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ABSTRACT 

 

 Phylogenetic analyses have been widely used to infer evolutionary 

relationships amongst life forms, based on molecular data such like nucleotide and 

amino-acid sequences. In phylogenetic analyses, ‘homogeneous’ substitution models, 

which assume the homogeneity of base or amino-acid composition across lineages, are 

generally applied. However, the assumption of homogeneous models is often violated 

by the heterogeneity of base or amino-acid composition in real-world sequences. 

Especially, the heterogeneity of adenine plus thymine (AT) content in nucleotide 

sequences is widely recognized to interrupt accurate inference of evolutionary history in 

the analyses with homogeneous models. To avoid or mitigate phylogenetic artifacts 

stemming from the heterogeneity of AT content, I here focused on the two approaches, 

‘data-recoding’ methods and ‘non-homogeneous (NH)’ substitution models.  

In chapter 1 and chapter 2, I demonstrated a comprehensive study to assess the 

robustness of a data-recoding method, ‘RY-coding,’ and NH models, by analyzing 

simulated and real-world sequence datasets with various degrees of the heterogeneity of 

AT content. From my results, RY-coding and NH models successfully improved 

phylogenetic inferences compared to homogeneous models, even under the presence of 

~20% of AT content heterogeneity in both simulated and real-world sequence datasets. 

Nevertheless, I revealed that the accuracy of RY-coding-based analysis can be affected 

by i) the substitution process that generated the sequence data, ii) the level of the 

heterogeneity of base composition, and iii) the loss of true phylogenetic signal due to 

recoding procedure. On the other hands, NH models were revealed to be free from such 

difficulty of the data-recoding method.  
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Phylogenetic inferences with NH models, however, can be computationally 

intense because an enormous amount of model parameters need to be optimized. In 

chapter 3, I performed a methodological approach to reduce the computational time for 

the phylogenetic analyses with NH models. I applied two parallel computing methods, 

OpenMP and MPI, to a phylogenetic program for the maximum-likelihood inference 

with a NH model. The parallelized program achieved suitable speeding-up up to 64 

computational nodes and 1,024 CPU cores on a supercomputer system, ‘T2K-Tsukuba.’ 

In conclusion, I discuss the pros and cons of the data-recoding method and NH 

models based on the results obtained here. The goal of the present study is to provide a 

guideline to properly use these two methodologies in future phylogenetic analyses, with 

diverse empirical sequence datasets bearing a variety of compositional heterogeneity. 
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ABBREVIATIONS 

 

 

AT content Adenine plus Thymine content 

LBA  Long Branch Attraction 

lnL  log-likelihood 

ML  Maximum-Likelihood 

NH  Non-Homogeneous 

Ts/Tv  Transition/Transversion 
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I. GENERAL INTRODUCTION 

 

I-1 Phylogenetic analyses 

I-1-1 Phylogenetic trees 

 One of the most important purposes in evolutionary biology is to investigate 

the relationship amongst life forms and elucidate the evolutionary process from the 

common ancestor to existent organisms. Phylogenetic analyses (phylogenetic 

inferences), which infer the phylogenetic relationships among a group of organisms 

based on molecular data such as nucleotide and protein sequences, have played a key 

role to accomplish above goals in evolutionary studies. In phylogenetic analyses, any 

taxonomic categories such as species, order, family, etc., or genes in several cases, can 

be dealt as Operational Taxonomic Unit (OTU) or taxon (taxa, plural form). Of note, I 

here use taxon and taxa. The relationships between taxa are illustrated by means of a 

phylogenetic tree, which is composed of internal/terminal nodes and branches. The 

terminal nodes in a phylogenetic tree indicate extant taxa and internal nodes represent 

ancestral taxa. The branch connects two adjacent nodes, defining the 

ancestor-descendant relationships. Thus, the evolutionary relationships among taxa can 

be described as a tree-like pattern (topology). A tree can be completely bifurcated if all 

nodes have only two immediate descendant lineages, but multifurcated if a node has 

more than two immediate descendant lineages. Phylogenetic trees can be either rooted 

or unrooted. The rooted tree has a root, which means the common ancestor of all taxa 

under study, and a unique path leads from the root to any other nodes. The direction of 

each path corresponds to the evolutionary time. In contrast, the unrooted tree only 

specifies the relationships among taxa with no time direction. 
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I-1-2 Methods for inferring phylogenetic trees 

 A phylogenetic tree can be inferred from molecular sequences retrieved from 

extant taxa. They can be aligned into the single alignment in which we can find the 

difference of characters (i.e., bases or amino-acids) among taxa on each position. Such 

differences are caused by substitutions that occurred on each sequence during its 

independent evolutionary process. Hence, the tree topology and corresponding branch 

lengths (i.e., the average number of substitutions on each position of a sequence), can be 

inferred by analyzing the substitution processes that generated the observed sequence 

alignment. 

 There are several methods to infer the phylogenetic trees from molecular 

sequence data. The maximum-parsimony (MP) method infers the minimum number of 

substitutions that are required to explain all observed differences among extant 

sequences, considering a particular tree topology [1, 2]. The MP method counts the 

number of substitutions for each of the possible tree topology and selects the one 

showing the smallest number of substitutions as the most optimal tree. The 

distance-matrix (DM) method calculates a genetic distance, which is defined as a 

number of substitutions per position per unit time, between all pairs of extant sequences. 

Then, the phylogenetic tree is reconstructed based on the matrix of distances, using 

various algorithms for clustering taxa, including the un-weighted pair-group method 

with arithmetic mean (UPGMA) [3] and the neighbor-joining (NJ) method [4]. 

 In this thesis, I focus particularly on the maximum-likelihood (ML) method [5], 

which is one of the most popular approaches to infer phylogenetic trees. In the 

phylogenetic analyses based on the ML method (henceforth designated as the ML 
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analyses), each extant sequence is assumed to have evolved following a stochastic 

process for substitutions, called as ‘Markov process.’ Based on a Markov process, the 

substitution process for molecular sequences can be described by a rate matrix called as 

‘substitution model,’ where the rates for character i (e.g., four bases or 20 amino-acids) 

being replaced by character j in an instantaneous time are defined by model parameters. 

Using substitution models, we can calculate the probability of substitutions that 

occurred in a particular evolutionary time (t) on a branch of a tree. Then, a likelihood of 

a given tree topology can be obtained by multiplying whole substitution probabilities 

among branches. Note that the likelihood is a counterpart of the probability of observed 

sequence data with respect to branch lengths and model parameters.  

 For instance, suppose that an unrooted tree as shown in Fig. 1, which is 

composed of four terminal branches (t1, t2, t3, and t4) and one internal branch (t5). We 

here observe bases (p, q, r, s) on the position h of the nucleotide sequence data of under 

study (D). Each observed base is plotted on each terminal node in Fig. 1. In most cases, 

the bases i and j on internal nodes (ancestral sequences) are not known. Therefore, the 

whole possibilities for the bases in internal nodes are considered. The likelihood of the 

tree in Fig. 1 on the position h can be calculated as described below. 

              𝐿(𝛳|𝐷ℎ) =  ∑ { 𝜋𝑖𝑝𝑖𝑝(𝑡1)𝑝𝑖𝑞(𝑡2)

𝑖=𝐴,𝑇,𝐺,𝐶

∑ 𝑝𝑖𝑗(𝑡5)𝑝𝑗𝑟(𝑡3)𝑝𝑗𝑠(𝑡4) }

𝑗=𝐴,𝑇,𝐺,𝐶

 

 The parameter πi represents the frequency of the base i on the corresponding 

internal node (Fig. 1). πi can be estimated from the entire sequence alignment. The pij(t) 

denotes the probability for the substitution from i to j in the evolutionary time defined 

by the length of the corresponding branch t. pij(t) can be calculated based on a given 

nucleotide substitution model. Since each position is assumed to evolve independently, 
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the likelihood of the tree for whole sequence data, L(ϴ|D), can be obtained by 

multiplying the likelihoods calculated position by position. The ML method estimates 

the model parameters and branch lengths which maximize the likelihood of a given tree. 

In the same way, we can also calculate the likelihoods of alternative tree topologies. 

Finally, the ML method selects the topology showing the highest likelihood value as the 

most optimal tree (the ML tree). Note that we generally report the log-likelihoods (lnLs), 

as likelihoods are extremely small. 

 

I-2 Artifacts of Phylogenetic inference 

I-2-1 Long-Branch Attraction 

 In phylogenetic analyses, two distantly related, but rapidly evolving 

(long-branch) taxa often erroneously group together owing to long-branch attraction 

(LBA) [6]. Such phylogenetic artifacts caused by LBA have been recognized as one of 

the major sources that mislead the accurate inference of the evolutionary relationships 

among diverse organisms [7–9]. Pioneering studies based on simulated data have shown 

that the susceptibility to LBA artifacts differs amongst tree reconstruction methods—the 

MP and DM methods are sensitive to, but the ML method is in theory robust against 

LBA artifacts [10, 11]. This ideal property of the ML method, however, collapses under 

conditions such as ‘model misspecification,’ where the substitution model does not 

appropriately describe the substitution process that generated the sequence data of 

interest. As the precise substitution process underlying real-world sequences is difficult 

to know, there is always a risk of a critical aspect (or aspects) in sequence evolution 

being overlooked by phylogenetic analysis with a particular substitution model. 

Therefore, depending on the degree of model misspecification, the ML inference can 
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suffer from severe LBA artifacts [12, 13]. 

 

I-2-2 Compositional heterogeneity 

 The compositional bias in sequence data, i.e., the heterogeneity of base or 

amino-acid composition among sequences, has been regarded as one of the most 

important sources for model misspecification [14, 15]. I here bring up the compositional 

bias in nucleotide (nt) sequences, which are the most fundamental materials for 

phylogenetic inferences. As base composition varies amongst genes, or even genomes, 

the heterogeneity of base composition is likely ubiquitous in nt alignments [16]. On the 

other hand, widely used nt substitution models, which are based on the stationary 

Markov process across tree, assume the homogeneity of base composition among 

sequences; that is, all sequences are supposed to have evolved following same base 

frequencies, which are estimated from the entire alignment [17]. Such assumption in 

‘homogeneous’ substitution models, however, can be violated by the ‘non-homogeneous’ 

sequence evolution where each sequence has evolved following independent base 

frequencies. Therefore, analyzing nt data bearing compositional bias under 

homogeneous model conditions introduces significant model misspecification to tree 

reconstruction, resulting in severe phylogenetic artifacts [18]. 

 In particular, adenine + thymine (AT) content (or guanine + cytosine (GC) 

content) have been reported to vary at genome level within or across groups of 

organisms. For instance, prokaryotes are known to have the widest diversity of genomic 

AT contents from 23% to 83.5% [19–21]. The range in genomic AT content in 

eukaryotes is also variable from AT-rich (AT > 50%) to AT-poor (AT < 50%) [22–27]. 

Plastid and mitochondrial genomes sequenced to date also show relatively high, but 
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various degrees of AT content [28–31]. Thus, the heterogeneity of AT content can be 

considered as a major source of compositional bias in the analyses of nt sequence data. 

Importantly, it was revealed that biased AT contents are strongly related with rapid 

evolutionary rates [32], implying that LBA artifacts in phylogenetic analyses can be 

enhanced by AT content bias. Indeed, analyses of both real-world and simulated 

sequence data have shown that the ML analyses based on homogeneous models, which 

assume the homogeneity of AT content across taxa, can misleadingly grouped unrelated 

taxa bearing rapid evolutionary rates and similar AT contents [33–37]. 

 

I-3 Data-recoding method and non-homogeneous substitution models 

 Heterogeneity of AT content has been widely observed in empirical sequence 

data for phylogenetic analyses, and recognized as one of the most important aspects in 

molecular sequence evolution for inferring accurate phylogenetic relationships [38–41]. 

To avoid or mitigate phylogenetic artifacts stemming from AT content heterogeneity 

across tree, there are two major choices available––cancelling compositional bias by a 

data-recoding method, and accounting for compositional heterogeneity by applying the 

non-homogeneous (NH) substitution model. In the former method, the variation of AT 

(or GC) content in nt alignments can be efficiently homogenized by recoding four 

characters, A, C, G, and T, into purine (R; A or G) or pyrimidine (Y; C or T). This 

‘RY-coding,’ which can be coupled with an ML method using a substitution model for 

two-state characters [42], was initially proposed to prevent the putative artifact in the 

analyses of mammalian nt sequence datasets [43, 44]. The latter method, NH models, 

can theoretically relax the assumption of the homogeneity of base composition by 

allowing the model parameters to vary in branch-by-branch fashion across a tree [45–
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50]. Therefore, the non-homogeneous sequence evolution can be appropriately 

described under NH model conditions. Especially, a NH model provided by Galtier and 

Gouy (1998), henceforth designated as ‘GG98 model,’ can explicitly take the 

heterogeneity of AT content into account by implementing free parameters for 

estimating equilibrium AT content on each branch of a tree. Thus, each nt sequence is 

assumed to have evolved under different degrees of AT content at each point of its 

evolutionary path from the common ancestor [49]. 

 

I-4 Purpose of this study 

 RY-coding and GG98 model have been applied in several pioneer studies 

tackling the accurate phylogenetic inference from real-world sequence datasets which 

exhibit severe AT content heterogeneity [41, 43, 44, 51–55]. In these data analyses, both 

two methods successfully suppressed phylogenetic artifacts, compared to the analyses 

with homogeneous models. Nevertheless, there is still room for argument on basic 

properties of RY-coding and GG98 model. I here propose two central questions, i) how 

efficiently these two methods can recover the true phylogenetic relationship, and ii) to 

what extent of the AT content heterogeneity they can tolerate.  

To discuss the above issues, I here conducted a comprehensive analysis to 

assess the performance of the ML analyses incorporating RY-coding and GG98 model, 

based on simulated and real-world sequence datasets. I also conducted a computational 

effort to reduce the computational cost of GG98 model, which potentially limits the 

application of the model to the analyses of large-scale sequence datasets. Summarizing 

the results obtained here, I finally discuss the usage of the data-recoding method and 

NH models in depth, aiming to apply them into future phylogenetic analyses for wide 



11 

range of empirical sequence datasets bearing significant compositional heterogeneity. 
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II. PERFORMANCE EVALUATION FOR RY-CODING AND GG98 

MODEL WITH SIMULATED DATASETS 

 

II-1 Introduction 

 RY-coding coupled with an ML method can mitigate the heterogeneity of AT 

content by character recoding, and is believed to ameliorate the accuracy of 

phylogenetic inferences [43, 44]. Nevertheless, there are some potentially unclarified 

issues in this procedure. First, it cannot erase compositional heterogeneity among any 

sequences except those with the ratio of A plus G to C plus T being roughly 1, 

suggesting that a certain degree of compositional heterogeneity remains in the recoded 

data. As the recoded alignments are usually analyzed by the ML method with a 

homogeneous substitution model for two-state character proposed by Cavender and 

Felsenstein [42], it is naïve to assume that the ML inferences from the recoded 

alignments are completely liberated from the phylogenetic artifacts from compositional 

heterogeneity. Second, the recoding procedure may discard informative transition 

substitutions (A↔G or T↔C) in the original alignments, which may reduce the 

resolution of the true phylogenetic relationship. Importantly, the efficacy of RY-coding, 

as well as its potential limitation, remains uncertain because no simulation study 

exhaustively assessing the above concerns is available so far. 

On the other hand, GG98 model can explicitly take the heterogeneity of AT 

content across a tree into account by allocating its model parameters in 

branch-by-branch fashion [49]. A study based on simulated nt data with biased base 

composition evidently showed that the accuracy of a distance matrix (DM) based 

method was greatly improved by GG98 model [50]. Analysis with GG98 model requires 
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no character recoding in an alignment, being free from the potential issues associated 

with RY-coding discussed above. Furthermore, the ML method with GG98 model is 

anticipated to be much more robust against typical LBA artifacts than any DM-based 

methods. However, to date, the robustness of ML inferences under GG98 model 

conditions has not yet been examined in detail by analyzing simulated data. 

 I here present the results from the de facto first simulation study assessing the 

performance of an ML method incorporating RY-coding and that with GG98 model. 

Simulated nt sequence datasets bearing various degrees of the heterogeneity of AT 

content were subjected to the two types of ML analyses. My study clearly indicated that 

the ML analyses incorporating RY-coding and GG98 model (henceforth designated as 

RY-coding and GG98 analyses, respectively) were more robust against the LBA artifact 

stemming from AT content bias than the ML analysis with a homogeneous substitution 

model, which cannot take compositional heterogeneity into account. Nevertheless, my 

closed investigation revealed the potential pitfalls of both RY and GG98 analyses. The 

performance of RY analysis appeared to be largely affected by the substitution process 

used for sequence simulation. Likewise, the inference from GG98 analysis could be 

significantly misled when the complex pattern of compositional heterogeneity violated 

the assumption of the model.  

 

II-2 Materials and Methods 

II-2-1 Data Simulation 

 Nucleotide sequence data was generated by Monte Carlo simulation, using 

indel-Seq-Gen Version 2.0 [56], based on a 4-taxon model tree described below (Fig. 

2A). I simulated 500 replicates for each data point. The simulated data were varied from 
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500, 1000, 2500, and 5000 nt positions in size. The lengths for the central branch and 

two terminal branches leading to Taxa 1 and 2 were set to 0.025, and the lengths of the 

terminal branches leading to Taxa 3 and 4 were set to 0.8 (a and b in Fig. 2A). For data 

simulation, the ancestral sequences were randomly generated at the root (R in Fig. 2A), 

and each tip sequence was then simulated according to the given branch lengths. The 

substitution process was modeled with the HKY model [57], incorporating rate 

heterogeneity across sites approximated by a discrete gamma (Γ) distribution [58] with 

four categories (henceforth designated as HKY + Γ model). The κ parameter for Ts/Tv 

ratio [59] and the shape parameter α for a Γ distribution were set to 2.0 and 0.8, 

according to Galtier and Gouy (1995) [49]. I additionally simulated data with smaller κ 

values, 0.2, 0.5, 1.0, and 1.5, to evaluate how the setting of Ts/Tv ratio in sequence 

simulation affects the performance of the ML analyses. 

For the simulation from the root to Taxa 1 and 2, the frequencies of A, C, G, 

and T were set equal (i.e. the AT content is supposed to be ~50%). On the other hand, 

Taxa 3 and 4 sequences were designed to be AT-rich by changing the parameters for 

base frequency at the node uniting Taxa 1 and 3, and that uniting Taxa 2 and 4 (P and Q, 

respectively, in Fig. 2A). The above procedure enabled me to simulate slowly evolving 

sequences for Taxa 1 and 2 with an AT content of ≈50%, and rapidly evolving, AT-rich 

sequences for Taxa 3 and 4. I analyzed the simulated datasets with 11 variations of the 

difference of AT% between slowly evolving Taxa 1 and 2, and rapidly evolving Taxa 3 

and 4 (henceforth designated as ΔAT%). The frequencies of A and T and those of C and 

G were set equal unless I specifically mention. The settings for base frequency in the 

data simulation, and the average AT% achieved in the resultant simulated data are 

presented in Table 1. 
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II-2-2 Data Analyses 

 I ran three different ML analyses in the present study. First, the simulated data, 

comprising four bases, were subjected to the ML analysis with the HKY + Γ model. The 

Ts/Tv ratio and shape parameter α for a Γ distribution were fixed to those used in the 

data simulation (κ = 0.2–2.0, and α = 0.8), but base frequencies were estimated from the 

entire data. I also analyzed the simulated data recoded by RY-coding [44, 60]. The 

recoded data (comprising two-state characters) were then analyzed with the model of 

Cavender and Felsenstein [42] for two-state characters incorporating rate heterogeneity 

across sites approximated by a discrete Γ distribution (CF + Γ model). All model 

parameters for the second ML analysis were estimated from the data. The substitution 

models used in the first and second ML analyses are homogeneous as they assume the 

stationarity of base (and R/Y) composition. I used PAUP* 4.0b [61], for the ML 

analyses with the two homogeneous models. 

 Finally, I subjected the simulated nt sequence data to the third ML analysis 

with GG98 model [49] incorporating rate heterogeneity across sites approximated by a 

discrete Γ distribution (GG98 + Γ model), which was implemented in NHML 3.0 [53]. 

In this non-homogeneous model, the parameters for Ts/Tv ratio and the Γ distribution 

were estimated from the entire data and fixed across a tree, but the parameter for AT 

content was allowed to vary in a branch-by-branch fashion. I exhaustively searched for 

the ML tree by eval_nh program packaged in NHML. In addition, a subset of simulated 

data was analyzed with a second non-homogeneous model, which is identical to the 

HKY + Γ model but allows base frequencies to vary across a tree (henceforth designated 

as nhHKY + Γ model). I used BppML program implemented in Bio++ 0.8.0 [48] for the 
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data analyses with the nhHKY + Γ model. 

 

II-3 Results 

II-3-1 Impact of compositional heterogeneity––HKY analysis 

 The HKY model assumes the stationarity of the substitution process (i.e., 

homogeneous), and ΔAT% in the simulated data cannot be adequately accounted for. 

Henceforth here, I designate the HKY model-based ML analysis as ‘HKY analysis.’ On 

the basis of Jermiin et al. (2004) and Ho and Jermiin. (2004), I expected that ‘LBA’ tree 

(center in Fig. 2B), in which rapidly evolving Taxa 3 and 4 erroneously grouped 

together, was preferentially recovered in HKY analysis of the data bearing large ΔAT%.  

 First, as a preliminary analysis, 1,000 nt sequence datasets simulated under 

1,600 combinations of branch lengths, with a (Fig. 2A) ranging from 0.0125 to 0.5, and 

b (Fig. 2A) ranging from 0.5 to 1.0, were analyzed. Fig. 3 shows the difference of 

recovery ratio of the correct tree in HKY analyses under the 1,600 combinations of 

branch lengths, with AT content across tree of ≈20% and Ts/Tv ratio (κ) of 2.0. I 

determined specific branch lengths a and b (a = 0.025, b = 0.8; see II-2-1), under which 

HKY analysis showed significantly low recovery ratio of the correct tree (left in Fig. 

2B) due to the LBA attraction and the heterogeneity of AT content (boxed area in Fig. 

3).  

 In the analysis of 1,000 nt-long data simulated with κ = 2.0 and fixed branch 

lengths of a and b (henceforth designated as ‘κ_2.0 data’), the recovery rate of the 

correct tree gradually decreased along with the increment of ΔAT% (black circles in Fig. 

4A). On the other hand, LBA tree was dominantly yielded in the analyses of the data 

with high ΔAT% (black circles in Fig. 5A). A similar but clearer trend for the success 
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rate (as well as the recovery rate for LBA tree) was observed in the analysis of the data 

simulated with κ = 0.2 (henceforth designated as ‘κ_0.2 data;’ black circles in Figs. 4B 

and 5B). These results evidently suggest that HKY analysis, particularly when the data 

bear large ΔAT%, becomes highly susceptible to the LBA artifact stemming from 

compositional heterogeneity. 

 I additionally tested how the performance of HKY analysis was affected by the 

Ts/Tv ratio in data simulation. Five sets of 1,000 nt-long data bearing ΔAT ≈20% were 

simulated with different κ values, 0.2, 0.5, 1.0, 1.5, and 2.0, and subjected to HKY 

analysis. As shown in Fig. 4C, the analysis of κ_2.0 data yielded the highest success 

rates (≈30%), while the correct tree was recovered at less than 10% in the analyses of 

the data simulated with κ < 2.0. 

 

II-3-2 Impact of compositional heterogeneity––RY-coding analysis 

 RY-coding has been widely used for the analyses of real-world nt data bearing 

base compositional bias [44, 60, 62]. However, there is a (potentially large) room for 

argument on whether this procedure can truly help in inferring the correct tree. In this 

study, both κ_2.0 and κ_0.2 data series bearing ΔAT of 0–20% were subjected to the 

RY-coding analysis. 

 I firstly checked whether the recoding procedure erased the compositional 

heterogeneity simulated in κ_2.0 and κ_0.2 data. As shown in Table 2, regardless of the 

setting for AT% in Taxa 3 and 4 in original simulated data, as well as Ts/Tv ratio,, the 

difference of purine (R) between Taxa 1 and 2, and Taxa 3 and 4 (ΔR%) was fixed to 

about 2% in the recoded data. As almost no compositional heterogeneity existed in 

recoded data, the correct tree was stably recovered in the homogeneous CF model-based 
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analyses of the recoded κ_2.0 and κ_0.2 data at 69–77% and 53–60%, respectively (red 

diamonds in Figs. 4A and 4B). The recovery of LBA tree was less than 18% and 29% in 

the analyses of the recoded κ_2.0 and κ_0.2 data series, respectively (red diamonds in 

Figs. 5A and 5B). The success rate of RY-coding analysis remained higher irrespective 

of Ts/Tv ratio (56–70%; red diamonds in Fig. 4C), compared with that of HKY analysis 

(black circles in Fig. 4C). I successfully provide the first simulation results that indicate 

that RY-coding largely improved the phylogenetic inferences of sequence data with 

compositional heterogeneity. 

 

II-3-3 Impact of compositional heterogeneity––GG98 analysis 

 The non-homogeneous GG98 model proposed by Galtier and Gouy (1998) [50] 

allows different AT% on different branches. GG98 model has been applied for the ML 

analyses of real-world sequence data, and successfully displayed the robustness against 

systematic artifacts originating from compositional heterogeneity [35, 54, 63]. 

Nevertheless, although simulation study by Galtier and Gouy (1995) [49] showed that 

GG98 model drastically improved the accuracy of a DM-based analysis, the 

performance of GG98 model-based ML analysis (henceforth here designated ‘GG98’ 

analysis) has not been fully tested. In the present study, I examined how efficiently 

GG98 model can improve the ML inference from sequence data with large ΔAT%. 

 Regardless of ΔAT%, the correct tree was recovered at 67–76% in the analysis 

of κ_2.0 data series (green squares in Fig. 4A), while the recovery of LBA tree was 

suppressed (<23%; Fig. 5A). In the GG98 analysis of κ_0.2 data series, ΔAT% had little 

impact on the success rate (63–72%; green squares in Fig. 4B) and the false rate (14–

26%; green squares in Fig. 5B). The same analysis was repeated on the 1000 nt-long 
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data simulated with the five different Ts/Tv ratios (ΔAT was set as ~20%), but the 

success rates stayed at 63–72% (Fig. 4C). These are the first simulation results 

indicating that the parallel shifts of AT content in nt sequence data could be robustly 

tolerated in NH model-based ML analysis. 

 

II-3-4 Impact of data size 

 I simulated 500, 1,000, 2,500, and 5,000 nt-long data with ΔAT ≈20%, and 

these data were subsequently subjected to HKY, RY-coding, and GG98 analyses. The 

data simulated with the largest and smallest κ values, 2.0 and 0.2, were considered in 

these analyses. The success rates obtained from the three ML analyses were plotted in 

Figs. 6A and 6B. Regardless of κ parameter, the success rate of HKY analysis appeared 

to be negatively correlated with data size (black circles in Figs. 6A and 6B). The 

analyses of the largest κ_2.0 and κ_0.2 data (i.e., 5000 nt-long) marked the lowest 

success rates, 14% and 0%, respectively. The magnitude of the LBA artifact stemming 

from compositional heterogeneity was apparently enhanced by increasing data size.  

 In contrast, the success rates of RY-coding analysis positively correlated with 

data size, and this trend was independent from the setting of κ parameter (red diamonds 

in Figs. 6A and 6B). The highest success rates were 96% and 84% in the analyses of the 

largest κ_2.0 data and the largest κ_0.2 data, respectively. In GG98 analyses of the two 

data simulated with two different κ values, the success rates were similarly improved by 

increasing data size (up to 95% and 98%, respectively; green squares in Figs. 6A and 

6B). These plots clearly suggest that data size can further enhance the performances of 

RY-coding and GG98 analyses against the LBA artifact from compositional 

heterogeneity in the data. 
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II-3-5 GG98 analysis versus RY-coding analysis 

Both RY-coding and GG98 analyses were robust against ΔAT% in the 

simulated data (Figs. 4 and 5), and their success rates displayed positive correlation with 

data size (Fig. 6). However, the success rates from GG98 analyses of κ_0.2 data series 

were constantly greater than the corresponding values from RY-coding analyses (Fig. 

6B). I statistically compared the success rates of 500 simulation trials from RY-coding 

and GG98 analyses for 500, 1,000, 2,500, and 5,000 nt-long κ_0.2 data by Pearson’s 

chi-square test. In all the comparisons, the null hypothesis of the success rate being the 

same between the RY-coding and GG98 analyses was rejected with extremely small p 

values (p = 5.2 × 10
-6

–2.2 × 10
-16

). On the other hand, in the analyses of κ_2.0 data 

series, the success rates from RY-coding analyses were almost equal or greater than 

those from GG98 analyses (Fig. 6A). These results clearly suggest that the performance 

of RY-coding analysis can be altered by the evolutionary process that generated the 

sequence data of interest (e.g., Ts/Tv ratio in this study). 

 

II-3-6 Analyses with more complex pattern of compositional heterogeneity 

I simulated an additional set of 4-taxon data with κ = 2.0 (1,000 nt-long; 500 

replicates). Unlike other simulated data analyzed in this study, neither frequencies of A 

and T nor those of C and G were set equal in these data. Slowly evolving Taxa 1 and 2 

possess equal frequencies of the four bases, while rapidly evolving Taxa 3 and 4 possess 

approximately 45%, 25%, 13%, and 17% of A, T, G, and C, respectively (ΔAT ≈20%).  

In this set of simulated data, purine (A and G) and pyrimidine (T and C) are 

equally contained in Taxa 1 and 2, while the ratio of purine to pyrimidine becomes 
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almost 6:4 in Taxa 3 and 4. Thus, this compositional heterogeneity can introduce model 

misspecification to RY-coding analysis based on the CF + Γ model assuming the 

stationarity of R/Y composition across a tree. Similarly, the complex base composition 

simulated in sequence data cannot be modeled by the GG98 model, which is a 

non-homogeneous version of the TN92 model [64] assuming the frequencies of A and T 

and those of C and G being equal. Indeed, the accuracies of RY-coding and GG98 

analyses on this set of simulation data were significantly lowered, dominantly 

recovering LBA tree (Fig. 7). 

In theory, NH models with more flexible assumption on base composition than 

GG98 model can improve the accuracy of the ML analysis. Therefore, I subjected the 

simulation data to the ML analysis with the nhHKY + Γ model, which allows the 

frequencies of three of the four bases to be independent. As anticipated, the accuracy of 

the ML analysis was greatly improved by applying the nhHKY + Γ model (Fig. 7). 

 

II-4 Discussion 

 The validities and limits of RY-coding and GG98 model have not been fully 

examined by simulation with a variety of experimental settings. In the present study, I 

simulated nt sequence data series bearing 11 different degrees of the heterogeneity of 

AT content across taxa, and subsequently subjected them to RY-coding-based and GG98 

model-based analyses. Overall, both RY-coding and GG98 model analyses showed 

superior performances than the control analyses with a homogeneous (HKY) model. 

The maximum ΔAT% examined here were ≈20%, albeit some real-world data bear a 

higher magnitude of the heterogeneity of AT content across lineages (e.g., ~37% in [33] 

and ~50% in [16]). Thus, severer artifacts than what I observed here may be prevalent in 
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real-world data analyses based on homogeneous models. However, results from my 

simulation provide strong evidence to support that the degree of the heterogeneity of AT 

content had little impact on the success rate of RY-coding or GG98 analysis (Figs. 4A 

and 4B).  

Nonetheless, it is noteworthy to mention that the performances of RY-coding 

analysis relative to that of GG98 analysis was largely altered by κ parameter setting in 

data simulation (Figs. 4 and 6). I noticed that the overall site pattern was markedly 

different between the recoded κ_2.0 and κ_0.2 data (Fig. 8A). It is also noteworthy that 

the estimated branch lengths, particularly those for Taxa 3 and 4, calculated from the 

recoded κ_0.2 data were much longer than the corresponding values calculated from the 

recoded κ_2.0 data (Fig. 8B). Thus, the two differences observed on the analyses of the 

recoded data series (Figs. 8A and 8B) likely led to the difference on the recovery rate of 

the correct tree (Figs. 4A and 4B). It is generally assumed that there is a universal bias 

in favor of transitions over transversions [59]. However, a previous work has revealed 

that such ‘universal’ rule cannot be applied to some real-world sequence [65], largely 

implying that the performance of RY-coding-based analysis can be affected by the Ts/Tv 

ratio and produce phylogenetic artifacts.  

In contrast, GG98 model is perhaps more efficient than RY-coding method, 

since the GG98 model-based analyses are supposed to be free from the potential issues 

in the data-recoding procedure mentioned above. However, I should point out that 

GG98 model may not adequately account for complex patterns of compositional 

heterogeneity among real-world sequences, in which the frequencies of A and T (or C 

and G) are unlikely equal. My experiment evidently demonstrated that the violation of 

the assumption on base composition introduced phylogenetic artifacts to the ML 



23 

analysis even with the GG98 model (Fig. 7). In such case, more complex and flexible 

NH models than the GG98 model (e.g., nhHKY model implemented in BppML [48]) 

may be useful for empirical phylogenetic analyses).  

Finally, the results presented in this simulation study clearly reinforce the 

importance of explicit incorporation of compositional heterogeneity in phylogenetic 

inferences. 
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III. PERFORMANCE EVALUATION FOR RY-CODING AND 

GG98 MODEL WITH A REAL-WORLD SEQUENCE DATASET 

 

III-1 Introduction 

 In my simulation study in chapter 2, both RY-coding and GG98 model certainly 

showed their ability to reconstruct accurate phylogenetic trees under the presence of 

various degrees of AT content heterogeneity. Nevertheless, my closed investigation also 

revealed the potential pitfalls of RY-coding and GG98 model. The performance of 

RY-coding analysis appeared to be largely affected by substitution processes that 

generated the data of interest (Figs. 4A, 4B, and 7). Likewise, the phylogenetic 

inferences with GG98 model may be misled when the pattern of base composition in the 

data violated the assumption of the model (Fig. 7). Such sensitiveness of the two 

methods, however, has not been fully assessed in my simulation due to the simple 

setting for the evolutionary process of molecular sequences. Therefore, for more 

practical evaluation for RY-coding and GG98 model, it is indispensable to re-assess 

their performance by analyzing real-world sequence dataset.  

 Here, I focused on a dataset used in Lau et al. (2009) [66], which comprises of 

protein-coding sequences encoded in 9 red algal or red alga-derived plastids, 17 green 

algal or green alga-derived plastids, and five residual plastids in apicomplexan parasites 

called as apicoplasts [67–69]. This dataset, henceforth designated as ‘Lau09 dataset,’ 

was used to infer the phylogenetic tree for investigating the origin of apicoplasts. The 

resultant tree topology strongly supported close relationship of apicoplasts with green 

algal or green alga-derived plastids [66], suggesting that apicoplasts were established 

through secondary endosymbiosis of a green alga; that is, the ‘green origin’ of 
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apicoplasts [70]. However, the green origin of apicoplasts supported by Lau et al 2009 

[66] was contradictory to the widely accepted notion regarding apicoplasts as a residual 

endosymbiotic red alga; that is, the ‘red origin’ of apicoplasts [71–73].  

I conjectured that above inconsistency in the origin of apicoplasts is attributed 

to the compositional bias in Lau09 dataset. Especially, the parallel shifts to extremely 

high AT content amongst sequences encoded in apicoplasts [74, 75] and particular green 

alga-derived plastids such as that of Euglena longa [76], can be the cause to mislead the 

phylogenetic inference into erroneously grouping them together. Importantly, extremely 

high AT content in protein-coding sequences in the plastid genomes of apicomplexa and 

E. longa can affect their codon usages, resulting in biased compositions of particular 

amino-acids coded by AT-rich codons; e.g., Phe, Ile, Lys, and Asn [74, 77, 78]. Thus, 

although the phylogenetic inferences in Lau et al. (2009) were based on amino-acid 

(AA) sequences and AA substitution models, they were still affected by the 

compositional bias stemming from the heterogeneity of AT content. Furthermore, 

extremely rapid substitution rates in apicoplasts and non-photosynthetic green-alga 

derived plastids, which were caused by their overall genome degeneration [74, 79], 

would make it more difficult to model substitution processes in Lau09 dataset. 

For the above reasons, I regarded Lau09 dataset as a good example for the 

re-assessment for the performance of RY-coding and GG98 model under the presence of 

extraordinary AT content bias and complicated substitution processes in real-world 

sequences. In this study, I applied the above two approaches, as well as the 

homogeneous substitution model (HKY), to the ML analysis of the nucleotide format of 

the Lau09 dataset. Results obtained in this study clearly showed that RY-coding and 

GG98 model could recover the tree supporting the red origin of apicoplasts. 
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Nevertheless, I also observed that the statistical support for the close relationship of 

apicoplasts with red algal or red alga-derived plastids was clearly higher in the GG98 

model-based analysis, compared with that in the RY-coding-based analysis.  

 

III-2 Materials and Methods 

III-2-1 Datasets 

 I retrieved the gene sequences encoding four ribosomal proteins (L14, L16, S3, 

and S11) and β subunit of RNA polymerase encoded in 9 red algal or red alga-derived 

plastids, 17 green algal or green alga-derived plastids, and five apicoplasts from 

GenBank database. The gene- and taxon-sampling in this study was a subset of Lau09 

dataset [66]. For each gene, I firstly made a multiple alignment based on AA sequences 

by using MAFFT v.7 [80]. Resultant AA alignments were inspected by eye and 

manually edited. Then, the corresponding nt sequences were carefully aligned by 

referring their putative AA alignment using PAL2NAL [81]. After the exclusion of 

unambiguously aligned positions, the five single-gene nt alignments were concatenated 

into a ‘5-gene’ alignment containing 31 taxa with 2,226 nt positions. Of note, the AT 

contents of sequences encoded in apicoplasts and green alga-derived plastid of E. longa 

are higher than other plastid sequences and produce significant compositional bias in 

the 5-gene alignment (Table 3 and Fig. 9A). 

 

III-2-2 Tree comparison analysis 

 I firstly conducted the ML tree inference from the 5-gene alignment and the 

bootstrap analysis based on 100 replicates with the HKY + Γ model using PhyML v.3.0 

[82]. The ML tree was selected from heuristic tree search based on the subtree pruning 
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and regrafting (SPR) method initiated from a parsimony tree. In the bootstrap analysis, a 

single tree search with SPR was performed per replicate. All parameters were estimated 

from the entire data. Consequently, the ML analysis placed five apicoplast sequences as 

the sister group to euglenids (E. longa and E. gracilis) within green algal/green 

alga-derived plastids (Fig. 9A), supporting the green origin of apicoplasts (left in Fig. 

9B). Nevertheless, as mentioned above, this result is contradictory to the widely 

accepted hypothesis of the ‘red origin’ of apicoplasts (right in Fig. 9B). I anticipated that 

the tree topology representing the green origin of apicoplasts was attributed to the 

homogeneous (HKY) model ignoring the heterogeneity of AT content across taxa in the 

5-gene alignment (Table. 3 and Fig. 9A). If the above conjecture was true, the ML 

analyses based on RY-coding and GG98 model would suppress the phylogenetic artifact 

and preferably select a tree topology representing the red origin of apicoplasts. 

In order to examine the above conjecture, I prepared test trees representing the 

two competing hypotheses for the origin of apicoplasts by modifying the ML tree shown 

in Fig. 9A. The apicoplast clade was regrafted to i) seven terminal branches assuming 

the close relationship of apicoplasts to the single red/green algal species or red/green 

alga-derived plastid (highlighted by circles in Fig. 9A), and ii) seven internal blanches 

leading to a well-supported clade, assuming the affinity of apicoplasts to a certain group 

of alga or plastids (highlighted by diamonds in Fig. 9A). Subsequently, the lnLs for the 

14 alternative trees (Fig. 10) were compared with that of the ML tree as described 

below.  

The lnLs of the ML and 14 alternative trees were firstly calculated with the 

HKY + Γ (homogeneous) model using PhyML. The same lnL calculation was repeated 

with the GG98 + Γ model by using eval_nh program implemented in NHML v.3.0 [49, 
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53]. The root position was fixed in the second comparison with the GG98 + Γ model 

(highlighted by a star in Fig. 9A). Then, I recoded the original 5-gene-alignment by 

RY-coding and subjected recoded data to the lnL calculation of the ML and alternative 

trees based on the CF + Γ model using PhyML. In the above three analyses, branch 

lengths of all tree topologies were optimized and model parameters were estimated from 

the entire alignment. 

 

III-2-3 Approximately unbiased test 

 Alternative positions of apicoplasts in the trees in Fig. 10 were examined by 

the approximately unbiased (AU) test [83] based on RY-coding and GG98 model. For 

Tree 0 through Tree 14, site-wise log-likelihoods (site-lnLs) were calculated based on 

the CF + Γ model with RY-recoded data using PhyML. The site-lnL data were then 

subjected to CONSEL v.0.2 with default parameter settings [84] in order to calculate the 

p value under the null hypothesis that the difference of the lnLs between the best tree 

and an alternative tree equals to 0. The same procedure was repeated based on the GG98 

+ Γ model. 

 

III-2-4 ML tree search and bootstrap analysis based on RY-coding and GG98 

model 

 In the ML analysis of RY-recoded data with the CF + Γ model, the ML tree was 

selected from heuristic tree search using SPR method. The tree search was initiated 

from Tree 9 in Fig. 10, which showed the highest lnL score in RY-coding-based tree 

comparison analysis. Whole model parameters were estimated from the data. After I 

obtained the ML tree, a bootstrap analysis was performed based on 100 bootstrap 
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replicates which were generated from original RY-recoded data. A single tree search 

with SPR was performed per replicate, starting from Tree 9 as mentioned above. I used 

PhyML for the ML tree search and the bootstrap analysis (MLBP analysis) based on 

RY-coding. The same process was repeated in the analysis with the GG98 + Γ model of 

the nt sequence data, except I added a new taxon, Thermosynechococcus elongates, 

which was retrieved from GenBank database as mentioned in III-2-1. The ML tree 

search from original data and each bootstrap replicate was initiated from Tree 9 in Fig. 

10, where T. elongates was added as an out-group (this is necessary for the tree search 

with SPR method based on rooted tree). I used shake_nh program in NHML for the 

MLBP analysis based on the GG98 + Γ model. 

 

III-3 Results 

III-3-1 Results from tree comparison analysis 

I subjected a real-world sequence dataset composed of five plastid-encoded 

genes, of which AT% varied from 56.2% to 84.59% amongst the taxa considered (Table 

3 and Fig. 9A), to the ML analysis based on the homogeneous (HKY + Γ) model, as 

well as the GG98 + Γ model and the CF + Γ model (with RY-recoded data). The ML 

analysis of the 5-gene alignment with the HKY + Γ model, which cannot take into 

account the compositional heterogeneity (ΔAT%) across a tree, placed the apicoplast 

clade within green algal/green alga-derived plastids representing the green origin of 

apicoplasts (Fig. 9A). Then, I investigated whether the analyses with RY-coding and 

GG98 model suppresses the artifact from AT content heterogeneity in the 5-gene 

alignment (Table 3 and Fig. 9A), by assessing the position of apicoplasts. If both two 

approaches appropriately tolerate the compositional heterogeneity in the data, a tree 



30 

representing the red origin of apicoplasts should be preferred over those representing the 

alternative hypotheses including the green origin of apicoplasts. 

 I examined the origin of apicoplasts by comparing the ML tree inferred from 

the HKY model-based analysis (Fig. 9A) and 14 alternative trees, which are identical to 

the ML tree except for the position of apicoplasts (Fig. 10). In the tree comparison 

analysis based on the HKY+ Γ model, the ML tree (Tree 0; Fig. 10) received the highest 

lnL score among trees subjected to this comparison, preferring the artifactual green 

origin of apicoplasts. In contrast, both RY-coding-based analysis (RY analysis) and 

GG98 model-based analysis (GG98 analysis) supported the red origin of the 

apicoplast—Tree 9 in Fig. 10, in which the apicoplast clade grouped with red 

alga-derived plastids of diatoms (Thalassiosira pseudonana and Odontella sinensis), 

received higher lnL score than any other trees representing the green origin of 

apicoplasts (Fig. 10). These results indicate that ML phylogenetic analyses based on 

RY-coding and GG98 model successfully avoided a phylogenetic artifact stemming 

from AT content heterogeneity in the data. Nevertheless, I could observe no significant 

difference on lnL scores between Tree 9 and Tree 0 in both RY and GG98 analyses. The 

AU test failed to reject the null hypothesis of the lnLs being same between Tree 9 and 

Tree 0—the p value was 0.372 in RY analysis and 0.309 in GG98 analysis. 

 

III-3-2 Results from MLBP analyses 

 In order to fully investigate the performance of RY-coding and GG98 model for 

reconstructing the accurate tree from the 5-gene-alignment, the ML tree search and 

bootstrap analysis with 100 replicates were performed for each method. Both RY-coding 

and GG98 analyses successfully placed the apicoplast clade within red algal/red 



31 

alga-derived plastids (Figs. 11A & 11B). However, I observed the difference on the 

bootstrap proportion (BP) value for the node uniting apicoplasts with red algal/red 

alga-derived plastids (highlighted by stars in Figs. 11A & 11B). The GG98 analysis 

supported the ‘apicoplasts + red algal/red alga-derived plastids’ clade with higher BP 

value (BP = 78; Fig. 11B) than the corresponding value from RY analysis (BP = 60; Fig. 

11A). The support value discussed here directly reflects the phylogenetic signal uniting 

apicoplasts and red algal/red alga-derive plastids rather than green algal/green 

alga-derive plastids. Therefore, it can be proposed that the GG98 analysis exhibited 

better resolution for the red origin of apicoplasts than RY-coding analysis. Intriguingly, I 

also found the difference on the phylogenetic position of apicoplasts between 

RY-coding and GG98 analyses. In the ML tree inferred from RY-coding analysis, the 

apicoplast clade was placed as the sister to the clade of diatoms (Fig. 11A), while the 

clade was placed within red algae in the ML tree inferred from GG98 analysis (Fig. 

11B). However, the grouping of apicoplasts neither with diatoms nor with red algae was 

supported by sufficiently high BP values (Figs 11A & 11B).  

 

III-4 Discussion 

Prior to this study, only a single study has applied both RY-coding and GG98 

model to the ML analysis [85]. Husník et al. (2011) [86] showed that the two methods 

successfully suppressed the artifact that was strongly attracted by the AT content bias in 

a real-world sequence data. However, it was still ambiguous how efficiently RY-coding 

and GG98 model-based analyses reconstruct the accurate phylogenetic relationships 

from the data under study, because the ‘true’ phylogenetic tree is unknown in real-world 

data analyses. Contrary to Husník et al. 2011 [86], I here directly investigated the 
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performance of the analyses with RY-coding and GG98 model based on the position of 

apicoplasts in the tree for plastid-encoded sequences, assuming the ‘true’ and the ‘false’ 

hypotheses for the origin of apicoplasts. 

In the 5-gene-alignment examined here, I observed remarkably high AT 

contents in sequences derived from five apicoplasts and the green alga-derived plastid in 

Euglena longa (AT = 73.9 ~ 84.6%; Table 3). The Student’s t-test supported the average 

AT content of 78.1% among these 6 sequences was significantly higher than that 

calculated from other 25 sequences in the 5-gene alignment (average AT = 63.04%; p = 

5.38 × 10
-5

). From the point of view of the red origin of apicoplasts [73], apicoplasts 

and the plastid in E. longa are distantly related to each other. However, as shown in my 

simulation, parallel shifts to extremely high AT% between distantly related lineages 

interrupt the accurate phylogenetic inference based on the homogeneous models. Indeed, 

the ML analysis using HKY model erroneously grouped these AT-rich sequences 

together and misled the artifactual green origin of apicoplasts (Fig. 9A). Of note, the 

topology of the ML tree shown in Fig 9A was consistent with the tree presented in Lau 

et al. (2009) [66], which was reconstructed from the amino-acid sequence data with a 

homogeneous amino-acid model. Thus, the compositional bias observed here cannot be 

mitigated by the translation from nucleotides (codons) to amino-acids, despite it has 

been considered to be an efficient approach to overcome the AT content bias in 

protein-coding sequence [86]. 

In contrast, both analyses with RY-coding and GG98 model properly selected 

the trees representing the red origin of apicoplasts (Figs. 10 and 11), demonstrating that 

these methods are robust enough against the compositional bias in the 5-gene-alignment. 

The maximum ΔAT% across taxa in the data reached to 28% (Table 3 and Fig. 9A). 
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Thus, a higher magnitude of the heterogeneity of AT content than that assumed in my 

simulation (see above) was tested in this analysis. Moreover, neither frequencies of A 

and T nor those of C and G were equal among all sequences in the 5-gene alignment 

(Table 3), representing the ‘complex base composition’ situation as assumed in my 

simulation (Fig. 7). In addition to such severe compositional bias, sequences derived 

from apicoplasts and plastid of parasitic green alga, Helicosporidium sp., exhibited 

extremely rapid substitution rates compared with any other sequences (Fig. 9A). This is 

due to the overall genome degeneration in these non-photosynthetic plastids [74, 79]. 

The rapid substitution rates would cause significant changes of substitution processes in 

these sequences, e.g., Ts/Tv ratio, and potentially affect the performance of the analyses 

of RY-coding (Fig. 4) and plausibly of GG98 model. Nonetheless, the results shown 

here revealed that both methods could retain their performance under the presence of 

the complicated evolutionary process of real-world sequences.  

On the other hand, I also found that there was the difference on the resolution 

for the red origin of apicoplasts between the analyses with RY-coding and GG98 model. 

From the results of the MLBP analyses, GG98 model-based analysis showed superior 

performance compared to RY-coding-based analysis for detecting phylogenetic signal 

for the close relationship between apicoplasts and red alga/red algal-derived plastids 

(Figs. 11A and 11B). This might be attributed, at least to some extent, to erasing the true 

phylogenetic signal in the RY-coding analysis by recoding original sequence data. 

Therefore, I can conclude again that GG98 model is supposed to be more efficient than 

RY-coding for analyzing real-world sequence datasets.   
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IV. COMPUTATIONAL STUDY FOR ACCELERATING 

PHYLOGENETC INFERENCES BASED ON GG98 MODEL 

 

IV-1 Introduction 

 The results obtained from the analyses of simulated and real-world sequence 

datasets support that GG98 model may be one of the most efficient approaches to 

ameliorate the ML phylogenetic inferences under the presence of strong AT content 

heterogeneity. On the other hand, the on-going accumulation of molecular sequence 

data driven by novel wet-lab techniques enables us to phylogenetically analyze large 

matrices composed of hundreds of genes derived from diverse organisms. Importantly, 

such ‘large-scale phylogenetic analyses’ can be significantly influenced by the  

heterogeneity of AT content across lineages [89–91], as large data size can enhance the 

artifactual impact of compositional heterogeneity in the homogeneous model-based 

analysis (Fig. 5). Therefore, it is strongly suggested that large-scale sequence datasets 

need to be analyzed by NH models. However, the phylogenetic inference based on 

GG98 model (and any other NH models) can be computationally much more intensive 

than those with homogeneous models. This is because the NH models require an 

enormous amount of model parameters to be optimized in a branch-by-branch fashion. 

In addition to this, the parameter optimization in the ML method involves the 

calculation of site-lnL for each position, implying that the computational time for the 

analyses with NH models increases as more taxa and positions are included in our 

sequence data. Moreover, a comprehensive phylogenetic analysis (i.e., the ML tree 

search and bootstrap analysis) requires computing a lot of alternative trees. 

Consequently, the analysis based on GG98 or other NH models with large-scale 
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sequence data is beyond the capacity of a single CPU core on the personal computer 

systems. 

 On the other hand, recent advance in computational sciences has enabled us to 

run phylogenetic analyses using many CPU cores in parallel. To date, several pioneering 

works implemented efficient parallel computing methods in phylogenetic codes: 

OpenMP [92], MPI [93, 94], PTHREADS [95] and the combination of them [96]. These 

techniques were applied to parallelize various stages of the phylogenetic analysis, from 

the lnL calculation within a given tree to the computation of multiple trees during the 

ML tree search, and to the bootstrap analysis with multiple replicates. Nevertheless, all 

of currently available phylogenetic codes, which are applied to novel parallel computing 

techniques, only implement homogeneous models. Hence, it is urgent to develop a new 

program incorporating efficient parallel computing methods with NH models. 

 Here, I applied two parallel computing methods, OpenMP and MPI, to 

efficiently accelerate the calculation of lnLs across alternative trees based on GG98 

model. The performance of the ‘HYBRID’ OpenMP/MPI code of NHML v3.0 [49] was 

benchmarked by analyzing simulated sequence datasets including ~130-taxon and 

~10,000 nt positions. Consequently, I archived suitable speeding-up of the phylogenetic 

inference with the parallel version of NHML up to 64 computational nodes and 1,024 

CPU cores on a supercomputer system, ‘T2K-Tsukuba’ 

(http://www.open-supercomputer.org/). This is de facto first computational effort to 

accelerate large-scale phylogenetic analyses with NH models. 
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IV-2 Materials and Methods 

IV-2-1 Newton-Raphson (NR) algorithm in NHML 

 In the phylogenetic inference with NHML, the lnL score for a given tree is 

computed by optimizing branch lengths and model parameters of GG98 model [49]. 

Based on the ML method, the optimization of these parameters is operated by 

calculating their maximum-likelihood estimate (MLE) values. For this procedure, the 

Newton-Raphson (NR) algorithm [97] is implemented in NHML. The outline of NR 

algorithm is shown in Fig. 12. 

 In NR algorithm, the initial lnL score for a given tree is calculated according to 

Felsenstein (1981) [5]. Randomly determined values for branch lengths and model 

parameters of GG98 model are used in this initial lnL calculation (Fig. 12–(i)). Then, 

MLEs for parameters to be optimized (ϴ) are computed by analytical method, in which 

the update of the lnL score and the values of ϴ are iterated as defined in the WHILE 

loop in Fig. 12–(ii). In this iteration, first, the 1
st
 and 2

nd
 derivatives of the lnL with 

respect to each single parameter (θ) are respectively computed by fixing the values for 

any other parameters, as described in the first FOR loop in Fig. 12–(iii). Derivatives for 

θ are calculated from each site-lnL so that the calculation is repeated for the number of 

nt positions, as described in the second FOR loop (Fig. 12–(iv)). Second, each 

parameter θ gets updated based on the 2
nd

 order Taylor approximation for the likelihood 

function (Fig. 12–(v)). Third, the lnL score for a given tree is re-calculated by reference 

to updated values for ϴ (Fig. 12–(vi)), and the difference between current and previous 

lnLs (henceforth designated as ΔlnL) is calculated (Fig. 12–(vii)). As shown in the test 

condition for the WHILE loop (Fig. 12–(ii)), the procedure mentioned above will be 

iterated unless ΔlnL is less than sufficiently small value ε (in this study I used ε = 0.1). 
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When the iteration is finished, the lnL obtained from the final iteration step will be 

returned as the maximum lnL score for a given tree. 

 

IV-2-2 Parallelization for NR algorithm 

 Upon the parallelization of NR algorithm, I focused on the two FOR loops for 

the calculation of derivatives (Fig. 12–(ii) and Fig. 12–(iii)). They occupy more than 

90% of the total computational cost for NR algorithm due to the large number of 

iteration—the number of iteration increases in proportion to the number of taxa, which 

determines the number of parameters for branch lengths and branch-specific AT 

contents, and the number of nt positions. Therefore, the parallelization of these loops is 

most effective way to accelerate the calculation of lnL with NHML. 

Here I applied two parallel computing methods, MPI and OpenMP, to the 

above two FOR loops. In this ‘HYBRID’ parallelization, the process-based 

parallelization by MPI was applied to the first FOR loop, while thread-based 

parallelization by OpenMP was applied to the second FOR loop. Thus, MPI processes 

are respectively assigned to optimize particular number of parameters in parallel, and 

each process controls multiple OpenMP threads to calculate site-wise derivatives for 

given parameters in parallel. Since each MPI process storages only the values of 

derivatives computed by itself, I applied the MPI_Allgatherv function to gather the 

data from each process and combine them into the complete data of derivatives for all 

parameters, which is then used for the update of parameters and lnL score (Fig. 12–(v) 

and Fig. 12–(iv)). In summary, the calculation of the lnL for a given tree based on N 

taxa and M positions is performed as described below. 
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1). The initial lnL is computed from randomly determined values for branch lengths 

and model parameters. 

2). P MPI processes are respectively assigned to the parallel optimization of below 

parameters; 2N-3 parameters for branch lengths, 2N-2 for equilibrium AT contents 

on branches, one for ancestral AT content at the root, one for the root location, and 

one for the Ts/Tv ratio. Thus, the single MPI process optimizes (4N-2)/P 

parameters. 

3). In each MPI process, Q OpenMP threads are respectively assigned to the parallel 

calculation of derivatives from site-lnLs of M positions. Thus, the single thread 

computes derivatives on M/Q positions. 

4). Before updating parameters (Fig. 12–(v)), all MPI processes call MPI_Allgatherv 

function to gather the values of derivatives calculated in other processes, combine 

them, and broadcast the complete data of 1
st
 and 2

nd
 derivatives for all parameters 

to each other. Then, all parameters and lnL score are synchronously updated in 

each process. 

5). Procedures 2)~4) will be iterated until the lnL score for a given tree would 

converge to the maximum value (Fig. 12–(ii)). 

 

IV-2-3 Parallelization for the computation of multiple trees 

 The HYBRID parallelization for NR algorithm mentioned above is purposed to 

accelerate the calculation of lnL for a single tree. On the other hand, it is also 

considerable computational problem that we have to calculate lnLs for multiple trees 

during the ML tree search. Therefore, I here applied the method to efficiently distribute 

computational resources into the computation of multiple trees. As shown in Fig. 13, all 
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MPI processes are primarily controlled by the single MPI communicator called as 

‘MPI_COMM_WORLD’. By dividing MPI_COMM_WORLD into several 

sub-communicators, which respectively control a partial group of MPI processes and 

OpenMP threads, I can assign them to the calculation of lnLs for different trees in 

parallel (Fig. 13). Of note, the lnL calculation for the single tree is also parallelized in 

each sub-communicator by the HYBRID code of NR algorithm (see IV-2-2). 

 

IV-2-4 Benchmark datasets and experimental design 

 For the performance evaluation of parallelized NHML, I simulated nt sequence 

datasets based on 66-taxon- and 130-taxon-model trees. First, I prepare the 66-taxon 

model tree as shown in Fig. 14A. The lengths of branches leading to taxa 1 and 2, and 

taxa 63 and 64 (highlighted by red), were set to 1.0, while those of any other branches 

were set to 0.05. The ancestral sequence was randomly generated at the root (R in Fig. 

14A), and each tip sequence was then simulated according to the given branch lengths. 

The substitution process was modeled by TN92 model [64], incorporating rate 

heterogeneity across sites approximated by a discrete gamma (Γ) distribution [58] with 

four categories. The κ parameter for Ts/Tv ratio [59] and the shape parameter α for a Γ 

distribution were set to 2.0 and 0.8. For the sequence simulation from the root to taxa 3–

62, the AT content was set to 50%. On the other hand, sequences for taxa 1 and 2 and 

taxa 63 and 64 were designed to be AT-rich (AT = 90%), by changing the parameter for 

AT content in TN92 model at the node uniting these taxa (highlighted by red 

arrowheads in Fig. 14A). Under the above setting, I generated two datasets of different 

size, 2,500 nt positions and 10,000 nt positions (henceforth designated as ‘small 

66-taxon dataset’ and ‘large 66-taxon dataset’).  
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Second, I prepared the 130-taxon model tree by bisecting the terminal branches 

on the 66-taxon model tree (diamonds in Fig. 14A). In this simulation, the lengths of 

branches leading to taxa 1 and 2 (generated by bisecting the branch leading to taxa 1 in 

Fig. 14A), and those leading to taxa 127 and 128 (generated by bisecting the branch 

leading to taxa 64 in Fig. 14A) were set to 1.0. On the other hand, any other branches 

were set to 0.05. All sequences were simulated following same model parameters as 

described above. Sequences of taxa 1 and 2 and taxa 127 and 128 evolved to be 

extremely AT-rich (AT = 90%) whereas those of any other taxa retained moderate level 

of AT content (AT = 50%). Consequently, I generated a sequence dataset of 2,500 

nucleotide positions (henceforth designated as the ‘130-taxon dataset’). I used 

INDELible v.1.03 [98] for the sequence simulation. 

Three simulation datasets were firstly subjected to the ML analyses based on 

the homogeneous GTR + Γ model [99] using RAxML v.8.0.0 [100]. Since the model 

cannot account the heterogeneity of AT content in the datasets into account, the 

artifactual trees which represent almost same topology as the model tree except 

erroneous grouping of AT-rich taxa were inferred from all datasets. For instance, taxa 63 

and 64 were inferred to be wrongly united to the clade of taxa 1 and 2 in the analyses of 

both small and large 66-taxon datasets (Fig. 14B). Hence, I prepared alternative trees by 

changing the positions of taxa 63 and 64 in the ML tree. The clade of taxa 63 and 64, 

surrounded by red-broken line in Fig. 14B, was re-grafted to 16 terminal branches and 8 

internal branches (stars in Fig. 14B) to generate 24 alternative trees. Note that these 

alternative trees include the ‘true’ tree, in which taxa 63 and 64 were placed as the sister 

group to taxa 61 and 62 (highlighted by a red star in Fig. 14B). Then, lnLs for 24 

alternative trees were computed by parallelized NHML based on small and large 
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66-taxon datasets. Finally, I compared 24 alternative trees with the ML tree in Fig. 14B 

based on their lnLs re-calculated by GG98 + Γ model.  

I also got the artifactual ML tree from the analyses of 130-taxon dataset with 

homogeneous GTR + Γ model, which exhibited the same topology as the 130-taxon 

model tree except that taxa 127 and 128 were erroneously grouped with taxa 1 and 2. 

Similar to the analyses of 66-taxon datasets, I prepared alternative trees by modifying 

the ML tree—the clade of taxa 127 and 128 were re-grafted to 32 terminal branches and 

16 internal branches to generate 48 alternative trees, including the true tree in which 

these taxa were placed as the sister group to taxa 125 and 126. The lnL scores for the 48 

alternative trees were also computed by parallelized NHML. 

 

IV-2-5 Measurement environment 

 Computation of alternative trees based on 66-taxon and 130-taxon datasets was 

performed on T2K-Tsukuba supercomputer system 

(http://www.open-supercomputer.org/). The key characteristics of T2K-Tsukuba are 

listed in Table. 4. The single computational node on T2K-Tsukuba is composed of 4 

sockets which respectively contain the quad-core CPU (AMD Opteron 8356, 2.30 GHz). 

In each node, one MPI process was assigned to one socket and 4 OpenMP threads, 

operated by the MPI process, were respectively allocated to 4 CPU cores. I used 

‘numactl –cpunodebind -localalloc’ options to conduct above HYBRID computing on 

T2K-Tsukuba. The total execution time for each benchmark run was measured by using 

~64 computational nodes (i.e., ~1,024 CPU cores). 
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IV-3 Results 

IV-3-1 Speeding-up by the HYBRID parallelization for NR algorithm 

 Benchmark runs for investigating the performance of the HYBRID code of NR 

algorithm were made for small and large 66-taxon datasets, and 130-taxon dataset. I 

used ~16 computational nodes (i.e., ~256 cores) of T2K-Tsukuba. Twenty-four and 48 

alternative trees were computed respectively for 66-taxon- and 130-taxon-datasets. Of 

note, in all data analyses, I confirmed that the ‘true’ tree that is the same topology as the 

model tree was inferred to have the highest lnL score among all alternative trees. Based 

on the GG98 + Γ model, the lnL score for the true tree was higher than that for the 

artifactual tree, which was inferred from the homogeneous model-based analysis. 

 Changes of the total execution time for computing all alternative trees are 

shown in Fig. 15. The total execution time for the small 66-taxon dataset decreased 

approximately in reverse proportion to the number of CPU cores, and the benchmark 

run finally finished in 290 seconds on the use of 256 CPU cores (Fig. 15A). The same 

tendency was also observed in the analyses of the large 66-taxon dataset (Fig. 15B) and 

the 130-taxon dataset (Fig. 15C), where benchmark runs finally finished in 1,115 

seconds and 1,150 seconds respectively. From the comparison of Figs. 15A and 15B, the 

scaling of the execution time was not significantly changed according to the number of 

nt positions, implying that OpenMP parallelization for the site-wise calculation of 

derivatives worked well regardless of the number of nt positions. Likewise, comparing 

Figs. 15B and 15C, it is also suggested that MPI parallelization successfully accelerated 

the parameter optimization regardless of the number of taxa. The results shown here 

indicate that the HYBRID parallelization largely improved the performance of the lnL 

calculation with NHML against variable scales of sequence dataset. 
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IV-3-2 Parallel efficiency of the HYBRID code of NR algorithm 

 The performance of the HYBRID code of NR algorithm was further inspected 

measuring the speeding-up ratios versus the number of CPU cores. As shown in Fig. 16, 

the HYBRID code showed good speeding-up up to 256 CPU cores in the analyses of all 

three sequence datasets. Nonetheless, the parallel efficiency (speeding-up per core) was 

gradually decreased as more CPU cores were used, and it finally dropped to 0.48 for 

small 66-taxon dataset, 0.56 for large 66-taxon dataset, and 0.65 for 130-taxon dataset 

(Fig. 16). 

 The drop in parallel efficiency was attributed to the overhead associated with 

MPI_Allgatherv communication, where each MPI process needs to gather the data of 

derivatives from other processes and then needs to broadcast the combined data to each 

other (see IV-2-2). In all three data analyses, the absolute time for MPI_Allgatherv 

communication was not significantly changed against the number of CPU cores 

(‘Comm time’ in Fig. 17), while the substantial time for the lnL calculation efficiently 

decreased (‘CPU time’ in Fig. 17). However, the occupancy of the Comm time in total 

execution time largely increased as more CPU cores (i.e., MPI processes) were used—it 

finally reached to 48.8% for small 66-taxon dataset (Fig. 17A), 43.1% for large 

66-taxon dataset (Fig. 17B), and 35.7% for 130-taxon dataset (Fig. 17C). This is 

because the more processes are involved in MPI_Allgatherv communication, the larger 

the overhead for sending and receiving data between processes are incurred. Thus, the 

performance of the HYBRID code of NR algorithm was primarily restricted by the 

number of MPI processes assigned to the computation of the single tree. 
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Intriguingly, it was also revealed that speeding-up and parallel efficiency in the 

analyses of the large 66-taxon dataset and the 130-taxon dataset were significantly 

larger than those in the analysis of the small 66-taxon dataset (Fig. 16). The better 

performance for larger-scale sequence datasets is likely resulted from efficient reduction 

of CPU time over the increase in the Comm time (Fig. 17).  

 

IV-3-3 Further speeding-up by the parallel computation of multiple trees 

 The performance of the parallel computation for multiple trees (see IV-2-3) was 

evaluated based on the 130-taxon dataset using ~1,024 CPU cores. I prepared three 

different schemes for partitioning MPI_COMM_WORLD into sub-communicators, 

which comprised of i) 16 CPU cores with 4 MPI processes, ii) 32 CPU cores with eight 

MPI processes, and iii) 64 CPU cores with 16 MPI processes. The lnL calculations for 

48 alternative trees were equally distributed to each sub-communicator. See Table 5 for 

detailed numbers of trees computed by individual sub-communicators according to 

three partition schemes. Note that each MPI process operates 4 OpenMP threads and the 

calculation of the lnL for a single tree was performed by the HYBRID code of NR 

algorithm. 

 On the use of 256 CPU cores, I observed clear speeding-up for all three 

partition schemes compared to the control run, where all MPI processes are 

simultaneously assigned to compute a same tree without partitioning 

MPI_COMM_WORLD (Fig. 18). As shown in Fig. 17, the cost for MPI_Allgatherv 

communication becomes larger as more processes are assigned to the single lnL 

calculation. The cost for the MPI communication in each sub-communicator, thus, could 

be efficiently reduced by assigning relatively small number of MPI processes. On the 



45 

other hand,  the total computational cost could also be decreased by the parallel 

computation of multiple trees using multiple, independently-working 

sub-communicators, resulting in the decrease of the total execution time under all 

partition schemes (Fig. 18). 

Moreover, the schemes ii) and iii) showed further speeding-up up to 512 and 

1,024 CPU cores respectively. Speeding-up ratios normalized by the run time on 256 

CPU cores kept significantly high value: 1.75 for scheme ii) on 512 cores and 3.27 for 

scheme iii) on 1,024 cores. Finally, the parallel computing methods for multiple trees 

proposed here enabled the analysis of the 130-taxon dataset to finish in just 293 seconds 

on 1,024 CPU cores (Fig. 18), which is 40.1 times faster than using 16 CPU cores based 

on only the HYBRID parallelization of NR algorithm (Fig. 15C).  

 

IV-4 Discussion 

 In this study, the phylogenetic inference with NHML was parallelized at 

multiple algorithmic levels. Fine- or medium-grained parallelization by OpenMP and 

MPI were applied to the calculation of the maximum lnL score for a given tree (IV-2-2), 

while coarse-grained parallelization by partitioning MPI_COMM_WORLD was applied 

to the computation of multiple trees (IV-2-3).  

To date, the first and the third parallelisms mentioned above have been 

generally applied to phylogenetic inferences with homogeneous models [92–96, 101]. 

However, the second parallelism has not been emphasized due to relatively small 

number of parameters to be optimized in homogeneous model-based analyses. In 

contrast, phylogenetic inferences with GG98 model (and other NH models) potentially 

need to optimize piles of model parameters. Especially, the computational cost for 
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parameter optimization enormously increases when the sequence data of interest 

includes large number of taxa. Therefore, I here added a new MPI code for the parallel 

parameter optimization with the NH model, and combined it with an OpenMP code for 

the parallel computation of site-wise derivatives. As I expected, this HYBRID code 

showed good speeding-up against variable numbers of taxa and positions (Fig. 15 and 

16), suggesting that both MPI and OpenMP parallelization worked well. It is also 

important to note that speeding-up and parallel efficiency were increased as more taxa 

and/or positions are included in the data (Fig. 16). Therefore, I can conclude that the 

HYBRID code of NHML can be well suited for the analyses of larger-scale sequence 

datasets. 

 Nevertheless, I also found that there was a limit of the HYBRID parallelization 

on the computation of a single tree. The parallel efficiency gradually decreased as more 

CPU cores were used in all three data analyses, and dropped to less than 0.5 in the 

analysis of the smallest dataset (Fig. 16). As a rule of thumb, parallelized codes are not 

able to work effective when the parallel efficiency becomes less than 0.5. The drop in 

parallel efficiency observed here was attributed to the rise of the cost for the 

communication among MPI processes (Fig. 17), implying that it’s not efficient to 

concentrate too much MPI processes at the computation of a single tree.  

To keep efficient speeding-up on larger number of CPU cores and MPI 

processes, I here applied an upper level of parallelism in which MPI processes were 

partitioned into several small groups and allocated respectively to the computation of 

different trees. This coarse-grained parallelization showed further improvement for the 

speeding-up with various partition schemes (Fig. 18). Although I computed just 48 trees 

here, the parallelization proposed in this study can be expanded to compute larger 
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number of trees, by adjusting the size and the number of sub-communicators generated 

from MPI_COMM_WORLD. Thus, the heuristic ML tree search with NHML, which is 

performed by SPR method [49], can be efficiently parallelized by using this method. In 

conclusion, parallel version of NHML developed in the present study clearly showed 

well suited performance to accelerate ML phylogenetic inferences with GG98 model 

using more than one thousand CPU cores on a current high-performance computer 

system. 

 The HYBRID parallel computing methods proposed here can be applied to 

more flexible NH models [48], as they use NR algorithm for the lnL calculation. 

Moreover, the bootstrap analysis with NH models, which requires the highest 

computational cost, can also accelerated by expanding the partitioning schemes of MPI 

processes [93, 96], or by adding new parallel computing methods such as GPGPU 

computing [101–103] or many-core computing [104], to compute multiple bootstrap 

replicates in parallel. Finally, the computational effort demonstrated in this study can lay 

a base for future works to establish fast and accurate phylogenetic codes toward 

large-scale comprehensive phylogenetic analyses based on NH models.  
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V. GENERAL DISCUSSION 

 

V-1 Pros and Cons of RY-coding and GG98 model 

 RY-coding and GG98 model are underpinned by two different concepts for 

overcoming phylogenetic artifacts stemming from AT content heterogeneity—the 

former method aims to homogenize the compositional heterogeneity in sequence data 

by character recoding, while the latter method focuses on theoretically describing the 

non-homogeneous sequence evolution across a tree [49].  

Several experimental studies, including the present simulation and real-world 

analyses, have suggested that both two methods can efficiently ameliorate the ML 

analyses compared to the conventional method using homogeneous substitution models 

[44, 60, 51, 52, 89, 53, 54]. However, my comprehensive survey revealed that there are 

innegligible differences on the performance between RY-coding and GG98 model-based 

phylogenetic analyses. RY-coding can greatly improve the accuracy of tree inference in 

spite of its simplicity, i.e., the artifactual impact of the heterogeneity of AT content can 

be greatly mitigated by just recoding original sequence data. Nevertheless, we have to 

pay attention to the potential pitfalls of this method. First, the robustness of 

RY-coding-based analysis, at least to some extent, depends on the substitution process 

that generated the data of interest (e.g., Ts/Tv ratio). Furthermore, if compositional 

heterogeneity in the data cannot be completely homogenized by cahracter recoding, 

RY-coding-based analysis may mislead to the artifact (Chapter II). Second, the 

resolution for the true phylogenetic relationships in RY-coding-based analysis may be 

decreased compared to the analysis based on GG98 model because the true phylogenetic 

signal in the original sequence data can be erased by recoding (Chapter III).  
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 On the other hand, GG98 model is supposed to be free from the above issues in 

RY-coding. GG98 model can tolerate various degree of Ts/Tv ratio (Chapter II) and 

detect much more phylogenetic signal by analyzing original nt sequences (Chapter III). 

Although the robustness of GG98 model may be significantly depressed in case that the 

model assumption would be violated by complex compositional heterogeneity, we can 

resolve this problem by adding appropriate model parameters (Chapter II). Such 

flexibility of GG98 model (and other NH models) can be a strong evidence to suggest 

them as the most robust, and the most powerful approaches to reconstruct accurate 

phylogenetic trees from real-world sequence datasets bearing various degrees of 

compositional heterogeneity. However, the ML analyses based on GG98 model, as well 

as other NH models, can be computationally intense due to an enormous number of 

model parameters to be optimized, whereas we just need to optimize much less 

parameters by analyzing the simple binary data in RY-coding-based analyses. The 

computational time for the analyses with NH models can be reduced by implementing 

parallel computing methods as demonstrated in this study (Chapter IV), albeit we must 

require many computational resources (CPU cores) for the fast phylogenetic inference 

from large-scale sequence dataset. 

 Hence, we should be aware that there is a trade-off of the computational cost 

and the performance of phylogenetic inference between the data-recoding method and 

NH models. Present study strongly emphasizes the importance of using either or both of 

these methodologies properly according to the sequence data of interest. 
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V-2 How to infer accurate phylogenetic trees from sequence data with 

extraordinary compositional heterogeneity 

 In conclusion, I here propose a guideline for inferring the accurate phylogenetic 

tree under the presence of extraordinary base compositional bias, considering the merits 

and demerits of the data-recoding method and NH models discussed above.  

If the heterogeneity of base composition exists, the nt sequence data should 

principally be subjected to RY-coding in order to check whether the compositional 

heterogeneity, especially the heterogeneity of AT content, can be successfully 

homogenized by RY-coding. If so, then we can subject the recorded data to the ML tree 

search and the bootstrap analysis (MLBP analysis) with the CF model, followed by the 

comparison of inferred tree topology and corresponding BP values with those obtained 

from the original nt data using homogeneous nt models. We might see the significant 

change of tree topology including i) collapse of the relationships between taxa which 

were erroneously grouped due to the compositional heterogeneity, and ii) reposition of 

those taxa into potentially accurate phylogenetic positions. However, I strongly 

recommend running the MLBP analysis based on GG98 model as well, in case that the 

performance of RY-coding would be influenced by the substitution process in the data 

and/or by the loss of important phylogenetic information by recoding. The HYBRID 

version of NHML developed here can be utilized for this procedure. From the results, 

we may see the consistence or inconsistence of the tree topology and its BP support 

values between RY-coding and GG98 model-based analyses. Unfortunately, currently 

no method is available for comparing the appropriateness between the data-recoding 

method and NH models based on statistical criteria like AIC [105] or BIC [106], 

because the data analyzed in these methods are not identical (i.e., binary data and nt 
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sequence data). Therefore, it is necessary to develop a new procedure to statistically 

compare the two methods under different data types. 

 I have to anticipate the case that a quite complicated heterogeneity of base 

composition is exhibited by the sequence data of interest; thus, the compositions of four 

bases are not similar within sequence, and even among sequences. In such case, any 

data-recoding methods that convert four bases into two-state characters would not work 

well because they are not capable of homogenizing the compositional heterogeneity in 

the data. It is strongly recommended to apply an appropriate NH model for describing 

the substitution process that generated the observed compositional heterogeneity among 

taxa. At the same time, statistical selection of the most appropriate NH model for the 

data of interest is necessary to avoid over-fitting (over-parameterization) which causes 

increase of computational time and statistical error for parameter optimization. Hence, 

advanced programs for model selection, such as testnh program implemented in Bio++ 

package [107], are indispensable before applying NH models to phylogenetic analyses. 

 It is also supposed to be efficient to use amino-acid data for protein-coding 

sequences, as the translation from nucleotides to amino-acids can cancel the 

compositional bias at 3
rd

 codon positions [86]. Importantly, the data-recoding method 

and NH models can be applied to the analyses of amino-acid sequences in a similar way 

with nt sequences [48, 108]. It enables us to expect that the ML phylogenetic analyses 

based on amino-acid sequences which are still suffered from compositional 

heterogeneity even after the translation, as seen in the data used in Lau et al. (2009) [66], 

would be improved by applying the data-recoding method and NH models. However, 

the basic properties of the above methods are still unknown since no simulation studies, 

as well as experimental real-world analyses, are currently available. Furthermore, NH 
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models for amino-acid sequences are significantly difficult to compute due to a pile of 

model parameters for describing amino-acid substitution process. Finally, future 

assessment and computational challenge would help us to advance our knowledge and 

techniques for inferring the most accurate phylogenetic trees from diverse empirical 

sequence datasets, which bear a variety of compositional heterogeneity. 
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Table 1. Settings for the base frequencies applied to the terminal branches leading to 

Taxa 3 and 4 in the sequence generation (1
st
, 2

nd
, 4

th
, and 5

th
 columns), and the average 

AT content (AT%) in the resultant Taxa 3 and 4 sequences (3
rd

 and 6
th

 columns). 

Ts/Tv ratio (κ) = 2.0 Ts/Tv ratio (κ) = 0.2 

Settings of base 

frequencies in data 

simulation (%) 

Average AT% 

achieved in 500 

replicates (%) 

(mean ± 2*SD) 

Settings of base 

frequencies in data 

simulation (%) 

Average AT% 

achieved in 500 

replicates (%) 

(mean ± 2*SD) A & T G & C A & T G & C 

25.0 25.0 50.0 ± 2.5 25.0 25.0 50.0 ± 2.7  

26.5 23.5 51.7 ± 2.5 27.0 23.0 51.9 ± 2.6  

28.0 22.0 53.4 ± 2.6 29.0 21.0 53.8 ± 2.6  

29.5 20.5 55.1 ± 2.5 31.0 19.0 55.8 ± 2.5  

31.0 19.0 56.8 ± 2.6 33.0 17.0 57.7 ± 2.7  

32.5 17.5 58.6 ± 2.4 35.0 15.0 59.7 ± 2.6  

34.0 16.0 60.5 ± 2.5 37.0 13.0 61.9 ± 2.7  

35.5 14.5 62.4 ± 2.4 39.0 11.0 64.1 ± 2.6  

37.0 13.0 64.5 ± 2.4 41.0 9.0 66.5 ± 2.6  

38.5 11.5 66.7 ± 2.6 43.0 7.0 69.4 ± 2.4  

40.0 10.0 69.2 ± 2.4 45.0 5.0 72.7 ± 2.4  
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Table 2. Settings for the base frequencies applied to the terminal branches leading to 

Taxa 3 and 4 in sequence generation (1
st
, 2

nd
, 4

th
, and 5

th
 columns), and the average 

value of the difference of purine (R) between Taxa 1 and 2, and Taxa 3 and 4 in 

RY-recoded sequences (ΔR%; 3
rd

 and 6
th

 columns). 

Ts/Tv ratio (κ) = 2.0 Ts/Tv ratio (κ) = 0.2 

Settings of base 
frequencies in data 
simulation (%) 

Average ΔR in 500 
replicates (%) 
(mean ± 2*SD) 

Settings of base 
frequencies in data 
simulation (%) 

Average ΔR in 500 
replicates (%) 
(mean ± 2*SD) 

A & T G & C A & T G & C 

25.0 25.0 1.99 ± 0.6 25.0 25.0 1.99 ± 0.6  

26.5 23.5 1.99 ± 0.6 27.0 23.0 2.01 ± 0.7  

28.0 22.0 1.99 ± 0.6 29.0 21.0 1.99 ± 0.6  

29.5 20.5 2.00 ± 0.6 31.0 19.0 1.99 ± 0.6  

31.0 19.0 1.99 ± 0.6 33.0 17.0 1.99 ± 0.6  

32.5 17.5 2.00 ± 0.6 35.0 15.0 1.99 ± 0.6  

34.0 16.0 2.01 ± 0.6 37.0 13.0 1.98 ± 0.6  

35.5 14.5 2.02 ± 0.6 39.0 11.0 1.97 ± 0.6  

37.0 13.0 2.00 ± 0.6 41.0 9.0 1.98 ± 0.6  

38.5 11.5 2.00 ± 0.6 43.0 7.0 1.97 ± 0.6  

40.0 10.0 2.00 ± 0.7 45.0 5.0 1.98 ± 0.6 
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Table 3. The heterogeneity of base composition and AT content across taxa in the 

5-gene alignment. 

Taxon name A (%) T (%) G (%) C (%) A+T (%) 

Babesia bovis 39.71  34.14  13.97  12.17  73.85  

Theileria parva 41.87  37.69  11.86  8.58  79.56  

Plasmodium falciparum 45.24  39.35  9.88  5.53  84.59  

Eimeria tenella 42.36  34.59  13.16  9.88  76.95  

Toxoplasma gondii 40.70  38.81  12.40  8.09  79.52  

Eunglena longa 42.86  31.04  15.14  10.96  73.90  

Euglena gracilis 33.29  33.60  20.35  12.76  66.89  

Oryza nivara 31.72  27.90  22.87  17.52  59.61  

Arabidopsis thaliana 31.45  28.48  23.14  16.94  59.93  

Anthoceros formosae 32.12  29.70  22.42  15.77  61.82  

Chaetosphaeridium globosum 34.82  31.45  19.86  13.88  66.26  

Mesostigma viride 33.29  31.13  20.85  14.74  64.42  

Chlorella vulgaris 29.96  30.01  21.61  18.42  59.97  

Helicosporidium sp. 35.27  34.41  16.85  13.48  69.68  

Bigelowiella natans 34.41  33.92  18.87  12.80  68.33  

Pseudenoclonium akinetum 30.86  31.85  21.29  15.99  62.71  

Oltmannsiellopsis viridis 30.14  30.77  21.11  17.97  60.92  

Scenedesmus obliqus 32.44  33.29  19.68  14.60  65.72  

Chlamydomonas reinhardtii 31.00  33.06  20.89  15.05  64.06  
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Table 3. The heterogeneity of base composition and AT content across taxa in the 

5-gene alignment. 

Stigeoclonium helvetiucum 32.08  31.40  21.79  14.74  63.48  

Leptosia terrestris 32.84  31.76  20.40  15.00  64.60  

Nephroselmis olivacea 27.94  28.26  23.59  20.22  56.20  

Thalassiosira pseudonana 33.74  31.00  19.90  15.36  64.74  

Odontella sinensis 31.72  30.77  20.98  16.53  62.49  

Rhodomonas salina 33.65  27.22  22.15  16.98  60.87  

Guillardia theta 33.96  29.16  20.71  16.17  63.12  

Cyanidium caldarium 33.51  29.34  21.56  15.59  62.85  

Cyanidioschyzon merrolae 29.96  30.55  22.87  16.62  60.51  

Porphyra purpurea 31.99  29.38  22.24  16.40  61.37  

Gracilaria tennuistipitata 35.09  29.20  20.76  14.96  64.29  

Emiliania huxleyi 31.81  29.52  21.79  16.89  61.32  
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Table 4. Specification of the performance measurement environment on T2K-Tsukuba 

supercomputer system. 

CPU Quad-core AMD Opteron 8356 (2.30GHz) per socket 

(4 sockets / node) 

Memory DDR2, 667MHz, 2GB x 16 = 32GB per node 

Network Infiniband 4xDDR, Mellanox ConectX x 4 

Compiler GCC 4.6.4 

MPI Library MVAPICH2 v.1.7 
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Table 5. Number of trees computed in each sub-communicator in each partition scheme. 

48 alternative trees to be computed for 130-taxon dataset were equally distributed to 

sub-communicators, where 4, 8, and 16 MPI processes were respectively allocated 

according to three different partition schemes for MPI_COMM_WORLD. 

 Number of CPU cores 

Partition schemes 256 512 1024 

4 processes / sub-comm 3   

8 processes / sub-comm 6 3  

16 processes / sub-comm 12 6 3 
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Fig. 1. A Four-taxon tree for showing the calculation of likelihood. The tree is 

composed of four external branches, t1–t4, and one internal branches, t5. Bases observed 

at extant taxa, taxon 1–4, are represented as p, q, r, s, while those at internal nodes are 

defined as i and j. 
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Fig. 2. Four-taxon trees considered in this study. (A) A model tree for sequence 

simulation. The lengths of the terminal branches leading to Taxa 3 and 4 were set as 

0.800, while those of the rest of branches in the tree were set as 0.025. In this figure, the 

branch lengths were not correctly scaled for readers’ convenience. Firstly, random 

sequences with AT content of ~50% were generated at the root (R). Subsequently, Taxa 

1–4 sequences were simulated based on the given ‘root’ sequence, branch lengths, and 

model parameters. The parameters for discrete gamma (Γ) distribution and Ts/Tv ratio 

were fixed across a tree. The frequencies for A, C, G, and T were set to equal from the 

root to the terminal branches leading to Taxa 1 and 2, while unequal frequencies for the 

four bases were applied to the terminal branches leading to Taxa 3 and 4. The 

parameters for the base frequencies applied to the branches leading to Taxa 3 and 4 are 

shown in Table 1. (B) Possible tree topologies from the 4-taxon simiulated data. Branch 

lengths are not scaled. 
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Fig. 3. Impact of the branch lengths on the recovery ratio of the correct tree in the 

maximum-likelihood analysis with HKY + Γ model. I simulated 1,000 nucleotide-long 

sequence data with the difference of AT content across taxa of ≈20% and Ts/Tv ratio (κ) 

of 2.0 based on the 4-taxon model tree. 40 x 40 combinations of branch lengths of a and 

b of the model tree were examined. For each combination, I analyzed 100 replicates. 

The color of each cell in the matrix indicates the success rate. 
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Fig. 4. Impacts of the difference in AT content across taxa (ΔAT) and Ts/Tv ratio (κ) on 

the recovery rate of the correct tree. (A) Analysis of 4-taxon data simulated with κ = 2.0. 

I prepared 11 sets of 500 replicates of 1000 nt-long sequence data simulated with 

different ΔAT%. The simulated data were subjected to the ML analyses with the HKY + 

Γ model (HKY; black circles) and the GG98 + Γ model (GG98; green squares). I also 

recoded the simulated data (comprising four nt characters, A, C, G, and T) into binary 

characters, purine (R; A or G) and pyrimidine (Y; T or C), and then subjected the 

recoded data to the ML analysis with the CF + Γ model (RY; red diamonds). (B) 

Analysis of 4-taxon data simulated with κ = 0.2. The details are same as described in 

(A), except κ was set as 0.2. (C) Analysis of 4-taxon data simulated with five different κ 

values. I prepared five sets of 500 replicates of 1000 nt-long sequence data simulated 

with a fixed ΔAT of ≈20%, but κ of 0.2, 0.5, 1.0, 1.5, or 2.0. 
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Fig. 5. Impact of the difference in AT content (ΔAT%) across tree on the recovery rate 

of ‘LBA’ tree, in which rapidly-evolving Taxa 3 and 4 group together (see Fig. 1B). The 

details of these figures are same as those in Fig. 2, except I plotted the recovery rates of 

LBA tree here. 
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Fig. 6. Impact of data size on the recovery rate of the correct tree. (A) I simulated four 

sets of sequence data with different sizes (500, 1000, 2500, and 5000 nt-long) with AT 

content across a tree of ≈20% and Ts/Tv ratio (κ) of 2.0. Five hundred replicates were 

simulated for each data point. The simulated data were subjected to the ML analyses 

with the HKY + Γ model (HKY; black circles) and the GG98 + Γ model (GG98; green 

squares). I also recoded the simulated data (comprising four nt characters, A, C, G, and 

T) into binary characters, purine (R) and pyrimidine (Y), and then subjected the recoded 

data to the ML analysis with the CF + Γ model (RY; red diamonds). (B) The details are 

same as described in (A), but the sequence data were simulated with κ = 0.2. 
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Fig. 7. Impact of complex base composition on the ML analyses with RY-coding and 

NH models. We simulated 1000 nt sequence data with AT content across a tree of ≈20% 

and Ts/Tv ratio (κ) of 2.0. Five hundred replicates were generated. The frequencies for 

A, C, G, and T were set equal in Taxa 1 and 2, while unequal base composition was 

applied to Taxa 3 and 4 (A ≈ 45%, T ≈ 25%, G ≈ 13%, C ≈ 17%). This set of simulated 

data was subjected to three different ML analyses—(i) ‘RY-coding,’ the ML analysis of 

the recoded data with the CF + Γ model; (ii) ‘GG98,’ the ML analysis with the GG98 + 

Γ model; (iii) ‘nhHKY,’ the ML analysis of the non-homogeneous HKY + Γ model. The 

recovery of the correct and ‘LBA’ tree (see Fig. 1B) are shown as closed and open bars, 

respectively. 
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Fig. 8. Impact of Ts/Tv ratio (κ) in the data simulation on the ML analyses of the 

RY-recoded data. (A) Difference in site pattern between the sequence data simulated 

with κ of 2.0 and those simulated with κ of 0.2 (shown as open and closed bars, 

respectively). I simulated a 50,000 nt-long simulated data, and recoded it into binary 

characters, purine (R) and pyrimidine (Y), and extracted the site pattern. (B) Lengths of 

the terminal branches leading to Taxa 3 and 4 estimated from the recoded data simulated 

with κ = 2.0 (left) and 0.2 (right). One thousand nt-long sequence data (500 replicates) 

were simulated and recoded into R and Y. I optimized the branch lengths of the correct 

tree, in which rapidly evolving Taxa 3 and 4 are separated (see Fig. 2). Note that no 

‘correct’ branch length is available for the results from RY-coding analysis, as the 

sequence data were not simulated as binary characters. 
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Fig. 9. The ML tree from the 5-gene alignment with the homogeneous (HKY) model 

and two competing hypotheses for the origin of apicoplasts. (A) The ML tree inferred 

from the 5-gene alignment with the HKY + Γ (homogeneous) model. The subtree for 

red algal/red alga-derived plastids is in orange, while that for green algal/green 

alga-derived plastids is in green. The subtree for the residual plastids in apicomplexan 

parasites (apicoplasts) is in red. Green alga- and red alga-derived plastids are 

highlighted by green and orange arrowheads, respectively. In this topology, the 

apicoplast clade is placed within green algal/green alga-derived plastids, representing 

the ‘green origin’ of apicoplasts. For each taxon, the AT content (AT%) is shown on the 

right side. Bootstrap proportion larger than 50% is shown for each node. (B) 

Hypothetical origin of apicoplasts. The scheme on the left represents the ‘green origin’ 

of apicoplasts—apicoplasts are the descendants of an endosymbiotic green alga. On the 

other hand, the ‘red origin’ of apicoplasts schematically shown on the right assumes that 

apicoplasts were derived from an endosymbiotic red alga. Abbreviations: N, host 

nucleus; n, endosymbiotic algal nucleus; P, plastid; Ap, apicoplast. Note that the nucleus 

of the endosymbiotic alga (n) has disappeared in modern apicomplexan cells. 
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Fig. 10. Tree lnL comparison. The phylogram (left) is created from the tree topology 

shown in Fig. 9A by pruning the entire apicoplast clade. The apicoplast clade was then 

re-grafted to positions labeled 0–14 to generate the trees assessed in this comparison. 

For instance, Trees 0 and 9 were generated by re-grafting the apicoplast clade to the 

branch leading to the clade of the green alga-derived plastids in two euglenids and that 

leading to the clade of the red alga-derived plastids in two diatoms, respectively. The 

root for the lnL calculation based on GG98 model is shown as ‘R.’ The table on the right 

provides the lnL value of the best tree among the 15 test trees, and the differences in lnL 

between the best tree and each of other trees. As shown in the second column (labeled 

as ‘Apicoplast origin’), Trees 0–8 and 9–14 represent the ‘green origin’ and ‘red origin’ 

of apicoplasts, respectively. The values calculated with the HKY + Γ (homogeneous) 

model are listed in the third column (labeled as HKY), while those calculated with the 

CF + Γ model based on RY-recoded data are listed in the fourth column (labeled as RY), 

and lnL scores caluculated from the GG98 + Γ (non-homogeneous) model are listed in 

the fifth column (labeled as GG98). 
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Fig. 11. Results from the MLBP analyses incorporating RY-coding and GG98 model. 

(A) The ML tree inferred from the CF + Γ model with RY-recoded data using PhyML. 

(B) The ML tree inferred from the GG98 + Γ model with nt sequence data using the 

shake_nh program in NHML. Details are same as described in Fig. 9A. 
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Fig. 12. Newton-Raphson algorithm for the calculation of the maximum lnL score for a 

given tree. Pseudo-code indicates each step (i~viii) to calculate the maximum-likelihood 

estimates of branch lengths and model parameters. The bold- and italic-sentences 

represent control statements in the program; WHILE means the loop in which processes 

written between WHILE and ENDWHILE are repeated as long as the test condition is 

true; FOR means the loop in which processes written between FOR and ENDFOR are 

repeated in a range of specified numbers; RETURN means that the algorithm finishes 

outputting the result. 
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Fig. 13. The parallel computation scheme for multiple trees. The lnL scores for N 

alternative trees are calculated in parallel by partitioning MPI_COMM_WORLD into 

several sub-communicators, which control partial group of MPI processes and OpenMP 

threads respectively. Each sub-communicator is then assigned to compute the lnL score 

for different group of trees. 
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Fig. 14. The 66-taxon trees for benchmark analyses. (A). The model tree for sequence 

generation. The tree is shown as phylogram but lengths for black-colored branches are 

actually set to 0.05, while those for red-colored branches are set to 1.0. ‘R’ means the 

root position of the tree. Red arrowheads indicate the point to change the AT content 

from 50% to 90% during sequence simulation. Thus, sequences evolve following 

extremely high AT content and rapid substitution rates on the corresponding branches. 

Squares represent branches which would be bisected to generate the 130-taxon tree for 

(see IV-2-4). (B). The ML tree inferred from the homogeneous GTR + Γ model. This 

tree is then modified to generate 24 alternative trees by re-grafting the clade of taxa 63 

and 64 to alternative positions (highlighted by stars). Details are described in IV-2-4. 
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Fig. 15. Changes of the total execution time against the number of CPU cores in the 

analyses of (A) small and (B) large 66-taxon datasets, as well as in the analysis of (C) 

130-taxon dataset. Horizontal axes mean total execution time (s) for computing all trees 

based on 66-taxon and 130-taxon datasets, and vertical axes mean the number of CPU 

cores used in each run. 
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Fig. 16. Plots of speeding-up ratios against the numbers of CPU cores. Speeding-up 

ratios were measured up to on 256 CPU cores normalizing them by the run time on 16 

CPU cores. Each ratio is plotted for small and large 66-taxon datasets (blue circles and 

green diamonds respectively), as well as 130-taxon dataset (red squares). Black line 

represents ideal, linear speeding-up with parallel efficiency equal to 1.0. 
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Fig. 17. Breakdowns of the time for MPI_Allgatherv communication (henceforth 

designated as ‘Comm time’) and the substantial time for the lnL calculation (henceforth 

designated as ‘CPU time’). Comm time and CPU time against the number of CPU cores 

were measured in the analyses of (A) small and (B) large 66-taxon datasets, and (C) 

130-taxon dataset. 
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Fig. 18. Further speeding-up by the implementation of the parallel computation of 

multiple trees for the 130-taxon dataset. I applied three different partition schemes for 

MPI_COMM_WORLD. For each partition scheme, total execution time for computing 

48 alternative trees is shown as red, purple, and green bars. The total execution time for 

the control run, where all MPI processes were assigned to compute the same tree 

without partitioning MPI_COMM_WORLD, is shown as blue bar. 
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