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Abstract 
 

A series of new discretization methods is proposed for obtaining discrete-time models of non-linear 

continuous-time systems, based on the continualization technique. This concept sheds new light to the 

discretization problems from an opposite angle, so to say, by highlighting a connection between a 

given discrete-time system and a corresponding continuous-time system. This concept is proposed 

and used in this thesis to derive a sufficient condition for a given discrete-time system to be an exact 

discretization of a continuous-time system. It is shown that this condition can be solved exactly for 

linear and certain nonlinear systems, in which case exact discrete-time models can be found. More 

importantly, perhaps, it is also shown that a variety of new models may be created by approximately 

solving this condition. A new model is proposed by using a linear relationship in solving this 

condition equation, which can always be found as long as a Jacobian matrix of the nonlinear system 

exists. The proposed discretization method can be applied to both autonomous and non-autonomous 

systems. It is proven that when Jacobian matrix of the nonlinear autonomous system is invertible, the 

equilibrium points of the model are identical to those of the original continuous-time system, and their 

asymptotic stability and instability are retained for any sampling period. A variety of self-excited and 

forced nonlinear oscillators, such as van der Pol and Lorenz oscillators, as well as an inverted 

pendulum subjected to high-frequency excitation, are examined and simulated. They show that the 

proposed discrete-time models perform better than all existing discrete-time models that the author is 

aware as on-line computable, and retain such key features as stability, limit cycles, and chaos, even 

for relatively large sampling periods. 

The discretization method mentioned above, which is based on linear approximation, can be 

improved by using a Riccati approximation and is shown to have a smaller norm of the approximation 

error than the one based on linear approximation. Simulation results are presented for a 

Lotka-Volterra system to demonstrate that the proposed model has better performances than the 

existing methods obtained by the forward-difference, Kahan’s, Mickens’, and the author’s previous 

models. 

As an application of the proposed discretization methods, a new discrete-time feedback control is 

proposed for scalar nonlinear systems with constant parameters. It is shown that the proposed control 

law preserves the asymptotic stability of the desired linear system at sampling instants, while the 

popular forward difference and accurate Mickens methods do not, in general. As an example, the 

proposed control law is applied for discrete-time feedback linearization of a scalar Riccati system. 

Simulation results demonstrate that the proposed method has better accuracy and tends to retain the 

desired dynamics for larger sampling intervals, than the other two methods. 
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Chapter 1  
 

 

Introduction 
 

 

1.1  Digital control and discretization 

Digital computations involving a continuous-time system require its conversion into a discrete-time 

format somewhere in the process, and a number of researchers have worked on this topic in a variety 

of fields, including engineering systems and control [1-7]. A large number of discretization methods 

have been proposed for linear systems [8, 9], while those available for nonlinear systems are still 

relatively rare [9]. A linearized discrete-time model is often used as an approximation of the given 

non-linear system, first by linearizing the continuous-time system around an operating point and then 

discretizing the resulting linear system, for which a number of discretization methods are available. 

Recent approaches are to obtain non-linear discrete-time models for non-linear continuous-time 

systems, and try to capture such key non-linear phenomena as limit cycles and chaos. Although 

accurate discretization methods are available for off-line simulations, those that lead to on-line 

computable algorithms are still relatively rare. Of those, the simplest discretization method is the 

forward-difference model, whose form and parameter values are chosen to be the same as those of the 

continuous-time system and only differentiation is replaced with its Euler discrete-time equivalent [9]. 

Owing to its simplicity and applicability, this model is widely used. However, its accuracy is usually 

poor even for linear cases unless a high sampling frequency is used. This is true also for non-linear 

digital control systems that are designed based on the forward-difference model, which can 

complicate a subsequent digital controller design in an effort to take the discretization error into 

account [10]. A discretization method was proposed in [2] based on bi-linearization. Although this 

technique seems to be applicable to some important classes of non-linear systems, it usually does not 

lead to an exact discrete-time model, which gives state responses that match those of the 

continuous-time system exactly at any discrete-time instant for any sampling period. The so-called 

non-standard models have been proposed in [4], which uses non-local discretization grids with 

constant gains based on the linear portion of the non-linear equation, and is applicable to a wide range 

of non-linear systems. It has been shown through simulations that the non-standard method is superior 

to the forward-difference model in terms of computational accuracy. However, care has to be 

exercised in determining the order in which the state equations are updated on-line. This formulation 

also makes the relationship between discrete-time and continuous-time systems less clear. 

An approach that is based on exact linearization of non-linear systems has been presented for 

systems governed by a differential Riccati equation [11], where the gain called the discrete-time 

integration gain played an important role. This role is more visible using a delta-operator form [9] 

than the conventional shift form. The integration gain for linear systems is a function of 



 

2 

continuous-time parameters and a sampling interval [8], whereas that for non-linear systems, is also a 

function of system states [11]. Extensions of the exact gain to non-exact cases have been attempted 

for a non-linear oscillator [12], where the integration gain is chosen such that the system looks linear 

in form. However, this approach seems inapplicable for wide range of nonlinear systems, and the 

accuracy of derived discrete-time model is still poor. 

 

1.2  Issues to tackle 

The present thesis investigates the topics listed above, which are fundamental but long-standing 

issues in discretization of nonlinear systems, and tries to make important contributions in finding 

answers, in particular, to the following questions: 

 Is there a way to look at the discretization process from a bilateral point of view with regard to 

the relationship between a continuous-time system and a discrete-time model? 

 Is there a systematic method, exact or approximate, of discretization that is applicable to a wide 

range of nonlinear systems with high accuracy? 

 Are the discrete-time models applicable to and effective in, the design of a digital control system, 

which has to be on-line computable? 

The answers to these questions will be given in the thesis, in the affirmative. 

 

1.3  Thesis organization 

Based on an insight of discrete-time integration gained from the earlier attempts, the present study 

develops a sufficient condition for a given discrete-time system to be an exact discretization of a 

continuous-time system by using the concept of continualization. When this equation is solved exactly, 

exact discrete-time models are obtained, whereas when it is solved approximately, approximate 

models are derived. 

The thesis is organized as follows: some definitions about the discrete-time model, the exact 

discrete-time model, and the continualization concept are presented in Chapter 2 [13, 14]. A brief 

review of the discrete-time model using the discrete-time integrator gain and the discrete-time model 

thus obtained for an autonomous nonlinear system with these examples for van der Pol and Lorenz 

oscillators are presented in Chapter 3 [14]. Investigations of equilibrium points and their stability are 

also presented in this chapter [15]. In Chapter 4, the models obtained for autonomous nonlinear 

system in Chapter 3 are extended to nonlinear forced oscillators, where the external forces are given 

functions of time [13]. The well-known forced van der Pol oscillator is used as an example. Chapter 5 

presents the generalization of the discrete-time model of Chapter 4 to non-autonomous nonlinear 

systems, and an example of the inverted pendulum that is subjected to high frequency excitation [16]. 

An improvement of the model developed in Chapter 3 for autonomous nonlinear system is presented 

in Chapter 6 [17] based on Riccati approximation of integration gain. Chapter 7 treats an application 

of the proposed discrete-time models, which are used in the design of discrete-time linearization 

feedback control for scalar Riccati system [18]. Chapter 8 presents conclusions and suggests topics 

for future work. 
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Chapter 2  
 

 

Discretization and continualization 
 

 

In this chapter, some general concepts of discretization and discrete-time modeling are discussed. 

Throughout the thesis, a discrete-time model is expressed in delta operator, which has better 

numerical properties than that in shift operator. Definitions of exact discretization and less-stringent 

general discretization are presented. A process that can be considered as a sort of inverse operation of 

discretization is continualization. This concept will play a key role in the development of new 

discretization methods. A generalization of this concept is proposed by a definition of continualization 

for a given discrete-time model. 

 

 

2.1  Delta and shift operator 

In the time domain, the shift operator has been widely used for representing discrete-time systems. 

The reasons for its popularity are its simplicity in form and ease in understanding the mechanism of a 

derived algorithm and for implementing the algorithm using digital equipment. However, the 

relationship with continuous-time result becomes less clear. In fact, discrete-time results expressed in 

this form do not approach continuous-time results even if the discrete-time period approaches zero. 

The use of the delta operator fills the gap between continuous-time and discrete-time results. In 

addition, the discrete-time system expressed in this form has better numerical properties than that 

expressed in the shift form [9]. Therefore, the delta operator is used throughout this thesis to express 

discrete-time systems.  

 

2.2  Discretization 

Let a continuous-time model of a nonlinear system be given by the following state space equation: 

           
 

    0 0, ,
d t

t t t
dt

 
x

Γ x x x , (2.1) 

where nRx  is a state vector of continuous time variable t , and 0x  is an arbitrary initial value. 

Γ  is assumed to be expandable into Taylor series. This implied that Γ  satisfies the Lipschitz 

condition and eq. (2.1) has a unique solution for a given initial condition. 

For the continuous-time system (2.1), a number of discrete-time systems can be associated. In the 

present study, they are expressed in delta form [9, 19] with a uniform discrete-time period of T , as 
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           
0

1
0, ,k k

k k kkT
T

  
  

x x
x Γ x x x , (2.2) 

where   n

k kT R x x  is the discrete-time state vector and   is the delta operator defined as 

 
1q

T



  (2.3) 

with q  being the shift-left operator such that 
1k kq x x . Since the present paper will be paying a 

close attention to relationships that exist between the continuous-time system and its discrete-time 

models, the delta operator form will be more convenient than the more conventional shift form [9]. It 

is assumed that the initial time 0k  is synchronized between the continuous-time and the discrete-time 

systems, such that 

 0 0t k T . (2.4) 

Γ  is called discrete-time system function. Given an appropriate initial condition, the discrete-time 

equation (2.2) has a unique solution as long as Γ  is defined for each of its arguments [20], which is 

a rather mild condition compared with the condition assumed on the continuous-time system.  

Since discretization and continualization are the main topics of the present study, some definitions 

related to them are presented for clarification. 

Definition 2.1 [Exact Discretization][4]: A discrete-time state kx  of system (2.2) is said to be an 

exact discretization of a continuous-time state  tx  of system (2.1) if the following relationship 

holds for any k  and T : 

  k kTx x  (2.5) 

In this case, a discrete-time system, whose state is kx , is said to be an exact discrete-time model of a 

continuous-time system, whose state is  tx .□ 

The existence of an exact discrete-time model is guaranteed under the standard assumption of 

existence of a solution to eq. (2.1) [4]. The state of an exact discrete-time model satisfies eq. (2.5) for 

any T . When T  is changed, kx  will represent a new discrete-time sequence.  

The above definition is widely accepted as a proper discretization of a continuous-time signal and 

is sometimes called a sampled-data signal. However, discrete-time signals and systems are not always 

exact in the sense of Definition 2.1, but only “similar.” This sense of similarity is accommodated in a 

more general definition given below: 
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Definition 2.2 [Discretization] [21]: The discrete-time state kx  is said to be a discretization of the 

continuous-time state  tx  if the following relationship holds for any fixed instant  : 

 

 

 
0

1

lim .k
T

kT k T




  

x x  (2.6) 

Such a discrete-time system is said to be a discrete-time model of the original continuous-time system 

(2.1).□ 

It should be noted that time instant   is fixed and kT  is varied as T  is changed, so the above 

definition uses a point-wise convergence. In this definition,   can be anywhere between the two 

successive sampling instants and T  approaches zero continuously. This is more general than the 

fixed-station-convergence used in [3], where T  is limited to be such that / T  is integer as it 

approaches zero. 

 

2.3  Continualization 

A process that can be considered as a sort of inverse operation of discretization is continualization, 

which is the role of hold devices, such as a zero-order-hold (ZOH) used in digital control. The 

definition proposed below is a generalization of this concept and will play a key role in the 

development of new discretization methods. It is more general in the sense that this does not have to 

be on-line computable, but is used to clarify conditions at the limit of T  approaching zero. 

Definition 2.3 [Signal Cotinualization]: Given the discrete-time state kx  of eq. (2.2), the following 

continuous-time signal  * tx  is said to be a continualization of kx : In each interval 

 1kT t k T   , 

        * * * ,t kT t kT kT t kT   x x Γ x , (2.7) 

where  *

kkT x x . □ 

Remark 2.1: The discrete-time state of system (2.2) is an exact discretization of the continualized 

signal (2.7), since  *

kkT x x  for any k  and T . However, there are a number of continuous-time 

signals that can pass through the same discrete-time sequence for a finite T . It should be noted that 

this continuous-time signal is a function of both t  and T .  

The concept of a continualized signal can be extended to a system, as follows: 

Definition 2.4 [System Continualization]: Using Γ of a given discrete-time system (2.2), the 

continuous-time system given by 

          * * * *, ,
d

t t t t kT kT t kT
dt

   x Γ x Γ x  (2.8) 

where  * tx  is generated by eq. (2.7) in each  1kT t k T   , is said to be the continualized 

system of discrete-time system (2.2). □ 



 

6 

Remark 2.2: Since  *

k kTx x  for all positive k  and T , which satisfies Definition 2.1, the 

discrete-time system given by eq. (2.2) is an exact discrete-time model of the continualized system 

(2.8), but not necessarily of system (2.1). 

 

2.4  Summary 

For a given continuous-time model, the discrete-time model is expressed in delta form, which has 

better numerical properties than the expression using shift form. Definitions of exact discretization 

and more general discretization are presented. A process that can be considered as a sort of inverse 

operation of discretization is continualization. This concept will play a key role in the development of 

new discretization methods in this study. A generalization of this concept is proposed by a definition 

of continualization for a given discrete-time model. 
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Chapter 3  
 

 

Discrete-time model of autonomous nonlinear systems 
 

 

A new approach is proposed for obtaining discrete-time models of a nonlinear autonomous 

continuous-time system based on classification of, what is called in this study, a discrete-time 

integration gain. The models are expressed as a product of this gain and the system function that has 

the same structure as that of the continuous-time system. By using the continualization proposed in 

Chapter 2, sufficient conditions on this gain to make the model exact are presented. A new 

discrete-time model is proposed for nonlinear systems, which is approximate in general, but exact for 

linear systems. The method is applicable to any system that has a Jacobian matrix. It is shown that 

when Jacobian matrix of the nonlinear equation is invertible, the equilibrium points of the proposed 

discrete-time model are identical to those of the original continuous-time system, and their asymptotic 

stability and instability are retained for any sampling period. As examples, Lotka-Volterra system, 

van der Pol and Lorenz oscillators are examined and simulated to show that the proposed 

discrete-time models performs better than other discrete-time models that are known to the authors to 

be on-line computable such as the forward-difference, Mickens’, Kahan’s models. 

 

 

3.1  Discrete-time integration gain 

Consider an autonomous continuous-time system given by the following state space equation: 

 
 

    0 0,
d t

t t
dt

 
x

Γ x x x ,  (3.1) 

Function : n nR RΓ  depends, in general, on state x  and is assumed to be expandable into Taylor 

series. In the present study, the discrete-time model is based on the use of the discrete-time integration 

gain expressed in delta operator form as [11] 

    
0

1
0, ,k k

k k k kT
T

  
  

x x
x G x Γ x x x , (3.2) 

where delta operator   is defined eq. (2.3), and the discrete-time system function Γ  in eq. (2.2) is 

expressed by a product of G  and Γ . 

It should be emphasized that function Γ  in eq. (3.2) is the same function as that in eq. (3.1). The 

matrix  , n n

k T R G x , which is called the discrete-time integration gain in the present study, is a 

bounded function of both, in general, T  and kx , and is assumed to be differentiable with respect to 
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T . This gain plays a key role in the present study in the development of discrete-time models. The 

discrete-time system has a unique solution given an initial condition. 

Remark 3.1: The integration gain can be used to classify various discrete-time models. For linear 

systems given by    Γ x Ax B , the so called step-invariant model is one given by 

   0
, /

T

k T e d T  
A

G x , which is the average of the state-transition matrix over a discrete-time 

period, and is known to give state responses that match those of the continuous-time system under 

zero-order hold exactly at all discrete-time instants for any period T . For linear and nonlinear 

systems, the forward difference model is one with the integration gain set to identify matrix, or 

 ,k T G x I , and can have good accuracy if T  is sufficiently small. 

For the purpose of comprehending the geometric role of discrete-time integration gain G , 

consider a scalar system as 

 
 

  
d x t

x t
dt

  . (3.3) 

For the continuous-time system as eq. (3.3), most conventional methods, such as the 

forward-difference method for a scalar system, adjust only the difference on vertical axis x , in a 

fixed time period T  to approximate the exact slope of  x t . The drawback of these methods is the 

inability to compute online and their poor accuracy is at low sampling frequency. For example, the 

forward difference method, which is simple to compute only approximates the slope of 

continuous-time state  x t  by kx  such that the discrete-time integrator gain in (3.2) is fixed at 

identity matrix. However, the idea of discrete-time integrator gain is that, the slope of  x t  can be 

discretized exactly also by using the discrete-time integration operator  , which enables online 

computation, in a virtual space where the time period T between  , 1kT k T    is expanded by the 

discrete-time integrator gain  ,kG x T  as illustrated in Fig. 3.1. 
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Fig. 3.1: Discrete-time integration gain 

 

Insights obtained from [8, 21] for linear systems have hinted the following theorem for the above 

discrete-time integration gain: 

Theorem 3.1: A discrete-time state kx  of system (3.2) is a discretization of the continuous-time state 

 tx  of system (3.1), if the integration gain in (3.2) satisfies the following condition 

  
0

lim ,k
T

T


G x I  (3.4) 

where I  is an identity matrix. When this condition is satisfied, system (3.2) is a discrete-time model 

of continuous-time system (3.1).□ 

Proof: From Definition 2.3, the discrete-time state kx  of (3.2) is an exact discretization of a 

continuous-time state  * tx  that satisfies eq. (2.7) for   , 1t kT k T  . Therefore, letting t   

in eq. (2.7), one has 

   
     

* *

* *,
kT

kT kT kT
kT







 



x x
G x Γ x  (3.5) 

for any fixed  . On the other hand, since 

 

 
0

1

lim
T

kT k T

kT






  

  (3.6) 

and the limit of (3.4) is satisfied for arbitrary values of k , the continuous-time gain satisfies 

 

  
 

  * *

0 0
1

lim , lim ,
T kT

kT T k T

kT kT kT kT


 
  

  

   G x G x I  (3.7) 

kx  

1kx 
 

x  

t  

Exact slope 

 
t kT

x t


 
 x t  

kT  kT GT  ( 1)k T  

Slope with forward  

difference method 

Time expansion 

by integrator gain 
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Noting that 

 

 

   * *

0
1

lim
T

kT T k T

kT 


  

x x  (3.8) 

the limit of (3.5) yields 

 

   

 

     

 

  

 

    

* *

* *

0 0
1 1

*

0
1

* *

0
1

lim lim ,

lim

lim

T T
kT T k T kT T k T

T
kT T k T

T
kT T k T

kT
kT kT kT

kT

kT

kT








 
     


  


  


 





 
  
 
 

x x
G x Γ x

Γ x

Γ x Γ x

 (3.9) 

As T  approaches zero, so that condition (3.4) holds, the above gives 

 
 

  
*

*
d

dt




x
Γ x  (3.10) 

for all   in the limit. Since there is only one solution of eq. (3.1) at any time instant, it follows that 

    *  x x  (3.11) 

while the exactness of discretization of kx  to  * tx  gives 

  *

k kTx x  (3.12) 

Finally, for eq. (3.12), take the limit of T  approaching zero and choosing k  such that 

 1kT k T   , and use (3.8) and (3.11), to obtain 

 

   

     * *

0 0
1 1

lim limk
T T

kT T k T kT T k T

kT  
 

     

  x x x x  (3.13) 

for any  . Therefore, system (3.2) is a discrete-time model of the continuous-time system (3.1) in the 

sense of Definition 2.2. 

 

3.2  Mapping model for a linear system 

A linear, time invariant, continuous-time system is given as (3.1) with  

     t t Γ x Ax B   (3.14) 

where A , B  are system parameters. The mapping models [21], which are based on approximations 

of numerical differentiation or integration, for the above continuous-time system are given by (3.2), 

where discrete-time integration gain is given as 

    
1

,k T T


 G x I A  (3.15) 

Depending on the value chosen for parameter  , different mapping models can be obtained. The 

forward-difference model is obtained by setting 0  , the backward- difference model by 1  , 
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and the Tustin’ s model by 1 2  . The value of   is not limited to these values as long as the 

inverse matrix in (3.15) exists and the discrete-time integration gain  ,k TG x  approaches the 

continuous-time integration gain or the identity matrix I  as the discrete-time period T  goes to zero. 

However, these models can cause large errors in their results as the discrete-time period increases. 

 

3.3  Exact discretization 

The following theorem states that any discrete-time system (3.2) can be an exact model of a 

continuous-time system (3.1) if the integration gain G  is chosen in a certain manner. 

Theorem 3.2: A discrete-time system (3.2), is an exact model of a continuous-time system (3.1), if the 

discrete-time integration gain G  in (3.2) is chosen to satisfy the following three conditions: 

(i)  ,k sG x ,  ,k ks G x x ,   ,k ks s   G x x  are continuous functions of 
kx , where 

s R  

(ii) 
   ,

1
k k

k

s   
 



G x Γ x

x
 

(iii)               * * * * *, ,kT t kT kT kT kT t kT kT   Η x Γ x Γ x Η x Γ x  (3.16) 

for each interval  1kT t k T   , where  * tx  is the continualization of discrete-time state kx  as 

Definition 2.3, and the continuous-time function   * ,kT t kTH x  is defined as 

       * *, ,kT t kT t kT kT t kT   H x G x .□ (3.17) 

Proof: A sufficient condition for eq. (2.8) to have a unique solution in each interval is that 

  * * ,t tΓ x  in eq. (2.8) is a continuous function of *
x . Since 

  
 

       

         

       

       

* * ** *

* * * * *

* * *

* * *

,,

,

,

1 ,

kT t kT kT kTt t

t kT kT t kT kT kT

kT t kT kT kT

kT t kT kT kT

     


     
 

   
 


    
 

Η x Γ x xΓ x

x x Η x Γ x x

Η x Γ x x

Η x Γ x x

 (3.18) 

  * * ,t tΓ x  is a continuous function of *
x  if condition (i) and (ii) are met. 

Thus, kx  is an uniquely exact discretization of continualization  * tx . Condition (iii) implies that, 
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for each  1kT t k T   , the state  * tx  is a unique solution of the original continuous-time (3.1), 

and discrete-time system (3.2) is an exact discretization of continuous-time system (3.1). 

Remark 3.2: For a logistic system be given by 

            
2

1x t x t x t x t x t      (3.19) 

where   is a positive parameter, the expansion (3.16) terminates after three terms, as 

        

       

* * *

2
* * *

, 1 1 2 ,

1 ,

x kT t kT x kT x kT t kT

x kT x kT x kT t kT



 

      

    
 

 (3.20) 

which can be solved exactly, using   * , 0x kT t kT    at t kT , as 

   
  

*

*

1
,

1 1

t kT

t kT

e
x kT t kT

x kT e






  

 
 (3.21) 

Therefore, we have 

  
  

*

*

1 1
,

1 1

t kT

t kT

e
G x kT t kT

t kT x kT e






 

  
. (3.22) 

In eq. (3.22), when t  is taken as  1t k T  , one obtains 

   
  

*

*

1 1
,

1 1

T

T

e
G x kT T

T x kT e




 
, (3.23) 

which leads to the exact discrete-time integration gain given by 

  
 

 
1 1

, 0 .
1 1

T

k T

k

e
G x T I T

T x e


  

 
 (3.24) 

Exact discrete-time models of logistic systems can be obtained via exact linearization using variable 

transformation [11]. However, the present method is easier. 

 

3.4  Proposed discrete-time model 

The following model is widely applicable to nonlinear systems given in the form of (3.1) and will 

be called the proposed discrete-time model. 

Theorem 3.3 [The proposed model]: A nonlinear discrete-time system given by (3.2) with the 

discrete-time integrator gain given by 

    1
, k

T
D

k

o

T e d
T




   
Γ x

G x  (3.25) 
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where  kDΓ x  is a Jacobian matrix of Γ  at kx , is a discrete-time model of the continuous-time 

model given by (3.1). When Jacobian  kDΓ x  is non-singular, the gain can be written as 

  
 

 
1

,
kD T

k k

e
T D

T

   
   

Γ x
I

G x Γ x .□ (3.26) 

Proof: Using l'Hospital's Rule, one obtain 

    

00 0

1
lim , lim k

T D

k
T T

T e d
T




  

 
 

Γ x
G x I  (3.27) 

so that a discrete-time system (3.2) is a discrete-time model of continuous-time system in the sense of 

Definition 2.2.  

The derivation for eq. (3.25) is as follows: When the Taylor series expansion around  * kTx  of eq. 

(3.16) is truncated with the first two terms, one requires,  

        * * *, ,kT t kT D kT kT t kT    
 

Η x I Γ x Η x  (3.28) 

Noting that   * ,kT t kTΗ x  is, in general, a function of  * kTx  and  t kT , and that 

  * , 0kT t kT Η x  when t kT , a solution to the above linear differential equation is found to 

be 

   
  *

*

0
,

t kT D kT

kT t kT e d



 
   
Γ x

Η x  (3.29) 

Substituting the above into eq. (3.17) gives the following continuous-time gain function: 

  
  *

*

0

1
( , )

t kT D kT

kT t kT e d
t kT




 
   

 
Γ x

G x  (3.30) 

In eq. (3.30), when t  is taken as  1t k T  , we have 

  
  *

*

0

1
( , )

T D kT

kT T e d
T




 
   
Γ x

G x  (3.31) 

Using the same form of function G , the discrete-time integration gain is obtained as 

  

0

1
( , ) k

T D

k T e d
T




   
Γ x

G x  (3.32) 

The proposed model can be found for any nonlinear system (3.1) as long as its Jacobian matrix exists. 

The fact that this model gives good results for many nonlinear systems and retain important features 

for van der Pol and Lorentz oscillators will be shown by simulations shortly.  

Remark 3.3: For a linear system, Γ  in eq. (3.1) is given by 

    Γ x Ax B  (3.33) 
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where A , B  are system parameters of compatible dimensions. In this case, eq. (3.16) can be 

written exactly as a linear equation      * *, ,kT t kT kT t kT   Η x I AΗ x , which is 

independent of  * kTx  and whose solution is   *

0
,

t kT

kT t kT e d 


  
A

Η x . This leads to the 

integration gain of the exact discrete-time model [8] as 

  
1

,

T

k

o

T e d
T

  
A

G x  (3.34) 

When A  is invertible, this gain can be written as 

   1,
T

k

e
T

T




A
I

G x A . (3.35) 

 

3.5  Examples of discrete-time models 

3.5.1  Discrete-time model for van der Pol oscillator 

Van der Pol oscillator was proposed by Balthasar van der Pol in 1920 to describe an electronic 

circuit that appeared in very early radios, modeled by following nonlinear differential equation [22] 

  21x x x x     (3.36) 

where   is a positive parameter that characterizes a degree of nonlinearity. This can be rewritten in 

a form of 

 
 21

x y

y x x y

 


    ,

 (3.37) 

whose Jacobian matrix is non-singular and given by 

  
 2

0 1

1 2 1
D

xy x 

 
  

    

Γ x

.

 (3.38) 

Using the discrete-time integration gain given by eq. (3.25), the proposed discrete-time model is 

obtained as 

 

 
 

1

21

kD T
kk

k

k k k k

yx e
D

y x x yT



 

  
    

             

Γ x
I

Γ x

,

 (3.39) 

where  

  
 2

0 1

1 2 1
k

k k k

D
x y x 

 
  

    

Γ x

.

 (3.40) 

Mickens’ model for the van der Pol oscillator [4] is given by 
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 2

11

kk k

k k k k k

yx x

y x x y y


 

  

    
     

        ,

 (3.41) 

where   and   are given by 

2

2

2

2

sin 1
2

cos 1 1
2

2 1
2

T
T

e T

T












 
 

   
    

    
   

   
  

 , (3.42) 

 

2

2

2

sin 1
2

1
2

T

T

e

T








 
  
 



 
  
 

. (3.43) 

In this discretization scheme, the eigenvalues 1  and 2  of a linear part of the nonlinear function 

must be distinct, and the parameter be such that 2  . It should be noted that the right-hand-side of 

the above equation for ky  contains the term 1kx  , which makes this method nonlocal and 

nonstandard [4]. Therefore, variable kx  must be updated before ky  in computations. 

The forward difference model is obtained simply as 

 
 2

.
1

kk

k k k k

yx

y x x y



 

  
   

      

 (3.44) 

Extensive simulations have been carried out with the van der Pol oscillator (3.37) and some typical 

results of phase-planes and time responses are shown in Figs. 3.2 and 3.3. They compare the original 

continuous-time oscillator computed using the Runge-Kutta method, the proposed model, Micken’s 

model, and the forward-difference models. 

In Fig. 3.2, the phase plane plots are traced from 0 to 1,000 seconds and the time response for the 

first 10 seconds, for 1.5  , 0.1T  s, and the initial condition of 0 1.0x    and 0 1.5y   , which 

is inside the limit cycle. At this sampling interval, all discrete-time models give responses that are 

more or less results similar to those of the continuous-time model, although the proposed model is 

closest.     

Fig. 3.3 shows the results under the same conditions except for the sampling interval, which is 

increased to 0.3 seconds. At this sampling interval, neither Mickens’ model nor the forward-difference 

model could give steady results, while the proposed model is still very close to the continuous-time 

model. Although not shown here, in all simulation tests for larger nonlinear parameter values of   

and ranges of T  and the initial conditions, it was found that the proposed discrete-time model 



 

16 

consistently gave results closer to the continuous-time van der Pol model than the forward-difference 

and Mickens models. 

 

 

 

Fig. 3.2: Phase plane and time response of the four models, for 1.5  , 0.1T  s, and the initial 

condition of 0 1x    and 0 1.5y    
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Fig. 3.3: Phase plane and time response of the four models for 1.5  , 0.3T  s, and the initial 

condition of 0 1x   , and 0 1.5y    

 

3.5.2  Discrete-time model for Lorenz oscillator 

Consider the Lorenz oscillator [23] given by the following equation: 

 

 1 2 1

2 1 2 1 3

3 3 1 2

x x x

x rx x x x

x bx x x

  


  
   

 (3.45) 
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where all parameters are positive; i.e., , , 0r b  . In particular,   is the Prandtl number and r  

the Rayleigh number. Jacobian matrix of this system is 

   3 1

2 1

0

1D r x x

x x b

  
 

   
 
  

Γ x  (3.46) 

The proposed discrete-time model can be obtained as 

 

 

 2, 1,1,
1

2, 1, 2, 1, 3,

3, 3, 1, 2,

k
k kk D T

k k k k k k

k k k k

x xx
e

x D rx x x x
T

x bx x x







  


  
  

      
        

Γ x
I

Γ x  (3.47) 

where 

   3, 1,

2, 1,

0

1 .k k k

k k

D r x x

x x b

  
 

    
  

Γ x     (3.48) 

Mickens’ discrete-time model [24] is given by 

1, 1, 2,

2, 1, 1 2, 1, 1 3,

3, 3, 1, 1 2, 1

1
0 0

0 1 0

1
0 0

T

k k k

T

k k k k k

bT
k k k k

e

x x xT

x e rx x x x

x bx x xe

bT



  









 


 

 
     
    

       
         
  

. 

(3.49)

 

It can be seen that there are such nonlinear terms as 1, 1 3,k kx x  and 1, 1 2, 1k kx x   in the above.  

The forward difference model is obtained as 

 

 2, 1,1,

2, 1, 2, 1, 3,

3, 3, 1, 2,

k kk

k k k k k

k k k k

x xx

x rx x x x

x bx x x







  
  

    
        

. (3.50) 

Simulations have been carried also for the Lorenz system (3.45), where 10   and 8 3b  . For 

a Rayleigh number r  smaller than 24.06, the system state approaches one of two fixed-point 

attractors. Otherwise the system is chaotic. Fig. 3.4 and 3.5 show the 1 3x x  plane and time response 

1x  of the continuous model, the proposed model, Mickens’ model, and the forward-difference model, 

for 28r  , 0.0075T s , and the initial condition of      1 2 30 1, 0 2, 0 3x x x   , for the first 

1,000 seconds.  

The forward-difference model does not produce reasonable results, while both the Mickens’ and the 

proposed models retain the chaotic behavior of the continuous-time model. The proposed model is 

closer, however, to the continuous-time model than the Micken’s model. Fig. 3.6 and 3.7 is for the 
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same system under the same conditions except that 17r   and 0.05T s . Although not shown, 

Mickens’ model becomes divergent for a sampling interval greater than 0.072s , while the proposed 

model still retains the general shape of the continuous-time trajectory. 
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Fig. 3.4: 1 3x x  plane of four models for 10, 8 3, 28b r    , 0.05T  s 

 

Fig. 3.5: Time responses 1x  of four models for 10, 8 3, 28b r    , 0.05T  s 
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Fig. 3.6: 1 3x x  plane of four models for 10, 8 3, 17b r    , 0.05T  s
 

 

 

Fig. 3.7: Time responses 1x  of four models for 10, 8 3, 17b r    , 0.05T  s 
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3.6  Stability of Equilibria 

3.6.1  Equilibrium points and their stability  

The following theories state the properties of proposed discrete-time model on equilibrium points 

and their stability. 

Theorem 3.4: When  DΓ x  is non-singular, the equilibrium points of the discrete-time model (3.2) 

with the discrete-time integrator gain given by eq. (3.25) are identical to those of the continuous-time 

model (3.1).□    

Proof: If ex  is an equilibrium point of discrete-time model (3.2), then it follows that 

 
 

   
1

eD T

e e e

e
D

T


  


   

Γ x
I

x Γ x Γ x 0 , (3.51) 

which is equivalent to 

         
1

eD T

e e e eD e D
         

Γ x
Γ x Γ x Γ x Γ x . (3.52) 

Noting that 

             
11

e e e e eD T D D D T D T

e eD e D e e
                      

Γ x Γ x Γ x Γ x Γ x
Γ x Γ x , (3.53) 

eq. (3.51) can be written as 

 
    eD T

ee
    
Γ x

I Γ x 0 . (3.54) 

Using a non-singular matrix P , Jacobian matrix can be transformed into Jordan form such that 

  1D Γ x PΛP  and that 

 
  1 1( )eD T P P T Te e P e P

          
Γ x

I I I . (3.55) 

When  DΓ x  is non-singular, none of its eigenvalues is non-zero and Te  I  is non-singular and 

so is 
  eD T

e
   
Γ x

I . 

Thus, eq. (3.54) is equivalent to 

  e Γ x 0 . (3.56) 

Lemma 3.1 [25]: The asymptotic stability of an equilibrium point of discrete-time system given by 

  0

1 T

k ke d
T

  
A

x Ax  (3.57) 

is equivalent to that of continuous-time system 
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 x Ax .□ (3.58) 

Theorem 3.5: When  DΓ x  is non-singular, an asymptotically stable equilibrium point of 

continuous-time model (3.1) is also an asymptotically stable equilibrium point of discrete-time model 

(3.2), where the discrete-time integrator gain is given by (3.25). □ 

Proof: When  DΓ x  is non-singular, Theorem 3.4 implies that if 
ex  is an equilibrium point of 

continuous-time model (3.1), then it also is an equilibrium of discrete-time model of discrete-time 

model (3.2). Linearizing system (3.1) around equilibrium point 
ex  yields the linear system 

  eD   x Γ x x . (3.59) 

If all the eigenvalues of  eDΓ x  are in the left-half complex plane, then ex  is an asymptotically 

stable equilibrium point, while if one or more eigenvalues of  eDΓ x  are in the right-half complex 

plane, then 
ex  is an unstable equilibrium [26]. 

The linearization of eq. (3.2) around equilibrium point ex  is given by 

    

 
   

 

,

,
,

k e

k e

k k k k

k

k k

k k k

k k

T

T d
T

d






 
 
  

 
  

 
 

x x

x x

x G x Γ x x
x

G x Γ x
Γ x G x x

x x

. (3.60) 

Noting that ex  and integrator gain is given by (3.25), eq. (3.60) can be written as 

 
   

0

1
e

T D

k e ke d D
T


 

      
Γ x

x Γ x x . (3.61) 

Lemma 3.1 implies that the asymptotic stability of discrete-time system (3.61) is equivalent to that of 

continuous-time system (3.59), which proves Theorem 3.5. 

 

3.6.2  Simulation results for Lotka-Volterra system 

The Lotka-Volterra models [27, 28] are those differential equations that can be written in the form 

of 

      
1

, 1
n

i
i i i ij j

j

dx
t x t r a x t i n

dt 

 
      

 
x  (3.62) 
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where  ix t  is the state variables, and 
ir  and 

ija  are constant parameters. Depending on how these 

parameters are chosen, this model can represent three distinctive cases; the competitive, the 

cooperative, and the predator-prey cases. The discretization method to be proposed below can be 

applied to any of these cases, while some others cannot be. Theorem 3.3 can be applied to any 

Lotka-Volterra type differential equation, as long as its Jacobian matrix is non-singular. This is 

presented as lemma below: 

Lemma 3.2: For the Lotka-Volterra differential equation expressed as eq. (3.62), the proposed 

discrete-time model is given by eqs. (3.2) and (3.25), where 

 

1 11 1 1 11 1 1

2

21 2 2 22 2 2 2 2

1
2

1 2

1

2 ...

2 ...

2

n

j j n n

j

n

j j n

j
j

n

n n n n n nn n nj j

j
j n

r a x a x a x a x

a x r a x a x a x

D

a x a x r a x a x









 
  

 
 

  
 
 
 
 
  
 
 







Γ x .□ (3.63) 

Remark 3.4: As a consequence of Theorems 3.4 and 3.5, the proposed discrete-time model preserves 

the locations of equilibrium points and their asymptotic stability of the original continuous-time 

system. 

For ease of exposition, the following two-species Lotka-Volterra system is considered below: 

 
 

 
1 1 1 11 1 12 2

2 2 2 21 1 22 2

x x r a x a x

x x r a x a x

   


  
. (3.64) 

The proposed discrete-time model is given by eqs. (3.2) and (3.25) with discrete-time Jacobian matrix 

given by 

 
1 11 1, 12 2, 12 1,

21 2, 2 21 1, 22 2,

2

2

k k k

k

k k k

r a x a x a x
D

a x r a x a x

  
  

  
Γ x . (3.65) 

The discrete-time integration gain is given by eq. (3.25). For comparison, the forward-difference 

model is given by 

 
 
 

1, 1, 1 11 1, 12 2,

2, 2, 2 21 1, 22 2,

k k k k

k k k k

x x r a x a x

x x r a x a x





   


  

, (3.66) 

whose integration gain is unity matrix independently of the sampling interval. Kahan’ s model is 

given by [24] 
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1, 1, 1 1, 2, 1 1, 1 2,

1, 1 11 1, 1, 1 12

2, 2, 1 1, 2, 1 1 2,

2, 2 21 22 2, 2, 1

2 2

2 2

k k k k k k

k k k

k k k k k k

k k k

x x x x x x
x r a x x a

x x x x x x
x r a a x x





  



  



     
      

    


    
     

   

, (3.67) 

where 1x , 
2x , 

1 2x x , 2

1x , and 2

2x  in continuous-time model are replaced, respectively, by 

 1, 1, 1 2k kx x  ,  2, 2, 1 2k kx x  ,  1, 2, 1 1, 1 2, 2k k k kx x x x  , 1, 1, 1k kx x  , and 2, 2, 1k kx x  . The 

right-hand-side of the above equation contains variable at 1k   time-step and needs to be converted 

in the standard delta form. The integration gain is as given by 

    
1

,
2

k k

T
T D



 
    

 
G x I Γ x , (3.68) 

where the same Jacobian matrix, eq. (3.65), of the proposed model is used. 

Mickens’ model takes a different form depending on whether the system is of the predator-prey [24], 

the competitive, and the cooperative type [29]. For example, Mickens’ model for the 

competitive-species case, which will be used for simulations below, is given by 

 

1, 1 1,

1 1, 11 1, 1, 1 12 1, 1 2,

1

2, 1 2,

2 2, 21 1, 2, 1 12 2, 2, 1

2

k k

k k k k k

k k

k k k k k

x x
r x a x x a x x

x x
r x a x x a x x







 



 


  




   



 (3.69) 

where  1

1 11rTe r   ,  2

2 21r Te r   . This yields the discrete-time integration gain given by 

 
 

 

1

1 11 1, 12 2,

2

2 21 1, 22 2,

0
1

,

0
1

k k

k

k k

a x a x
T

a x a x









 
  
 
 
 

   

G x . (3.70) 

Simulations have been carried also for the two-species Lotka-Volterra system (3.64) to compare the 

original continuous-time model, which is computed using Runge-Kutta method in Matlab/Simulink 

environment, with discrete-time models obtained by the forward-difference, Mickens’, Kahan’s, and 

the proposed discretization methods. Parameters used for simulations are 1 5r  , 2 6r  , 11 1a   , 

12 2a   , 21 3a   , and 22 4a   , which make the system to be of the competitive type and yields 

four equilibrium points at  0,0 ,  5,0 ,  0,1.5 , and  4,4.5 . The initial condition used is 

 1 0 0.2x   and  2 0 0.4x  . This type of model often leads to extinction of one species, such as 

Neanderthal man vs early modern man. 
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Fig. 3.8 shows the time-responses of the popular forward-difference discrete-time model for 

0.1,  0.25T  , and 0.5 seconds and the response of the continuous-time system. It can be seen that at 

the sampling period of 0.1s, which gives reasonable 20 samples per settling time, the response 

converges to the correct equilibrium point of  5,0 , although the difference with the continuous-time 

response is visible on the plot. As the sampling period increases, the response becomes slower during 

the transient and at 0.2sT   it starts to oscillate around the equilibrium point. The response becomes 

chaotic at about 0.28sT   and divergent for T  larger than about 0.29 s. 

Fig. 3.9 is for Mickens’ model under the same conditions as in Fig. 3.8. With this method, the 

transient response becomes slower as the sampling period increases, but without becoming oscillatory, 

and remains convergent to the correct equilibrium point at least up to 50sT  . 

Fig. 3.10 is the result obtained with Kahan’s discrete-time model. Although not clear from the 

figures, Kahan’s method gives results that are closer to the continuous-time result than Mickens’ 

method. However, it was found that Kahan’s model can change its domain of attraction suddenly as 

the discrete-time period is changed. In the present example, the response reaches the equilibrium point 

of  5,0  using 0.486sT   but it suddenly changes its reaching point to another equilibrium of 

 4,4.5  using 0.487sT  . Such a change in fundamental property can be detrimental in numerical 

investigations. The response starts to diverge at about 3.0sT  . 

Fig. 3.11 shows the response with the proposed discrete-time model. Among the four discrete-time 

models compared in this section, the proposed method and Kahan’s model give the response that 

matches the continuous-time response almost exactly at discrete-time instants for 0.1T   and 0.25 

seconds. While the proposed model calls for heavier computational efforts, there is no sudden change 

in the steady-state value as in Kahan’s method. The response becomes, however, divergent at about 

2.0T s . 

The four discrete-time models used for simulations can be compared in terms of the discrete-time 

integration gains, since the system function to which the gain is multiplied is the same sampled 

version of the continuous-time system, as seen in eq. (3.2). The proposed discrete-time model requires 

computation of the exponential of Jacobian matrix at each time instant, while the forward-difference, 

Kahan, and Mickens models are only quadratic in their computations. Table 3.1 shows the actual 

computation time elapsed in a Simulink simulation run for 100 seconds, as measured by Matlab’s 

cputime command. Comparing relative values, it may be concluded that, while the proposed model 

uses the longest CPU time, the differences are not highly significant. 
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Fig. 3.8: Time-responses of the forward-difference discrete-time model for the initial condition of 

 1 0 0.2x   and  2 0 0.4x   with different values of T  

 

Fig. 3.9: Time-responses of Mickens’ discrete-time model for the initial condition of  1 0 0.2x   and 

 2 0 0.4x   with different values of T  
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Fig. 3.10: Time-responses of Kahan’s discrete-time model for the initial condition of  1 0 0.2x   

and  2 0 0.4x   with different values of T  

 

Fig. 3.11: Time-responses of the proposed discrete-time model for the initial condition of  1 0 0.2x   

and  2 0 0.4x   with different values of T  
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Table 3.1: CPU-times elapsed during the first 100 seconds of simulation 

 

 T 0.1s  T 0.25s  T 0.5s  T 1s  

Proposed 0.9828 0.9048 0.8268 0.8112 

Kahan 0.9048 0.8268 0.8112 0.78 

Micken 0.8892 0.8112 0.8268 0.7956 

Forward. diff 0.8736 0.8268 Divergent Divergent 

 

3.7  Summary 

Discrete-time models for autonomous nonlinear systems have been looked at from the view-point 

of discrete-time integration gains, which led to new models. The form of models is fixed to be the 

product of this gain and the system function that has the same structure as that of the continuous-time 

original. Sufficient conditions for this gain to make the discrete-time model exact are presented. The 

model is exact when the gain is exact, while it is approximate when the gain is approximate. The main 

contribution of the present paper is the development of a systematic procedure to obtain discrete-time 

models based on approximated gains, even when the exact gain is unknown. As long as a Jacobian 

matrix exists for the nonlinear state equation, the gain can be found approximately and the proposed 

model derived. When Jacobian matrix is non-singular, it can be shown that the asymptotic stability 

and instability of equilibrium points that correspond to the original system are preserved in the 

proposed discrete-time model. Simulations show that the proposed models give performances that are 

superior to on-line computable methods such as the forward-difference, Mickens, and Kahan models 

as applied to Lotka-Volterra system, van der Pol and Lorentz nonlinear oscillators. 

Although the proposed model is developed based on the Taylor expansion of the nonlinear function, 

it is used to determine the integration gain and the form of the model is nonlinear. This is different 

from the linearization of a system itself based on the Taylor expansion. The proposed model 

corresponds to one with the first two terms in the series expansion in a differential equation 

concerning this gain, and can always be found as long as the expansion exists, whereas the 

well-known forward difference model corresponds to one with the first term only. 
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Chapter 4  
 

 

Discrete-time model of forced nonlinear oscillators 
 

 

In this chapter, a discrete-time model is proposed for forced nonlinear oscillators, which is a class of 

non-autonomous nonlinear system. By implementing the continualization technique to a given 

discrete-time system, sufficient conditions are derived so that the obtained model is exact for any 

sampling periods. In fact, this condition can be solved exactly for linear and certain nonlinear systems, 

and thus, their exact discrete-time model can be found. Furthermore, new models can be developed by 

approximately solving this condition. One such model, which can always be found as long as a 

Jacobian matrix of the nonlinear system exists, is presented. As an example, a van der Pol oscillator 

driven by a forcing sinusoidal function is discretized and simulated under various conditions. They 

show that the proposed model tends to retain such key features as limit cycles and space-filling 

oscillations even for large sampling periods, and out-performs the forward difference model, which is 

a well-known, widely-used, and on-line computable model. 

 

 

4.1  Proposed discrete-time model of forced nonlinear oscillator 

Let a continuous-time model of a forced nonlinear oscillator be given by the following state space 

equation: 

 
         0 0, ,

d t
t t t t t

dt
   

x
Γ x f x g x x , (4.1) 

where nRx  is a state vector of continuous time variable t , : n nR Rf  is a function of the state 

vector, and nRg  is a known forcing function. Function f  is assumed to be expandable into 

Taylor series, so that Γ  satisfies the Lipschitz condition and eq. (4.1) has a unique solution for a 

given initial condition. 

The discrete-time model is expressed in delta form with a uniform discrete-time period of T , as 

  
0

1
0, ,k k

k k kT
T

  
  

x x
x Γ x x x  (4.2) 

The following theorem states that any discrete-time system (4.2) can be an exact model of a 

continuous-time system (4.1) if the discrete-time function Γ  is chosen in a certain manner. 

Theorem 4.1 [Exact Discretization]: A discrete-time system given by eq. (4.2) is an exact 

discrete-time model of system (4.1) if function  ,k TΓ x  satisfies the following three conditions: 
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(i) 
 ,k

k

s



Γ x

x
, 

  ,k

k

s

s

 
 
   

Γ x

x
 are continuous functions of 

kx , where s R  

(ii) 
 ,

1
k

k

s
s


 


Γ x

x
. 

(iii)                * * *, ,
d

t kT kT t kT kT t kT kT t kT t
dt

      Γ x f x Γ x g  (4.3) 

for each interval  1kT t k T   , where  * tx  is the continualization of discrete-time state 
kx  

as Definition 2.3.□ 

The proof of the above theorem will be shown using the following lemma: 

Lemma 4.1: When the conditions (i) and (ii) are met, the continualization state  * tx  that satisfies 

eq. (2.7) is a unique solution of eq. (2.8) in each interval  1kT t k T   . □ 

Proof: A sufficient condition for eq. (2.8) to have a unique solution in each interval is that 

  * * ,t tΓ x  is a continuous function of 
*

x . Since 

         

  
 

 
     

      
 

  
 

 
 

  

 
  
 

*
* * *

* * *

*

* *

* *

*

*

,
,

,

, ,

,
1

t kT kT t kT
t t kT t

t kT t kT kT t kT

kT

kT t kT kT t kT
t kT

kT kT t

kT t kT
t kT

kT

 
 

  


     
 



   
 

  


 
 



Γ x
Γ x x

x x Γ x

x

Γ x Γ x

x x

Γ x

x

, (4.4) 

  * * ,t tΓ x  is a continuous function of 
*

x  if conditions (i) and (ii) are met. □ 

Proof of Theorem 4.1: From Remark 2.1 and Lemma 4.1, discrete-time system (4.2) is an exact 

discretization of continualized system (2.8). Condition (iii) implies that, for each ( 1)kT t k T   , 

the state  * tx  of the continualized system (2.8) is a unique solution of the original continuous-time 

system (4.1). Thus, discrete-time system (4.2) is an exact discretization of original continuous-time 

system (4.1).□ 

Remark 4.1: Condition (iii) is a requirement that function  *( ),kT t kTΓ x  be such that eq. (2.8) 

equals eq. (4.1); that is, using eq. (2.7), in each interval, 
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      

   

    

* *

*

* *

( ),

( )

( ) ( ) ( ), .

d
t kT kT t kT t

dt

t t

kT t kT kT t kT t

  

 

    

Γ x x

f x g

f x Γ x g

 (4.5) 

When eq. (4.3) can be solved for Γ , the exact discrete-time model is found. However, eq. (4.3) is a 

nonlinear differential equation, which is generally unsolvable analytically. By solving it 

approximately, an approximate discrete-time model may be obtained. One such model is proposed 

below, which is applicable to a class of non-autonomous nonlinear and linear systems, as long as they 

have a Jacobian matrix. 

Theorem 4.2 [The Proposed Model]: A discrete-time system given by eq. (4.2) where function Γ  is 

chosen as 

                  
0 0

1 1
, k k

T T
D T D T

k kT e d e kT d
T T

 
  

       
 

   
 
 

f x f x
Γ x f x g  (4.6) 

with  kDf x  being a Jacobian matrix of f  at kx , is a discrete-time model, in the sense of 

Definition 2.2, of the continuous-time system given by eq. (4.1).□ 

Proof: Eq. (2.7) with Γ  given by (4.6) holds for a fixed time t   in each sampling interval such 

that 

          

        
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 



   
 


   
 

 
  

   

 






f x

f x

x x
f x

g

  (4.7) 

and this also holds at the limit of T  approaching zero while k  is chosen such that 

 1kT k T   . Thus, noting that, for a fixed  , 

 

 
0

1

lim
T

kT k T

kT






  

 , (4.8) 

and   * f x  and  g  are finite, the use of l'Hospital's Rule on the right-hand-side of eq. (4.7)

yields 

 

    
  

 
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 

    
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
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 


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
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 


  

  
  

   

 
   

 

 





f x

f x

f x

g

f x g

. (4.9) 

The left-hand-side, on the other hand, gives 
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 

     * * *

0
1

lim
T

kT k T

kT d

kT d


 
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  






x x x
. (4.10) 

Therefore, at the limit of T approaching zero and for all   such that  1kT k T   , eq. (4.7) 

gives 

    
 

    
*

*
d

d


 


 

x
f x g . (4.11) 

Since eq. (4.1) has a unique solution given an initial condition, it follows that 

 

 

   *

0
1

lim
T

kT k T

 


  

x x . (4.12) 

Therefore,  *

k kTx x , eq. (4.8), and eq. (4.12) lead, for any   with  1kT k T   , to 

          

   

 
 

   * *

0 0 0
1 1 1

lim lim limk
T T T
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 
  

        

  x x x x . (4.13) 

In view of Definition 2.2, system (4.2) is a discrete-time model of continuous-time system (4.1). □ 

Since the proposed model has been shown above to be a valid model in the sense of Definition 2.2, 

a more constructive procedure is shown below. When function f  in eq. (4.3) is expanded into the 

Taylor series and truncated with the first two terms as 

       
          

* *

* * *

,

, ,

kT t kT kT t kT

kT D kT t kT kT t kT

  

    
 

f x Γ x

f x f x Γ x
 (4.14) 

eq. (4.3) can always be solved and an approximate discrete-time model obtained. That is, for arbitrary 

*( )kTx , eq. (4.3) be expressed as 

            

    
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t kT kT t kT D kT t kT kT t kT
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kT t

     
 

 

Γ x f x Γ x

f x g

 (4.15) 

Defining   as t kT   , eq. (4.15) can be written as 

             * * * *( ), ,
d

kT D kT kT kT kT
d

    

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 

Γ x f x Γ x f x g  (4.16) 

where 0 T  . Noting that  *( ), 0kT  Γ x  at 0  , a solution to the above linear 

differential equation in  *( ),kT Γ x  gives the following continuous-time function [30]:  
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.  (4.17) 

Adopting this form of function, the discrete-time function is obtained as 
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                    
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, k k

T T
D T D T
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o o

T e d x e kT d
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 
  

           
f x f x

Γ x f g ,  (4.18) 

which is eq. (3.25). 

Remark 4.2: When eq. (4.3) can be solved exactly, an exact discrete-time model can be found. For 

instance for a linear system, the proposed method gives the exact discrete-time model; i.e., for Γ  in 

eq. (4.1) given by 

     ,t t t Γ x Ax g , (4.19) 

where A  is system matrix of compatible dimension, eq. (4.3) can be written exactly as a linear 

differential equation as 

              * * *, , 0
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t kT kT t kT t kT kT t kT kT t
dt

       Γ x A Γ x Ax g , (4.20) 

whose solution is [31] 
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This leads to the exact discrete-time model [31] as 
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Remark 4.3: When the Taylor series expansion of        * * ,kT t kT kT t kT  f x Γ x  is 

truncated after the first term and  tg  is constant in the interval   , 1kT k T  , eq. (4.3) yields 

          * *,d t kT kT t kT dt kT kT   Γ x f x g , so that 

               * *,kT t kT kT kT  Γ x f x g . (4.22) 

This is known as the forward difference model.  

Remark 4.4: When  tg  is a stair-case function given by 

   , ( 1)kt kT t k T   g , (4.23) 

integration of eq. (4.18) gives 

        
0

1
, k

T
D T

k k kT e d
T


 

    
f x

Γ x f x . (4.24) 

Furthermore, when Jacobian matrix  kDf x  is non-singular, (4.24) can be written as 

           
 

    
1

,
kD T

k k k k

e
T D

T


  


   

f x
I

Γ x f x f x . (4.25) 
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Remark 4.5: When the Jacobian matrix is non-singular and a specific form is given for  tg , the 

model (4.18) can be written in a more specific form. For instance, for a sinusoidal function given by 

    cost tg A , (4.26) 

the second term in eq. (4.18) can be integrated by parts. Noting    2 2 2d t dt t g g , it yields 

   
 

 

   

           

1

1
22

1 1

,
k

k k

D T

k k k

D T D T

k k k k k k

e
T D x

T

D D e e

  



      

 


   

      

f x

f x f x

I
Γ x f x f

I f x f x g g g g

, (4.27) 

where kg  and kg  are defined as 

       cos , sink kkT kT kT kT      g g A g g A . (4.28) 

 

4.2  Discrete-time models of a forced van der Pol oscillator 

Consider the forced van der Pol oscillator modeled by [22] 

    21 cos 0x x x x A t      , (4.29) 

where   is a positive parameter, A  the amplitude of the forcing function, and   its angular 

velocity. This can be rewritten in the form of state-space equation given by 

 
 

    
d t

t t
dt

 
x

f x g  (4.30) 

where 

 
x

y

 
  
 

x  (4.31) 

   
 21

y
t

x x y

 
  

    

f x  (4.32) 

  
 

0

cos
t

A t

 
  
 

g . (4.33) 

This system reduces to the relaxation oscillator when 0A , which yields a stable limit cycle. When 

the system is excited with 0A , it exhibits various types of behaviors such as chaos and stable orbit 

with more than one closed cycle [32]. Jacobian matrix of f  for this system is non-singular and given 

by 

 
 2

0 1
( )

1 2 1
D

xy x 

 
  

    

f x

.

 (4.34) 



 

36 

The Proposed Model: Using the discrete-time function given by (4.27), the proposed discrete-time 

model is obtained as 

 

   

           
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      

 


   

      

f x

f x f x

I
x f x f x

I f x f x g g g g

 (4.35) 

where 

  
 

0

cos
k t kT

t
A kT

 
   

 
g g , (4.36) 

and 

   
 

0

sin
k t kT

t
A kT 

 
   

 
g g . (4.37) 

The Forward-Difference Model: This model is obtained as 

  
   2

0

cos1

kk

k k k k

yx

A kTy x x y



 

    
     

        

. (4.38) 

Extensive simulations have been carried out for the forced van der Pol oscillator (4.29). While the 

unforced oscillator has a stable limit cycle, the forced oscillator exhibits several interesting 

phenomena, such as periodic and space-filling responses [32]. The conditions used for simulations are 

summarized in Table 4.1, where Cases C1(a) to C(d) cover basic four conditions; namely, 

Self-Sustained, Quasi-Periodic, Fundamental, and Harmonic Oscillations. 

All figures given below show typical phase-planes (for the first 1,000 seconds) and time responses 

(for the first 30 seconds) starting from the initial condition of 0 1.0x    and 0 1.5y   . Fig. 4.1 to 

4.4 are for the case of 1.5   and 0.1T  s, covering four types of oscillations caused under 

different combinations of input amplitudes ( 1,3,8A  ) and frequencies ( 2,3  ). The proposed 

model and the forward-difference model are compared with those of the original continuous-time 

oscillator that is computed using ode45 (Dormand-Prince). The input is assumed to be applied 

through a ZOH in all discrete-time models. 

To see if the proposed method gives consistently better results than others, simulations under 

different conditions have been carried out. For instance, Fig. 4.1 and 4.5 to 4.7 are for the case of 

1, 2, 0.1A T   , covering different values of nonlinearity parameter 1.5,3,4,5  . Fig. 4.1, 4.8, 

and 4.9 are for the case of 1.5, 1, 2A    , covering different values of 0.1,0.2,0.3T  . It can 

be seen that the forward-difference model is not capable of yielding satisfactory results, and becomes 

unstable for cases 4.6, 4.7, and 4.9. In contrast, the proposed model gives responses that are very close 

to those of the continuous-time model in all cases.  

Comparisons have also been made between the proposed method and 4
th
-order Runge-Kutta (R-K), as 

shown in Fig. 4.10 and 4.11. It was found that the R-K method has a better performance than the 

proposed method up to about T=0.4 seconds. However, when the sampling interval increases to 0.5 
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seconds, 4
th
 order Runge-Kutta method suddenly becomes numerically unstable and the computations 

stops at about 13.7 seconds. However, the proposed method remains stable at this sampling interval. 

For the forced van der Pol system under consideration, both the bilinear method of Hirota [2] and the 

non-standard method of Mickens [4] do not seem to be applicable. 

 

Table 4.1: Conditions used for the simulations 

 

Conditions Initial State   A   T 

C1(a) 

Self-Sustained 

Oscillation 

0

0

1

1.5

x

y

 

 
 

1.5   

1A  

2   

0.1T   

C1(b) 

Quasi-Periodic 

Oscillation 
3A  

C1(c) 

Fundamental 

Oscillation 
3   

C1(d) 

Harmonic 

Oscillation 

8A  

C2(a) 3   

1A  2   

C2(b) 4   

C2(c) 5   

C3(a) 

1.5   

0.2T   

C3(b) 0.3T   

C3(c) 0.5T 
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Fig. 4.1 Self-Sustained Oscillation (C1(s)): Phase plane and time response of the continuous-time, the 

forward-difference, and the proposed models, for 0 01, 1.5, 1.5, 1, 2, 0.1x y A T          

 

Fig. 4.2 Quasi-Periodic Oscillation (C(1(b)): Phase plane and time response of the continuous-time, 

the forward-difference, and the proposed models, for 0 01, 1.5, 1.5, 3, 2, 0.1x y A T          
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Fig. 4.3 Fundamental Oscillation (C1(c)): Phase plane and time response of the continuous-time, the 

forward-difference, and the proposed models, for 0 01, 1.5, 1.5, 3, 3, 0.1x y A T          

 

Fig. 4.4 Harmonic Oscillation (C1(d)): Phase plane and time response of the continuous-time, the 

forward-difference, and the proposed models, for 0 01, 1.5, 1.5, 8, 3, 0.1x y A T          
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Fig. 4.5 (C2(a)): Phase plane and time response of the continuous-time, the forward-difference, and 

the proposed models, for 0 01, 1.5, 3, 1, 2, 0.1x y A T          

 

Fig. 4.6 (C2(b)): Phase plane and time response of the continuous-time and the proposed models, for 

0 01, 1.5, 4, 1, 2, 0.1x y A T          
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Fig. 4.7 (C2(c)): Phase plane and time response of the continuous-time, and the proposed models, for 

0 01, 1.5, 5, 1, 2, 0.1x y A T          

 

Fig. 4.8 (C3(a)): Phase plane and time response of the continuous-time, the forward-difference, and 

the proposed models, for 0 01, 1.5, 1.5, 1, 2, 0.2x y A T          
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Fig. 4.9 (C3(a)): Phase plane and time response of the continuous-time, and the proposed models, for 

0 01, 1.5, 1.5, 1, 2, 0.3x y A T          

 

Fig. 4.10 (C3(b)): Phase plane and time response of the continuous-time, 4
th
 order Runge-Kutta, and 

the proposed models, for 0 01, 1.5, 1.5, 1, 2, 0.3x y A T          
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Fig. 4.11 (C3(c)): Phase plane and time response of the continuous-time, 4
th
 order Runge-Kutta, and 

the proposed models, for 0 01, 1.5, 1.5, 1, 2, 0.5x y A T          

 

4.3  Summary 

Discrete-time models of forced nonlinear oscillators and their relationships with continuous-time 

systems have been investigated such that a certain differential equation is obtained as a sufficient 

condition for the model to be exact. When the solution of this equation can be obtained exactly, such 

as linear and certain nonlinear systems, the discrete-time model will be exact. When an exact model is 

not known, the proposed model can always be obtained as an approximate model as long as a 

Jacobian matrix exists for the given continuous-time system. However, the model is not a linear 

approximation based on this Jacobian matrix, but a nonlinear approximation. The method is applied to 

a van der Pol oscillator driven by a sinusoidal input. Simulations show that the proposed model gives 

performances that are superior to the popular on-line computable method known as the 

forward-difference model. 
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Chapter 5  
 

 

Discrete-time model of non-autonomous nonlinear 

systems 

 

 

A discretization method is proposed in this chapter for continuous-time, non-autonomous, and 

nonlinear systems. The concept of continualization proposed in Chapter 2 is used to derive a sufficient 

condition for a given discrete-time system to be an exact discretization of the original continuous-time 

system. The proposed discretization method is based on an approximate solution to this condition, 

which is computed using Peano-Baker series. As an example, an inverted pendulum subjected to 

high-frequency excitation is considered. Simulation results show that the proposed method has good 

performances even with a relatively large sampling interval. 

 

 

5.1  Proposed discrete-time model for non-autonomous nonlinear 

systems 

Let a continuous-time model of a non-autonomous nonlinear system be given by the following 

state space equation: 

 
 

    0 0, ,
d t

t t t
dt

 
x

Γ x x x  (5.1) 

where nRx  is a state vector of continuous-time variable t  and Γ  assumed to be expandable into 

Taylor series. This implies that Γ  satisfies the Lipschitz condition and (5.1) has a unique solution for 

a given initial condition. 

The discrete-time model is expressed in delta form with a uniform discrete-time period of T , as 

  
0

1
0, ,k k

k k kkT
T

  
  

x x
x Γ x x x  (5.2) 

The following theorem states that any discrete-time system (5.2) can be an exact model of a 

continuous-time system (5.1) if the discrete-time function Γ  is chosen in a certain manner. 

Theorem 5.1 [Exact Discretization]: A discrete-time system given by (5.2) is an exact discrete-time 

model of system (5.1) if Γ  satisfies the following: In each interval  1kT t k T   , 

             * * *, , ,
d

t kT kT t kT kT t kT kT t kT t
dt

     Γ x Γ x Γ x , (5.3) 
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where  * tx  is the continualization of discrete-time state 
kx  as Definition 2.3.□ 

Proof: For the state  * tx  to be a solution of (5.1),  *( ),kT t kTΓ x  must be such that (2.8) 

equals (5.1); that is, using (2.7), in each interval,  
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 
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 




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Γ x

x

Γ x

Γ x Γ x

, (5.4) 

which is (5.3).□ 

When (5.3) can be solved for Γ , the exact discrete-time model can be found. When it is solved 

approximately, an approximate discrete-time model may be obtained. One such model is proposed 

below, which is applicable to a general class of non-autonomous nonlinear and linear systems, 

provided they have a Jacobian matrix. 

Theorem 5.2 [The Proposed Model]: A discrete-time system given by (5.2), where Γ  is chosen as 

  
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 
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Γ x

Γ x Γ x  (5.5) 

with DΓ  being Jacobian matrix of Γ , is a discrete-time model of the continuous-time system given 

by (5.1).□ 

Proof: Equation (2.7) with Γ  given by (5.5) holds for a fixed time t   in each sampling interval 

such that 

      
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Γ xx x

Γ x  (5.6) 

and this also holds at the limit of T  approaching zero while k is chosen such that  1kT k T    

holds. Thus, noting that, for a fixed   and a suitable choice of k ,  

 

 
0

1

lim
T

kT k T

kT






  

  (5.7) 

and Γ  is finite, the use of l'Hospital's Rule on the right-hand-side of (5.6) yields 
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 (5.8) 

The left-hand-side, on the other hand, gives 
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Therefore, at the limit of T  approaching zero and for all   such that  1kT k T   , (5.6) gives 
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Since (5.1) has a unique solution given an initial condition, it follows that 
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Therefore, the relationship of  *

k kTx x , (5.7), and (5.11) lead, for any   with  1kT k T   , 

to 
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In view of Definition 2.2, system (5.2) with (5.5) is a discrete-time model of the continuous-time 

system (5.1). □ 

Equation (5.5) can be derived as follows: When Γ  in (5.3) is expanded into the Taylor series and 

truncated with the first two terms as 
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, (5.13) 

eq. (5.3) can always be solved and an approximate discrete-time model obtained. That is, for arbitrary 

 * kTx , (5.3) can be expressed as 
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Defining t kT   , (5.14) can be written as 
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 (5.15) 

where 0 T  . Noting that   * , 0kT  Γ x  at 0  , a solution to the above linear 

differential equation in   * ,kT Γ x  gives the following continuous-time function [30]: 
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0

, ,
kD kT d

kkT e kT d





  

   


 
Γ x

Γ x Γ x . (5.16) 

Adopting this form of function, the discrete-time function is obtained as 

  
 

 
,
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k
T D kT d

k kT e kT d
T



 

 


 
Γ x

Γ x Γ x  (5.17) 

which is (5.5). 

Remark 5.1: The proposed discrete-time function (5.5) can be written as 
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

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



Γ x

Γ x

Γ x

Γ x Γ x

Γ x

Γ x

 (5.18) 

The proposed discrete-time function is time-varying and is updated at each instant by the above 

integration from kT  to  1k T . 

Remark 5.2: The solution to (5.15) is also given by the following form: 

      * , , ,

kT

k

kT

kT kT d



     


  Γ x Γ x  (5.19) 

where  ,   is the transition matrix of linear time variant equation (5.15), which is called 

Peano-Baker series and defined as [33]  

    
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1 1
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1 2 2 1
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1 2 2 1
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i i
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D kT D kT d d

D kT D kT D kT d d d
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

  

   

   

     
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   
 

    
   

      
     



 

  

I Γ x

Γ x Γ x

Γ x Γ x Γ x

  (5.20) 
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Thus the proposed discrete-time function (5.5) can be written as 

     
 

 
1

1
, 1 , ,

k T

k k

kT

T k T d
T

  



  Γ x Γ x . (5.21) 

Remark 5.3: When (5.3) can be solved exactly, an exact discrete-time model can be found. For 

instance for a linear system, the proposed method gives the exact discrete-time model; i.e., for Γ  in 

(5.1) given as 

         ,t t t t t Γ x A x B u , (5.22) 

where A  is a system matrix of compatible dimension, (5.3) can be written exactly as a linear 

differential equation as 

     

                
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,

, 0

d
t kT kT t kT

dt

t t kT kT t kT t kT t t

 

     

Γ x

A Γ x A x B u

, (5.23) 

whose solution is [30] 

    
 

        * *,
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A

Γ x A x B u . (5.24) 

This leads to the exact discrete-time model [34] as 
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 (5.25) 

where 
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. (5.26) 

Remark 5.4: When the Taylor series expansion of        * * , ,kT t kT kT t kT t  Γ x Γ x  is 

truncated after the first term and noting that   ,t tΓ x  is invariant in the interval   , 1kT k T  , 

(5.3) yields 

         * *, ,
d

t kT kT t kT kT kT
dt

  Γ x Γ x  (5.27) 

so that 
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      * *, ,kT t kT kT kT Γ x Γ x . (5.28) 

This is known as the forward difference model.  

Remark 5.5: When the continuous-time system (5.1) is an autonomous system     d t dt tx Γ x , 

the proposed discrete-time function (5.5) leads to the discrete-time model for autonomous system 

proposed in [14]  

 
   

0

1
k

T
D d

k ke d
T

 
  

Γ x
x Γ x . (5.29) 

Remark 5.6: When the continuous-time system (5.1) is given in the form of a forced nonlinear 

oscillator with the system function being 

        ,t t t t Γ x f x g , (5.30) 

the proposed discrete-time function (5.5) yields the following discrete-time function: 
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 (5.31) 

which is identical to one proposed in [13]. 

 

5.2  Discrete-time model for an inverted pendulum subjected to 

high-frequency excitations 

Open-loop stabilization of an unstable equilibrium state of an inverted pendulum was shown to be 

possible in [35], where a high frequency excitation is used in the vertical axis with no feedback. This 

excited pendulum, shown in Fig. 5.1, is a nonlinear non-autonomous system, which consists of a point 

mass m  attached to the top end of a massless rod of length l . The bottom end is periodically 

excited along the vertical axis with the amplitude and angular frequency of excitation being ea  and 

 , respectively. Its equation of motion is given by [35] 

 
22

2
cos sin 0ead c d g

t
dt ml dt l l

 
 

 
     

 
 (5.32) 

where c  is a viscous damping coefficient of the pivot at bottom. The system (5.32) can be rewritten 
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in a vector form as 
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cos sineac g
t

ml l l

 
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     

 

, (5.33) 

for which the proposed discrete-time model is obtained as 
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where 
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k

k e
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Γ x  (5.35) 

Peano-Baker series  ,   is given by (5.20) with Jacobian matrix being 
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0 1

cos cos
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The forward difference model of continuous-time system (5.33) is given by 
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k k k
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. (5.37) 

 

 

 

 

 

Fig. 5.1: The inverted pendulum subjected to high-frequency excitation at the base 
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Simulations have been carried out where m , l , and c  are, respectively, 22.35 10 kg , 

25.37 10 m  and 0.03. Yabuno et al. [35] have shown that the unstable equilibrium point ( 0  ) of 

the inverted pendulum can be stabilized without feedback by applying a high-frequency excitation 

with the amplitude of 34.5 10ea m   and the frequency of 35Hz  . Figures 5.2 to 5.5 to be 

given below show the time responses for the first 0.2 seconds, starting from the initial condition of 

0 0.3   and 0 0  . The sum of differences between continuous-time and discrete-time responses is 

used to assess the error ER , as 

  
0

kT tl

kt kT
k

ER T t 





    (5.38) 

where tl  is the time length of the simulation run. 

From simulations, it was found that, in many cases, only a single term suffices in the calculation of 

Peano-Baker series. Fig. 5.2 shows that when the sampling interval is T 0.001  second, the 

response of the proposed model is very close to that of the continuous-time model even with i 1  in 

Peano-Baker series. The continuous-time response was calculated using the ode45 method 

(Runge-Kutta, Dormand Prince (4,5) pair) in Matlab/Simulink. The performance of the forward 

difference method is not good even at such a small sampling interval; the sampling interval should be 

reduced to 0.00005s  to obtain a response comparable to that of the original continuous-time system. 

When the sampling interval is increased to 0.0025s  (Fig. 5.3), the proposed model still gives almost 

exact responses at the sampling instants with i 1 . When the sampling interval is increased to 

0.005s  (Fig. 5.4), the forward difference model becomes unstable, whereas the proposed model still 

yields stable responses. The response can be improved by increasing i , as shown in Fig. 5.5 where 

i 3 . 

Fig. 5.6 shows the error evaluated by (5.38) where tl 0.2s . The error becomes smaller as the 

sampling period does in all cases. The proposed model with i 1  has the error whose magnitude is 

orders of magnitude smaller than that of the forward-difference model, and the difference between the 

two models becomes larger as the sampling period is reduced. The figure also shows that increasing i 

beyond two or three does not reduce the error much further. It takes about 20, 65, 118, and 225 

seconds, respectively for i 2 , 3, 4, and 5, to calculate the coefficients of the Peano-Baker series 

off-line, as measured by the “cputime” command. The time it takes for Matlab to compute the 

response in Fig. 5.4 is 2.18s  for the proposed model and 0.95s for the forward difference model. 
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Fig. 5.2: Responses of the continuous-time, the proposed, and the forward difference discrete-time 

models for 0.001sT  , 1i   
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Fig. 5.3: Responses of the continuous-time, the proposed, and the forward difference discrete-time 

models for 0.0025sT  , 1i   
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Fig. 5.4: Responses of the continuous-time, the proposed, and the forward difference discrete-time 

models for 0.005sT  , 1i   
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Fig. 5.5: Responses of the continuous-time, the proposed, and the forward difference discrete-time 

models for 0.005sT  , 3i   
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Fig. 5.6: Errors with the proposed and the forward difference discrete-time models for different values 

of sampling periods 

 

5.3  Summary 

A method of obtaining an on-line computable discrete- time model has been proposed for a rather 

general class of nonlinear non-autonomous systems. The proposed method offers an accurate model 

that is alternative to the popular forward-difference model, which has been practically the only on-line 

computable technique to such systems. This method is an extension of that introduced in Chapter 4 

for forced nonlinear oscillators, a special class of non-autonomous nonlinear systems. The proposed 

discrete-time model can be exact when a certain condition equation can be solved exactly, such as for 

linear systems. When this condition can be solved approximately an approximate discrete-time model 

can be derived. The approximate model can always be obtained as long as the Jacobian matrix exists 

for the continuous-time system and Peano-Baker series can be computed. As an example, the 

proposed method was applied to open-loop control of an inverted pendulum under high-frequency 

excitation. Simulations show that the proposed model gives good performances even for relatively 

large sampling intervals. It was also found that, for sufficient small sampling intervals, only a single 

term is needed in the Peano-Baker series computation. When a larger sampling interval is used, higher 

order Peano-Baker series can used to improve the performance of the proposed method.  
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Chapter 6  
 

 

Improved nonlinear discrete-time models based on 

Riccati approximation of integration-gains 
 

 

The discretization method presented in Chapter 3, which is based on linear approximation, is 

improved in this chapter by using a Riccati approximation of sufficient condition for discrete-time 

integration gain. The resulting model is shown to have a smaller norm of the approximation error than 

the one based on the linear approximation. Simulation results are presented for a Lotka-Volterra 

system to demonstrate that the improved model has better performances than the existing methods 

obtained by the forward-difference, Kahan’s, and Mickens’ models, as well as one in Chapter 3. 

 

 

6.1  Proposed model 

Let the autonomous nonlinear continuous-time system be given by the following differential 

equation: 

 
 

    0 0,
d t

t t
dt

 
x

Γ x x x ,      (6.1) 

where t  is the independent continuous-time variable, nRx  the continuous-time state vector, and 

0x  an arbitrary constant vector. Function : n nR RΓ  is assumed to be expandable into Taylor 

series, which assures to satisfy Lipschitz condition so that a unique solution exists for a given initial 

condition 0x . A system under digital control, whose input is a piece-wise constant input applied 

through the zero-order-hold, can be expressed in the form of system (6.1) for each interval 

 1kT t k T   . 

In Chapter 3, the discrete-time model is based on the use of the discrete-time integration gain 

expressed in delta operator form as 

    
0

1
0, ,k k

k k k kT
T

  
  

x x
x G x Γ x x x . (6.2) 

Theorem 3.2 shows that the discrete-time system (6.2), is an exact model of a continuous-time system 

(6.1), if the discrete-time integration gain G  in (6.2) is chosen to satisfy that 
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              * * * * *, ,kT t kT kT kT kT t kT kT   Η x Γ x Γ x Η x Γ x  (6.3) 

for each interval  1kT t k T   , where  * tx  is the continualization of discrete-time state 
kx  as 

Definition 2.3, and the continuous-time function   * ,kT t kTH x  is defined as 

       * *, ,kT t kT t kT kT t kT   H x G x . (6.4) 

If the integration gain can be chosen to satisfy condition (6.3) exactly, the resulting discrete-time 

model will be exact. When this is difficult, it may be solved approximately. To this end, let the 

right-hand side of eq. (6.3) be expanded, by assumption, into Taylor’s series, as 

              * * * * *

2,kT kT t kT kT kT D kT    Γ x Η x Γ x Γ x Γ x φ e , (6.5) 

where  DΓ x  is Jacobian matrix of function   1,...,
T

n
   Γ x , 

       * *

1 ,
T

n kT t kT kT  φ Η x Γ x , (6.6)  

and 
2e  represents the second and higher order terms of *

x . In the Chapter 3, a discrete-time model 

called former model was proposed based on the solution of the first-order approximation, where 
2e  

is simply ignored, as: 
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1
, k

T D

k T e d
T


 

Γ x
G x  (6.7) 

Taylor’s expansion of the right-hand side of eq. (6.3) can be written more explicitly as 

              * * * * *

3,kT kT t kT kT kT D kT     Γ x Η x Γ x Γ x Γ x φ χ e , (6.8) 

where  1,...,
T

n χ  is the second-order term, which can be written as 
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x
x , (6.9) 

and 
3e  represents the third and higher-order terms. While the first-order term in the Taylor series 

expansion of a vector function of multiple-variables can be written in a simple matrix-vector form 

using Jacobian matrix, the second and higher-order terms are not, in general. The use of multi-index 

[36] alleviates this issue and is used in the following, where the second-order term is further broken 

into two parts and one is included in the gain-condition equation, while the other is ignored. 

Let the coefficient    2 * * *

i j lx x   x  of j l   in eq. (6.9) be expanded into Maclaurin’s series 

in 
*

x  as 
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  

 

2 *

*

* *
0

i

ijl

orderj l

kT

x x









 


 


x
x , (6.10) 

where 

 
  

*

2 *

* *

1

!

i

ijl

j l

kT

x x








  
 
  
  x 0

x
, (6.11) 

and the multi-index   is defined [36] such that 

 

   

 

 

1 2

1 2

1 2

1 2

1 2

1 2

1 2

, ,..., , 0,1,2,...

...

! ! ! !

.

n

n

n

n i

n

n

n

order

x x x

order

x x x
 




 

    

   

   



  




  

x

 (6.12) 

In eq. (6.10), ( ) 0order    implies that the summation is taken over all combination of the 

multi-index whose order is zero or positive. 

Theorem 6.1: Vector χ  in eq. (6.8) can be expressed uniquely as 

  *1

2

T χ φb x φ θ , (6.13) 

where  *
b x  is chosen such that 

       
 

* * * * *

1

0

,
T

n i i

order

b b b








  
  b x x x x x , (6.14) 

and coefficients 
i   as 

 
   

 

(i)

(ii) min , 1,2,..., .

i jij

i jij

sgn sgn

j n

 

 

 

 



 
 (6.15) 

Under eq. (6.15), eq. (6.13) satisfies 

 θ χ , (6.16) 

where  is a polynomial norm [37]. □ 

Proof: While the second-order term χ  may be broken into portions in different ways, this is done in 

a particular way such that the coefficient 
i   is uniquely determined in eq. (6.15), making vector 

 b x  unique. Thus, given the second-order term χ , θ  in eq. (6.13) is unique. 

Defining  1

T

n θ , eq. (6.13) yields 
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 

 
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2 *
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* *
, 1 1
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, 1 0 1
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1 1

2 2

1 1
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2

n n
iT

i i i j l i j j

j l jj l

n n

ijl j l i j j

j l order j

n n

iji j i j ijl j l

j order j l order
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x x

b

b



 




 
 
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    

 

  

   


 
   

 

 
   

 

   
        

   



 

  

   

x
b x φ

x

x x

     

 
   

* * *

1 0 0 , 1 0
,

* *

1 0 , 1 0
,

1

2

1 1

2 2

n n

j i j ijl j l

j order order j l order
j l i

n n

iji j i j ijl j l

j order j l order
j l i

  

 

  
  

  
 

     

     

    


   


   
       

   

   
        

   

    

   

x x x

x x

 (6.17) 

Since  *

ib x  as defined in eq. (6.14)-(6.15) implies that 

  
   

* *

0 0

iji j iji

order order

 

  
 

  
 

  x x , (6.18) 

eqs. (6.9), (6.10), and (6.17) yield 

 i i  ,    which leads to 

 
1 1

n n

i i

i i

 
 

   θ χ .      (6.19) 

Example 1: Consider a model given by 

   

   

2 2

1 1 1 2 1 1 2 1 1 2 2

2 2

2 2 1 2 2 1 2 1 1 2 2

, 1 2 3 4 5 6

, 6 5 4 3 2 ,

x f x x x x x x x x x

x f x x x x x x x x x

       


      

 (6.20) 

for which χ  is found to be 

   

   

* * 2 * * * 2

1 2 1 1 2 1 2 1 21

* 2 * * * * 2
2 2 1 1 2 1 2 1 2 2

4 24 10 2 3 10 12 121

2 6 2 5 6 4 8 4 6

x x x x x

x x x x x

  

   

        
   
          

χ . (6.21) 

In the present example, the coefficients of i j  are already in the power series in *
x , so that 

Maclausin’s expansion is unnecessary, and give 
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 

 

 

 

     

     

 

 

 

* * 2
111 111 1110.0 1.0 0.11 2 1

* *
112 112 1120.0 1.0 0.11 2 1 2

* 2
122 1.01 2

* 2

2 1 211 0,1

* *

1 2 1 2 212 210.0

* * 2

1 2 2

4, 24, 104 24 10

6, 20, 242 3 10 12

1212

6 6

2 5 6 4 10,

8 4 6

x x

x x

x

x

x x

x x

  

   



 

  



        


       


 


  
     

   


   

     

2 2121.0 0.1

222 222 2220.0 1.0 0.1

12, 8

8, 4, 6

 

  








    

      


.  (6.22) 

Other terms ijl   that do not appear in eq. (6.22) are zero. An element  *

ib x  has the form of 

        
* * *

1 20,0 1,0 0,1i i i ib x x    x , (6.23) 

where the coefficients 
 ,i j l
  satisfies conditions (6.15). For example, 

 1 0,0
  is chosen to be 4 , 

since 

        

        

1 111 2120,0 0.0 0.0

1 111 2120,0 0.0 0.0

sgn sgn sgn 1

min , min 4,10 4.

  

  

   

  
 (6.24) 

In this manner,  *
b x  is found uniquely to be 

  
* *

1* 1 2

* *
2 1 2

4 12 8

6 4 6

b x x

b x x

    
    

     
b x . (6.25) 

Thus, the second-order term ω  expressed as in eq. (6.13) is given by 

   * * 2 * * * 2* *
1 2 1 1 2 1 2 1 21 11 2

* * * 2 2
2 21 2 2 1 1 2 2

12 2 16 18 124 12 81 1

2 26 4 6 6 6 2

T
x x x x xx x

x x x

   

    

           
       

             

χ . (6.26) 

The polynomial norms of χ  and θ  are calculated to be 154 and 84, respectively. 

The main point of Theorem 1 is to separate the second-order term into the quadratic part and the 

rest, and to include the former part in the computation of the discrete-time integration gain. The 

resulting gain equation is of the Riccati form for which exact discretization is known [38]. The fact 

that this yields a smaller norm in the approximation is shown in the following theorem: 

Theorem 6.2: When the integration-gain is approximated as 

              * * * * *1
,

2

TkT t kT kT kT D kT kT   Η x Γ x Γ x Γ x φ φb x φ , (6.27) 

the polynomial norm [37] of the error term is smaller than that with the first-order Taylor 

approximation. □ 

Proof: The approximation error e  of eq. (6.27) can be written as 

 
2 e θ e . (6.28) 
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Since the approximation error of the first-order Taylor approximation is 

 
2 3 e χ e , (6.29) 

and 
2e  contains the third-order or higher derivatives, while χ  and θ  only the second-order 

derivatives, the polynomial norms [37] satisfy 

 
1 2 2

2 2 .

   

   

e e χ e ω

e e θ e θ
 (6.30) 

Using the result of Theorem 6.1, eq. (6.30) leads to 

 2 2 1    e e θ e χ e , (6.31) 

which proves the theorem. 

When the integration-gain is obtained by solving eq. (6.27) exactly, a new discrete-time model is 

obtained as follows: 

Theorem 6.3 (Proposed Model): A discrete-time system (6.2), with the integration-gain given by the 

following, is a discrete-time model of system (6.1): 

  
1

21 11( , ) ( , ) ( , )k k kT T T T


 G x M x I M x , (6.32) 

where ( , )ij M x  are n n  matrices and satisfy 

( )
11 12

21 22

( , ) ( , )
( , )

( , ) ( , )

e  


  

   
 
 

Q xM x M x I
M x

M x M x
, (6.33) 

 
( )

( )
( )D

 
 
 

0 -C x
Q x

I Γ x
 (6.34) 

      
1

2

T
C x Γ x b x . (6.35) 

Proof: Noting the definition of φ  as in eq. (6.6), eq. (6.27) can be written as 

  

     

           

             

           

           

* *

* * * *

* * * * *

* * * *

* * * *

,

,

1
, ,

2

,

, , .

T

k

kT t kT kT

kT D kT kT t kT kT

kT t kT kT kT t kT kT

kT D kT kT t kT kT

kT t kT kT kT t kT kT



  

  

  

  

Η x Γ x

Γ x Γ x Η x Γ x

Η x Γ x b x Η x Γ x

Γ x Γ x Η x Γ x

Η x C x Η x Γ x

 (6.36) 

For this relationship to hold for arbitrary Γ , it suffices that 

        

        

* * *

* * *

, ,

, ,

kT t kT D kT kT t kT

kT t kT kT kT t kT

   

  

Η x I Γ x Η x

Η x C x Η x
 (6.37) 
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is satisfied, which is a matrix Riccati equation. Noting that   * , 0kT t kT Η x  when t kT , the 

solution of eq. (6.37) is given as [38] 

           
1

* * *

21 11, , ,kT t kT t kT kT t kT T kT t kT


     Η x M x I M x , (6.38) 

which leads to 

  
 

  

      

* *

1
* *

21 11

1
, ,

, ,

kT t kT kT t kT
t kT

kT t kT T kT t kT


  


   

G x Η x

M x I M x

. (6.39) 

Since [38], 

 
 

 
0

lim
k T

k
T

e

T




Q x
I

Q x ,      (6.40) 

it follows that 

 
 

 
 

 0 0
lim , lim

k T
k

k k
T T

k

e
T

DT 

 
    

 

Q x 0 -C xI
M x Q x

I Γ x
. (6.41) 

Comparison of the above equation with eq. (6.33) yields 

    11 21
0 0

lim , , lim ,k k
T T

T T
 

 M x 0 M x I , (6.42) 

which lead to 

    
1

21 11
0 0

lim ( , ) lim , ,k k k
T T

T T T T


 

   
 

G x M x I M x I . (6.43) 

The discrete-time system (6.2) satisfies Theory 3.1 and, in view of Definition 2.2, is a discrete-time 

model of continuous-time system (6.1). 

Remark 6.1: For a scalar system, the term θ  in eq. (6.13) is zero, so that and the discrete-time 

model (6.2) will be based on the second-order Taylor expansion of eq. (6.3). 

Remark 6.2: When the continuous-time system is given by a matrix Riccati differential equation, the 

terms 
3e  in eq. (6.8), and θ  in eq. (6.13) are zero. Therefore, the discrete-time model (6.2) with 

integration-gain given by eq. (6.32) will be an exact discrete-time model of the Riccati system [38]. 

Remark 6.3: The proposed model is equivalent to the former model when matrix  b x  in eq. (6.14) 

is forced to be a zero matrix. 

 

6.2  Simulation results 

Simulations are carried out to compare the proposed discrete-time model with the former model, 

the forward difference model, Kahan’ model, and Mickens’ model. The continuous-time system used 

for this purpose is the following Lotka-Volterra model [39]: 
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   

   
1 1 1 2 1 1 11 1 12 2

2 2 1 2 2 2 21 1 22 2

,

,

x x x x r a x a x

x x x x r a x a x

     


    
, (6.44) 

where  1x t  and  2x t  represent the numbers of individual in each specy at time t , 
ir  is the 

intrinsic growth-rate of the specy i , and ija  are competition coefficients that indicates the extent to 

which the specy j  affects the growth-rate of the specy i . The parameters used for simulations are 

1 5r  , 
2 6r  , 

11 1a  , 
12 2a  , 

21 3a  , and 
22 4a  , which makes the equilibrium points to be 

 1 0,0E  ,  2 5,0E  ,  3 0,1.5E  , and  4 4,4.5E   . The initial condition is chosen to be 

      1 20 , 0 0.2, 0.4x x  . 

 Forward Difference Model [9]: For system (6.44), this model is given by 

 
 
 

1, 1 11 1, 12 2,1,

2, 2, 2 21 1, 22 2,

k k kk

k k k k

x r a x a xx

x x r a x a x





   
   

     

; (6.45) 

i.e., eq. (6.2) with G I  for any T. 

 Former Model [Chapter 3]: The model proposed in Chapter 3 is eq. (6.2), where Γ  is as defined 

in eq. (6.7) with Jacobian matrix given by 

 
1 1 11 1, 1 12 2, 1 12 1,

2 21 1, 2 2 21 1, 2 22 2,

2

2

k k k

k

k k k

r r a x r a x r a x
D

r a x r r a x r a x

   
  

   
Γ x . (6.46) 

 Kahan Model [40]: This model is known to be accurate for Lotka-Volterra type systems, and is 

given by 

1, 1, 1 1, 2, 1 1, 1 2,

1, 1 11 1, 1, 1 12

2, 2, 1 1, 2, 1 1, 1 2,

2, 2 21 22 2, 2, 1

2 2

,
2 2

k k k k k k

k k k

k k k k k k

k k k

x x x x x x
x r a x x a

x x x x x x
x r a a x x





  



  



     
      

    


    
     

   

 (6.47) 

where 1x , 2x , 1 2x x , 2

1x , and 2

2x  in the continuous-time model are replaced, respectively, by 

 1, 1, 1 2k kx x  ,  2, 2, 1 2k kx x  ,  1, 2, 1 1, 1 2, 2k k k kx x x x  , 1, 1, 1k kx x  , and 2, 2, 1k kx x  . Equation 

(6.47) can be expressed in the form of eq. (6.2) with the integration gain given by 

    
1

,
2

k k

T
T D



 
  
 

G x I Γ x , (6.48) 

where  kDΓ x  is given by eq. (6.46). 

 Mickens Model [24]: This nonstandard discrete-time model is given by 
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1, 1 1,

1 1, 11 1, 1, 1 12 1, 1 2,

1

2, 1 2,

2 2, 21 1, 2, 1 12 2, 2, 1

2

,

k k

k k k k k

k k

k k k k k

x x
r x a x x a x x

x x
r x a x x a x x







 



 


  




   



 (6.49) 

where  1

1 11rTe r    and  2

2 21
r T

e r   . This yields the discrete-time model eq. (6.2) with 

 
 

 

1

1 11 1, 12 2,

2

2 21 1, 22 2,

0
1

,

0
1

k k

k

k k

a x a x
T

a x a x









 
  
 
 
 

   

G x . (6.50) 

 Proposed Model: The second differentiation of functions 
1f  and 

2f  are given by 

2 2 2 2

11 11 2 2
1 11 1 12 2 22 2 212 2

1 1 2 2 1 2

2 , , 2 ,r a r a r a r a
x x x x x x

       
       

     
. (6.51) 

Vector b  that satisfies conditions (i) and (ii) in eq. (6.15) is determined uniquely as 

    1 11 2 21 1 12 2 222 min , ,min ,T r a r a r a r a    b . (6.52) 

The proposed discrete-time model has the integration gain given by eq. (6.32) with b  given by 

eq. (6.52). 

Figs. 6.1 and 6.2 show the state-responses of the continuous-time system and (a) Mickens’ model, 

(b) Kahan’s model, (c) the former model, and (d) the proposed model for 0.1T s  and 0.5s  up to 

10t s . The widely-used forward difference model, although not shown here, has a decent 

performance for 0.1T s  but starts to oscillate around the equilibrium  2 0,5E   for T  larger 

than about 0.2s . The response becomes chaotic at about 0.28T s  and divergent for T  larger 

than about 0.29s . Mickens’s model in (a) is less accurate than the forward difference model for 

0.1T s , but remains at least stable and converges to 2E  for 0.5T s . Kahan’s model (b) is 

accurate for 0.1T s , but converges to a different equilibrium  4 4,4.5E    for 0.5T s . The 

response reaches 2E  using 0.486T s  but it changes suddenly to 4E  using 0.487T s . If the 

response diverges or computation stops, one would doubt the veracity of the obtained results. 

However, if the response converges to an erroneous equilibrium, it would be difficult to notice it. 

Therefore, such a change in the steady-state property can be detrimental in numerical investigations. 

As for both the former (c) and the proposed (d) models, the results are accurate for 0.1T s , while 

the proposed model shows a better performance for 0.5T s . 

Figs. 6.3 and 6.4 show the state-responses of the same models for 1.0T s  up to 10t s . As in 

Figs. 6.1 and 6.2, Mickens’ model has a large delay during the transient response without oscillation 

and converges to the correct equilibrium 2E . Kahan’s model yields an oscillatory response and 
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converges to a different equilibrium 4E . The former and the proposed models have overshoots but 

converge to the correct equilibrium 2E . 

Figs. 6.5 and 6.6 are the same as Figs. 6.3 and 6.4 but for 2.0T s  (note the different scales for 

the time axes). Mickens’ model converges to the correct equilibrium 2E  after about 16s , while 

Kahan’s model takes a larger time to reach the steady-state, which is 4E . The former model seems to 

diverge during the transient stage, but actually settles in about 80s , to 4E . The proposed model 

yields the transient response that becomes slower as the sampling period increases, but without 

becoming too oscillatory. In fact, the response remains convergent to the correct equilibrium 2E  at 

least up to 50T s . 

Table 6.1 shows the actual computation times elapsed in running the ten seconds of Simulink 

simulations on a desktop PC as measured by Matlab’s cputime command using T = 0.01s. Relatively 

speaking, the proposed model can take up to about 16% more CPU time than the other models 

compared. 

 

 

 
Fig. 6.1: State response 

1x  of continuous-time, Mickens, Kahan, former and proposed models for 

0.1T s  and 0.5T s  
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Fig. 6.2: State response 

2x  of continuous-time, Mickens, Kahan, former and proposed models for 

0.1T s  and 0.5T s  

 

 
Fig. 6.3: State response 

1x  of continuous-time, Mickens, Kahan, former and proposed models for 

1.0T s  
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Fig. 6.4: State response 

2x  of continuous-time, Mickens, Kahan, former and proposed models for 

1.0T s  

 

 
Fig. 6.5: State response 

1x  of continuous-time, Mickens, Kahan, former and proposed models for 

2.0T s  
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Fig. 6.6: State response 

2x  of continuous-time, Mickens, Kahan, former and proposed models for 

2.0T s  

 

 

Table 6.1: Duration of computation time 

 

For. Diff. Model Mickens Model Kahan Model Former Model Proposed Model 

0.7956 s 0.7956 s 0.7956 s 0.8892 s 0.9204 s 

 

6.3  Summary 

A discretization method has been proposed for nonautonomous nonlinear systems, where the 

resulting discrete-time model is expressed as the product of the integration-gain and the sampled 

version of the system function of the original continuous-time system. An equation for the 

integration-gain, which makes the discrete-time model exact when solved exactly, has been 

approximated as a Riccati differential equation, which can be discretized exactly. The proposed 

method has been shown to have a smaller error norm than the model proposed previously in Chapter 3, 

where the gain is approximated as the linear differential equation. As an example, a Lotka-Volterra 

model is considered and its state responses simulated to show a superior performance of the proposed 

model over the forward-difference, Kahan’s, Mickens’, and the former models, in terms of closer 

transient and steady-state responses to the continuous-time originals. 
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Chapter 7  
 

 

A new discrete-time feedback control for scalar 

nonlinear systems 
 

 

A new discrete-time feedback control is proposed for scalar nonlinear systems with constant 

parameters. The method uses the discretization method proposed in Chapter 3, where the so-called 

discrete-time integration gain is discretized such that the resulting model is approximate for nonlinear 

systems but exact for linear cases. It is shown that the proposed control law preserves the asymptotic 

stability of the desired discrete-time system at sampling instants, while the popular forward difference 

and accurate Mickens methods do not, in general. As an example, the proposed control law is applied 

for discrete-time feedback linearization of a scalar Riccati system. Simulation results demonstrate that 

the proposed method has better accuracy and tends to retain the desired dynamics for larger sampling 

intervals, than the other two methods. 

 

 

7.1  Discrete-time feedback control 

Consider a scalar nonlinear system with constant parameters given by 

       Tx t f x t cu t   (7.1) 

where 0c   and  Tu t  is a piece-wise constant input that is generated by applying a discrete-time 

sequence ku  with period T  to the zero-order-hold (ZOH) synchronized with period T . This 

implies that 

      , for 1T Tu t u kT kT t k T    . (7.2) 

System (7.1) under input (7.2) can be considered as an autonomous system, since this input is 

constant between two successive sampling instants. However, while the continuous-time nonlinear 

system (7.1) may be linearized exactly by an exact-linearizing continuous-time feedback control, this 

is not possible in discrete-time form, since the exact discrete-time model of system (7.2) is generally 

non-affine in the input and, thus, the exact-linearizing discrete-time feedback control law cannot be 

derived. The three discrete-time models that are known to the authors as affine, but approximate, are 

the forward difference model, Mickens’ model, and the one proposed in Chapter 3. Using this third 

discretization method, the affine discrete-time model of (7.1) is obtained as 
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     ,k k k kx G x T f x cu   , (7.3) 

where 

    

0

1
, k

T Df x

kG x T e d
T




    . (7.4) 

Let us assume that system (7.1) is to be controlled such that it behaves as if it were a desired system, 

which is given by 

       ,w t h w t r t  (7.5) 

where h  is, in general, a nonlinear function of state  w t  and the reference input  r t . Its 

discrete-time model is derived by the proposed discretization method in Chapter 3 as 

  ,k d k kw G h w r    (7.6) 

where 

 
 

0

1
k

T Dh w

dG e d
T




    , (7.7) 

and  kDh w  is Jacobian matrix of the system function  kh w . 

The control law for system (7.1) is derived by equating the proposed discrete-time model (7.3) and 

the discrete-time model of the desired closed-loop system (7.6), and is obtained as 

       
11 1, ,T k d k k ku t c G x T G h x r c f x
        (7.8) 

for each fixed k  such that  1kT t k T   , and  kx x kT . The schematic diagram of this 

controller is given in Fig. 7.1. 

Theorem 7.1: When a piece-wise constant input generated by equation (7.8) is applied to 

continuous-time system (7.1), the asymptotic stability (instability) of the linearized discrete-time 

model of the resulting closed-loop system is equivalent to the asymptotic stability (instability) of the 

desired discrete-time system (7.5). 

Proof: With the continuous-time input Eq. (7.8), the closed-loop system (7.1) can be written for 

 1kT t k T    as 

           1

, ,k d k k kx t f x t G x T G h x r f x


      . (7.9) 

Expanding   f x t  in Eq. (7.9) into the Taylor series around kx , and keeping the first-derivative 

terms only, a linear approximation is obtained. Using  x t  for the state of this linearized system, 

this is written, for  1kT t k T   , as 
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               
   

1

, ,k k k k d k k k

k

x t f x Df x x t x G x T G h x r f x

Df x x t 



       

 

 (7.10) 

where   is a constant defined by 

      
1

, ,k d k k k kG x T G h x r Df x x


     . (7.11) 

The analytical solution of linear differential equation (7.10) within  1kT t k T    is known as 

          k k

t
Df x t kT Df x kT

k

kT

x t e x e d


 
        

 
  

 
 . (7.12) 

This gives, for  1t k T  , 

   

           

           

 

1

0

1

0 0

1

0 0

, ,

1
,

,

k k

k k k

k k k k

T
Df x T Df x

k k

T T
Df x T Df x Df x

k k d k k k k

T T T
Df x T Df x Df x Df x

k d k k k k

o

d k k

x e x e d

e x G x T G h x r e d Df x x e d

e x e d G h x r e d Df x x e d
T

TG h x r



 

  

 

 

  

      


          



              

 

    

 
   

  





 

  

     

 

0

, ,

k k

T
Df x T Df x

k k

d k k k

e Df x e d x

TG h x r x




      
 

  
 
 

 



 (7.13) 

which yields 

  ,k d k kx G h x r  , (7.14) 

thus proving Theorem 7.1. 

Remark 7.1: Theorem 7.1 only shows that the linearized discrete-time model of closed-loop (7.1) 

under the proposed feedback control law of (7.8) is identical to the desired discrete-time system (7.6). 
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Fig. 7.1: Structure of discrete-time feedback controller 

 

7.2  Discrete-time linearization feedback for Riccati System 

To highlight the process of applying the discretization scheme described in the previous section to a 

nonlinear system, and as a first step towards its extension to a more practical system, a Riccati system 

with constant parameters is considered in this section. Riccati differential equations form an important 

class of mathematical models, which are used in such areas as mathematics [41], physics [42], and 

engineering [43]. To this end, let the Riccati system be given by 

            2
T Tx t f x t cu t ax t bx t cu t     , (7.15) 

where 0c   and  Tu t  is a piece-wise constant input. The proposed discrete-time model is given 

by 

    2,k k k k kx G x T ax bx cu       , (7.16) 

where 

   2k kDf x ax b  . (7.17) 

Let us assume that the Riccati system (7.15) is to be controlled such that it behaves as if it were a 

linear system, which is given by 

           ,w t h w t r t w t r t     (7.18) 

where  ,   are non-zero constant parameters. The exact discrete-time model of the desired linear 
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system is given [9] by 

  k d k kw G w r     (7.19) 

where 

 
1T

d

e
G

T






 . (7.20) 

Using the proposed control law (7.8), input 
ku  is given as 

    1 21
,k k d k k k ku G x T G x r ax bx

c
 



       , (7.21) 

which is applied to the continuous-time system through a ZOH. 

Remark 7.2: If the forward difference method is used, the discrete-time model for system (7.1) and 

the corresponding discrete-time feedback control law are given by 

   2,k k k k k kx f x u ax bx cu     , (7.22) 

   21
k d k k k ku G x r ax bx

c
     . (7.23) 

The approximate solution of the resulting closed-loop system is 

 
   2

1

0

k

T
ax b

k D k k kx e d x r x

  





 
    
 
 . (7.24) 

Remark 7.3: The semi-explicit discrete-time model and the corresponding feedback control law using 

the nonstandard finite difference scheme of Mickens [4] are given as 

  1k k k k kx ax x bx cu
T


    , (7.25) 

      
1

1 1k k k d k k ku ax x TG x r b x
c

   


         (7.26) 

where 1 Te   . The corresponding approximate solution of the closed-loop is obtained as 

 
   2 2

1

0

k

T
ax b

k k k k kx e d u ax bx x







 
    
 
 . (7.27) 

Theorem 7.1 does not hold using the forward-difference and Mickens’ models. 

 

7.3  Simulation results 

Simulations have been carried out to assess performances of the digital controllers designed using 

the forward difference, Mickens, and the proposed discretization method, as compared with the 

behavior of the continuous-time closed-loop system. System parameters were chosen as 

2, 1, 1a b c    , and the initial condition as 0 1x  . The desired closed-loop behavior was that of a 
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linear system (7.5) with 2, 3    , and the reference input ( )r t  was the unit step signal. 

From Fig. 7.2 to Fig. 7.5, the responses are shown for the sampling interval of 0.2, 0.4, 0.6 and 1.0 

seconds, respectively. At 0.2 seconds, all the methods give responses that are more or less similar to 

those of the desired behavior, although the proposed method gives the closest result (Fig. 7.2). When 

the sampling interval is increased to 0.4 seconds (Fig. 7.3), Mickens and forward difference methods 

deviate from the continuous-time response further, while the proposed method still yields a response 

close to the desired behavior. When the sampling interval is set at 0.6 second (Fig. 7.4), the response 

of the forward difference method shows chaotic behavior and that of Mickens method converges to a 

steady state, which differs from the desired behavior. In contrast, the response of the proposed method 

still shows a good performance. When the sampling interval is further increased to 1.0 second (Fig. 

7.5), both the forward difference and Mickens methods become numerically unstable. However, the 

proposed method yields the result where the state reaches the correct steady value, although there is a 

large overshoot during the transient. 

By the way, the common approach taken to deal with nonlinear systems is to linearize it around an 

intended equilibrium point and design a control law using the resulting linear model. This approach 

falls short of following comparison. 

Linearization of system (7.15) around an equilibrium point 
ex  is given by 

        2 e Tx t ax b x t cu t   . (7.28) 

The discrete-time feedback control law for nonlinear system (7.15) based on the exact discrete-time 

model of the linear system (7.28) is obtained [9] as 

     11
2k e d k k e ku x r ax b x

c
       , (7.29) 

where e  is the discrete-time integrator gain of system (7.28) as given by 

 
 

 

2
1

2

eax b T

e

e

e

ax b T




 


. (7.30) 

An important issue here is how one should choose the equilibrium point around which the control 

system is to be designed; should it be one of the open-loop system or the closed-loop system? When 

system (7.15) is linearized around the open-loop equilibrium points of 0ex   and 0.5ex  , 

simulation studies revealed that the closed-loop systems with feedback control law of (7.29) are 

numerically unstable, even for a small sampling interval of 0.01T   second. 

When the linearization of system (7.15) is taken around the equilibrium point of desired linear 

system (7.5) at 1.5ex  , the response of the closed-loop system with feedback control law (7.29) 

becomes stable. However, the state converges to a value that differs from the desired steady-state 

behavior, as seen in Fig. 7.6. 
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Fig. 7.2: Responses of the desired closed-loop, forward difference, Mickens’, and proposed methods 

for 0.2T   seconds 

 

 

Fig. 7.3: Responses of the desired closed-loop, forward difference, Mickens’, and proposed methods 

for 0.4T   seconds 
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Fig. 7.4: Responses of the desired closed-loop, forward difference, Mickens’, and proposed methods 

for 0.6T   seconds 

 

 

Fig. 7.5: Responses of the desired closed-loop and proposed methods for 1T   second 
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Fig. 7.6: Responses of the desired closed-loop, forward difference, Mickens’, proposed and 

linearization-based methods for T=0.01 second 

 

7.4  Summary 

A discretization method proposed in Chapter 3 for autonomous nonlinear systems was used for 

designing a discrete-time feedback control law. The discrete-time model is affine in the input when 

the continuous-time model is, which is convenient for controller designs. The control law was show to 

retain the discrete-time asymptotic stability (instability) of the desired model for any sampling 

interval. Simulations were carried out for a nonlinear system whose dynamics are governed by Riccati 

differential equations. They showed that the proposed method produced state responses that were 

closer to the desired behavior than the forward difference and Mickens method at all sampling periods 

tested. 
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Chapter 8  
 

 

Conclusions 
 

 

Digital computations inevitably involve conversions of a continuous-time system into an equivalent 

discrete-time system, on which a large number of researchers have worked, mostly from a 

discretization point of view. Such a view paid off in filling a gap between discrete-time and 

continuous-time domains for linear systems. However, one for nonlinear systems is still lacking, 

especially for on-line computable algorithms. The present thesis has proposed an approach that is 

opposite to the conventional ones in the sense that the problem is looked at from a continuous-time 

point of view. This is the continualization technique explained in Chapter 2 and used in all the 

subsequent chapters. By looking at the problem as that of bridging the two time domains, their gap 

can be narrowed and the construction of the bridge can be managed more efficiently (Fig. 8.1). The 

key is the derivation of the condition for the discrete-time model to be exact, which made the shortest 

(but may be steepest) path to stand out. In addition, and perhaps more importantly, this sheds light 

into how approximate solutions can be obtained, as longer (but usually easier) paths.   

 

 

 

Fig. 8.1: Bridging the continuous-time and discrete-time domains for nonlinear system 

 

Important techniques used in the thesis are, the use of the delta operator and the clarification of the 

definition of exact and general discretization, which together light up the roles of a discrete-time 

integration gain, and the concept of continualization. Chapter 3 treated the nonlinear autonomous case, 

Chapter 4 considered a class of non-autonomous systems, and Chapter 5 dealt with its generalization 

to a wider class of non-autonomous systems. Chapter 6 took the solution of the condition equation for 

autonomous case more seriously, using the Riccati approximation. Chapter 7 illustrates how these 

models could be used for the design of a control system. 

Discrete-time domain 

Continuous-time domain 
Nonlinear River 
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Although the proposed models are developed based on the first order Taylor approximation of the 

sufficient condition derived in Chapters 3 and 5, the form of the discrete-time model is non-linear. 

This is different from the linearization of a nonlinear system itself based on Taylor approximation. 

The model explained in Chapter 3 (for autonomous systems) and in Chapter 5 (for non-autonomous 

systems) corresponds to one with the first two terms in the series expansion in a differential equation 

concerning continualized system, and can always be found as long as the expansion exists, whereas 

the well-known forward difference model corresponds to one with the first term only. 

In all these chapters, simulations showed that the proposed models out-performed the 

existing methods in almost all cases. However, evaluation and comparisons of proposed 

method with the others needs to be carried out via real engineering examples for better 

test and examine the obtained theory. Analysis for the effect of sampling interval on 

properties of discrete-time model such as accuracy and numerical stability should be 

investigated further. The issues of how to apply the proposed discretization techniques in 

digital controller design methodology, and practical control engineers are important 

scopes for our future research. 
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