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Abstract

Human has the ability to learn and decide their action based on experiences when con-

fronting a problem. Human decision often involves multi-functionality, where multiple con-

trol functions are applied for achieving a single goal. Conventional control often involves

human in providing commands which mostly depends on the human decision. However,

these decisions commonly involve single control function where multi-functionality can not

be provided without human assistance.

Learning Control helps a machine constructs its own control knowledge autonomously

through operation experiences. The development of Control Knowledge through Learning

Control would require a period of training that could involve a number of failures among

successful attempts. The Control Knowledge obtained is usually limited to single control

function based on the training environment with less flexibility in varying environment.

Learning Control Systems with multiple functions could provide a wider range of con-

trol options against any environment. In this research, Learning Control System with

multi-functionality is designed and developed. Here, application of Learning Control with

multi-functionality provides a more human-like control operation with ability to adapt and

consider the surrounding environment during control operation. The designs were evaluated

through experiments and simulations where results confirm the effectiveness of the designed

system. Through these results, the designs of multi-functions Learning Control may provide

a safer and reliable control on control devices including complex non-linear control device.

viii



Chapter 1

Introduction

1.1 Research Background

Human perform actions in order to complete task or react to surrounding environment. We

render these actions in functions form. The actions are naturally based on purposes, which

commonly act as goals. Successes and failures in achieving these goals are recorded in the

human mind as knowledge, for references during future attempts. This form of learning

represents human intelligence for being self-sustainable that is important in improving our

skills for solving surrounding problems.

Applying such intelligence in machines has been an issue surrounding many researchers.

Methodologies for self-sustained autonomous machines have been well developed and various

new methods and ideas are continuously being proposed in order to reduce human interven-

tion in managing these machines. Providing actions of machines in form of functions help

machines to self-evaluate their actions. Human-like functions are one of the focuses of these

methods and application may provide methods for self-sustained autonomous machines that

could react and adapt to surrounding environment.

1.1.1 Multi-Functionality

Human functions are not limited to individual components where each functions only reacts

to a single goal. A goal may require multiple human functions to be obtainable. For example,

in case of hurdle race, two human functions of jumping and running are combined to

cross the finishing line which acts as a goal. Here, multiple functions are utilized, where

a professional with only either jumping or running skills are not certain to be capable

of achieving the finishing line perfectly. The above ability here is described as Multi −
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functionality. Through Multi-Functionality, an action can be learned and decided by

multiple knowledge of skill, and applied when confronting a problem that cannot be solving

by a single function. Here, Multi-functionality can be described as a quality of utilizing

multiple functions for performing a single goal.

A device with multi-functionality could render an action that considers multiple charac-

teristics in surrounding environment through application of knowledge of skills from various

environments. A device with conventional control method only utilizes control command

that produces action based on a single function. Method of self-sustained machines could

only utilize a single function to become sustainable and lack of flexibility in confronting

foreign characteristics simultaneously. Multiple control option is needed in self-sustained

machines in order to become autonomous. Multi-Functionality may provide a wide range

of control option against any environment in self-sustainable machines.

1.1.1.1 Multi-Functionality against Non-Linearity

Most control method considers linearity in a device for deciding control option. A device

with non-linearity will not able to utilize a single control method for the entire system due

to parameters that would render the system unstable at a certain state. For example, a

pendulum-cart device has two different states that require different control methods for

operation. Multiple functions are needed to manage these multiple states. Conventional

control method such as Cascade PD Control can only provide two functions for swing and

stabilization control. In case of more functions required, such method could not manage to

perform successfully.

• State with harmonic mo�on 

       (Swing Control) 

• Free Fall State 

• Unstable state 

    (stabiliza�on Control) 

Figure 1.1: States for control of Cart Pendulum System.
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PD Control for 

Cart Posi�on 

PD Control for 

Pendulum Angle 
Plant 

Cart Ref 
Pendulum  

Ref + + 
- - 

Cart State 

Pendulum State 

Figure 1.2: Cascade PD control of a Cart Pendulum System.

Non-linearity also exists in our common devices such as vehicles. Non-linear Control in

machines is complex and hard without an expert human knowledge in the control system.

Aerial hovering vehicles such as helicopters require multiple functions for managing multiple

states using the Thrust and Cyclic.

Figure 1.3: Example of aerial hovering vehicle with non-linearity. (Parrot inc.)

Manipulation of angular orientation with thrust can provide position transition but

requires skills in multi-functionality. Human multi-functionality provides expert control of

machines with non-linearity. Providing multi-functionality in a non-linear control system

could provide a safe and reliable control as good as an expert human.

Human multi-functionality provides expert control of machines with non-linearity due

to utilization of multiple knowledge of skill when managing the machines. Through skills

of angular orientation and hovering thrust manipulation, expert human pilots are able to

perform radical movement of such machines in precision, for example, during position tran-

sition of the vehicles. They may react to surrounding environment while still maintaining

stability of the machine that is easily affected by unstable states. Therefore, providing qual-

ity of multi-functionality as well as human-like functions in a non-linear automatic control

system could provide a safe and reliable control replacing an expert human.
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Figure 1.4: Control operation during position transition of aerial hovering vehicles.

1.1.1.2 Embedding Human Knowledge for Multi-Functionality

Embedding human like functions in a system through application of Intelligent Control

that provides detailed decision during control operation in a certain environment. Vari-

ous method concerning intelligent control system may help provides control alternative to

an expert skills in controlling a device. Intelligent Control System provides autonomous

development of control knowledge together with autonomous development of control strat-

egy on a device. Control Knowledge and Control Strategy are developed depending on a

human control decision together with the environment feedback. The developed Control

Knowledge and Control Strategy may perform as well as an expert human controlling the

machine, reducing the command burden on the human. However, the embedded human

functions in the control knowledge are usually constrained to a single function.

Control Opera�on  

Autonomous reconfigura�on of  

control strategy 

Autonomous development of control 

knowledge 

Informa�on on 

opera�on 

environment 

Intelligent Control System 

Human 

Decision 

Decision 

Control Informa�on 

Figure 1.5: Structure of functions in an Intelligent Control System.

4



Learning is one of the qualities for developing control knowledge in Intelligent Control

System. Control knowledge may be developed through learning method such as trial and

error processes. Machine Learning provides option in generating development of control

knowledge in an intelligent control system. Control knowledge may be developing through

experiences by method in Machine Learning such as Reinforcement Learning. Develop-

ment of control knowledge helps an Intelligent Control System remain self-sustained and

adaptable to changes in surrounding environment. Therefore, new functions may be learned

through the learning process giving quality of multi-functionality to the Intelligent Control

System.

1.1.2 Learning Control

Learning is generally defined as the process of acquiring new knowledge. The process of

acquiring new knowledge needs one to represent the knowledge in some form, as learning is

constructing or modifying representations of what is being experienced [4]. The represen-

tations meaning varies depending on the knowledge it represents which can be in a form of

algorithm, simulation models, control procedures and such.

The term of Machine Learning is derived by the ability of a machine on acquiring

knowledge from experiences or a set of data. Mitchell [1] defines learning as performance

improvements at some tasks through experience. Mitchell defines it precisely as,

A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E.

To have a well-defined learning problem, three features concerning class of tasks, the

measure of performance to be improved, and the source of experience must be defined.

Thus, Machine Learning aims to have a computational mechanism that can learn to improve

knowledge through operational experience.

1.1.2.1 Reinforcement Learning

Reinforcement Learning is known as trial and error style learning process that learns to

map situations and actions by maximizing a numerical reward signals [4]. All Reinforce-

ment Learning agents may have explicit goals. Using its experience, the agents improve

its performance over time. Aspect of their environments can be sense and actions are

5



changeable to influence their environment. Reinforcement Learning acquires action rules

for adapting with the surrounding environment. Reinforcement Learning operates through

interactions and acquires knowledge by categorizing actions using rewards, optimizing the

best possible action required in order to complete a task [3].

Reinforcement Learning normally consist four main sub-elements in its system [4]. A

Policy to determine behaviour, a Reward Function to determine reward, a V alue Function

to emulate knowledge and sometimes a Model Environment to mimics the property of the

environment. The relation between these elements can be seen in Figure 1.6.

Policy Environment

Value Func!on

ac!on, at

state, st

reward, rt

Figure 1.6: Interaction between policy, reward function and value function.

A Policy defines the agent behaviour. Policy perceives state mapping of the agent

environment to actions to be taken when is those states. A Policy might be a simple function

or a lookup table but sometimes involves extensive computation such as search process.

Policy is the core component of a Reinforcement Learning agent since it alone determines

the behaviour of the agent. A Reward Function defines the goal for the agent. Reward

Function maps each perceived state to a single number which known as reward, indicating

the desirability of the state. The purpose of Reinforcement Learning is to maximize these

rewards in an operation. In other words, Reward Function defines the good and bad of an

action for the system to operate. Reward Function is needed to alter the policy. Generally,

actions with low reward will less likely to be selected by the policy repeatedly.

While Reward Function indicates good and bad action immediately, a Value Function

acts as knowledge of the good and bad action experienced in a long term operation. The

Value Function represents the value of states and indicates the desirability of the state

reoccurrences in a long term operation. A state may have low rewards but high in value

since it is regularly followed by other state that can yield high rewards. Therefore, a
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method of converging the value of state-action pairs Q(st, at) into an average is called the

Q-Learning algorithm as

Q(st, at)← Q(st, at) + α(rt+1 + γmax
at+1

Q(st+1, at+1)−Q(st, at)). (1.1)

Reinforcement Learning may provide the ability of learning for a control system, for

example, on a mobile robot. Programming all possible tasks for the robot can be hard

and difficult, simplified by applying a learning ability for the mobile robot. In some cases,

a control system would have problems with wear and tear in the control object hardware

that can cause unprecedented misconfiguration during long term operation. Provided an

ability to learn, the control system may adapt to the condition of its control object on any

uncertainty and unforeseen changes by continuous self-calibration.

Learning control refers to the process on developing control strategy in a particular

control system by trial and error [6]. This is a branch of Reinforcement Learning in control

application where agent learns by analysing good and bad influences those results from its

own action during control operation. Learning control resembles the way that humans and

animals learn to construct their knowledge of movement strategy based on interaction with

the environment.

1.1.2.2 Absence of Multi-Functionality in Reinforcement Learning

Through Learning Control, control knowledge of a control function can be created through

the training by Reinforcement Learning. However, conventional Reinforcement Learning

method does not provide application of more than one control function within a Learning

Control System. Execution of more control function within a Learning Control System

would require application of multiple learning processes within a control system. Meth-

ods concerning application of learning processes in Learning Control vary depending on

application of the control device and the purpose of the system.

Multi-agent Reinforcement Learning is one of the method concerning application of mul-

tiple learning process within a Learning Control System. Application of multiple agents in

Reinforcement Learning utilizes learning process for multiple agents, where these agents in-

teract between each other in developing the desired control knowledge [49]. State transitions

in the case of multi-agent Reinforcement Learning are the results of the joint action that

was performed by the agents within the system. Rewards are evaluated through the joint

action, and the control knowledge is updated through a joint policy. In this case, the goal

7



can be determined through adaptation of the dynamic behaviour between these agents [27].

In case of controls, through multi-agent Reinforcement Learning, dynamic behaviour of the

agents performs an action that requires the agents to adapt through an environment but

the functionality of these agents is limited [28]. Such behaviour, may have exploration task,

where the agents has a function of maintaining a group of moving targets within the sensor

range [50] [51]. In overall, multi-agent Reinforcement Learning only focuses on application

of multiple agents by Reinforcement Learning for utilization of a primary function.

Hierarchical Reinforcement Learning applies a learning process for improving the relia-

bility of Reinforcement Learning application in real-world problem. Conventional Reinforce-

ment learning methods provides solution in providing adaptable control knowledge in form

of value functions. However, the bigger the size of state-space variables, the performance of

Reinforcement Learning reduces and would require a large scale of computational effort for

the update of the control knowledge. Hierarchical Reinforcement Learning accelerates the

reliability of the learning process, where state variables are independent from one another,

ignoring irrelevant aspects when solving a sub-task [42]. Hierarchical Reinforcement Learn-

ing provides a form of decision management in a system, where sub-task will be surveyed by

parent task, providing only relevant action depending on the sub-task performance. In this

case, value function of the parent task is separated into value functions of sub-task, where

learning process occur ignoring irrelevant sub-task during a precise operation. The value

functions of sub-task are then converged into performing a value function of parent task [43].

The main purpose of such method is mainly to increase reliability of the learning process

in a certain function that requires monitoring of multiple states in a more accelerated pace.

Applying Learning Control System with a number of Control Functions could provide a

wider range of control option against any environment. The Control System should be able

to develop and apply the required Control Function according to necessity and could provide

a more versatile control operation. Current Reinforcement Learning does not emphasize

multi-functionality in a control system. Therefore, a method of applying a number of

control knowledge with decision management that can provide cooperation between each

provided control function is deemed necessary for a quality of multi-functionality in control

system.
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1.2 Research Objective & Contents

Through multi-functionality and Learning Control, an idea of a control system that is capa-

ble of utilizing any functions while being self-sustainable is possible. Researches concerning

Multi-functionality in Learning Control are unfolded in this dissertation. This dissertation

provides control design that makes use Learning Control in providing multi-functionality in

a Control System.

1.2.1 Research Objective

The objective of this research is to design and develop methods of applying Learning Con-

trol that provides multiple control function in control command autonomously during a

control operation. Through this research, a control system that is self-sustainable, reliable

and adaptable to its surrounding environment motivates the development of methods in

achieving Multi-functional Learning Control System. Characteristics of such system can be

divided into three qualities.

Firstly, the system is believed to be able to provide safe and reliable control operation

in any environment through development of the control knowledge according to successes

and failure during control attempts. Experience from past control attempts can be referred

to while safer future attempts are being planned. Consecutive attempt continues the devel-

opment of the control knowledge that renders the system upon becoming an expert system

with expert control knowledge.

Secondly, the system is believe to be able to reduce dependency on human intervention

by self-sustaining system development during control operation in a certain environment.

Control Decision can mostly be provided by the system based on the control knowledge

developed, reducing the need of human commands. Thus, reduces the requirement on skills

on the human operators while maintains the expertise in executing the control operation.

Thirdly, the system is believed to be able to provide decision management in a Learning

Control System, that could considers multiple functions during execution. Here, the sys-

tem may provide wide range of control options during control operation while considering

changes in surrounding environment.

The above characteristics provide ideas in designing systems that reflects the motivation

of this research. Design of systems that consists above characteristics is unfolded in this

dissertation in three chapters.
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1.2.2 Research Content

Here, three phases of development were organized to fulfil the objective of applying multi-

functionality in a control system. First, for applying multi-functionality in a non-linear

system, a Substitute Target based Learning Control System with Multiple Control Func-

tion was design. Secondly, for applying human like multi-functionality in a control sys-

tem, Learning Control System with multiple control function by multiple source of con-

trol knowledge was designed. Finally, for applying human like decision management with

multi-functionality, Learning Control System with multiple control function by Compound

Function was designed.

In this chapter, the background of the research is explained, concerning motivation in

application of multi-functionality in controls by Learning Control System. Later, back-

ground research concerning Learning Control System is introduced, which emphasizes lack

of focuses in application of Learning Control concerning multi-functionality. This leads to

the objective of this research which explains the needs and potential of a Learning Control

System that emphasizes on multi-functionality.

In chapter 2, a design of Learning Control System with multiple control function that

applies substitute target for multi-functionality is introduced and applied on and cart-

pendulum control system. The designed System focuses on providing multi-functionality in

the pendulum swing up control that may considers surrounding constraints for achieving

the inverted states. The system applies Learning Control in producing substitute targets

for the cart position transition which swings the pendulum simultaneously. The substitute

targets act as intermediate targets that help the system considers optimal cart movements

to provide swinging motion on the pendulum that propels it towards the inverted states

under the influence of environmental constraints.

In chapter 3, a design of Learning Control System with multiple control functions by

multiple source of control knowledge is introduced and applies on control systems of cart-

pendulum and aerial hovering vehicle. The design focuses in applying multi-functionality

through application of multiple source of control knowledge. It was applied on rapid position

controls of aerial hovering vehicle that was simulated through cart-pendulum controls. The

design was improved for control of aerial hovering vehicle among constraints that was applied

on simulation of aerial hovering vehicle. The designed utilizes multiple sources of control

knowledge for providing controls of angular orientations on the aerial hovering vehicle.

In chapter 4, a design of Learning Control System with Multiple Control function by
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Compound Function is introduced and applies on control system of a mobile robot. The

design focuses in applying multi-functionality through application of multiple source of

control knowledge that merges through utilization of Compound Function. It was applied

for position transition and obstacle avoidance control of the mobile robot that was simulated

and later applied on a real world operation. The design utilizes Compound Function for

creation of Compound Knowledge that consists of compounded control information from

the sources.

Finally, the designs in this research are concluded together with suggestion of further

research.
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Chapter 2

Multiple-Functions Learning
Control by Substitute Target

Designing Learning Control with a quality of multi-functionality requires recognition of

continuing states during controls operation. Like human recognizing positions for the next

step during walking, the positions of those steps reacts as substitute targets where the main

target is the desired location of the human. The substitute targets provide options of ma-

noeuvre, where certain action, in case of walking, can be operated flexibly along constraints

during the manoeuver. Therefore, one of the designs concerning Learning Control with

multiple functions involves application of substitute target in the Learning Control System.

2.1 Substitute Target

Conventional Reinforcement Learning involves application of state-action pair for providing

control knowledge of a certain control operation. Optimum action is learned based on the

states of the control object through the success and failure attempted during the control

operation. Comparing such application to human, human decide a target or goal before

applying an action. For example, in case of walking, a target for steps is determined before

the action of walking is applied. A wrong position would render the walking operation

colliding with constraints, or heading in the wrong direction. Targets make configuration

easier, since target is a part of state elements, such as steps to location of human. Most

controls of actuators apply targets as reference for feedback during control operation as

well. Multiple target states provide multiple choices of actions for achieving goal and such

supporting target states is defined here by substitute targets.

Substitute target is necessary for flexibility in providing system respond to the change of
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situation in environment. Controls by substitute target provide flexible action in which im-

portant for having an adaptable Learning Control System for such application on machines

with non-linearity. In this case, substitute target provides enhancements of action through

continuity in applying those targets. For example as shown in figure 2.1, generating an ini-

tial action a1 and continues with action a2 during a control operation provides continuous

action, or an action with increasing magnitude. Such function may provide precision of a

higher magnitude action and reduces the risk of rampaging actions.

Ini al 

State

Target 

State
Required Ac onPossible Ac on, a

(a) Action with higher magnitude is required under limited possible action.

Ini�al 

State

Target 

State
Possible Ac�on, a1

Subs�tute 

Target State Possible Ac�on, a2

(b) Substitute targets provide enhancement of actions.

Figure 2.1: Substitute target provides continuity of action by providing an intermediate
state.

Substitute targets may also provides rearrangements of control manoeuvre for adapting

with constrained environment. During operation in a constrained environment, interference

by constraint state would jeopardize the control operation, where rearrangement of controls

manoeuvre are necessary. Figure 2.2 referred to a case, where substitute target provides

rearrangement of actions, creating more substitute targets that provides a safer manoeuver

for the control device. When one of the substitute targets are in a constraint state, a

new substitute targets can be arrange to provide alternative for the required action. The

arrangement of those substitute targets may vary depending on possible combinations that
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Target 
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state

Possible Ac�on, a1 Possible Ac�on, a2

(a) Constraint states interfere with continuity of action.

Subs tute 

Target 

State

1

Subs tute 

Target 

State

2

Ini al 

State

Target 

State
ac on, a1

ac on, a2 ac on, a3

Non-constraint 

state 

Non-constraint 

state 

(b) Rearrangement of substitutes target helps avoid the constraint states.

Figure 2.2: Substitute target can be rearranged to satisfy the need for successful control
manoeuvre along constraint states.

provide the required action for fulfilling the goal.

Utilizing substitute target provides flexibility in producing actions in control operations

through Learning Control. Safer and more reliable control operation is possible through

the application of substitute target in a Learning Control System.

2.2 Utilization of Substitute Target

Utilization of substitute targets may provides a safe and reliable control option for machines

with non-linearity. Here, a control system that utilizes substitute target was designed

to provide multi-functionality on machines with non-linearity for safe and reliable control

operation. Substitute target was applied on a Learning Control System for cart-pendulum

device, shown in figure 2.3. Application of such device requires three basic system functions

in the designed system; the control function, learning function and recognition function.

In the Learning Control System designed, control function configures the control output

for applying forces to the cart based on the targets instructed either from a policy of rein-

forcement learning or PD control. Learning function updates the knowledge of substitute
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Selector
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Knowledge

State Cluster Number
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State

State

Figure 2.3: System structure for substitute target application.

target based on the reaction of the pendulum when applying the force to the cart. The

recognition function determines the necessary control action depending on the states of the

pendulum and the cart, in order to instruct the next required process. Interaction between

each functions provide application of substitute target in controlling the cart for applying

swing motion on the pendulum towards the desired goal state.

2.2.1 Control Function for Substitute Target System

Control function provides control options for the system to apply on the cart. The controls

within the function consists two methods; Swing Control and Stabilization Control. Swing

control generates forces for increasing the pendulum swing angle when the pendulum is in

downward state. The stabilization control generates forces for decreasing the pendulum

swing angle when the pendulum is near to inverted state.

During swing control, control output u provide forces to move the cart for increasing the

swing angle of the pendulum. The cart moves to either right or left based on the pendulum

angle θ and pendulum angular velocity ω for intensifying the pendulum swing, increasing

the pendulum angle θ. The initial state of the pendulum was assigned on the downward

position where the pendulum angle θ = π[rad] as shown in figure 2.4a. The pendulum angle

θ will increase as the cart moves consecutively until approaching the inverted state. The

Learning Control for substitute target was applied on the pendulum swing control. The

swing up control arranges targets for cart movement and apply force u according to those

targets.
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u

θ

ωθ=π[rad]
(a) Control output u increases the pendu-
lum angle θ during swing control.

u

θ

θ=0[rad]ω

(b) Control output u decreases the pendu-
lum angle θ during inverted state.

Figure 2.4: Swing and stabilization control of the cart-pendulum system.

The stabilization control occurs when the pendulum approaches the inverted state. Dur-

ing stabilization control, the pendulum swing will be attenuated towards the inverted state

as shown in Figure 2.4b. The cart will move to either left of right reducing the pendulum

angle θ to θ = π[rad]. Here, the occurrence of pendulum stabilization control and inverted

state will be the goal for the learning control. The stabilization control was conducted and

designed based on PD control.

Applying Learning Control by substitute target into a pendulum control system requires

three major sections for controlling the cart movement in the Control Function. These

sections are (i) swing up control section, (ii) inverted control section and (iii) initialization

control section, that provides control command u for the cart.

The swing up control section provides control command for the pendulum during the

pendulum downwards position. The control command is based on targets on the cart

position axis, x. Substitute target displacement ∆x is selected from the substitute target

knowledge, Q(s,∆x) which defined by value function Q for substitute target displacement

∆x based on state s. Substitute target xT was arranged during the pendulum downwards

position based on the substitute target displacement ∆x provided by the substitute target

knowledge, Q(s,∆x). Substitute target xT was arranged based on the selected substitute

target displacement ∆x to the current cart position xnow as
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xT = xnow +∆x. (2.1)

The inverted control section applies control using substitute target xT arranged as in

equation 2.1. This control section provides control when the pendulum approaches the

inverted state as shown in Figure 2.4b based on the movement shown in Figure 2.5. However,

substitute target displacement ∆x was arranged through PD control after the pendulum

reached the inverted state.

xT 0 xT 1xT 2

Δx1

Δx2

Substitute Target 
Position

Initial Position Final Target 
Position

Figure 2.5: The swing control of the pendulum based on substitute target.

The initialization section provides control commands for moving the cart towards the

initial position. This occurs after the pendulum achieved the inverted state or after any

constraints encounter. This section controls using substitute target xT , arranged based on

a substitute target displacement ∆x generated through PD control similar to the inverted

control section.

2.2.2 Recognition Function for Substitute Target System

The recognition function assigns states of the control device into sets of state clusters.

Certain range in state parameters is divided and separated into clusters for easy recognition.

Here, pendulum cart position x, pendulum angle θ, and pendulum angular velocity ω were
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Inverted state

Near Inverted State

Intense swing speed

Maximum Swing Angle

Downward state

ω

θ

Intense swing speed

Maximum Swing Angle

Pendulum movement during swing up control

Figure 2.6: State clusters created from pendulum angle and pendulum angular velocity.

assigned in cluster of states as shown in figure 2.6. The recognition function applies duties

to other functions based on these state clusters. It provides commands for control function

for selecting suitable control sections for generating outputs. The state cluster provides

determination of rewards based on the current state of the device through the Learning

Function. Information on constraints provided by the constraints knowledge was included

in these clusters for recognition of constraints by the system.

For both controls, restrictions for controlling the pendulum and the cart exist in form of

constraints. The control constraints were divided into two; the cart movement constraints

and the pendulum rotation constraints.

The cart movement constraints are restrictions to the horizontal movements of the cart

as shown in Figure 2.7a. The cart movements are limited due to these constraints. The

pendulum rotation constraints are restrictions to the rotary movements of the pendulum

as shown in Figure 2.7b. The pendulum rotation is restricted to a certain angle at a

certain cart position due to these constraints. Due to the pendulum rotary movement being

independence, the system must configure the pendulum rotary movement against these

constraints using the cart movement indirectly.
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Constraint Constraint

(a) Constraints restricting the movement
of the cart.

Constraint
Constraint

(b) Constraints restricting the rotary move-
ment of the pendulum.

Figure 2.7: Constraints of the cart and the pendulum.

2.2.3 Learning Function for Substitute Target System

The Learning Function provides updates to the substitute target knowledge Q(s,∆x) based

on the state clusters assigned in recognition function. The update occurs during the down-

wards state of the pendulum, before the control function selects the substitute target dis-

placement ∆x for the cart movement controls. Reward defines the goal in reinforcement

learning based on state clusters that determines reward r at a precise moment based on the

state clusters shown in table 2.5.

Table 2.1: Reward settings for assigned state clusters.

State Cluster Reward, r

Near Control Objective State +r

Over speed and Exceed Control Objective State −r
Increasing Pendulum Swing Angle +r(∆θ/π)

Decreasing Pendulum Swing Angle 0

Constraints Encounter −r
*∆θ is the pendulum angular displacement from the initial position.

In order to provide a substitute target based learning agent into a control system, the

Q-Learning algorithm introduced in 1.1 was modified for applying a value function that is

based on these substitute targets. The target state is the expecting state st+1 as reaction

to action at. The value function does not defines target state st+1 as action at; instead the

target state displacement ∆st+1 from the current state st will defines the action required to

achieve the target state st+1. Here, the distance towards the future state will replaces the

action part of the conventional Q-learning into equation 1.1.
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Policy
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ac on, atstate, st

(a) Conventional reinforcement learning applies an action from a state
action value function.

Policy

State-Target Value Func!on

target, st+1state, st
Controller

ac!on, at

(b) Policy selects a target from a state-target value function that determines
action.

Figure 2.8: State and action relation for substitute target based Q-learning.

• Knowledge update 

• Execu!on of cart movement control 

command.     (Swing Control) 

• Reward Se"ngs

• Goal reward Se"ngs

• Execu!on of cart movement control command.

(Stabiliza!on Control) 

Figure 2.9: Control processes assigned according to pendulum angle.

Q(st,∆st+1)← (1− α)Q(st,∆st+1) + α[r + γ max
∆st+2

Q(st+1,∆st+2)], (2.2)

Figure 2.8 explains the differences between the conventional Q-learning introduce in

chapter 1. The relation of the state and action in conventional Q-learning utilizes state-

action value function. Here, the action at is defined by a controller based on target state

displacement ∆st+1 decided by the policy from state-target value function.
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2.3 Experiments & Results

The effectiveness of the Learning Control System that utilizes substitute targets was con-

firmed through a series of simulations and a real machine test. The simulations were con-

ducted to confirm the flexibility of the system to multi-functionality in conducted the swing

up-control while avoiding the surrounding obstacles. The simulations started with confir-

mation of the effectiveness of the learning process, continues with confirmation of adapt-

ability with direct constraints and indirect constraints. Results provided through these

simulations should confirm the effectiveness of the Learning Control System in applying

multi-functionality in such cases.

2.3.1 Experiments Settings

Due to application on the cart-pendulum device, a study on the parameters of the control

device was done prior to constructing the simulations. The details according parameters

involved in cart-pendulum device were analysed and prepared according to the diagram

shown in figure 2.10.

2.3.1.1 Inverted Pendulum Model

θ

l

u

x

Figure 2.10: Diagram of the cart-pendulum parameters.

The mathematical model of the cart-pendulum device is derived to be applied in the

simulation. Applying Newton‘s Second Law at the centre of gravity of the pendulum, the

horizontal, X and vertical, Y components, are represented by
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Table 2.2: Parameters description for cart-pendulum device.

Cart mass M [kg]

Cart position x [m]

Horizontal force on cart u [kgms−2]

Pendulum mass m [kg]

Pendulum length l [m]

Center of gravity to pivot length L [m]

Gravitational acceleration g [ms−2]

Angular displacement θ [rad]

Pendulum friction coefficient c

Cart friction coefficient d

Moment of inertia of the pendulum I [kgm2]

Y −mg = m
d2

dt2
(L cos θ) (2.3)

X = m
d2

dt2
(x+ L sin θ) (2.4)

Both equations provides the torque equation,

Iθ̈ + cθ̇ = Y L sin θ −XL cos θ (2.5)

Applying Newton‘s Second Law to the above equation yields

u−X = Mẍ+ dẋ (2.6)

By substituting equations 2.3 and 2.4 into equations 2.5 and 2.6, the non-linear mathe-

matical model of the cart-pendulum system can be derived as

θ̈ =
1

I + L2m
[Lm(g sin θ − ẍ cos θ)− cθ̇] (2.7)

ẍ =
1

M +m
[u− Lm(θ̈ cos θ − θ̇2 sin θ)− dẋ] (2.8)

The pendulum state of inverted position corresponds to an unstable equilibrium point

(θ, θ̇) = (0, 0). In the neighbourhood of this equilibrium point, both θ and θ̇ are very small.

Therefore, small angles of θ and θ̇: sin(θ) ≈ θ, cos(θ) ≈ 1 and (θ̇)2θ ≈ 0. Thus, equation

2.7 and 2.8 can be rewritten as
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θ̈ =
1

I + L2m
[Lm(gθ − ẍ)− cθ̇] (2.9)

ẍ =
1

M +m
[u− Lmθ̈ − dẋ] (2.10)

For the above two equations to be in a valid state matrix, ẍ and θ̈ must be functions

of lower order terms. ẍ and θ̈ is substituted in equation 2.9 and 2.10, the state model is

obtained as

ṡ =


0 1 0 0

0 −kb −(Lm)2gb
I+L2m

Lmcb
I+L2m

0 0 0 1

0 Lmka
M+m Lmga −ca

 s+


0
b
0

−Lma
M+m

u (2.11)

y =

[
1 0 0 0
0 0 1 0

]
s (2.12)

where

a =
M +m

I(M +m) + L2mM
(2.13)

b =
I + L2m

I(M +m) + L2mM
(2.14)

Thus, the state and output vectors is represented by

s =
[
x ẋ θ θ̇

]T
(2.15)

y =
[
x θ

]T
(2.16)

2.3.1.2 Parameters for Control System Implementation

Parameters of the control object were selected based on a real cart pendulum device as

shown in figure 2.11 prior to the simulation. Since the cart movement is limited to a certain

range, the Learning Control System was applied on simulations before being handled by

the real device. The simulations are programmed and arranged using MATLAB, based on

the parameters of the real operating devices as shown in table 2.3.
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Table 2.3: Parameters of the cart-pendulum device.

Cart Position, x x [m]
Cart Velocity, ẋ v [m]
Pendulum Angle, θ θ [rad]

Pendulum Angular Velocity, θ̇ ω [rad/sec]
Cart mass, M 3.117 [kg]
Pendulum Length, l 0.4 [m]
Pendulum Mass, m 0.08 [kg]

Pendulum Inertia, I

 0.0012 0 0
0 1.6× 10−7 0
0 0 0.0012

[kgm2]

0.9[m]

0.4[m
]

Figure 2.11: Cart-pendulum device (Japan E.M. Co., Ltd.) on which the simulations were
based.

The simulations were conducted in three subjects according to the purposes; to confirm

the effectiveness of learning using substitute target, to confirm the effectiveness of learning

among direct control constraints and the effectiveness of learning among direct and indirect

control constraints. Simulation for each subjects apply the parameters shown in table 2.4

for Q-learning which were selected prior to the experiments.

Table 2.4: Parameters for Q-learning of Learning Control System by substitute targets.

Parameters Range Intervals

State
Cart Position, x[m] -1.0 ∼ 1.0 0.2

Pendulum Angular Velocity, ω [rad/s] -14 ∼ 14 2

Substitute Target
Displacement

Cart Movement Displacement, ∆x [m] -0.2 ∼ 0.2 0.05

Learning rate, α 0.5 Discount rate, γ 0.3

24



The initial and target states of the control device that was conducted in the simulation

are as shown in table 2.5.2. During the initial state, the pendulum angle θ = π [rad], the

cart position x are located in the middle of the track, x = 0 [m], while the cart velocity

v and the pendulum angular velocity ω are zero. The inverted state are defined as target

state, where the pendulum angle θ is 0 [rad]. The cart position of the assigned target state

is the final substitute target xT selected during the swing-up process.

Table 2.5: Initial state and target state of the simulations for Learning Control System by
substitute target.

Parameters Initial State Target State

Cart Position, x[m] 0 xT
Pendulum Angle, θ[rad] π 0

Cart Velocity, v[m/s] 0 0

Pendulum Angular Velocity, ω[rad/sec] 0 0

2.3.1.3 Simulation on the Usage of Substitute Target Knowledge

In case of the subject of confirming the effectiveness of learning using substitute target

knowledge, simulation was arranged to confirm the validity of the Learning Control System

using constructed substitute target knowledge and a random substitute target knowledge.

x=1[m]x=-1[m]

x=0[m]
Left Limit Right Limit

Figure 2.12: Movement range of the cart to satisfy the knowledge limit.

The constructed substitute target knowledge, as shown as figure 2.17b, was structured

based on the basics of pendulum swing intensification control without arrangement of any

constraints. The random substitute target knowledge as shown in figure 2.13a was struc-

tured as the value function by random number.

For this subject, the simulation was conducted in episodes, the simulation stops after
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(b) Constructed control knowledge.

Figure 2.13: The substitute target knowledge used as initial state.

each trial which counts as one episode. The rules assigned for the simulation were specified

into:

• Simulation completes after 2300 episodes.

• Policy selects substitute target by roulette selection for 2000 episodes.

• Policy selects substitute target by greedy selection for 300 episodes starting after

2000th episode.

• Stop the simulation for each episodes.

• If the pendulum is in the inverted position, episodes end.

• If the cart position is out of learning range, episode ends

The roulette selection is a selection policy assigned to help increase exploration rate of

a value function by turning the value of its selection options into selection probability and

selected based on a random number. The greedy selection is a selection policy that selects

an optimum option from the value function based on the highest value.

2.3.1.4 Simulations on Learning Control through Direct Control Constraints

These simulations were arranged for confirming the capability for learning control through

direct control constraints, which is the constraints within cart movement, x. For this

subject, three simulations were performed with three different sets of constraints as shown

in figure 2.14. The constraints of the cart position x as shown in Figure 2.14 are as follows:
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(a) Case 1 (P8M8), −0.8 < x < 0.8: Constraints on both left and right sides

(b) Case 2 (P4M4), −0.4 < x < 0.4: Larger constraints on both left and right sides

(c) Case 3 (P2M6), −0.6 < x < 0.2: Constrains on the right side is larger than that on

the left side.

Constructed substitute target knowledge as shown in figure 2.17b were used as the

initial knowledge fore these simulations in hope of a shorter simulation time. In order of

(a) Constraints for case 1 (P8M8)

(b) Constraints for case 2 (P4M4)

(c) Constraints for case 3 (P2M6)

x=-0.6[m]

x=0.4[m]

x=0.2[m]

x=-0.4[m]

x=0.8[m]x=-0.8[m]

x=0[m]

x=0[m]

x=0[m]

Left Constraint

Left Constraint

Left Constraint

Right Constraint

Right Constraint

Right Constraint

Figure 2.14: Constraints assigned among the cart position for simulations.
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real control object application, the required behaviours for the system control object were

specified before the simulation was done:

• Stop the simulation after 3000 seconds.

• If the pendulum is in the downward position, initialize after 10 times knowledge

renewal.

• If the pendulum is in the inverted position, initialize after 3 seconds.

• If the cart position is between constraints, initialize after encountering the constraints.

• Attenuate the pendulum swing during initialization.

2.3.1.5 Simulations on Learning Control through Direct and Indirect Control
Constraints

These simulations was arranged for confirming the capability of the proposed system for

learning through indirect control constraints, which is the constraints in the pendulum

angle θ [rad]. For this subject, three simulations were conducted consisting both direct and

indirect control constraints. These simulations were categorized into 3 cases which each

have difference sets of constraints.

(a) Case 1: Cart movement constraints in left and right side

(b) Case 2: Cart movement constraints in left and right side, and pendulum rotation

constraints at top left and top right side.

(c) Case 3: Cart movement constraints in left and right side, and pendulum rotation

constraints at the top middle.

During simulation, substitute target displacement were selected from the knowledge

based on figure 2.17b by roulette selection for 300 trials, and later continues with greedy

selection.

The desired system behaviour during simulation is described below.

• Stop the simulation after 5000 seconds.

• If pendulum is in downwards position, initialize after 25 times knowledge renewal.
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(a) Constraints for case 1 

(b) Constraints for case 2

x2=0.5[m]x2=-0.5[m]

x1=0.8[m]x1=-0.8[m]

x=0[m]

x=0[m]

Left Constraint

Left Constraint

Right Constraint

Right Constraint

y2=0.3[m] y2=0.3[m]

(c) Constraints for case 3

x2=0.3[m]x2=-0.3[m]

y3=0.3[m] y3=0.3[m]

x1= -1[m]

x1= -1[m]

x1= 1[m]

x1= 1[m]

Middle Constraint

Figure 2.15: Constraints arranged around the cart position and the pendulum angle.

• If the pendulum is in inverted position, initialize after 3 second.

• If cart position is between constraints, initialize after constraints encounter.

• If pendulum tip point is inside constraints area, initialize after constraints encounter.

• Attenuate the pendulum swing during initialization.
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2.3.2 Experiments Results

Results for application of substitute target on Learning Control System emphasize the

effectiveness of the system into providing multi-functionality in a cart-pendulum system.

The Simulations provide results concerning the effectiveness of the system in developing

substitute target knowledge. Results from the simulations were then applied on the real

cart-pendulum device to confirm the effectiveness of the system in real world application.

2.3.2.1 Experiments Results by Simulations

Results from simulations are separated in three parts according to three subjects arranged

in the settings of the simulation. Firstly, results concerning the effectiveness in developing

the substitute target knowledge were analysed. Then, results concerning development of

substitute target knowledge by controls among direct constraints were analysed. Finally,

results concerning development of substitute target knowledge by controls among direct and

indirect constraints were analysed,
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Figure 2.16: The average control success rate of the swing control for the first subject of
the simulation.
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2.3.2.1.1 Effectiveness of the Developing Substitute Target Knowledge.

Figure 2.16 provides information about the development of the substitute target knowl-

edge according to episodes during the simulation. Here, the result shows that the rate of

successful episodes increases towards maximum at the end of the simulation. Simulation

using constructed knowledge started at a higher successful rate compared to simulation

using random knowledge. The developed knowledge is shown in figure 2.17, describing that

updates were applied on the knowledge, changing the structure of the value functions during

the simulation.
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(a) Updated constructed knowledge.
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(b) Updated random knowledge.

Figure 2.17: The updated knowledge for both constructed knowledge and random knowledge
after the simulation for Learning Control System by substitute targets.

2.3.2.1.2 Development of Substitute Target Knowledge from Control among

Direct Constraints

Figure 2.18 provides information about the development of the substitute target knowl-

edge according to episodes during the simulation with assigned direct constraints along the

cart movement path. Here, the result shows that the rate of successful episodes increases

towards maximum at the end of the simulation for all three cases of direct constraints.

The cart movement manoeuvre that was obtained in the substitute target knowledge

is shown in 2.19, showing that the cart-pendulum system was able to successfully avoided

the assigned constraint states. Each movement successfully swung the pendulum towards

the inverted state using the path available for moving the cart. Here, results shows that

the substitute target knowledge is able to constructed safe and reliable control knowledge
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Figure 2.18: The average success rate for pendulum swing control among direct control
constraints.
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(a) Cart movements during P8M8 simulation.

Swing Up Control Inverted Control

Cart Position
Target Position

Ca
rt

 P
os

iti
on

, x
[m

]

Time, t[sec]

Constraints

Constraints

(b) Cart movements during P4M4 simulation.
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(c) Cart movements during P2M6 simulation.

Figure 2.19: Cart movement during the successful swing control for simulations for the
three assigned cases of direct control constraints.
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under influence of direct constraints. The control knowledge that applies these manoeuvres

is shown 2.20.

The developed knowledge is shown in figure 2.20 describing that updates were applied

on the knowledge when compared with the initial knowledge, changing the structure of

the value functions during the simulation. Different structures were obtained due to the

influence of constraints on the development of substitute target knowledge.

Substitute Target Displacement, Δx[m]

(a) Initial Knowledge.

Substitute Target Displacement, Δx[m]

(b) Final knowledge after P4M4 simulation.

Substitute Target Displacement, Δx[m]

(c) Final knowledge after P2M6 simulation.

Substitute Target Displacement, Δx[m]

(d) Final knowledge after P8M8 simulation.

Figure 2.20: Comparison between initial substitute target knowledge and final substitute
knowledge for each simulation concerning the direct control constraints.
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Figure 2.21: The average success rate from every 10 trials for Pendulum Swing control
among direct and indirect control constraints.

2.3.2.1.3 Development of Substitute Target Knowledge from Control among

Direct & Indirect Constraints.

Figure 2.21 provides information about the development of the substitute target knowl-

edge according to episodes during the simulation with assigned direct constraints and indi-

rect constraints along the cart and pendulum movement path. Here, the result shows that

the rate of successful episodes increases towards maximum at the end of the simulation for

all three cases of direct and indirect constraints.

The developed knowledge is shown in figure 2.23 describing that updates were applied

on the knowledge when compared with the initial knowledge, changing the structure of

the value functions during the simulation according to the assigned constraints. Different

structures were obtained due to the influence of direct and indirect constraints on the

development of substitute target knowledge.

The constraints that was detected by the Learning Control System by substitute target

during this simulation is shown in 2.23 showing that the cart-pendulum system was able to

successfully avoided the assigned constraint states. Results show that the constraints state

can be detected and avoided by the Learning Control system by substitute targets. Control
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Substitute Target Displacement, Δx[m]

(a) Initial Knowledge.

Substitute Target Displacement,Δx[m]  

(b) Final knowledge after case 1 simulation.

 

 

Substitute Target Displacement,Δx[m]  

(c) Final knowledge after case 2 simulation.

Substitute Target Displacement,Δx[m]  

(d) Final knowledge after case 3 simulation.

Figure 2.22: Comparison between initial substitute target knowledge and final substitute
knowledge concerning direct and indirect control constraints.

manoeuvre is configured by the substitute target knowledge that had experienced collision

with the assigned constraints. The Learning Control System by substitute target are able

to provide multi-functionality by being able to swing the pendulum towards inverted state

while avoiding any assigned constraints. Here, results shows that the substitute target

knowledge is able to constructed safe and reliable control knowledge under influence of

direct and indirect constraints.
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(a) Specific area detected during simulation for case 1.
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(b) Specific area detected during simulation for case 2.

Constraint Area

Success Area

(c) Specific area detected during simulation for case 3.

Figure 2.23: Success area and constraint area detected during the simulations with direct
and indirect constraints.

2.3.2.2 Experiments Results by Real Machine Operation

After confirming the effectiveness of the Learning Control System by substitute targets

in the simulation, real machine test was conducted using results obtained in one of the

simulation. Here, simulation of case P4M4 in simulation of subject 2 is applied due to the

parameters being utilizable on the real cart-pendulum device. Comparison of the results

obtained through simulation and real machine can be seen in figure 2.24. The control

manoeuvre differs due to slight differences of the real device properties compared to the

specification applied on the simulation. However, the real device was able to apply the

substitute target knowledge in conducting a new safe control manoeuvre. Here, results

show that the Learning Control System by substitute target is applicable in real operation.

36



Swing Up Control Inverted Control

Cart Position
Target Position

Ca
rt

 P
os

iti
on

, x
[m

]

Time, t[sec]

Constraints

Constraints

(a) Cart movements during P4M4 simulation
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Figure 2.24: Cart movement during the successful swing control for simulation P4M4 and
result from application on a real machine.

2.4 Summary

A learning control system that learns substitute target knowledge is designed to provide

multi-functionality for a safe and reliable control in achieving the final target while consid-

ering constraints. Application of substitute target may provide utilization of linear control

knowledge in a complex non-linear control system. Application of substitute target was

utilized on cart-pendulum control where constraints were assigned in the cart and pendu-

lum movement path. Simulations was arranged to confirm the effectiveness of the system

in applying multi-functionality by providing successful swing controls among assigned con-

straints.

The Learning Control System was able to learn to consider environment constraints while

learning to control the control device. During simulation, constraints were detected by the

Learning Control System and the system learns to construct a safer control manoeuvre

considering the assigned constraints. The substitute target knowledge learned in one of the

simulation is applied on real control operation and results shows that the Learning Control

System by substitute target are applicable on real world operation.

Based on the results, safe and reliable controls were obtained through utilization of

substitute target in a Learning Control System. Applying substitute targets in a Learning

Control system could provide multi-functionality, resulting in safer and reliable controls for

non-linear devices.
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Chapter 3

Multiple-Functions Learning
Control by Multiple Control
Knowledge

Design of Learning Control with quality of multi-functionality produces functions with each

function are based on specific control knowledge. Utilizing multiple control knowledge in

a Learning Control System may provide flexibility in producing control commands, where

relevant control function can be chose according to the requirement of the control environ-

ment. Design of a Learning Control System that applies multiple control knowledge may

provide human like multi-functionality where human dependency can be reduced, resulting

in semi-autonomous control device.

3.1 Multiple Control Knowledge in Learning Control

Human command plays major role in providing instruction for a device through series of

control systems. Such command is based on human decisions in monitoring the surrounding

environment, choosing an optimum option in providing reliable manoeuver to the control

device. Complex control system such as devices with non-linearity produces more strain in

the human decisions, requiring expert skills in producing command for a safe and reliable

control. Applying a Learning Control System with multiple control knowledge can help

decide a control decision to support an operation and can reduce the dependency on human

command through application of multiple source of control knowledge in the system. Mul-

tiple source of control knowledge can be updated using Learning Control, providing expert

control capable of replacing human commands.
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Multiple source of control knowledge provides multiple options of functions in a control

System that has potential to produce human like multi-functionality in a control operation.

This is due to autonomous development of multiple control knowledge provided by the

Learning Control System as shown in figure 3.1. Using multiple source of control knowledge,

control strategy that applies both control knowledge can be produced, resulting in expert

control of the control device. Here, the Learning Control System with multiple control

knowledge can provide most of the control decision, reducing the control burden on human

command.

Control Opera!on 

autonomous reconfigura!on of control strategy 

Autonomous development of control knowledge 

Informa!on 

on 

opera!on 

environment 

Intelligent Control System 

Human 

Decision 

Decision 

Control Informa!on 

Control 

Informa!on 

Knowledge of Func!on A Knowledge of Func!on B 

Figure 3.1: Structure of Learning Control System by multiple control knowledge.

Learning Control System by multiple control knowledge may reduce burden for con-

trols on control devices with non-linearity. Control device as aerial hovering vehicle shown

in figure 1.3 requires the operator to control the movement of the control device while

maintain the stability of the device on air. Expert human operator is capable in ma-

nipulating those control parameters for rapid position transition of such device. Human

multi-functionality provides commands on the angular orientation of the device using cyclic

with assistant of thrust command that is also provided by the human. Based on the human

multi-functionality, a Learning Control System with multiple source of Control Knowledge

may provide Rapid Position Control by multiple Acceleration Control Functions in aerial

hovering vehicle. Here, a Learning Control System by multiple source knowledge is design

to provide rapid position control and rapid position control among obstacles for aerial hov-

ering vehicle. The system is separated into two sections where the first section introduces

the design of Learning Control System by multiple control knowledge for rapid position con-
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trol, while the second section introduces the design of Learning Control System by multiple

control knowledge for rapid position and obstacle control.

3.2 Application of Multiple Control Knowledge in Learning
Control: Rapid Position Control

The first section of the Learning Control System by multiple control knowledge was designed

for rapid position control of aerial hovering vehicles. Aerial hovering vehicles consist of non-

linear parameters that require expertise in providing a quick reliable control. Here, human

expertise in operating such device is generated through application of Learning Control

System by multiple control knowledge.

3.2.1 Introduction to Rapid Position Control

Controls for aerial hovering vehicles involve manipulation of cyclic and thrust. Expert

operator is able to operate the cyclic and thrust in providing safe position control for

aerial hovering vehicle as shown in figure 1.3 through non-linear parameters within the

device. Expert operator could even perform rapid position transition using cyclic and

thrust along obstacle due to skills and experience in operating such device. Such skill is

difficult to be operated by an autonomous control system. Here, Learning Control System

by multiple control knowledge is designed to provide expertise in rapid position control for

aerial hovering vehicles.

The system was developed for learning the best coordination of target angle θT that can

perform a rapid position transition. Target angle θT provides changing in the direction of

the thrust to create horizontal force that can create a horizontal movement while airborne.

Figure 3.2 shows the changing in direction of the thrust according to target angle θT making

the horizontal movement possible.

Configuration of the target angle θT requires increasing in thrust for providing lift force

to preserve the leaning angle against gravity. When the preservation period of the leaning

angle increased, the horizontal velocity of the aerial hovering vehicle will be increased due

to changing of intensity in the horizontal force. Therefore, certain strategy concerning

configuration of the target angle θT and its preservation period is needed for providing

acceleration and deceleration for a precise position control.

Figure 3.3 shows the manipulation angular orientation of the aerial hovering vehicle

during a position transition. A target angle θ1T is configured to provide a horizontal force
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Figure 3.2: Configuration of aerial hovering vehicle by angular orientation.

for acceleration while another θ2T is configured to provide a horizontal force for deceleration

before returning to its initial angle θ0. Such manipulation of target angles provides position

transition between two point of x. Manipulation of target angles and thrust provide quick

position transition which defined here as rapid position control.

Figure 3.3: Position control of an aerial hovering vehicle using target angle θT as reference.
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3.2.2 Manipulation of Angular Orientation for Rapid Position Control

Dynamics of the aerial hovering vehicles provides information concerning parameters that

involves in creating rapid position control on such device. Using this information, controls of

aerial hovering vehicles was emulated on cart-pendulum system, where a Learning Control

System by multiple control knowledge was designed.

3.2.2.1 Emulating Angular Orientation Control of an Aerial Hovering Vehicle
on Pendulum System

Controls of the aerial hovering vehicles are based on the non-linear properties of the device.

Such properties can be defined in other control devices such as the cart-pendulum device.

The dynamics of the aerial hovering vehicles concerning manipulation of angular orientation

and thrust was emulated in the inverted control of cart-pendulum system as shown in figure

3.4. Manipulation of angular orientation is manipulated through manipulation of leaning

angle of the pendulum while the horizontal force from the thrust was emulated through the

cart movement. Through manipulation of pendulum’s leaning angle and cart’s movement,

a movement similar to aerial hovering vehicle can be obtain where manipulation of the

learning angle provides horizontal force, performed by cart movement, for applying position

transition to the cart. Figure 3.5 shows the position control of cart-pendulum system which

is emulated from the position control of the aerial hovering vehicles shown in figure 3.3.

Figure 3.4: The stabilization control of inverted pendulum.
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Figure 3.5: The position control of inverted pendulum using target angle θT as reference.

The above control of cart-pendulum was designed through Learning Control System

by multiple control knowledge as shown in figure 3.6. Two control knowledge concerning

manipulation of the leaning angle of the pendulum was embedded in the system, where the

first control knowledge is about preservation time of learning angle for acceleration while

the second control knowledge is the knowledge of preservation time of leaning angle for

deceleration. Target learning angle was determined depending on the target cart location,

therefore, combination of optimum leaning angle and preservation time of the angle has to

be learned by the system to provide an optimum rapid position control of the cart-pendulum

device. Here, the Learning Control System by multiple control knowledge is able to learn

to provide expert control of the device, which emphasizes the possibility of applying such

system on aerial hovering vehicle.
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Figure 3.6: Structure of system with multiple control knowledge for rapid position control.
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3.2.2.2 PD Control of Angular Orientation on a Cart Pendulum System

In order to apply the Learning Control System by multiple control knowledge on the cart-

pendulum device, a series of test is done to confirm that the cart-pendulum device are

capable of operating by using target angle θT as reference for the cart movement. It is

known that the horizontal acceleration of aerial hovering vehicles increase when the leaning

angle increased, therefore the same conclusion must be confirmed in the cart-pendulum

device before being applied in the experiment. Here, a PD control system that applies

target angle θT as reference for the cart movement was structured for the cart-pendulum

device. Figure 3.7 shows the structure of the PD control of the cart-pendulum device using

target angle θT as reference for the control command of cart movement.
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Figure 3.7: PD control of cart-pendulum system emulating aerial hovering vehicle.

Simulations were conducted to confirm the effectiveness of the structured PD control.

Simulation was conducted using a set of target angle with arranged preservation time and

the movement of the cart was recorded. Table 3.1 provides the results of the simulation that

uses a set of three target angle θT . Here, it is confirmed that acceleration of cart movement

increases as target angle θT increase. Control output concerning the motor input of the cart

is studied to study the relation between the quantities of the output to the preservation

period of the leaning angle. Figure 3.8 provides relation of the motor input and preservation

time at every sampling pulse for each tested target angle θT .

Based on figure 3.8, a certain amount of output, total output Vout is produced for each

target angle θT assigned for the leaning angle at a certain operation time. Total output Vout
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Figure 3.8: The reference data used to calculate the preservation period of output for each
target angle.

provides information for calculating the period of maintaining the target angle, therefore,

direct usage of Total output Vout is used in the learning algorithm to help produce the

learning control system by multiple control knowledge. Total output Vout is used replacing

the preservation time t as the unit of the preservation period of leaning angle is for lesser

burden in computation during the simulation. Since the range of the cart movement for

the operation is limited, the range of the total output Vout were limited up to 100 [V].

Based on these results, the angular orientation of the pendulum is known to be related to

the acceleration of the cart movement. This confirmed that the system have the dynamics

similar to the controls of an aerial hovering vehicle.

Table 3.1: Pre-experimental results for determining the output required by the cart-
pendulum device for emulating the angular control of aerial hovering vehicles.

Target Angle,θT [rad] 0.02 0.05 0.1

Total output, Vout[V] needed to maintain θT for 3[sec]
(Sampling time:0.01[sec]) 184.5 460.0 919.6

Distant covered, x[m] in 3[sec] 0.80 2.00 4.02

Total output, Vout[V] needed to maintain θT for 5 [sec]
(Sampling time:0.01[sec]) 504.2 1259.8 2522.9

Distant covered, x[m] in 5[sec] 2.28 5.71 11.45

Average amount of output per distant covered,
Vout[V/m]

225.89 225.28 224.55

Acceleration, a [ms−2] 0.13 0.24 0.48
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3.2.2.3 Obtaining Rapid Position Control Using Angular Orientation for In-
verted Pendulum

Using the information obtained through the simulation for manipulation of angular orienta-

tion by cart-pendulum device, Learning Control System by multiple control knowledge for

rapid position control of cart-pendulum device was designed as shown in figure 3.9. Here,

Reinforcement Learning was applied for updating the control knowledge which in a form

of value functions. The value functions consists of state and action parameters, where the

state parameters is defined by target angle θT and action parameters is defined by total

amount of control command output u for preserving target angle Vout. Target angle is

defined by a set of setting rule, which based on command of target position assigned by a

human operator. Target angle θT and total amount of control command output u is given

to the controller for arranging control command u for the cart-pendulum device. Using the

design of Learning Control System by multiple control knowledge for rapid position control,

series of simulation was constructed for evaluating the effectiveness of the system.

Acceleration Deceleration

Figure 3.9: The structure of Learning Control System by multiple control knowledge for
rapid position control of aerial hovering vehicles.
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3.2.3 Simulation Settings

Experiment for confirming the effectiveness of the Learning Control System by multiple

control knowledge in rapid position control was conducted in series of simulations. Q-

learning was used to produce value functions Q(θT , Vout) that defines the best combination

of target angle θT and total output Vout. Q-learning algorithm updates the value functions

Q(θT , Vout) using reward r for producing an optimum control knowledge. The parameters

of the Q-learning algorithm configured in the simulation are as shown in table 3.2, where

these state and action parameters range was selected depending on the properties of the

control device, selected prior to the experiment.

The algorithm is defined as

Q(θT , Vout) = (1− α)Q(θT , Vout) + α[r + γQmax], (3.1)

Qmax = max
V ′
out

Q(θ′T , V
′
out), (3.2)

where θT denotes continuing target angle θT and Vout denotes the total output Vout of

the continuing target angle. α is denoted as learning rate while γ is denoted as discount

rate.

The simulation was conducted by using five targets of cart position shown in figure

3.10. The objective of this simulation is to have the system learns the optimum control

strategy for achieving the target cart position assigned by the multiple control knowledge

assigned in the Learning Control System. All those targets were randomly selected before

the simulations, where these five targets of cart position were selected to confirm that the

system was able to learn a rapid position control at any direction and distance.

The properties and rules of the simulation were selected before conducting the simula-

tion. These properties and rules are used for all five target positions assigned previously.

Table 3.2: Q-learning parameters for Learning Control System for rapid position control.
Parameters Range Intervals

State Target Angle, θT
[rad]

-1 ∼ 1 0.05

Action Total Output,
Vout [V]

0 ∼ 100 20

Learning rate, α 0.5 Discount rate, γ 0.3
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Figure 3.10: Target position assigned for simulation of rapid position control.

A control operation is defined by the process of attempting position control of the cart-

pendulum device towards the target position within 10 seconds, where operation done is

counted as trials. The other simulation properties are as follows:

• Simulation runs five times with different target position assigned.

• Simulation end at 550 trials.

• 10 seconds of operation time for each trial.

• ε−greedy selection of output

• Reward is given after operation ends.

• Full reward, r = 1 is given to acceleration target angle, θ1T if successfully achieve

target position xT at the end of an operation

• Half reward, r = 0.5 is given to deceleration target angle, θ2T if successfully achieve

target position xT at the end of an operation

• zero reward, r = 0 is given to both target angle θ1T and θ2T if it fails to achieve target

position xT at the end of an operation.

The results were collected and analysed at the end of the simulation with 550 trials for

each five assigned target position xT conducted in the simulation.
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3.2.4 Simulation Results

The result for the simulation was divided into two categories. The first category defines

improvement achieved through the learning process while the second defines the successful

control operation achieved at the end of the simulation. The improvement achieved in

the first result confirms the validity of the learning process in creating a better control

knowledge through the simulation that can lead to a successful control operation. The

control operation shown in the second result confirms that the control operation operates

the position transition towards the target position xT successfully.

3.2.4.1 Knowledge Improvement through Learning Process

The value function Q(θT , Vout) is at zeros at the beginning of the simulation, where any

control operation operated under this control knowledge will less likely to be successful as

no particular optimum combination of angle orientation can be detected from the knowl-

edge. At the end of the simulation, the optimum combination is recognized through the

update done by the Q-learning algorithm. Here, successful control operation is obtained

and consistency is achieved in producing a successful position transition.

Figure 3.11: Improvement of the final cart position with respect to the number of tri-
als.(Target position, xT=0.5[m])

Figure 3.11 shows the results of position transition of the cart at the end of every

operation trials. The results of cart positions at the beginning of the simulation are scattered
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around the cart movement range. However, the results of the cart positions are focused to

the target position at the end of the simulation. Here, a successful control operation that

can achieve the target position is obtained.

3.2.4.2 Successful Operation Learned through Simulation

Figure 3.12: Angular trajectory of the pendulum during control operation that uses control
knowledge obtained after 550 trials.

Figure 3.12 shows the pendulum angular trajectory during control operation that uses

the control knowledge obtained after 550 trials. The pendulum trajectory during the control

operation varies depending on each target position assigned. However, it can be seen that

the pendulum angle stabilized at θ = 0[rad] around 5 seconds. Figure 3.13 shows the cart

trajectory during control operation that uses control knowledge obtained after 550 trials.

The cart trajectory is seen to be moving towards the target position and stabilizes near the

target position with an error margin around ±0.1[m].

The details of the successful control operation is shown in table 3.3. Here, for each cart

position, specific acceleration angle θ1T and deceleration angle θ2T was selected to complete

the control operation at certain amount of output Vout. The target angles θ1T and θ2T that

were selected during the control operation provide a certain pattern. Acceleration angle θ1T

was leaning towards the direction of the target position xT . However, deceleration angle

were leaning to either the opposite direction of the target position xT or zero. Here, the
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Figure 3.13: Movement trajectory of the cart during control operation that uses control
knowledge obtained after 550 trials.

Table 3.3: Time required to complete a position control during a successful operation.

Target Position, xT -0.8 -0.3 0.2 0.5 0.8

Acceleration angle,θ1T [rad] -0.05 -0.05 0.05 0.05 0.05

Deceleration angle,θ2T [rad] 0.05 0.05 -0.1 -0.1 0.0

Acceleration output,Vout [rad] 100 80 80 80 40

Deceleration output,Vout [rad] 80 40 60 20 100

Time until achieved stabilization, t[sec] 3.8 1.2 2.8 2.5 2.3

system learns that deceleration angle θ2T was selected to decelerate for attempting to stop

at the target position xT . The total output Vout varies according to the target angle θT ,

depending on the required force for achieving the target position xT .

Based on the result, the Learning Control System by multiple control knowledge was able

to learn optimum combination of target angle θT and its preservation period for producing

rapid position control towards assigned target position. The rapid position control is seen

by the usage of target angle θT for producing acceleration and deceleration in achieving

particular target position xT . Therefore, it is understood that Learning Control System by

multiple control knowledge was able to perform a rapid position control.
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3.3 Application of Multiple Control Knowledge in Learning
Control: Rapid Position and Obstacle Control

The second section of the Learning Control System by multiple control knowledge was

designed for rapid position control with obstacle control of aerial hovering vehicles. Aerial

hovering vehicles consist of non-linear parameters that require expertise in providing a

safe and reliable control. Here, human expertise in operating such device is generated

through application of Learning Control System by multiple control knowledge particularly

in application of rapid position and obstacle control.

3.3.1 Parameters of Learning Control for Rapid Position and Obstacle
Control

Z

Y

X

Roll

Pitch

Yaw

Figure 3.14: The angular dynamics of aerial hovering vehicle. (ArDrone by Parrot)

Continuing the Learning Control System design in chapter 3.2, three angle dynamics

of the aerial hovering vehicle is concerned in designing the Learning Control System by

multiple control function. In an unknown environment, it is difficult to perform a successful

and optimum control operation due to availability of obstacles and other constraints. Here,

Reinforcement Learning is applied to rewrite the control knowledge by determining the

favourable state s; location and velocity, for an action a, which is the optimum target

angular orientation θT for rapid position control while considering the existing obstacles.

The control knowledge Q is updated using Q-learning as (3.3) and (3.4), which is

Q(s, θT ) = (1− α)Q(s, θT ) + α[rew + γQmax], (3.3)
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Qmax = max
θ′T

Q(s′, θ′T ) (3.4)

Where s and s′ denotes state and future state of the control device, α is Learning Rate,

γ is the discount rate and r is the reward.

However, as shown in figure 3.14, the aerial hovering vehicle applies three parameters of

angular orientation, therefore, 3 optimum target angle must be learned in order to perform

a rapid position control. Plus, effective combination of three target angles may help perform

an optimum rapid position control around obstacles. In this case, target angle θT is a set

of three target angles from the three parameters of angular orientation, as

ΘT = {θroll, θpitch, θyaw}.

From above, a set of 3 independent control knowledge Q is created for each target angle,

as

Q = {Qroll, Qpitch, Qyaw}.

Since there are three sets of independent control knowledge will be used in the Learning

Control System based on three dimensional angular orientation, state s were prepared to

be three dimensional coordinates and velocities. State s consisted location r, where

r = {x, y, z},

and velocity according to each axis, v, where

v = {vx, vy, vz}.

Therefore, state s is denoted as

s = {r,v}.

The reward rew used to update the control knowledge Q is based on (3.5),

rew =
ds − ds′ + 1

ds′
(3.5)

where ds is the distance between the control device at state s and the target location,

and ds′ is the distance between the control device at state s′ and the target location, as

shown in figure 3.15.
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Figure 3.15: Parameters for determining rewards in Learning Control System for rapid
position control.

Reward r in (3.5) was applied for two reasons; to have the control device travel a large

distance between two states, and to have the control device distinguish the favourability of

states that are closer to target position. This is because, larger travel distance between two

states represent higher acceleration that was needed for performing rapid position control

for reaching the target state at a faster rate.

Besides (3.5), reward rew is a constant in case of the Learning Control System failed to

reach the target state within the designated simulation time, and when the control device

exceed the designated movement range for the simulation.

3.3.2 System Structure for Rapid Position and Obstacle Control

Using the learning function arranged in the previous section, a Learning Control System

by multiple control knowledge concerning application of three target angles was designed.

The design of Learning Control System by multiple control knowledge for rapid position and

obstacle control is as shown is figure 3.16, where three control knowledge for producing three

target angles were applied. The design of the Learning Control System learns the optimum

combination of target angles with predetermined preservation time of target angles and

constant elevation. The Learning Control System was design to provide controls of position

transition for 2 dimensional environment using application of three target angles assigned

in the control knowledge of the Learning Control System.
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Figure 3.16: The structure of the Learning Control System for rapid position control.

3.3.3 Simulation Settings

Series of simulations were conducted in MATLAB Simulink based on the parameters of the

aerial hovering vehicles shown in figure 3.14. These parameters are shown in table 3.4. A

series of simulations which consisted different target position was assigned to confirm the

effectiveness of the Learning Control System. Obstacles were also assigned in the simulation

to confirm that the Learning Control System was able to operate through obstacles as

intended. The assigned target states and obstacles were placed as shown in figure 3.17.

Table 3.4: Specifications of the simulated aerial hovering vehicle.

Parameters Value

Weight 0.42 [kg]

Size:
Length 0.53 [m]
Width 0.52 [m]
Height 0.1 [m]

The parameters for Q-learning is as shown in table 4.2, where these parameters were
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Figure 3.17: Obstacles and target location assigned in the simulations of Learning Control
System for rapid position control.

selected pre-simulation. The position control of the aerial hovering vehicle was only applied

on horizontal movements with constant altitude, within a movement range assigned.

Table 3.5: Q-learning parameters of Learning Control System for rapid position control.
Parameters Range Intervals

State Location,r[m] −10 < r(x, y) < 10 2
r(z) = 1

Velocity, v
[m/s]

−10 < v < 10 2

Action Target An-
gle, θT [rad]

−0.25 < θT < 0.25 0.05

Learning rate, α 0.5 Discount rate, γ 0.3

There are several properties designated into the conducted simulations. For each simu-

lation for each target state, the properties are as follows.

• Simulation runs six times with different target state assigned with each having 4 four

permanent cylindrical obstacles with diameter of 1[m].

• Simulation end at 3000 episodes of trials.

56



• 30 second operation time for each episode.

• Action is evaluated for reward and target angles were renewed every 1 second.

• ε−greedy selection of each target angles

• rew = −2 when the action leads to out of range or obstacles.

• Due to large intervals on states, the controller for states within 1[m] around the target

state will be switched to PD control.

The results from the simulations are determined by the accumulated rewards through

the simulations and the successful attempts on achieving the target position by operating

with and without obstacles.

3.3.4 Simulation Results

At the end of the simulation, the result of the trials for each episode was collected and

analyses to confirm the reliability of the system. The results should provide the information

on the control path for each target state assigned. This includes position transition and

angular transition which is important for distinguish the reliability of the Learning Control

System, with or without obstacles in the environment. The results also provide information

regarding the improvement occurred in the control knowledge. Therefore, the results of the

simulation are viewed in two aspects. The first aspect is the characteristic of rapid position

control operation that successfully operates within an environment while the second aspect

is the improvement of control knowledge that is used to perform the rapid position control.

3.3.4.1 Successful Control Operations towards Designated Target States

This result confirms the reliability of the Learning Control System for performing successful

control operation that is required to reach the assigned target state. There are 6 target

states were assigned with the same initial starting position in the simulation. A successful

control attempt for each target states that was learned by the system during the simulation

is shown in figure 3.18. Figure 3.18 shows the control operation that was accomplished at

the final, 3000th episode of the simulation for each target position assigned.

The results show that the Learning Control System was able to control the control

object towards each designated target states. Simulation for target 1 to 2 shows that

direct movement from start position was able to achieved, when the movement path is not
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Figure 3.18: Successful control operation for the simulation with assigned target state.

obstructed by any obstacles. However, for target 3 and 4, the movement path was not so

smooth compared to target 1 and 2. This is because, the system learns the most effective

manoeuvres, and in case for target 3 and 4, the optimum manoeuvres that were learned

here were not as smooth as for target 1 and 2, in figure 3.18. For target 5 and 6, the control

system bent the movement path so that the control device can avoid the obstacles, but still

reaches the assigned target state.
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Figure 3.19: Successful control operation without obstacles in direct path. (Target State 1)
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3.3.4.1.1 Successful Control Operation without Obstacles in Direct Path

This result explains the movement path of the control device that was operated by the

system towards reaching target state 1. The direct path towards target state 1 is unblocked

by any obstacles but the Learning Control System is needed to be careful of the obstacles

at the side of the direct path. The details of the control operation for reaching target state

1 is shown in figure 3.19a and figure 3.19b.

Figure 3.19a shows the position transition of the control device in each 3 axis, during the

final episode of simulation for Target State 1. Here, the system selects the optimum position

transition for achieving the target state, with less unnecessary movements according to each

axis. Figure 3.19b shows the transition of angular orientation based on roll pitch and yaw

during the final episode of simulation for Target State 1. Here, the manipulation of angle

can be seen to influence the position transition in figure 3.19a.
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Figure 3.20: Successful control operation with obstacles in direct path. (Target State 6)

3.3.4.1.2 Successful Control Operation with Obstacles in Direct Path

This result explains the movement path of the control device that was operated by the

Learning Control System towards reaching target state 6. The direct path towards target

state 6 is blocked by an obstacle and the system is needed to consider this obstacle when

performing control operation to reach target state 6. The details of the control operation

for reaching target state 1 is shown in figure 3.20a and figure 3.20b.

Figure 3.20a shows the position transition of the control device in each 3 axis, during
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the final episode of simulation for Target State 6. Here, the system selects the optimum

position transition for achieving the target state, with necessary movements according to

each axis, needed to avoid the obstacles place in the environment. Figure 3.20b shows the

transition of angular orientation based on roll pitch and yaw during the final episode of

simulation for Target State 6. Here, the manipulation of angle can be seen to influence

the position transition in figure 3.20a for taking necessary movements to avoid the assigned

obstacle.

3.3.4.2 Control Knowledge Improvements during Control Operations towards
Designated Target States
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Figure 3.21: Accumulation of reward during simulations of Learning Control System for
rapid position control.

This result shown in figure 3.21 explains the improvement that occurred during the

simulation of the Learning Control System. For each episode, Control Knowledge has

been updated to satisfy the environment where the control operation will be performed.

Therefore, the increasing number of accumulated rewards represents increasing number

of successful control operation. This explains that the Learning Control System learned

the best control operation needed by attempting the control operation that leads to most

reward in each episode, where successful control attempts were learned during the simulation
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that leads to more reward accumulated through more episodes. Here, multi-functionality

was achieved by manipulation of aerial hovering vehicles in rapid position control around

obstacles.

3.4 Summary

Human operation of Rapid Position Control applies multi-functionality to control an Aerial

hovering vehicle with precision and safety. Multi-functionality applies multiple knowledge

of control in providing such precision and safety in controlling devices especially devices

with non-linearity. Providing Learning Control System with multiple control knowledge

may provide multi-functionality in controlling complex non-linear device where human can

expertly controls due to multi-functionality in human control ability.

In this chapter, Learning Control System by Multiple Control Knowledge was designed

and applied on rapid position control of aerial hovering vehicle. The Learning Control

System with Multiple Control Knowledge is designed for performing an operation that

requires multiple functions in controlling a device. The Learning Control System was firstly

designed and applied for rapid position control alone, using cart-pendulum system as control

device. It was later designed for control of aerial hovering vehicles for rapid position control

among vehicles.

Simulations were conduct to confirm application of multi-functionality in rapid position

control using the designed Learning Control System on aerial hovering vehicles. The con-

trols of aerial hovering vehicles were emulated on cart-pendulum system, where Learning

Control System for rapid position control was designed, before being applied on simula-

tion of the aerial hovering vehicle. Simulations show that the control object has multiple

control functions to learn and to control for performing rapid position control while consid-

ering surrounding obstacle to reach the assigned target state. Development of a Learning

Control System with multiple sources of control knowledge provides multi-functionality in

rapid position control while considering obstacles on an aerial hovering vehicle. There-

fore, the design of Learning Control System with multiple control knowledge may provide

multi-functionality in controls application.
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Chapter 4

Multiple-Functions Learning
Control by Compound Function

Design of Learning Control with quality of multi-functionality produces functions that re-

quire decision management in order to optimize the usage of each function. Providing

decision management requires a Learning Control System to be able to analyse surround-

ing environment and considers necessary function required by particular specifications of

the environment. Compound Function provides multi-functionality with decision manage-

ment, where necessary function is provided based on the environment that requires them.

Design of Learning Control System with Compound Function may render a control device

autonomous in control operation due to decision management properties that provide action

consideration during the operation.

4.1 Compound Function

A human has the ability to learn and utilize their skills from experiences when confronting

any problem. Such ability capable those in utilizing certain knowledge of skills that was

obtained through various experiences for solving a new problem that requires a configuration

of obtained skills. In case of hurdle race, human can utilize the skills of jumping and running

into performing hurdle race. Both control knowledge of jumping and running must be

utilized by optimum configuration in order to provide an effective hurdle operation. Here,

human utilizes this knowledge of skills in creating an action by considering the requirement

of each skill, as shown in figure 4.1. The above skills are not only being utilized in solving

problems, however, the executed actions may provide feedback and help develop the skills

that were performed through development of control knowledge of those skills.
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Figure 4.1: System structure for application of compound function.

Based on figure 4.1, there are two agents involves in creating a Learning Control System

with compound function. The first agent is the learning agent, where control functions

where arranged in the system. The second agent is the merger agents, where compound

function merges the control information provided by the control functions within the learn-

ing agent. Compound Function is created in order to provide such human ability in a

control system. Learning Control System may provide updates to control knowledge how-

ever, when having multiple control knowledge in a Learning Control System, consideration

of control functions is needed to determine the control knowledge that provides this func-

tion. Compound Function provides consideration in selecting the best control knowledge

for applying necessary control function through the Learning Control System. A sugges-

tion of control command together with the preference value is provided by the two control

knowledge, where the compound function considers the optimum action for operating the

control device. The feedback of the action will provide update for the control knowledge of

the operated action, enhancing them for consideration in future operation. Here, a design

of Learning Control that utilizes multiple functions by Compound Function was utilized for

obstacle and goal consideration of a mobile robot. The Compound Function merges the

control knowledge from each control function and stores the control information obtained

from the source control knowledge for evaluation in form of compound control knowledge.

The Learning Control System was designed to apply the proposed Compound Function

to determine the priority of the control source in executing action based on two Control

Knowledge of Goal Attainment and Obstacle Avoidance.
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Figure 4.2: Method of multiple functions Learning Control by compound control knowledge.

4.2 Compound Control Knowledge

In order to create a Learning Control System that can utilize multiple Control Functions,

Control Knowledge from each Control Functions must be merged into one Compound Con-

trol Knowledge. The Compound Control Knowledge proposed in Fig. 4.2 can be applied to

two or more Control Function. However, in order two confirm the validity of the compound

control function, two control functions was applied on the Learning Control System.

The compound control knowledge was created through selecting the minimum option

of action compared based on the preference value provided by control knowledge of each

control function. A new set of action is obtained, consists the minimum preference value

obtained from comparing both control knowledge. Action of the control device is selected

through the compound control knowledge where the action with optimum value among the

action with minimum value stored in the compound knowledge is selected. Updates are

return to the control knowledge of control function that provided the executed action.

Hierarchical Reinforcement Learning applies comparison between preference values for
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multiple value functions similar to compound function [47]. However, the application of

Hierarchical Reinforcement Learning requires layers of value functions where each layer is

surveyed by parent task. Application of value function in the lower layer is determined by

the value function in the upper layer of the hierarchy [42]. In case of compound function,

value functions are arranged without hierarchy, where the application of the necessary value

function depends on the state of the control device. The value function is merged when

application of more than one value functions is necessary through merging function where

minimum preference value between the value functions is selected.

4.3 Learning Agent for Compound Function Device

The learning process applied in the Learning Control System consists Reinforcement Learn-

ing where Control Knowledge is updated in a form of value functions Q. The value function

of the Control Knowledge is denoted by state S, defining the current situation of the control

object and action A, defining the following move of the control device. State S and Action

A is defined into two sets as State S = {s1, s2, .., sn} and Action A = {a1, a2, .., an}.
During the phase of updating the control knowledge, the preference value q of the com-

bination between state s and action a is renewed by the reward r obtained after performing

the action a. In the case of successful operation, the preference value q increases, and de-

creases in result of unsuccessful operation. The value function of the Control Knowledge is

updated based on Q-learning algorithm shown in equation 1.1. Here, two Learning Agents

for Compound Function Device was designed using Reinforcement Learning; the first Learn-

ing Agent consists Learning Control System for goal attainment function, while the second

Learning Agent consists Learning Control System for obstacles avoidance.

4.3.1 Learning Control System for Goal Attainment Function

Learning Control System for goal attainment operates the control device towards the goal.

Here, the Learning Control for goal attainment applies goal distance ∆G = {∆XG,∆YG}
as state S while movement distant ∆τ and rotation θ as action AG. Therefore, the value

function Q for Learning Control for Goal Attainment is defined by Q(∆G,AG).

The update equation for the Learning Control System for goal attainment alone is,

Q1(∆G,AG) = (1− α)Q1(∆G,AG) + α[r + γ1Qmax], (4.1)
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Qmax = max
AG

Q1(∆G,AG) (4.2)

where reward r is assigned according to the function shows in figure ??. Here, rewards

are given according to distance between the goal and the control device. Action that renders

the device further than goal will result in negative rewards while action that renders the

device closer will result in positive reward.

4.3.2 Learning Control System for Obstacle Avoidance Function

Learning Control System for obstacle avoidance operates the control device away from ob-

stacles. Here, the Learning Control System for obstacle avoidance utilizes obstacle distance

∆O = {∆XO,∆YO} as state S and movement distant τ and rotation θ as action AO. There-

fore, the value function Q for Learning Control System for obstacle avoidance is defined by

Q(∆O,AO).

The update equation for Learning Control System for obstacle avoidance alone is,

Q2(∆O,AO) = (1− α)Q2(∆O,AO) + α[r + γ2Qmax], (4.3)

Qmax = max
AO

Q2(∆O,AO) (4.4)

where reward r is assigned according to the function shows in figure ??. Here, rewards

are given according to distance between the obstacle and the control device. Action that

renders the device further than detected obstacle will result in positive rewards while action

that renders the device closer will result in negative reward.
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Figure 4.3: Reward for control in Goal Attainment Function.
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4.4 Merger Agent for Compound Function Device

Having two or more Control Functions in one Learning Control System would require the

system to utilize the value function from both Control Functions. The preference value from

both value functions is used to describe the priority in selecting the best actions provided by

each value functions. In order to provide comparisons between two or more value functions,

the update method for the participating value functions has a limit between 0(bad) and

1(Good). Therefore, the discount rate γ of the updated value in equation 4.1 and 4.3 for

each value functions is applied as,

γ1 = 1−Q1(∆G,AG), (4.5)

γ2 = 1−Q2(∆O,AO). (4.6)

A new value function defines as Compound Control Knowledge is firstly constructed

using the value functions provided by the Learning Agent as shown in figure 4.5. The value

function of Compound Control Knowledge is constructed by QAll and K,

QAll = Min
n=1,2

Qn(St, A) (4.7)

with

K(st, A) = n, (4.8)
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where n is the serial number of the source value functions in the subsystem, which

defines the Compound Control Knowledge as

CQ(St, A) = {QAll,K}. (4.9)

Based on the above equations, the overall design of Learning Control System by Com-

pound Function for goal attainment and obstacle avoidance is as shown in figure 4.5. Here,

Learning Agents supplied control information into the merging function, where a new value

function defined as compound control knowledge is created. Action is selected through

the compound control knowledge and the Reinforcement Learning Function updates the

Learning Agents depending on the source of the executed action. The effectiveness of the

designed Learning Control System by Compound Function was confirmed through series

of experiments, where the design was applied on control operation of a small mobile robot

among obstacles.
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4.5 Experiments Settings

The Learning Control System by Compound Function shown in figure 4.5 was evaluated

in two phases; simulation phase and experiment phase. During the simulation phase, the

control object applied was a robot that was designed based on parameters as the robot

shown in figure 4.6a. The robot shown in figure 4.6a was applied for evaluating the designed

system in the experimental phase. The operation specifications of the robot are as shown

in figure 4.6b, while the physical specifications of the robot are as shown in table 4.1.

(a) Robot for real operation experiment.

x

y Obstacle Sensor Range

Maximum turning angle

Maximum turning angle

1 [rad]

-1 [rad]

0[rad]
0

.5
[m

]
270

front

Rear

(b) Robot structure for simulation and real operation
experiment.

Figure 4.6: Specification of the control device for experiments.

Table 4.1: Specifications of the simulated control device for Learning Control System by
compound function.

Parameters Value

Weight 5.5 [kg]

Size:
Length 0.27 [m]
Width 0.27 [m]
Height 0.15 [m]

The simulation was conducted as a platform to train the control knowledge of the Learn-

ing Agents in the Learning Control System and for the evaluation of compound function
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application. The simulation environments are based on the field map in figure 4.7. The

parameters for the equation in the Learning Control System are as shown in table 4.2. The

simulation was conducted in three phases; two phases for training and one phase for eval-

uation. The phases of training were conducted each to construct the Control Knowledge

for control functions of Goal Attainment and Obstacle Avoidance. The phase of evaluation

was conducted in evaluating the effectiveness of the compound function in applying the

two Learning Agents. The training phases were conducted in 750 episodes, with 5 targets,

while the evaluation episode was conducted in 375 episodes for 5 goals. The results ob-

tained concerning the movements of the robot and the condition of the learning process was

evaluated.

Table 4.2: Parameters for Q-learning in Learning Control System by compound function.

Parameters Range Intervals

State (Goal) Goal Distance,∆G[m] −10 < ∆G(x, y) < 10 2

State (Obstacle) Obstacle Distance,∆O[m] −2 < ∆O(x, y) < 2 0.5

Action Target Angle, θ[rad] −1 < θ < 1 0.5
Travel Distance, V [m] 0.1 < x < 0.5 0.2

Learning rate, α 0.5 Discount rate, γ 0.3

4.6 Experiments Results

The training phase describes the effectiveness of the control knowledge applied in the Learn-

ing Agents. The evaluation phase describes the effectiveness of the compound function

utilizing the whole Learning Control System. The successful simulation obtained during

the evaluation phase was applied on the robot. The robot movement was recorded and the

effectiveness of the system in a real environment was evaluated as well.
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Figure 4.7: Field map for simulation of Learning Control System by compound function.

4.6.1 Simulation Results for Goal Training

Here, results based on the training of control knowledge for goal attainment provides infor-

mation regarding the effectiveness of the Learning Control System in creating the control

knowledge for obtaining goals. The control knowledge for goal attainment is important to

provide comparison when applying the compound control knowledge.

Figure 4.8 and figure 4.9 describes the results of the training process for the Control

Knowledge of Goal Attainment in the Learning Agent. In figure 4.8, the robot in the

simulation was able to reach the target assigned. Movement strategies were constructed

depending on the direction of the targets under the restriction of the assigned control

command. Figure 4.9 shows the accumulated reward by the value functions of the control

knowledge. The accumulated reward increases over episodes, where successful attempts

towards the goals are achieved more frequently after several trials for each assigned target.

Therefore, it can be concluded that the Control Knowledge of the Learning Agent for the

Goal Attainment was successfully constructed.
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Figure 4.8: Training operation for achieving goal using Learning Control.
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Figure 4.9: Accumulated reward for goal knowledge over simulation episode.

4.6.2 Simulation Results for Obstacles Training

Here, results based on the training of control knowledge for obstacles avoidance provides

information regarding the effectiveness of the Learning Control System in creating the

control knowledge for avoiding obstacles. The control knowledge for obstacle avoidance is

important to provide safe control when applying the compound control knowledge.

Figure 4.10 and figure 4.11 describes the results of the training process concerning

the Control Knowledge of Obstacle Avoidance in the Learning Agent. In figure 4.10, the
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robot movement was obstructed by obstacles from reaching the assigned target. Frequent

obstruction has created alternative movement strategy for the robot to avoid the obstacles

as long as possible. Therefore, a successful Control Knowledge for avoiding an obstacle

was obtained at the end of the simulation. Here, figure 4.11 shows that the accumulated

rewards increases in the value function of the Control Knowledge of the Learning Agent for

Obstacle Avoidance.
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Figure 4.10: Training operation for avoiding obstacles using Learning Control.
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Figure 4.11: Accumulated reward for obstacle knowledge over simulation episode.
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4.6.3 Simulation Results for Compound Function Training

Figure 4.12 describes the results for the evaluation phase with obstacles and target. This

result evaluates the effectiveness in creating the Compound Knowledge. Figure 4.12a shows

the robot movements in the simulation where the robot was able to successfully reach all

the assigned goals while avoiding all the obstacles. Figure 4.12b and Figure 4.12c described

the changes in the Control Knowledge of Goal Attainment and Obstacle Avoidance in the

Learning Agents. The value function of each Control Knowledge improves over the episodes.

Therefore, the proposed system was effective in utilizing Learning Agents in performing a

control operation for attaining goal while avoiding obstacles.
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(b) Accumulated reward for goal knowledge over
simulation episode.
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Figure 4.12: Training results of compound knowledge in simulation.
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4.6.4 Experiment Results on Real Operation

Figure 4.13 shows the results of the control operation in a real environment. The operation

was conducted in a map monitored where the location data collected using Kinect for

Windows. The obstacles and the target were assigned randomly and the movement of the

robot was recorded. Figure 4.14 shows the movement configuration of the robot of figure

4.13. These results show that the robot successfully approaches the target position. The

results confirm that the Learning Control System by Compound Function was effective in

applying multi-functionality in goal attainment and obstacle avoidance on a control device.

(a) Operation with random obstacle and tar-
get.(case 1)

(b) Operation with random obstacle and target.(case
2)

Figure 4.13: Evaluation of real operation with robot.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.1

−0.05

0

0.05

0.1

0.15

[m]

[m]

start
End

Target

(a) Operation with random obstacle and tar-
get.(case 1)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.60.4

start

End

Target

[m]

[m]

(b) Operation with random obstacle and tar-
get.(case 2)

Figure 4.14: Movement results of the evaluation.
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4.7 Summary

Learning Control System with multiple functions requires decision management in order to

provide multi-functionality in control operation. Applying decision management in Learning

Control System may provide consideration in applying a control function among the option

of control functions. Due to application of the decision management, necessary control

function can be provided depending on the environment situation, increasing the reliability

of control operation in any environment. Therefore, Learning Control System with multiple

control functions requires a method for decision management in order to provide multi-

functionality effectively.

In this chapter, a multi- function Learning Control System is designed to provide multi-

functionality with decision management through application of Compound Function. Com-

pound Function described as Merging Agent; consisting merging function and compound

control knowledge may provide decision management through merging the control knowl-

edge of control functions, described by Learning Agents, into compound control knowledge.

Compound control knowledge is created through selecting the minimum preference value

of action options when comparing Learning Agents. Application of compound function

created new temporary compound control knowledge using elements from multiple control

knowledge of control functions.

Series of experiment was conducted in order to confirm the effectiveness of the designed

system. Two phases of simulation were conducted to construct the Learning Agents and

to evaluate the Merging Agent. Results show that construction of Learning Agent was

successful and was applied in the simulation for evaluating Merging Agent. Results of the

evaluation phase show that the designed system was able to utilize compound function

into applying multi-functionality during control operation for goal attainment and obstacle

avoidance. Simulation results show that the system was able to apply the compound func-

tion in providing multi-functionality in form of Goal and Obstacle Consideration. Therefore,

a Learning Control System with multiple functions was obtained with application of the

Compound Function in the Learning Control System.

76



Chapter 5

Conclusion

Human actions involve multi-functionality, where an action could provide results for mul-

tiple purposes. Through this quality, consideration on multiple parameters can be made

before an action can be executed. Providing such quality to a control system would require

application of multiple control function under one system. A control system that is adapt-

able to environment with multi-functionality would render the control device autonomous in

performing control operation. Therefore, adaptable control system with multi-functionality

may provide safer and reliable control for a control device in any environment. Designs

concerning application of Learning Control System with multi-functionality are provided

through this dissertation. Here, the design involves methods of applying Learning Control

that provides multiple control function for providing safer and reliable control for control

operation.

In chapter 2, the first design of multiple functions Learning Control System utilizes sub-

stitute target in providing control solution in a constrained non-linear device. Constrained

Non-linear Learning Control system by substitute targets provides control solution to multi

dimensional states in Non-linear Control device under constraints. Results show that the

Learning Control System by substitute target was able to provide multi-functionality in a

constrained non-linear control device through application on cart-pendulum swing up con-

trol among constraints. Therefore, multi-functionality was applied on non-linear control

device by substitute target and a safe and reliable control was obtainable through multi-

function learning control.

In chapter 3, the second design of multiple functions Learning Control System utilizes

multiple control knowledge in providing control solution in controls of a non-linear device,

consisting cart-pendulum system and aerial hovering vehicles. Learning Control System
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by multiple control knowledge provides solution in applying human like control decision to

a machine that reduces dependency in detailed human command. Results show that the

Learning Control System by multiple control knowledge was able to provide human like

multi-functionality in controls of non-linear device through application of multiple control

knowledge in rapid position control of aerial hovering vehicles. As a result, the nonlinear

control by the integration of multiple control knowledge in the learning control system were

obtained, operated similar to human skills, thus the multivariable multi-function control

was achieved.

In chapter 4, the third design of multiple functions Learning Control System utilizes

compound function in providing decision management in Learning Control System with

multiple control knowledge of functions. Compound Knowledge Learning Control system

provides control solution for having control functions priority consideration in environment

with multiple control functions. Results show that the Learning Control System by com-

pound function was able to provide necessary consideration between application of goal

attainment control or obstacle avoidance control during operation of a small robot device.

Therefore, the compound knowledge (state-action rule) that integrates goal attainment

function and the obstacle avoidance function was learned for providing multi-functional

control.

In this research, Learning Control System with multi-functionality is designed and de-

veloped. By the designs, Learning Control System with multi-functionality may provide

human-like safe and reliable control in a control device, making it capable of providing

autonomous control in any environment.
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