin in both the operculum glands and the shell-field margin 

(Fig. 3). Inhibition of Nf-dpp signaling impaired matrix secretion in the shell and the 

operculum (Fig. 4). Because dpp signaling is involved in multiple contexts in animal 

development (Alberts et al., 2007), shared involvement of dpp cannot be a strong 

evidence for an evolutionary link. However, because the expression of Nf-grainyhead is 

dependent on Nf-dpp signaling in both the shell field and the operculum glands (Fig. 

5M–P), it is probably safe to propose an evolutionary link in the developmental 

processes between the shell and the operculum. Thus, I suggest that co-option of the 

developmental process of the shell occurred during the evolution of the operculum. 

My results may also be consistent with the idea that operculum originated 

from one of the bivalve shell plates (Fleischmann, 1932; Gray, 1850). However, 

histological data showed the operculum glands did not originate from a part of shell 

glands (Fig. 1). Also, I could not detect the expression patterns such that 
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Nf-dpp-positive cells migrate from the shell field to operculum glands (Fig. 3). Rather 

the expression of Nf-dpp and Nf-grainyhead in operculum cells commences notably later 

than that in the shell glands (Fig. 3). Furthermore, lack of gene expression of 

Nf-engrailed or Nf-Hox1 in the operculum glands does not support the origin of the 

operculum from one of the bivalve shells. Thus, my data are more consistent with 

co-option of the developmental process of the shell to the operculum. The co-option of 

dpp–grainyhead pathway may have contributed to providing a novel function, namely 

as matrix secretory cells, to the cells in the posterior part of foot. However, perhaps the 

co-option of the dpp–grainyhead pathway was insufficient, because Nf-ferritin 

expression is not under the control of Nf-dpp signaling in either the shell field or the 

operculum glands (Fig. 5I-L). Although Nf-dpp expression might not be abolished 

completely by RNAi, Nf-ferritin expression in Nf-dpp knockdown larvae suggests 

multiple regulatory cascades affect operculum formation. Thus, additional evolutionary 

events may have been required for the evolution of the operculum. Alternatively, 

co-option of a regulatory molecule further upstream of dpp might have occurred. In 

either case, co-option of the genetic cascade of dpp–grainyhead has provided a unique 

cellular nature as matrix secretors, and was an essential step for operculum evolution. 
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Such a phenomenon of shuffling the cellular nature within a body may be one of the 

major driving forces for the evolution of novel structures as expressed by Gould (1977) 

when he stated; ‘‘permutation of the old within complex systems can do wonders.’’ The 

innovation of the molluscan operculum is a typical example of a novel structure due to 

permutation of the old (shell). 
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Chapter 2: 

The regulatory mechanism of the unique 

cleavage pattern of bivalves 

Introduction 

The calcified shell is one of the most characteristic structure of Mollusca. Each 

class of Mollusca is distinguished by the morphology of shell(s). During molluscan 

development, morphogenesis of the shell plate(s) initiates as early as the gastrula stage. 

In this stage, these are morphological differences between classes. Therefore, varieties 

in shell morphology in molluscs were likely achieved through modification during early 

embryogenesis.  

Early embryogenesis of molluscs was first described more than 100 years ago 

(Conklin, 1897; Lillie, 1895; Meisenheimer, 1901). These studies indicated that molluscs 

develop through spiral cleavage patterns, which is also observed in other animal groups 

such as annelids. During spiral cleavage, the first two cleavages generate four 

blastomeres designated as A, B, C and D, which usually correspond to the left, ventral, 

right, and dorsal side of the larvae stage, respectively (Dictus and Damen, 1997; Hejnol 

et al., 2007; Lillie, 1895; Render, 1991). After the 4-cell stage, each macromere buds off a 
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small micromere at its animal side. Each quartet of micromeres is displaced to the right 

or left of its sister macromere. After generating the first quartet, the macromeres 

continue to divide unequally to generate animal micromere quartets. Thus, the largest 

cell in a cleavage stage is usually one of the macromeres located on the most vegetal 

side. This type of orthodox spiral cleavage is observed in gastropods, although some 

species possess larger D lineage blastomeres than other lineages due to asymmetric cell 

divisions, sometimes accompanied by the formation of the polar lobe. In either case, 

embryos develop into trochophore larvae with shell plates on the dorsal side.  

Among Conchifera, bivalves acquired a novel body plan from their univalved 

ancestors via bilaterally separating the dorsal shell plate into two plates (Waller, 1998). 

The earliest sign of modification, which lead to the unique shell morphology of bivalves, 

is observed as early as the spiral cleavage stage. 

In bivalves, most species show unequal cleavage during their first two 

cleavages and give rise to a larger D cell. This unequal cleavage is not unique to 

bivalves but is also observed in some species of gastropods or annelids (Nielsen, 2004). 

The first modification unique to bivalves is a reversal in polarity in the cleavage of the 

second D lineage micromere (cleavage of 2d and 2D). During orthodox spiral cleavage, 
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because the vegetal blastomere is usually larger, 2D is expected to be larger than 2d. 

However, for bivalves, 2d is larger than 2D, and the 2d blastomere derives a bivalve 

shell anlage (Lillie, 1895). According to the importance of the 2d cell and its descendants 

in bivalve development, the 2d cell and its largest descendant are denoted as X 

blastomere until bilateral division (Lillie, 1895). The 2d blastomere subsequently 

undergoes four unequal cleavages (Guerrier, 1970; Kin et al., 2009; Kurita et al., 2009; 

Lillie, 1895; Luetjens and Dorresteijn, 1995; Meisenheimer, 1901). The micromeres 

generated from X blastomeres are labeled X1, X2, X3 and X4 in order of their generation 

(Fig. 6A). The first two rounds of spiral cleavage are also unique and give rise to two 

small blastomeres on the vegetal side (X1:2d2 and X2:2d12). In the subsequent cleavage 

events, the polarity of X (2d11) is reversed and gives rise to a small blastomere on the 

animal side (X3: 2d111) and a large blastomere (X: 2d112) on the vegetal side. During the 

next cleavage, the cell size polarity is reversed again for the X blastomere (2d112) and 

yields a small blastomere on the vegetal side (X4: 2d1122). After these four unequal 

cleavages, the largest descendant of 2d (X; 2d1121) shows bilaterally symmetric cleavage. 

Interestingly, the bilateral daughter cells of X, 2d1121, were described as anlages of 

bilateral shell glands in bivalves (Lillie, 1895). Recently, it was suggested that some 
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descendants of the 1d blastomere and X1 differentiate into ligament cells (Kin et al., 

2009). Therefore, the unique cleavage pattern of the bivalves is associated closely with 

evolution of the bivalve body plan. Here, I explored how the unique cleavage is 

regulated and whether the cleavage pattern is regulated by an autonomous mechanism 

in D blastomere or is dependent on the interaction with other blastomeres. To 

accomplish this, I performed cell isolation experiments.  

The development of isolated blastomeres has been studied extensively in 

gastropods since the first study was performed more than 100 years ago (Crampton and 

Wilson, 1896). Previous studies indicated that three or four rounds of spiral cleavage 

occur autonomously (Crampton and Wilson, 1896; Hess, 1956), and when isolated at the 

four-cell stage, D blastomere can develop shell glands (Cather, 1967). In addition, 

Cather (1967) provided evidence that shell glands differentiate from any animal 

blastomeres of the ectoderm through induction from vegetal blastomeres (Cather, 1967). 

However, in the bivalve Mytilus, Rattenbury and Berg (1954) reported that isolated D 

blastomere (or any other isolated blastomere) did not differentiate into shell glands 

(Rattenbury and Berg, 1954). Here, I re-examined this observation in another species of 

mussel, Septifer virgatus, using molecular markers for shell gland differentiation. 
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Materials and Methods 

Animals and in vitro fertilization 

Sexually mature individuals of Septifer virgatus were collected on the Hiraiso 

coast, Ibaraki Prefecture, Japan, during the breeding season (July-September). In vitro 

fertilization was performed following the methods described by Kurita et al. (2009). 

Embryos were cultured in ASW at 25˚C. 

 

Cell isolation 

To dissolve an egg membrane, sperm extracts were prepared as described 

previously (Berg, 1950). The two- or four-cell stage embryos were treated with sperm 

extract for 30 sec. After washing twice in ASW, embryos were separated by hand using a 

glass needle. Isolated blastomeres were collected in petri dishes. The cleavage pattern of 

isolated blastomeres was observed using a glass bottom dish (Matsunami Glass, 

Kishiwada, Oosaka, JPN). Embryos were cultured in ASW until fixation at 24 hpf. 

 

Immunohistochemistry 

The larvae were fixed with 4% paraformaldehyde, 0.1 M MOPS (pH 7.5), 2 mM 
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EGTA, and 0.5 M NaCl, and stored in 100% methanol at −20°C. After rehydration, the 

embryos were incubated in PBT with 3% BSA for 1 h. The specimens were incubated 

with 1/200 mouse anti-β-tubulin antibody (Sigma, St. Louis, MO, USA) in PBT for 1h. 

After rinsing four times in PBT, the samples were incubated with secondary antibody 

with Alexa 555 (Molecular Probes, Eugene, OR, USA) diluted 1/200 in PBT for 1 h. The 

samples were washed four times in PBT and mounted on slides in 50% glycerol in PBS 

for observation. 

 

In situ hybridization 

In situ hybridization was performed as described the chapter 1. Sv-Chitin 

synthase 1 (Sv-CS1) was cloned by PCR. GenBank/EMBL/DDBJ accession number and 

primers for PCR were shown in Table 1. 
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Results 

Development of isolated AB and CD blastomeres 

I first performed blastomere isolation at the 2-cell stage. For cell isolation, the 

egg membrane was dissolved using sperm extract treatment to reduce cell adhesion (Fig. 

6B and C). The total numbers of isolated blastomeres were 503 for AB cells and 550 for 

CD cells. I observed cleavage pattern of a part of them under living conditions. A total of 

87% (61/70 = cell cleavage events / cells observed) of the isolated AB cells divided into 

daughter cells of nearly the same size, while 90% (87/97) of CD cells divided unequally 

after forming the polar lobe (Fig. 7 and Movie.1). The remainder of the isolated 

blastomeres did not cleave, and no blastomeres showed abnormal cleavage patterns. 

These cleavage patterns of isolated blastomeres were similar to that of gastropods 

(Crampton and Wilson, 1896; Hess, 1956). 

To examine further development, I fixed surviving larvae swimming by cilia at 

24 hpf. The survival rate of embryos that developed from each blastomere of the 2-cell 

stage was 72% (361/503 = number of surviving larvae / number of isolated blastomeres) 

for AB and 73% (404/550) for CD. At this stage of normal development, larvae formed 

D-shape morphologies with separated shell plates covering a wide part of the body (Fig. 
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8A and B). Foot development was observed on the ventral side. The isolated AB 

blastomeres developed into trochophore-like larvae with prototroch, although I did not 

observe other structures such as the mouth, shell field, foot or apical tuft (Fig. 8C and D, 

and Table 4). Larvae from CD blastomere also developed into trochophore-like larvae 

with prototroch. The majority of larvae had shell plates on the dorsal side (Fig. 8E and F, 

and Table 4), but no foot-like structure was observed. 

 

Cleavage pattern of isolated D blastomeres 

To isolate D blastomeres, I treated 4-cell stage embryos with sperm extracts 

and isolated the largest blastomere (Fig. 6D and E). I could isolate 517 D blastomeres, 

and 174 cells of them were observed under living condition. Table 5 summarized the 

cleavage pattern of isolated D blastomeres. Among 174 isolated D blastomeres, 138 

underwent two rounds of unequal cleavage (Fig. 9A). I considered the largest 

blastomere to be 2d (X). Although in some partial embryos, 2D and 1d were located on 

the same side as the large blastomere 2d, this was not indicative of a reversal of 

unequal cleavage (in spiral cleavage, blastomeres were located in the order 1d-2d-2D 

from the animal pole). Because the cleavage plane is oblique and the direction of 
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obliqueness reversed during successive cleavage, 1d and 2D are quite close during 

normal development (see Fig. 2B and H of Kurita et al. 2009 as well as Fig. 3 of Kin et al. 

2009). A total of 14 embryos ended cleavage after one round of unequal cleavage, and 

22/174 never underwent cleavage. 

I further monitored the development of 138 embryos by focusing only on the 

subsequent cleavage pattern of X (2d) (Fig. 9, Movie 2 and Table 5). Among 138 embryos, 

22 did not show any further cell division, and 26 stopped after one round of unequal 

cleavage. A total of 90 embryos showed two further rounds of unequal cleavage and two 

small blastomeres located adjacent to 2D (Fig. 9B and C). This cell arrangement is 

similar to that in normal development, in which X1 (2d2) and X2 (2d12) are located on the 

vegetal side of X (2d11). A large number of isolated blastomeres ended cleavage at this 

stage, and only 40 embryos proceeded to the next round of unequal cleavage. During the 

next cleavage, the smaller blastomere emerged at the other side of the previous small 

blastomeres, perhaps reflecting the reversal of polarity during normal development, in 

which X (2d11) divided unequally into small X3 (2d111) and larger X (2d112) (Fig. 9E). A 

total of 17 blastomeres proceeded to the next round of unequal cleavage and gave rise to 

smaller blastomeres on the opposite side of the previous small blastomere. This also 
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likely reflects the cleavage of normal development, where X (2d112) divided unequally 

into larger X (2d1121) and smaller X4 (2d1122). After the above four rounds of unequal 

cleavages, 14 partial embryos showed a symmetric cell division, perhaps reflecting 

bilateral cleavage of X (2d1121) into XR (2d11212) and XL (2d11211) (Fig. 9F). It should be 

noted that when focusing on the cleavage of X lineage, I did not observe blastomeres 

that underwent abnormal cleavage patterns.  

 

Further development of isolated D-blastomeres and expression of Sv-CS1 

The majority of isolated blastomeres stopped cell division of the X lineage 

midstream (only 14/138 proceeded to symmetric cell division of X (2d1121)), but cell 

division did proceed in other cell lineages. Therefore, a significant number of isolated 

D-blastomeres could develop into swimming larvae. Indeed, 47% (241/517) of isolated D 

blastomeres survived and were swimming via cilia at 24 hpf. The morphology of larvae 

derived from D blastomeres was similar to that from CD (Fig. 8E-H). I observed an 

apical tuft, ciliary loop prototroch and shell plates (Table 4). While the ligament was 

clearly observed in un-operated larvae at this stage, I could not identify the ligament in 

larvae from isolated D blastomeres. 
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To further investigate shell development in larvae derived from D blastomeres, 

I examined the expression of Sv-chitin synthase 1 (Sv-CS1). In the pacific oyster, chitin 

synthase is expressed in the mantle during the adult stage, and its expression started in 

the trochophore larvae stage (Zhang et al., 2012). Also, I showed Nf-chitin synthase 1 is 

a good marker for the limpet’s mantle edge in chapter 1 (Fig. 3M-O). During normal 

development of S. virgatus, the first weak signal of Sv-CS1 was detected in the 

invaginated cells of the shell anlage at the early trochophore stage (Fig. 10A-C). After 

the shell field evaginated (14 hpf), Sv-CS1 expression was detected at the mantle edge, 

and a new strong signal was observed in the ligament (Fig. 10D-F). At 16 hpf, Sv-CS1 

expression continued in the ligament as well as at the mantle edge (Fig. 10G-I). In 24 

hpf larvae, strong Sv-CS1 expression was observed at the mantle edge, while expression 

decreased in the ligament (Fig. 10J-L). 

In the larvae derived from AB blastomeres, morphology was similar to that of 

early trochophores with prototroch, but I did not observe any sign of shell field 

invagination or mouth opening as described before (Fig. 8C). No samples of them 

showed Sv-CS1 expression (0/32 = Sv-CS1-expressing larvae / analyzed larvae; Fig. 11A 

and B). On the other hand, in the larvae from D blastomeres, approximately half 
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(53/114) had Sv-CS1-positive cells on the dorsal side at 24 hpf (Fig. 11C-H). The 

majority of partial larvae derived from D blastomere failed to evaginate shell field cells. 

A total of 29/114 samples showed Sv-CS1 expression in the invaginated cells (Fig. 11C 

and D), but 19/114 showed Sv-CS1 signal outside of the invagination (Fig. 11E and F). 

Only five partial larvae showed evaginated shell plates, and the Sv-CS1 signal was 

observed underlying the shell matrix (Fig. 11G and H). These observations indicated 

that shell field differentiation did not require an interaction with derivatives of A, B or 

C blastomeres. 
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Discussion  

Shell field differentiation in isolated D blastomeres 

In gastropods, blastomere isolation was performed extensively in the early 20th 

century to investigate mosaicism during early embryogenesis (Cather, 1967; Clement, 

1962; Crampton and Wilson, 1896; Verdonk and Cather, 1973; Wilson, 1904). In these 

experiments, isolated D blastomeres could always form differentiated external shell. 

Some authors described that even other blastomeres (A, B or C), when isolated, 

developed an internal shell matrix (Cather et al., 1976; Verdonk and Cather, 1973). 

However, the “internal shell matrix” was later shown that the matrix was not 

necessarily indicative of differentiation of the shell matrix, but it may reflect abnormal 

specification of statocysts (McCain, 1992). I found that isolated D blastomeres can 

differentiate shell glands in bivalve (Fig. 11). However, this fact does not necessarily 

indicate that the shell gland can differentiate autonomously without any cell-cell 

interaction. Indeed, Cather (1967) indicated that, while isolated D blastomeres reached 

the veliger larvae stage with shell plates in Ilyanassa, depletion of vegetal blastomeres 

such as 2D or 3D resulted in loss of the shell plate. He also performed further 

experiments and demonstrated an inductive role of vegetal blastomeres for the 

38 
 



differentiation of shell glands. Blastomeres on the animal side when isolated at the 

32-cell stage develop into hollow ball-like structure and do not differentiate into a shell 

gland. However, these animal blastomeres develop external shell matrices when 

combined with either macromere (3Q), mesentoblast, or even with isolated polar lobe. 

This induction of shell glands may account for the discrepancy in cell lineages between 

species. In most species, the shell glands originate from 2d blastomere, and the shell 

glands are derived from different lineages in some species, such as Patella vulgata 

(Dictus and Damen, 1997). Despite extensive studies in gastropods, blastomere isolation 

has rarely been performed in bivalves, and in a study using the mussel species Mytilus 

edulis, isolated D blastomeres did not develop shell plates (Rattenbury and Berg, 1954). 

In the present study, using another species of mussel, Septifer virgatus, I found that 

larvae from isolated D blastomeres express the shell gland marker Sv-CS1 (Fig. 11) and 

secrete shell matrices (Fig. 8 and Table 4). This difference in isolated D blastomeres 

from different mussel species to develop shell plates may reflect different regulatory 

mechanisms between the two species, or it may be due to damage during experiments in 

the previous report. Future research will determine whether induction from vegetal 

blastomeres is also required for shell gland differentiation in bivalves.  
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Unique cleavage pattern of X blastomere is controlled autonomously 

Bilateral separation of shell plates is a characteristic feature of bivalves. 

Previous studies indicated that the unique regulation of symmetric cell division 

following asymmetric cleavages of 2d lineage cells is closely associated with the unique 

morphology of shell plates (Kin et al., 2009; Lillie, 1895). In this study, I explored 

whether the unique cleavage pattern of 2d lineage is regulated autonomously or 

through interactions with other cells. I found that, even though a number of isolated D 

blastomeres end cleavage before bilateral cleavage, approximately 8% of isolated 

blastomeres followed the normal cleavage pattern up until bilateral cell division (Table 

5). Notably I could not find any isolated blastomeres showing abnormal cleavage 

patterns, i.e., isolated blastomeres either ended cleavage or followed the normal 

cleavage pattern. Based on these observations, I concluded that the unique cleavage 

pattern did not require an interaction with cells originating from A, B or C blastomeres. 

Rather, the unique cleavage pattern is controlled by intrinsic mechanisms within the D 

lineage.  

The regulatory mechanisms for asymmetric cell division are well-studied in 

model organisms, such as Drosophila, yeast and C. elegans, as well as in vertebrate cells 
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(Betschinger and Knoblich, 2004). These studies revealed a conserved regulatory 

mechanism for asymmetric cell division, where aPKC and Par proteins are localized in 

the specific site of the cell membrane and regulate asymmetric cell division by 

attracting centrosomes (Gonczy, 2008). These molecules are also thought to be involved 

in the regulation of asymmetric cleavage of early development in marine invertebrates 

such as ascidians and sea urchins (Alford et al., 2009; Patalano et al., 2006). Although 

involvement of these factors in the regulation of the unique cleavage of bivalves will be 

explored in future studies, the regulation of asymmetric cell division in bivalves may be 

more complicated than in sea urchin or ascidians. For ascidians and sea urchins, 

polarity of asymmetric cell division does not change during development; centrosomes 

are always pulled toward the vegetal pole in sea urchins (Dan, 1979) and towards the 

posterior pole in ascidians (Hibino et al., 1998). However, for 2d blastomere of bivalves, 

after giving rise to two micromeres on the vegetal side (X1-2d2 and X2-2d12), reversal of 

asymmetry occurs and produces micromeres on the animal side (X3-2d111). Subsequently, 

the reversal occurs again and produces a micromere on the vegetal side (X4-2d1122), prior 

to symmetric bilateral cleavage. I demonstrated that these reversals in asymmetry 

occur without interaction with other lineage cells (A, B or C lineages). Although it is 
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possible that the cell interaction with 2D lineage or 1d lineage cells regulate the 

reversal of asymmetry, my results suggested that D lineage blastomeres possess 

intrinsic mechanisms for counting cell division. Similar counting mechanisms were 

proposed for Xenopus mid-blastula transition (MBT) or ascidian muscle differentiation 

(Newport and Kirschner, 1982; Satoh and Ikegami, 1981). For the Xenopus MBT, the 

ratio between cytoplasmic vs. nuclear volumes is thought to be an important counting 

mechanism for initiating zygotic transcription in the mid-blastula stage (Newport and 

Kirschner, 1982). Ascidians were proposed to possess distinct counting mechanisms; 

they regulate the commitment to muscle differentiation based on the number of DNA 

replication cycles (Satoh and Ikegami, 1981). The reversal of asymmetric cell division in 

bivalve development can be used as a system to study the regulation of developmental 

timing. Furthermore, establishment of this unique mechanism may have been essential 

for evolution of the bivalve body plan. 
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General Discussion 

In this thesis, I investigated the evolutionary mechanisms for acquisition of 

novelty in molluscs. The Mollusca is one of the most divergent phyla. Their 

developments show the spiral cleavage pattern and trochophore larvae, both 

phenomena are found in other phyla such as Annelida (Nielsen, 2004). Although 

morphologies of trochophore are similar between Mollusca and Annelida, remarkable 

differences are recognized in this stage among molluscan classes (Wanninger et al., 

2008). Therefore, modification of cleavage pattern should strongly affect morphological 

differences of molluscs. This developmental pattern may not be general because variety 

of cleavage pattern is converged at phylotypic stages in vertebrates and arthropods 

(Slack et al., 1993). However, knowledge of molluscan morphogenesis should be 

essential piece for understanding diversification of animal form and its evolution.  

In the first chapter, I investigated the evolutionary acquisition of the 

operculum in gastropod lineage. My results suggested that co-option of a part of the 

mechanisms for shell formation was important for acquisition of secretory ability of 

shell like matrices to operculum glands. However, dpp knockdown larvae had large cells 

on the posterior part of foot, their shape was similar to secretory cells (Fig. 4). Because 
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molluscs have many mucous glands on the epithelium, co-option of dpp signaling 

pathway might not add novel glands on the posterior part of foot but change the 

property of existing secretory cells. Interestingly, bivalves have unique glands on the 

posterior part of foot, called byssus glands (Brown, 1952). Bivalves anchor their body to 

rock by threadlike byssus, secreted from byssus glands (Yonge, 1962). The components 

of the operculum are more similar to that of byssus than shell components (Hunt, 1976). 

These similarities suspect that common ancestors of gastropods and bivalves had 

characteristic glands which were the origin of the operculum glands and the byssus 

glands. Even so, it is thought that co-option of dpp signaling pathway in the gastropod 

lineage is important for changing cell nature by integrating existing gene regulatory 

network. 

The modification of cleavage pattern correlates with morphological difference 

of molluscs such as shell coiling in gastropod (Freeman and Lundelius, 1982) and two 

shell plates in bivalve (Lillie, 1895). As shown in chapter 2, unique cleavage pattern of D 

lineage in bivalves is regulated autonomously depending on the numbers of cleavage 

times. That is, it is assumed that bivalves regulate active state or movement of polarity 

factors depending on the numbers of cleavage times. Also, molluscs show dynamic 
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cytoplasmic movement, polar lobe formation. The factors in the polar lobe are important 

for differentiation of cell fate (Cather, 1967). It seems that molluscs can control the 

cytoplasmic movement strictly. Thus, molluscan blastomere can be used as a good model 

for study about the regulation of cytoplasmic movement.  

Spiralian show conserved cleavage pattern and their determination of cell fate 

occurs in very early stage. Therefore it is possible to compare homologous blastomeres 

and their fate among the phylum, such as Mollusca and Annelida. These aspects are 

useful for EvoDevo researches such as how cell fate is developmentally determined and 

how cell type is evolutionally changed. I believe that researches about molluscan 

morphogenesis by cell biological and molecular developmental approaches will uncover 

evolutional and developmental mechanism for not only the diversified molluscan 

morphology but also the creation of variable shapes of organisms from simple egg. 
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Table 1  

Accession numbers and primers used for PCR. 

Gene names 
Accession 

numbers 
Primers (upper: forward, lower: revers ) 

Nf-dpp AB612238 
 GCCAACACAGTTCGCAGCTTTTA 

 ACCATATCTTGATAGTTTTTAAGCAC 

Nf-engrailed AB639757 
AACTTTTCTATAGCAGAAATT 

TTGTGATTGTAAAGTCCTTCCGAC 

Nf-Hox1 AB639756 
GATTATACGCTTTGCAATTTG 

TTCACGCATGCGCTTCTTTTG 

Nf-grainyhead AB639758 
CTAGAATCACCTATCTCAACTA 

TTTTATATTTCTCTTCAATAGC 

Nf-ferritin AB639755 
CAACCACGTCAAAACTTCCAT 

GTATTCACCCAGACCAGTTCC 

Nf-chitin 

synthase 1 
AB646432 

ACAGGAAATGACGCAACTTCTCA 

TTGAAATCAACATCACCATCCAA 

Sv-chitin 

synthase 1 
AB613818 

ATGAAAAGTGACATTCAGATTGGCAG 

TCTGGTTCCCATCCAGGAGGAACAACATC 

Nf-dpp-dsRNA ― 
TAATACGACTCACTATAGGGCGAAACACAGTTCGCAGCTTTTACCATAACG 

TAATACGACTCACTATAGGGCGACCATATCTTGATAGTTTTTAAGCACAAC 

Sv-hedgehog 

-dsRNA 
― 

TAATACGACTCACTATAGGGCGATGTATTACGAATCACG 

TAATACGACTCACTATAGGGCGACAGAGTTATTGTTAAT 
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Table 2  

Effect of Nf-dpp RNAi on the larval morphology at 20 hpf of N. fuscoviridis. 

  No. of 

injected 
survived larvae Normal 

shell_ab, 

Op._+ 

shell_ab, 

Op._－ 

shell_ － , 

Op._－ 

Control dsRNA 96 84 73 0 0 11 

Nf-dpp-dsRNA 145 117 32 15 47 23 

Shell_ab.: abnormal shape of shell, Shell_－: shell absent,  

Op._+: operculum present, Op._－: operculum absent. 
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Table 3  

Effect of Nf-dpp RNAi on gene expressions.  

(Number of larvae in which expression was not detected/number of examined larvae) 

  Nf-dpp Nf-en Nf-Hox1 Nf-grh Nf-CS1 Nf_fer   Nf_grh Nf_fer 

  12 hpf (shell field)   16 hpf (operculum) 

Control dsRNA 2/25 0/35 0/32 0/42 0/63 0/22   0/41 0/21 

Nf-dpp-dsRNA 43/46 0/58 0/69 35/42 14/23 0/37   24/29 0/18 

Nf-en: Nf-engrailed, Nf-grh: Nf-grainyhead, Nf-fer: Nf-ferritin 
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Table 4 

Effect of cell isolation on the larval morphology at 24 hpf of S.virgatus. 

Isolated blastomere No. of samples ciliary loop apical tuft shell  mouth 

AB 19 19 0 0 0 

CD 20 20 15 13 12 

D 26 26 15 17 16 
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Table 5 

The successful number of X lineage cleavage. 

Total 

number 
1d-1D 

X X1 X2 X3 X4 
XL&XR 

(2d) (2d2) (2d12) (2d111) (2d1122) 

174 152 138 116 90 40 17 14 

% 87.3 79.3 66.7 51.7 23 9.8 8 
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Figures and Legends 
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Fig. 1. Outline of development of the shell and operculum in N. fuscoviridis. 

(A, B) At 8 hpf, the shell field was observed as a small invagination on the dorsal side. 

However, no sign of foot development was observed. Lateral view (A, dorsal to the left) 

and dorsal view (B). Shell field is encircled by white broken lines. (C, D) At 10 hpf, the 

shell-field invagination was more prominent, and foot development was observed as a 

small protrusion in the ventral part. Lateral view of whole-mount larvae (C) and 

sectioned image (D). Dorsal to the left. Shell field is encircled by white broken lines. (E, 

F) The shell plate matrix was first observed in 14 hpf early veliger larvae. Due to the 

expansion of the mantle epithelium, the foot moved upward, and a mantle fold emerged. 

Operculum cells were observed as long cells in the posterior part of the foot (encircled by 

black broken line). Lateral view of whole-mount larvae (E) and sectioned image (F). 

Dorsal to the left. (G, H) At 18 hpf, the shell plate developed with a dome-like shape and 

surrounded a wide part of the larval body. The matrix of the operculum also emerged at 

this stage (white arrowhead). Lateral view of whole-mount larvae (G) and sectioned 

image (H). Dorsal to the left. Black arrows: foot, white arrows: mantle edge, white 

arrowhead: operculum. Scale bars: 20 µm. 
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Fig. 2. Expression pattern of Nf-engrailed and FMRF-amide. 

(A) Nf-engrailed was expressed in the edge of shell field and anterior ectoderm cells 

(arrows) at the 10 hpf trochophore larva (dorsal view). (B) At 14 hpf, new Nf-engrailed 

signals were observed in the foot indicated by black arrowhead (lateral view). (C) At 18 

hpf, expression of Nf-engrailed was observed in the anterior cells (arrow) and inside of 

the foot (black arrowhead) not in mantle edge (lateral view). (D) FMRF-amid positive 

nerve cells were located in the foot pointed by white arrowhead at 22 hpf. Asterisks 

indicate non-specific staining of shell. Scale bars: 50 µm. 
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Fig. 3. Expression pattern of Nf-dpp, Nf-grainyhead Nf-Hox1, Nf-ferritin and Nf-CS1.  

Expression patterns of Nf-dpp (A–C), Nf-grainyhead (D–F), Nf-Hox1 (G–I), Nf-ferritin 

(J–L) and Nf-CS1 (M–O). Dorsal view of the 10 hpf trochophore larvae (A, D, G, J, M). 

Lateral views at 14 hpf (B, E, H, K, N) and 18 hpf (C, F, I, L, O). Dorsal to the left. The 

expressions in the operculum glands are indicated by black arrowheads. Asterisks 

indicate non-specific staining of shell plate. Scale bars: 50µm. 
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Fig. 4. Effect of Nf-dpp-dsRNA on larval morphology. 

(A) Morphology of control dsRNA-injected larva at 20 hpf. (B) Morphology of 

Nf-dpp-dsRNA larva at 20 hpf. (C, D) Enlarged images of the foot region of the larvae 

are shown in (A) and (B), respectively. Operculum region is indicated by arrowheads. 

Clear operculum matrix was observed in control larvae (C), but no matrix was observed 

in Nf-dpp-dsRNA larvae, while tall columnar cells were still observed as indicated by 

arrowheads (D). pt: prototroch, f: foot. Scale bars: 50 µm. 
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Fig. 5. Effect of Nf-dpp-dsRNA on gene expressions.  

Expression of Nf-dpp (A, B), Nf-engrailed (C, D), Nf-Hox1 (E, F), Nf-CS1 (G, H), 

Nf-ferritin (I–L) and Nf-grainyhead (M–P) in control dsRNA-injected larvae (A, C, E, G, 

I, K, M, O) or Nf-dpp-dsRNA-injected larvae (B, D, F, H, J, L, N, P). Expression was 

examined at the 12 hpf trochophore stage (A–J, M, N: dorsal views) or the 16-hpf veliger 

stage (K, L, O, P: lateral views, dorsal to the left). Arrowheads indicate the position of 

the operculum cells. Asterisks indicate non-specific staining of shell. 
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Fig. 6. Cleavage pattern of X blastomere and effect of sperm extracts.  

(A) Summary of cleavage pattern of X (2d) lineage. Arrows indicate the cleavage order. 

Modified after Kurita et al. (2009). (B,C) Two‐cell stage embryo before (B) and after 

sperm extract treatment (C). (D,E) Four‐cell stage embryo before (D) and after sperm 

extract treatment (E). Scale bars: 50µm. 
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Fig. 7. Cleavage patterns of blastomeres isolated at the two‐cell stage 

(A) Isolated CD blastomeres showed unequal cleavage with polar lobes (arrowheads). 

(B) Isolated AB blastomeres divided symmetrically. Upper and lower panels show the 

time course of cleavage of blastomeres isolated from a single fertilized egg (upper and 

lower panel show similar stages after fertilization). Movie 1 corresponds to these figures. 

Scale bars: 50 µm. 
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Fig. 8. Morphology of larvae developed from isolated blastomeres at 24 hpf. 

(A, B) Larvae showing normal development. (C, D) Larvae developed from isolated AB 

blastomeres. (E, F) Larvae developed from isolated CD blastomeres. (G, H) Larvae 

developed from isolated D blastomeres. (A, C, E, G) Light image of the larvae. (B, D, F, 

H) Ciliary structures visualized using anti‐β‐tubulin antibody of the larvae (ventral to 

the left). Arrowhead: apical tuft, f: foot, broken line: mantle edge. Scale bars: 50µm 
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Fig. 9. Cleavage pattern of isolated D blastomere.  

(A) Isolated D blastomeres after two rounds of cell divisions. (B, C) X (2d) divided 

unequally and smaller X1 (2d2) (B) and X2 (2d12) (C) localized on the same side as 2D. (D) 

2D and 1d2 blastomeres divided, and the third division of X (2d11) started. (E) X3 (2d111) 

was localized on the opposite side of X1 (2d2) and X2 (2d12). (F) After X4 (2d1122) divided 

on the opposite side of X3 (2d111), X (2d1121) divided bilaterally. The broken line shows 

the lineage of X (2d) blastomeres. Movie 2 corresponds to these figures. Scale bars: 50 

µm 
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Fig. 10. Expression patterns of Sv-CS1 during normal development.  

(A–C) 10 hpf larvae. (D–F) 14 hpf larvae. (G–I) 16 hpf larvae. (J–L) 24 hpf larvae. (A, D, 

G, J) Dorsal view of larvae. (B, E, H, K) Lateral view and focus on the mid line 

(ligament) of larvae (ventral to the left). (C, F, I, L) Lateral view and focus on the left 

surface of larvae (ventral to the left). Arrowhead: invagination site. Broken line: shell 

field. Scale bars: 50µm. 
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Fig. 11. Expression patterns of Sv-CS1 in larvae developed from isolated blastomeres. 

(A,B) Larva developed from AB blastomeres at 24 hpf. (C–H) Larva developed from D 

blastomeres at 24 hpf. (A, C, E, G) Dorsal view. (B, D, F, H) Lateral view (ventral to the 

left). Broken line shows the shell field edge. Scale bars: 50µm. 
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Movies and Legends 
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Movie 1. Cleavage pattern of blastomeres isolated at the 2-cell stage from a single 

fertilized egg after sperm extract treatment. 

Left is CD blastomere and right one is AB. Fig. 7 corresponds to this movie. 
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Movie 2. Cleavage pattern of isolated D blastomere after sperm extract treatment. 

The dashed line shows the lineage of X blastomeres. Fig. 9 corresponds to this movie. 
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