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We develop a first-principles electron-transport simulator based on the Lippmann-Schwinger (LS) equation
within the framework of the real-space finite-difference scheme. In our fully real-space-based LS (grid LS)
method, the ratio expression technique for the scattering wave functions and the Green’s function elements of the
reference system is employed to avoid numerical collapse. Furthermore, we present analytical expressions and/or
prominent calculation procedures for the retarded Green’s function, which are utilized in the grid LS approach.
In order to demonstrate the performance of the grid LS method, we simulate the electron-transport properties
of the semiconductor-oxide interfaces sandwiched between semi-infinite jellium electrodes. The results confirm
that the leakage current through the (001)Si-SiO2 model becomes much larger when the dangling-bond state is
induced by a defect in the oxygen layer, while that through the (001)Ge-GeO2 model is insensitive to the dangling
bond state.
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I. INTRODUCTION

Electron-transport calculations are important tools to in-
vestigate and develop materials for new electronic devices.
Recently, to obtain more practical knowledge on the electron-
transport properties of nanoscale structures, long-range and
large-scale transport simulations have attracted much interest.
However, such simulations are a very hard task since huge
computational costs, growing with the system size, are
required. Therefore, it is important to develop an efficient
electron-transport simulator.

The Lippmann–Schwinger (LS) equation method proposed
by Lang et al. [1–3] is a popular method, which enables
us to obtain the scattering wave functions of nanoscale
structures sandwiched between electrodes by solving the
integral equation of the second-kind Fredholm equation. When
the reference system consists of only bare left and right
electrodes with an empty transition region, scattering wave
functions can be efficiently evaluated for a variety of structures
of nanoscale junctions set up in the transition region by using
the same reference Green’s function of the bare electrode
system, where computation of the reference Green’s function
has to be performed only once. Moreover, for a similar
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reason, the LS equation is utilized in the implementation of
self-consistent calculations for the convergence of electronic
states in infinitely open systems [4–8]. In the conventional LS
equation method, scattering wave functions are expressed in
the Laue representation; that is, the LS equation is solved
by using a two-dimensional plane-wave expansion in the
directions parallel to the electrode surface (lateral directions)
and a real-space discretization of the coordinate in the direction
perpendicular to that (longitudinal direction). In the LS
equation method, however, one may frequently encounter a
numerical difficulty such that a part of the Green’s function
expressed in a variable-separable form drastically varies due
to the appearance of evanescent waves exponentially growing
and decaying in the longitudinal direction. To overcome this
issue, in the previous study [8], we proposed the procedure of
the ratio expression for the Green’s function matrix elements
in the Laue representation as a remedy for avoiding numerical
collapse.

So far, we have developed several simulators to elucidate
the electronic properties of nanostructures based on the real-
space finite-difference (RSFD) approach [8–18], in which
the system is divided by equally spaced grid points, within
the framework of the density functional theory [19,20].
For electron-transport simulations, the RSFD method has
several advantages compared with the method of the Laue
representation from fundamental and practical points of view.
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First, the finite differentiation for the kinetic-energy operator
is treated on equal footing in all three directions. This avoids
numerical errors due to artificial anisotropy between the lateral
and the longitudinal directions at any grid spacing. Second,
the computational accuracy can be improved by employing
a higher order finite-difference formula. Third, in lateral
directions, isolated boundary conditions are available as well
as periodic ones, which enables us to treat electrodes as leads.
Furthermore, the algorithm of the RSFD method is suitable for
massively parallel computing [21].

In this paper, we present the fully real-space-based LS
method and the ratio expression technique for the Green’s
function of the reference system within the RSFD approach.
This is referred to as the grid LS method. To demonstrate the
performance of the grid LS method, we use it to investigate the
electron-transport properties of the (001)Si-SiO2 and (001)Ge-
GeO2 models connected to semi-infinite jellium electrodes. We
also estimate how the dangling bond (DB) caused by an oxygen
vacancy contributes to leakage currents across the interface
between the semiconductor and the oxide. The results indicate
that the leakage current attributed to the DB state in the Si-SiO2

model is much larger than that in the Ge-GeO2 model.
This paper is organized as follows. Section II gives details of

the computational scheme used to develop the grid LS method.
Section III presents a demonstration of our method, in which
we use the scheme for jellium electrode models to examine
the transport properties of Si-SiO2 and Ge-GeO2 models and
to reveal how the leakage current is influenced by the DB state
that arises due to an oxygen vacancy. Conclusions are given in
Sec. IV and mathematical details are described in Appendixes
A and B.

II. COMPUTATIONAL FORMALISM

We propose an efficient procedure to obtain the solution
of the Kohn-Sham equation for a system where the nanoscale
junction is sandwiched between semi-infinite electrodes within
the framework of the RSFD scheme. The effective potential is
close to the periodic bulk potentials, as it goes deeply inside
the left and right electrodes, so that the whole infinite system
can be appropriately divided into three parts: the left electrode,
the transition region, and the right electrode. The Hamiltonian
of the system, H , is defined by

H = −1

2
∇2 + v(r,r ′), (1)

with

v(r,r ′) = [vH(r) + vxc(r) + vl(r)]δ(r − r ′) + vnl(r,r ′), (2)

where vH(r) and vxc(r) are the Hartree and exchange-
correlation potentials, respectively, and vl(r) and vnl(r,r ′) are
the local and nonlocal parts of the atomic pseudopotentials,
respectively.

Assuming that the Hamiltonian in the transition region can
be decomposed into an unperturbed part H 0 and a perturbation
δv(r,r ′) = H − H 0, we rewrite the Kohn-Sham equation as

(E − H 0)ψ(r) =
∫ ∞

−∞
d r ′δv(r,r ′)ψ(r ′), (3)

where ψ(r) is the scattering wave function for an incident
wave coming from the left or right electrode with energy
E. The subscript 0 on the variables indicates that they are
evaluated in the unperturbed reference system. Here, δv(r,r ′)
is specified to be 0 and ψ(r) = ψ0(r) outside the transition
region by choosing the structures in each electrode region
of the unperturbed reference system that are the same as
those in the perturbed system. Once the retarded Green’s
function gr0

T (r,r ′; E) in the transition region associated with
the unperturbed part H 0 is known, Eq. (3) is put into the LS
equation in a form of the integral equation; i.e.,

ψ(r) = ψ0(r) +
∫ ∫

d r ′d r ′′gr0
T (r,r ′; E)δv(r ′,r ′′)ψ(r ′′),

(4)

with the unperturbed wave function ψ0(r). Equation (4)
provides a unified treatment of the Kohn-Sham equation and
the boundary conditions [1–8]. In the case where the incident
Bloch wave φin(r‖,z) propagates from deep inside the left
electrode, the boundary condition is

ψ(r‖,z)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φin(r‖,z) +
N∑

j=1

rjφ
ref
j (r‖,z) in the left electrode,

N∑
j=1

tjφ
tra
j (r‖,z) in the right electrode.

(5)

Here, φref
j (r‖,z) is a reflected wave that propagates and decays

into the left electrode, φtra
j (r‖,z) within the right electrode is

a transmitted wave, and rj and tj are unknown reflection and
transmission coefficients, respectively. The lateral (x and y)
and z directions are set to be parallel and perpendicular to the
electrode surface, respectively. The system is assumed to be
periodic in the lateral direction and infinite in the z direction.
The case of incident electrons coming from the right electrode
can be considered in the same manner.

In this paper, the LS equation is solved within the RSFD
scheme [10]. The RSFD approach enables us to treat arbitrary
boundary conditions and to calculate the atomic and electronic
structures with a high accuracy. The whole system is composed
of the transition region sandwiched between semi-infinite left
and right electrodes and is divided by grid points with an equal
spacing of hμ = Lμ/Nμ, where Lμ and Nμ are the length and
the number of grid points in the μ direction (μ = x, y, and z)
of the transition region, respectively. Here, we assume a two-
dimensional periodicity in the lateral directions and employ
a generalized z coordinate ζk instead of zk , which stands for
the group index of z coordinates within the closed interval
[z(k−1)Nf +1,zkNf

], where Nf is the number of x-y grid planes
involved in ζk (see Fig. 1); Nf corresponds to the order of the
finite-difference approximation for the kinetic energy operator
in the Kohn-Sham equation [22,23] and is chosen so as to
include the nonlocal region of pseudopotentials in the cases
of crystalline electrodes to obtain highly accurate results (see
Sec. II B).
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FIG. 1. Sketch of the relationship between z and ζ in the computational model in the case of Nf = 3. The system consists of the transition
region sandwiched between the left and the right semi-infinite crystalline electrodes. In the left electrode, the incident wave and the reflected
waves consisting of the propagating and evanescent ones are illustrated by �in(ζk) and �ref (ζk), respectively, while in the right electrode, the
transmitted waves composed of the propagating and decaying evanescent ones toward the right side are denoted �tra(ζk). Here, x(y) and z are
coordinates perpendicular and parallel to the nanoscale junction, respectively.

The LS equation is written in the discretized form as

�(ζk) = �0(ζk) +
m∑

l,l′=1

Gr0
T (ζk,ζl)δV (ζl,ζl′ )�(ζl′)

(k = 0,1, . . . ,m + 1), (6)

which is referred to as the grid LS equation, where
�(ζk)(�0(ζk)) is a set of the N (= Nx × Ny × Nf ) values of
the wave functions on the x–y planes at ζ = ζk in the perturbed
(unperturbed) system and Gr0

T (ζk,ζl ; E) is the discretized
retarded Green’s function in the unperturbed transition region.

For simplicity, the notations with respect to the energy E, the
lateral coordinates r‖,j , and the lateral Bloch wave vectors
within the first Brillouin zone, kB

‖ = (kB
x ,kB

y ), are ignored in
Eq. (6). Here, we assume that the perturbed Hamiltonian in the
transition region (ζ1 � ζk(l) � ζm) can be decomposed into an
unperturbed part H 0(ζk) and a perturbation δV (ζk,ζl), in which
δV (ζk,ζl) has nonzero elements only in the transition region,
by choosing the electrode regions to be exactly those in the
perturbed system, as well as in the case of the nondiscretized
treatment mentioned above. This discretized form within the
framework of the RSFD approach unifies the Kohn-Sham
equation and the scattering boundary conditions. The boundary
condition, Eq. (5), now reads as

�(ζk) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�in(ζk) +
N∑

j=1

rj�
ref
j (ζk) in the left electrode (k � 0),

N∑
j=1

tj�
tra
j (ζk) in the right electrode (k � m + 1).

(7)

The Hamiltonian matrix of the unperturbed reference
system, Ĥ 0, is taken to be a block-tridiagonal form constituted
of the N -dimensional block matrices, H 0(ζk). The block
matrix Gr0

T (ζk,ζl ; E), which is a component of the retarded
Green’s function matrix Ĝr0

T = (E − Ĥ 0)−1, is expressed in
terms of the scattering wave functions in a variable-separable
form as (see Appendix A)

Gr0
T (ζk,ζl ; E) =

⎧⎪⎪⎨
⎪⎪⎩

U 0
R(ζk)

(
U 0

R(ζl)
)−1

D0
l (k < l),

D0
l (k = l),

U 0
L(ζk)

(
U 0

L(ζl)
)−1

D0
l (k > l).

(8)

Here, U 0
R(ζk) [U 0

L(ζk)] is the N -dimensional matrix made up
of the solutions of the Kohn-Sham equation in the case of
electrons coming from the right (left) electrode in the reference

system; that is,

U 0
R(ζk) = (

�0
R,1(ζk),�0

R,2(ζk), . . . ,�0
R,N (ζk)

)
, (9)

U 0
L(ζk) = (

�0
L,1(ζk),�0

L,2(ζk), . . . ,�0
L,N (ζk)

)
, (10)

where the N -dimensional columnar vector �0
R,j (ζk) (�0

L,j (ζk))
denotes the scattering wave functions at ζk for the j th incident
wave �

0,in
R,j (�0,in

L,j ) incoming from deep inside the right (left)
electrode, where the incident wave is considered to include
an evanescent wave as well as an ordinary propagating wave;
more precisely, {�0,in

R,j } ({�0,in
L,j }) is taken to be a set of the N

generalized Bloch states consisting of leftward (rightward-)
-propagating Bloch waves and decaying evanescent waves
toward the left (right) side, which are the solutions of the
2N -dimensional generalized eigenvalue equation [9,10,18].

033301-3



EGAMI, IWASE, TSUKAMOTO, ONO, AND HIROSE PHYSICAL REVIEW E 92, 033301 (2015)

The matrix D0
k stands for the diagonal block-matrix element

of the retarded Green’s function matrix, Gr0
T (ζk,ζk; E), a

representation of which is derived in Appendix A as [see
Eq. (A10)]

D0
k = [−B0(ζk−1)†U 0

R(ζk−1)
(
U 0

R(ζk)
)−1 + A0(ζk)

−B0(ζk)U 0
L(ζk+1)

(
U 0

L(ζk)
)−1]−1

, (11)

with A0(ζk) ( − B0(ζk)) being the diagonal (off-diagonal)
block-matrix element of (E − Ĥ 0).

Since U 0
R(L)(ζk) includes the exponentially growing or decay-

ing evanescent waves, the calculation using Eq. (8) frequently
gives rise to serious numerical errors [8]. We provide a remedy
for this problem as follows.

Introducing the ratio matrices X0
k and Y 0

k at two successive
ζk points, which are defined as

X0
k ≡ U 0

R(ζk−1)
(
U 0

R(ζk)
)−1

, (12)

Y 0
k ≡ U 0

L(ζk+1)
(
U 0

L(ζk)
)−1

, (13)

respectively, we obtain the following (m + 2)–dimensional
block-matrix expression for the retarded Green’s function,
Eq. (8):

Ĝr0
T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0
0 X0

1D
0
1 X0

1X
0
2D

0
2 · · ·

⎛
⎝m+1∏

j=1

X0
j

⎞
⎠D0

m+1

Y 0
0 D0

0 D0
1 X0

2D
0
2 · · ·

⎛
⎝m+1∏

j=2

X0
j

⎞
⎠D0

m+1

...
...

...
. . .

...⎛
⎝ 0∏

j=m

Y 0
j

⎞
⎠D0

0

⎛
⎝ 1∏

j=m

Y 0
j

⎞
⎠D0

1

⎛
⎝ 2∏

j=m

Y 0
j

⎞
⎠D0

2 · · · D0
m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (14)

that is, we rewrite the block-matrix element of Ĝr0
T in Eq. (8)

as

Gr0
T (ζk,ζl ; E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ l∏

j=k+1

X0
j

⎞
⎠D0

l (k < l),

D0
l (k = l),⎛

⎝ l∏
j=k−1

Y 0
j

⎞
⎠D0

l (k > l),

(15)

and from Eqs. (11)–(13) the diagonal block-matrix element
D0

k reads as

D0
k = [ − B0(ζk−1)†X0

k + A0(ζk) − B0(ζk)Y 0
k

]−1
. (16)

In the following subsections (Secs. II A and II B), we report
efficient numerical calculation techniques for the ratio matrices
{X0

k} and {Y 0
k } without employing the matrices {U 0

R(ζk)}
and {U 0

L(ζk)}, which include evanescent waves explicitly.
Our previous study [8] verified that the introduction of a
ratio expression such as Eqs. (12)–(15) into the retarded
Green’s function enables us to avoid the numerical collapse
originating from the appearance of the rapidly growing and
decaying evanescent waves. By contrast, in LS simulations of

electron transport through long conductor systems using the
conventional Green’s function in a variable-separable form,
the numerical collapse is inevitable.

In the solving of Eq. (6) using an iterative method
such as the conjugate gradient method, the operation of∑

Gr0
T (ζk,ζl)δV (ζl,ζl′ )�(ζl′) in Eq. (6) is carried out as

follows:
m∑

l,l′=1

Gr0
T (ζk,ζl)δV (ζl,ζl′ )�(ζl′)

= � ′(ζk) + PL(ζk) + PR(ζk) (k = 0,1, . . . ,m + 1),

(17)

where

� ′(ζk) = D0
k

m∑
l=1

δV (ζk,ζl)�(ζl), (18)

PL(ζk) =
⎛
⎝ 0∏

j=k−1

Y 0
j

⎞
⎠� ′(ζ0) +

⎛
⎝ 1∏

j=k−1

Y 0
j

⎞
⎠� ′(ζ1)

+ · · · + Y 0
k−1�

′(ζk−1), (19)

PR(ζk) = X0
k+1�

′(ζk+1) + X0
k+1X

0
k+2�

′(ζk+2)

+ · · · +
⎛
⎝ m+1∏

j=k+1

X0
j

⎞
⎠� ′(ζm+1). (20)
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It is easily shown that the sequences {PL(ζk)} and {PR(ζk)} satisfy the following recursive relations:

PL(ζk) =
{

0 (k = 0,1),

Y 0
k−1(PL(ζk−1) + � ′(ζk−1)) (k = 2,3, . . . ,m + 1);

(21)

PR(ζk) =
{

0 (k = m + 1,m),

X0
k+1(PR(ζk+1) + � ′(ζk+1)) (k = m − 1, . . . ,1,0).

(22)

Here, we have used the fact that δV (ζk,ζl) = 0 outside the
transition region of ζ1 � ζk(l) � ζm. It should be emphasized
that since the elements of Ĝr0

T in Eq. (15) are no longer in a
variable-separable form, the amount of [(m + 2)N ]2 for each
multiplication is expected to be required; nevertheless, it is
reduced to the order of (m + 2)N2 by virtue of Eqs. (21) and
(22), which means that the present method does not suffer from
numerical collapse without increasing the computational cost.

A. Jellium electrodes

The case in which the electrodes are approximated by
structureless jellium models is treated. The jellium elec-
trode approximation has been successfully applied to the
interpretation of electron-transport properties with a lower

computational load [5,24–30]. A free electron system is chosen
as the unperturbed one with the Hamiltonian H 0, where a
completely flat potential is assumed, for simplicity. In this
case, all nonlocal parts of the pseudopotentials are contained in
the perturbation term and the retarded Green’s function in the
free electron system is required, which is more conveniently
described using zk instead of ζk . Therefore, any Nf can be
adopted to satisfy the grid LS procedure. In Appendix B, we
discuss the analytical expression of the Green’s function in
terms of zk in a general Nf case.

We here give details on the implementation of the an-
alytically expressed retarded Green’s function in the three-
dimensional central finite-difference (Nf =1) case, for exam-
ple, which is written as

Gr0
T (r‖,j ,zk,r‖,j ′ ,zl ; E) = h2

z

iN

Nx−1
2∑

nx=− Nx−1
2

Ny−1
2∑

ny=− Ny−1
2

exp[i(G‖,n + kB
‖ ) · (r‖,j − r‖,j ′ ) + iK1|zk − zl|]

sinK1hz

. (23)

Here,

G‖,n = (
Gnx

,Gny

) =
(

2π

hxNx

nx,
2π

hyNy

ny

)
, (24)

r‖,j = (xjx
,yjy

) are the lateral coordinates with jx(y) = 1,2, . . . ,Nx(y) [Nx(y) is chosen an odd integer for convenience], and

K1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

hz

cos−1
[
1 − h2

z

(
E − E

(Nf =1)
nx,ny

)]
. . . E

(Nf =1)
nx,ny

� E < E
(Nf =1)
nx,ny

+ 2

h2
z

,

i
1

hz

cosh−1 [1 − h2
z

(
E − E

(Nf =1)
nx,ny

)]
. . . E < E

(Nf =1)
nx,ny

,

1

hz

[
π + i cosh−1

[−1 + h2
z

(
E − E

(Nf =1)
nx,ny

)]]
. . . E

(Nf =1)
nx,ny

+ 2

h2
z

� E,

(25)

with

E
(Nf =1)
nx,ny

= 1

h2
x

[
1 − cos

(
Gnx

+ kB
x

)
hx

] + 1

h2
y

[
1 − cos

(
Gny

+ kB
y

)
hy

]
. (26)

In the derivation of Eqs. (23)–(26), we used Eqs. (B22) and (B23) and the extension of Eq. (B27) to the case of the three-
dimensional space.

Since D0
k defined by Eq. (15) is the diagonal block-matrix element of the retarded Green’s function Gr0

T (zk,zl ; E), the j th row
and j ′th column element (D0

k )j,j ′ is expressed as

(
D0

k

)
j,j ′ ≡ Gr0

T (r‖,j ,zk,r‖,j ′ ,zk; E) = h2
z

iN

Nx−1
2∑

nx=− Nx−1
2

Ny−1
2∑

ny=− Ny−1
2

exp[i(G‖,n + kB
‖ ) · (r‖,j − r‖,j ′ )]

1

sinK1hz

. (27)
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One can see from Eq. (27) that (D0
k )j,j ′ , and thus D0

k , is k independent, owing to the translation invariance in the z direction. On
the other hand, by Eq. (15), X0

k and Y 0
k are given by

X0
k = Gr0

T (zk−1,zk; E)
(
D0

k

)−1
, (28)

Y 0
k = Gr0

T (zk+1,zk; E)
(
D0

k

)−1
, (29)

and from Eq. (23), the j th row and j ′th column matrix element of Gr0
T (zk±1,zk; E) are described as(

Gr0
T (zk±1,zk; E)

)
j,j ′ ≡ Gr0

T (r‖,j ,zk±1,r‖,j ′ ,zk; E)

= h2
z

iN

Nx−1
2∑

nx=− Nx−1
2

Ny−1
2∑

ny=− Ny−1
2

exp[i(G‖,n + kB
‖ ) · (r‖,j − r‖,j ′ )]

1

sinK1hz

exp(iK1hz). (30)

This implies that X0
k and Y 0

k are also k independent and

X0
k = Y 0

k . (31)

After some calculations, (
X0

k

)
j,j ′ ≡ [

Gr0
T (zk−1,zk; E)

(
D0

k

)−1]
j,j ′

= 1

N

Nx−1
2∑

nx=− Nx−1
2

Ny−1
2∑

ny=− Ny−1
2

exp[i(G‖,n + kB
‖ ) · (r‖,j − r‖,j ′ )] exp(iK1hz) (32)

is obtained [31]. Hereafter, D0
k and X0

k are denoted D0 and X0, respectively, since they are k independent.
The products of the matrix D0 (X0) and vectors {f (r‖,j ,zk)|j = 1,2, . . . ,N} as required in the computations of Eqs. (18), (21),

and (22) can be easily carried out in the momentum space, since they are written in the convolution form of the two-dimensional
discrete Fourier transform. Owing to the orthogonality of the plane waves, the Fourier-transformed D0 and X0 are represented
as the diagonalized matrices; i.e.,

F[D0]n,n′ ≡ 1

N

∑
r‖,j

∑
r‖,j ′

exp[−i(G‖,n + kB
‖ ) · r‖,j + i(G‖,n′ + kB

‖ ) · r‖,j ′](D0)j,j ′

= −ih2
zδnn′

1

sin(K1hz)
, (33)

F[X0]n,n′ ≡ 1

N

∑
r‖,j

∑
r‖,j ′

exp[−i(G‖,n + kB
‖ ) · r‖,j + i(G‖,n′ + kB

‖ ) · r‖,j ′](X0)j,j ′

= δnn′ exp(iK1hz), (34)

respectively. Finally, one can obtain the matrix elements of the Fourier transform of the terms shown in Eqs. (18), (21), and (22)
as

F[� ′(zk)]n =
∑
n′

F[D0]n,n′F
[∑

l

δV (zk,zl)�(zl)

]
n′

, (35)

F[PL(zk)]n =

⎧⎪⎨
⎪⎩

0 (k = 0,1),∑
n′
F[X0]n,n′ (F[PL(zk−1)]n′ + F[� ′(zk−1)]n′) (k = 2,3, . . . ,m + 1),

(36)

F[PR(zk)]n =

⎧⎪⎨
⎪⎩

0 (k = m + 1,m),∑
n′
F[X0]n,n′ (F[PR(zk+1)]n′ + F[� ′(zk+1)]n′) (k = m − 1, . . . ,1,0),

(37)

respectively.

To calculate the product in Eq. (6), the computational
cost of O(Nin × N2

z × N2) is required, where Nin is the
number of incident waves. However, by introducing the
two-dimensional discrete fast Fourier transform algorithm,
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[001]

[010]

(a)

[001]

[010]

(b)

z

y

z

ya0 (= 5.43 [A]) a0 (= 5.65 [A])

FIG. 2. (Color online) Schematics of unit cells of the (a) Si-SiO2

and (b) Ge-GeO2 models. Dashed lines indicate the boundaries of the
cell. White spheres, H atoms; blue spheres, Si atoms; green spheres,
Ge atoms; and red spheres, O atoms.

the cost of the product shown in Eqs. (35)–(37) decreases
to O(Nin × Nz × N log N ), since the off-diagonal elements of
the Fourier-transformed matrices F[D0] and F[X0] are 0 as
seen in Eqs. (33) and (34). The Fourier transform of a columnar
vector and the inverse Fourier transform of F[D0] × F[fk]
and F[X0] × F[fk] are carried out at each zk point using the
fast Fourier transform algorithm. Here, F[fk] represents the
Fourier-transformed vector of {f (r‖,j ,zk)|j = 1,2, . . . ,N}.
Thus, the maximum order of the calculations is improved
from O(Nin × N2

z × N2) to O(Nin × Nz × N log N ). The
above-mentioned discussion of the central finite-difference
approximation can be straightforwardly extended to cases of
the higher order finite-difference approach.

B. Crystalline electrodes

A general case is discussed where a system with atomistic
crystalline electrodes is chosen as the unperturbed reference
system; one electrode is confronted with the other across

the vacuum region. In practice, the matching x-y planes
between the transition and the electrode regions are set to
be inside each electrode surface so that any effect of the
sandwiched structures on the potential of electrode regions
becomes negligible small. Here, the retarded Green’s function
is denoted in terms of ζk . Also, Nf is determined so as to
entirely cover the nonlocal regions of the pseudopotentials
extending across the matching planes.

The matrices X0
0 and Y 0

m+1 defined by Eqs. (12) and (13)
are described as

X0
0 ≡ U 0

R(ζ−1)
(
U 0

R(ζ0)
)−1 = (B0(ζ−1)†)−1	r0

L (ζ0),

(38)

Y 0
m+1 ≡ U 0

L(ζm+2)
(
U 0

L(ζm+1)
)−1 = (B0(ζm+1))−1	r0

R (ζm+1),

(39)

where
∑r0

L (ζ0) (
∑r0

R (ζm+1)) is the self-energy term defined on
the left (right-)-electrode surface and can be calculated using
the continued-fraction equation; for details of the derivation of
Eqs. (38) and (39) and computation of the self-energy terms,
see Refs. [10] and [18]. For the sake of comparison, we note
that UR(L)(ζk) defined by Eqs. (9) and (10) plays roles similar to
those of Qp(q)(ζk) of Eq. (15) in Ref. [18]. We also emphasize
that the accuracy of 	R(L)(ζk) is enhanced by making use of
the continued-fraction equation in a self-consistent manner, as
shown in Eqs. (16)–(18) in Ref. [18].

It should be noted that the terms {X0
k} can be sequentially

computed as

X0
1 = (

A0(ζ0) − B0(ζ−1)†X0
0

)−1
B0(ζ0),

X0
2 = (

A0(ζ1) − B0(ζ0)†X0
1

)−1
B0(ζ1),

X0
3 = (

A0(ζ2) − B0(ζ1)†X0
2

)−1
B0(ζ2), (40)

...

X0
m+1 = (

A0(ζm) − B0(ζm−1)†X0
m

)−1
B0(ζm),

[001]

[010]

(a)

[001]

[010]

(b)

z

y

z

y

FIG. 3. (Color online) Schematis of the (a) Si-SiO2 and (b) Ge-GeO2 models with an oxygen vacancy after geometrical optimization.
Dashed lines indicate the boundaries of supercells. Symbols are the same as in Fig. 2.
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which are easily derived from Eq. (A3), and similarly, the
iterative series of {Y 0

k } are obtainable from Eq. (A4) as

Y 0
m = (

A0(ζm+1) − B0(ζm+1)Y 0
m+1

)−1
B0(ζm)†,

Y 0
m−1 = (

A0(ζm) − B0(ζm)Y 0
m

)−1
B0(ζm−1)†,

Y 0
m−2 = (

A0(ζm−1) − B0(ζm−1)Y 0
m−1

)−1
B0(ζm−2)†,

...

Y 0
0 = (

A0(ζ1) − B0(ζ1)Y 0
1

)−1
B0(ζ0)†. (41)

The recursive relations Eqs. (40) and (41) allow us to
calculate all the matrix elements by a linear scaling operation
(order-N calculation procedure) at a limited computational
cost. It is also noted that, using Eqs. (40) and (41), X0

k and
Y 0

k are stably computed without involving error accumulation
since the errors due to the appearance of evanescent waves
are eliminated by introducing the ratios of these waves at
two successive grid points. Finally, the diagonal block-matrix
element D0

k is given by Eq. (16). Once D0
k , X0

k , and Y 0
k for any

k (0 � k � m + 1) are known, all of the matrix elements of
Ĝr0

T in Eq. (15) are determined, and the algorithm of Eqs. (21)
and (22) can be utilized.

III. APPLICATIONS

To demonstrate the performance of the grid LS method,
we examine the electron-transport properties of models of
semiconductor-insulator interfaces sandwiched between semi-
infinite jellium electrodes. Recently, the germanium-based
metal-oxide-semiconductor field-effect transistor has attracted
significant attention because the electronic band gap of
germanium (∼0.66 eV) is lower than that of silicon (∼1.12
eV), which allows for reduced operating voltages. In a highly
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FIG. 4. (Color online) Conductance of the Si-SiO2 and Ge-GeO2

models as functions of the incident electron energy measured from the
valence band maximum (VBM) of the substrates. The (red) circles and
black squares represent conductance spectra of the Si-SiO2 and Ge-
GeO2 models, respectively. The VBM and conduction band minimum
(CBM) of Si (Ge) substrate are indicated by dashed (dotted) vertical
lines.
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FIG. 5. (Color online) Conductance of the Si-SiO2 and Ge-GeO2

models as functions of the incident electron energy measured from
the valence band maximum (VBM) of the substrates. Symbols are the
same as in Fig. 4. The VBM and conduction band minimum (CBM)
of Si (Ge) substrate are indicated by dashed (dotted) vertical lines.

integrated circuit, it is known that a large leakage current is
induced by defects such as impurities and oxygen vacancies
in the thin gate oxide layer. So, the relationship between the
DB introduced by defects and the leakage current in Si-SiO2

interfaces has been extensively investigated [32–39], while the
role of the DB state in Ge-GeO2 interfaces is controversial.
One of the present authors (T.O.) has performed several
investigations on Ge-GeO2 interfaces [40–42]. In recent work,
the relationship between atomic configurations and electronic
structures of (001)Si-SiO2 and (001)Ge-GeO2 models with

[010]

[001]
z

y LOW HIGH

FIG. 6. (Color online) Contour plot of the charge-density distri-
bution of electrons flowing over the Si-SiO2 model with an incident
energy of VBM + 0.41 eV. Symbols are the same as in Fig. 2(a).
Here the charge density is integrated in the [100] (x) direction. Each
contour represents twice or half the density of adjacent contours; the
lowest contour is 1.97 × 10−4 electron/eV/Å2.
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DBs was explored using first-principles simulations within the
framework of the local density approximation (LDA) [43]. It
was found that the Si-DB state is located near the midgap of
the Si substrate corresponding to the Fermi level, while the
Ge-DB state lies near the top of the valence band which is 0.3
eV below the Fermi level [42].

To examine how DB states with different characteristics
affect leakage currents, we performed transport simulations
of electrons flowing across the (001)Si-SiO2 and (001)Ge-
GeO2 models. The magnitude of the leakage current flowing
through insulators is so small that it can be easily affected
by interactions between electrodes and interface models and
by the value of the energy band gap, which is underestimated
by the LDA calculation. Therefore, in this paper, we discuss
qualitatively the ratio of the leakage current between models
with and models without a defect.

Figure 2 illustrates a unit cell of each interface model.
In these models, the side lengths of the cell in the lateral
direction parallel to the interface for the Si-SiO2 (Ge-GeO2)
model were taken to be the experimental lattice constant of
bulk Si (Ge), a0 = 5.43(5.65) Å. The thicknesses of the SiO2

(GeO2) layer and the Si (Ge) substrate were 7.34 (7.25) and
7.18 (7.37) Å, respectively. In calculations for models with
an oxygen vacancy, we introduced the defect into a supercell
comprising 4 × 4 unit cells in the lateral direction (Fig. 3);
this is large enough to avoid interactions between defects in
neighboring cells. Two Si (Ge) DBs were generated near the
interface between the Si (Ge) substrate and the oxide layer
in one unit cell by removing a bridging oxygen atom in a
manner similar to that used in the previous study [42]. One
of the DBs is passivated by a hydrogen atom, while the other
remains with the Si (Ge) atom of the center back-bonded to two
neighboring Si (Ge) atoms and an oxygen atom [•Si ≡ Si2O
(•Ge ≡ Ge2O)]. For no-defect models, the unit cell of each
model, depicted in Fig. 2, was employed with 4 × 4 sampling
k points in the two-dimensional Brillouin zone for comparison
with models including defects.

We first optimized the atomic and electronic structures
of the models. First-principles calculations based on the
RSFD approach were performed in the manner described in
Ref. [42] with a grid spacing of 0.15 Å. The size of the supercell
in the [001] (z) direction was taken to be 5a0, including a
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FIG. 7. (Color online) Contour plots of the density of states (DOS) (left panels) and charge density of dangling-bond (DB) states (right
panels) for the (a) Si-SiO2 and (b) Ge-GeO2 models without electrodes. Arrows denote DOS peaks derived from DB states. Energies are
measured from the Fermi level EF , and the z coordinate of the atom with a DB is set to 0. In the right panels, the charge density is integrated
in the [100] (x) direction, and symbolsare the same as in Fig. 2. The coordinate in the z direction corresponds to that in the left panel. Each
contour represents twice or half the density of adjacent contours; the lowest contour is 2.56 × 10−2 electron/eV/Å (2.79 × 10−3 electron/Å2)
in the left (right) panels.
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large enough vacuum region, and the top and bottom layers of
the models were terminated by hydrogen atoms. As shown in
Fig. 3, which illustrates the relaxed configurations, the Si atom
with a DB is pulled down to the Si substrate, whereas the Ge
atom with a DB is slightly raised toward the oxide layer.

Next, we examined the leakage currents caused by in-
troducing oxygen vacancies into the models. Employing the
optimized effective Kohn-Sham potential, we used the grid LS
method to evaluate the scattering wave functions for electrons
incident from the bottom-side electrode. The conductance
at the limits of zero temperature and bias are described
by the Landauer-Büttiker formula [44]. In the transport
calculation, the top and bottom sides of each model were
connected to aluminum jellium electrodes without terminating
hydrogen atoms. The Wigner–Seitz radius rs was 2.07, which
corresponds to the valence electron density of bulk aluminum.

Figure 4 shows the computed conductance spectra for the
no-defect Si-SiO2 and Ge-GeO2 models as functions of the
incident electron energy measured from the valence band
maximum (VBM) of the substrate. Although some small peaks
derived from the bulk states in the valence band of the Si and
Ge substrates appear in Fig. 4, both models exhibit highly
suppressed conductivities in the band-gap region between
the VBM and the conduction band minimum (CBM) of the
substrates. Figure 5 represents the conductance spectra for the
Si-SiO2 and Ge-GeO2 models with an oxygen vacancy. No
remarkable peaks appear in the spectrum of the Ge-GeO2

model; however, for the Si-SiO2 model, a peak with high
transmission occurs around VBM + 0.41 eV, where electrons
flow through the oxide layer via the Si-DB state as shown
in the charge density distribution of the scattering electron
(Fig. 6). In addition, Fig. 7 exhibits contour plots of the
density of states (DOS) integrated in the lateral directions
(left panels) and the charge density distributions of the DB
states (right panels) for the defect-introduced models without
electrodes. In Fig. 7(a), the white arrow identifies the peak in
the DOS derived from the DB state between the VBM and
the CBM of the Si substrate. In Fig. 7(b), the Ge-DB state is
coupled to the states in the valence band of the Ge substrate.
The relative positions of the VBM, CBM, and DB states are
modulated when each model is connected to electrodes. When
a DB appears in diamond-structured semiconductors, there
are two possibilities: the DB state tends to become either more
s type or more p type [45]. In the p-type DB state, the three
remaining bonds tend to become sp2 hybridized and, to reduce
the strain, prefer to be in a plane. This occurs in Fig. 7(a),
wherein the Si atom with a DB is pulled down and the DB
state spatially extends in the [001] (z) direction. This behavior
degrades the insulating properties of the Si-SiO2 model. In
contrast, when the DB state is inclined to be an s type, the
three remaining bonds tend to become p types. In this case,
the angular separation of these bonds is reduced from that in the
tetrahedral structure, where the separation angle is 109.5◦. As a
result, the atom with the DB moves away from the three bonded
atoms. Therefore, for the DB state of the raised Ge atom, the
charge density of the state is distributed in the lateral directions
compared with that of the Si-DB state, and the Ge-DB state
is coupled with interface states of the Ge substrate [Fig. 7(b)].
This behavior barely contributes to electron transport across
the model. Consequently, by introducing the oxygen vacancy,

the leakage current in the Si-SiO2 model increases by a factor
of 162.9, while that in the Ge-GeO2 model increases by a
factor of 11.8 [46].

IV. CONCLUSION

We have presented the grid LS equation method based
on the fully real-space algorithms to elucidate the scattering
wave functions in nanoscale structures sandwiched between
semi-infinite electrodes. It is shown that the numerical collapse
due to the exponentially growing and decaying evanescent
waves and the computational costs can be restrained by using
the ratio expression of the retarded Green’s function obtained
analytically (jellium electrode case) and by incorporating the
self-energy matrices and applying the recursive formulas to the
ratio matrices (the crystalline electrode case). To demonstrate
the performance of our method, we used it to calculate
the transport properties of (001)Si-SiO2 and (001)Ge-GeO2

models attached to semi-infinite jellium electrodes. The results
show that the DB state in the Ge-GeO2 model gives a much
smaller contribution to leakage current than that in the Si-SiO2

model. Our procedure can precisely and efficiently extend the
knowledge of the physics underlying the transport of electrons
through nanoscale structures.
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APPENDIX A: VARIABLE-SEPARABLE-FORMED
RETARDED GREEN’S FUNCTION IN THE RSFD

APPROACH

In this Appendix, the subscript 0 denoting the reference
system is omitted, for simplicity. Let us consider the prod-
uct of the matrix (E − Ĥ ) and the lth columnar vector
of Ĝr (E), {Gr (ζk,ζl ; E)} (k = . . . ,l − 1,l,l + 1, . . . ). The
retarded Green’s function is constructed from outwardly
propagating and decreasing waves, and then, taking it into
account, we assume this columnar vector to be represented by

[. . . ,UR(ζl−2)CR(ζl),UR(ζl−1)CR(ζl),D(ζl),UL(ζl+1)CL(ζl),

UL(ζl+2)CL(ζl), . . . ]t , (A1)

where CR(L)(ζl) and D(ζl) [≡Gr (ζl,ζl ; E)] are unknown block
matrices, and UR(L)(ζl) is defined by Eqs. (9) and (10).
Hereafter, UR(L)(ζl), CR(L)(ζl), and D(ζl) are abbreviated to
U

R(L)
l , C

R(L)
l , and Dl , respectively. By definition, the above-
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mentioned product satisfies⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . Al−2 −Bl−2 0
−B

†
l−2 Al−1 −Bl−1

−B
†
l−1 Al −Bl

−B
†
l Al+1 −Bl+1

0 −B
†
l+1 Al+2

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

UR
l−2C

R
l

UR
l−1C

R
l

Dl

UL
l+1C

L
l

UL
l+2C

L
l

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

0

0

I

0

0

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← the lth, (A2)

where Al = E − H (ζl) and B
(†)
l = B(†)(ζl). Since {UR(L)

l } is a
set of the solutions of the Kohn-Sham equation, the following
equations hold:

− B
†
k−1U

R
k−1 + AkU

R
k − BkU

R
k+1 = 0, (A3)

− B
†
k−1U

L
k−1 + AkU

L
k − BkU

L
k+1 = 0

(A4)
(k = . . . ,l − 1,l,l + 1, . . . ).

From Eqs. (A2)–(A4), one sees that the unknown matrices
C

R(L)
l and Dl are required to satisfy the equations

Bl−1U
R
l CR

l − Bl−1Dl = 0, (A5)

−B
†
l−1U

R
l−1C

R
l + AlDl − BlU

L
l+1C

L
l = I, (A6)

−B
†
l Dl + B

†
l U

L
l CL

l = 0, (A7)

and thus, Eqs. (A5) and (A7) lead to the relationships between
C

R(L)
l and Dl as

CR
l = (

UR
l

)−1
Dl, (A8)

CL
l = (

UL
l

)−1
Dl, (A9)

and Eq. (A6) determines Dl to be

Dl = [ − B
†
l−1U

R
l−1

(
UR

l

)−1 + Al − BlU
L
l+1

(
UL

l

)−1]−1
.

(A10)

In consequence, the retarded Green’s function Gr
T (ζk,ζl ; E)

can be described in the following separable form:

Gr
T (ζk,ζl ; E) =

⎧⎪⎪⎨
⎪⎪⎩

UR
k

(
UR

l

)−1
Dl (k < l),

Dl (k = l),

UL
k

(
UL

l

)−1
Dl (k > l).

(A11)

APPENDIX B: ANALYTICAL EXPRESSION OF THE
GREEN’S FUNCTION FOR A FREE ELECTRON SYSTEM

IN THE RSFD APPROACH

A one-dimensional system is first considered, for simplicity.
In the RSFD approach, the kinetic-energy operator K̂ = − 1

2∇2

is represented by the matrix K̂ (Nf ), and the kinetic-energy term
in the Kohn-Sham equation is written as

K̂ (Nf )ψ(z
) ≡ − 1

2h2

(
C−Nf

ψ(z
−Nf
) + C−Nf +1ψ(z
−Nf +1)

+ · · · + C−1ψ(z
−1) + C0ψ(z
) + C1ψ(z
+1)

+ · · · + CNf −1ψ(z
+Nf −1) + CNf
ψ(z
+Nf

)
)
,

(B1)

where Nf is the order of the finite-difference approximation,
h is the grid spacing, and the weight coefficients Ci(i = 
 −
Nf ,
 − Nf + 1, . . . ,
 + Nf ) are determined using the Taylor
expansion [22].

In the Nf th-order finite-difference approximation, the
Green’s function matrix Ĝ(Nf ) is determined as satisfying

(Z − K̂ (Nf ))Ĝ(Nf )(Z) = Î , (B2)

where Z is a complex number and Î is the unit matrix. The

th row–
′th column element of the Green’s function matrix
G(Nf )(zk,zl ; Z) is described in a spectral representation as

G(Nf )(zk,zl ; Z) =
∫ π/h

−π/h

φp(zk)φ∗
p(zl)

Z − E
(Nf )
p

dp, (B3)

where E
(Nf )
p and φp(z
) are the eigenvalue and eigenvector

of K̂ (Nf ), respectively, obtained by solving the eigenvalue
equation K̂ (Nf )φp(z
) = E

(Nf )
p φp(z
), and are given by

E
(Nf )
p = − 1

2h2

⎛
⎝C0 + 2

Nf∑
m=1

Cm cos mph

⎞
⎠,

(B4)

φp(z
) =
√

h

2π
eipz
 ,

where −π
h

< p � π
h

, and φp(z
) is normalized, i.e.,

∞∑

=−∞

φ∗
p(z
)φp′(z
) = δ(p − p′). (B5)

Substituting Eq. (B4) into Eq. (B3) and changing the integra-
tion variable from p to θ = ph, and subsequently from θ to
ω = eiθ , we obtain

G(Nf )(zk,zl ; Z)

= h2

2π

∫ π

−π

eiθ(k−l)

h2Z + 1

2
C0 +

Nf∑
m=1

Cm cos mθ

dθ

= h2

2πi

∮
ω|k−l|−1

h2Z + 1

2
C0 + 1

2

Nf∑
m=1

Cm(ωm + ω−m)

dω.

(B6)
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The integration can be carried out along the unit circle in
the complex ω plane based on the residue theorem. In the
following, we introduce a sensible manner of picking up the
poles inside the unit circle that contribute to the integration.
These poles ω’s are the Nf solutions of the equation

h2Z + 1

2
C0 + 1

2

Nf∑
m=1

Cm(ωm + ω−m) = 0. (B7)

We now define a new variable s as

s = 1

2
(ω + ω−1) = cos θ (B8)

and rewrite Eq. (B7) as

h2Z + 1

2
C0 +

Nf∑
m=1

Cm cos mθ = 0, (B9)

which is the Nf th-order algebraic equation with respect to s

and its solutions are denoted sn(n = 1,2, . . . ,Nf ). Resultantly,
for each sn, the poles ωn’s are given by the solutions of the
quadratic equation ω2

n − 2snωn + 1 = 0 as

ω(±)
n = sn ±

√
s2
n − 1. (B10)

When the imaginary part of Z is nonzero, either ω(+)
n or ω(−)

n

is inside the unit circle, while the other is outside it. Hereafter,
the inside pole is defined as ωn, and the other is obtained by
ω−1

n . Using the residue theorem, the integration of Eq. (B6) is
carried out to yield

G(Nf )(zk,zl ; Z)

= 2h2

CNf

Nf∑
n=1

ω
|k−l|+Nf −1
n

(
ωn − ω−1

n

) Nf∏
m=1
m�=n

(ωn − ωm)
(
ωn − ω−1

m

)

= h2

2Nf −2CNf

Nf∑
n=1

ω
|k−l|
n

(ωn − ω−1
m )

Nf∏
m=1
m�=n

(sn − sm)

. (B11)

Finally, introducing Kn by sn = cosKnh, hence, ωn =
eiKnh(Im{Kn} > 0), we obtain

G(Nf )(zk,zl ; Z) = h2

i2Nf −1CNf

×
Nf∑
n=1

eiKn|zk−zl |

sinKnh

Nf∏
m=1
m�=n

(cosKnh − cosKmh)

.

(B12)

The retarded Green’s function is given by

G(Nf )r (zk,zl ; E) = lim
ε→0+

G(Nf )(zk,zl ; E + iε). (B13)

It is noted thatKn is a multivalued function since it is defined
as Kn = 1

h
cos−1 sn. The branch of cos−1 should be chosen to

satisfy the requirement of Im{Kn} > 0, which guarantees that
ωn exists inside the unit circle in the complex ω plane. Thus,
the following relationship is established:

If Im{sn} < 0, then 0 < Re{Kn} <
π

h
.

(B14)
If Im{sn} > 0, then −π

h
< Re{Kn} < 0.

Proof. Consider the complex numbers s ≡ ξ + iη and K ≡
k + iκ with the relationship of s = cosKh in the interval of
|k| < π

h
. It is readily shown that when η < 0 and κ > 0, there

exists a one-to-one correspondence between {s} and {K}. In
this case,K is uniquely defined so as to satisfy Im{K} = κ > 0
and the relationship

k =

⎧⎪⎪⎨
⎪⎪⎩

1

h
cos−1 γ − . . . ξ � 0,

1

h
cos−1 (−γ −) . . . ξ < 0,

(B15)
κ = 1

h
cosh−1 γ +,

where γ ± is defined as

γ ± =
√

ξ 2 + η2 + 1 ±
√

(ξ 2 + η2 − 1)2 + 4η2

2
, (B16)

and cos−1(cosh−1) in Eq. (B15) is the principal value of the
inverse trigonometric (hyperbolic) cosine function. Thus, k

varies as

0 < k � π

2h
. . . ξ � 0,

π

2h
< k <

π

h
. . . ξ < 0. (B17)

In the derivation of Eqs. (B15)–(B17), we used well-known
formulas:

cos (k + iκ)h = cos kh cosh κh − i sin kh sinh κh,

sin2 kh + cos2 kh = 1, (B18)

− sinh2 κh + cosh2 κh = 1.

On the other hand, in the case where η > 0 and κ > 0, then
k and κ are determined in the same manner as

k =

⎧⎪⎪⎨
⎪⎪⎩

− 1

h
cos−1 γ − . . . ξ � 0,

− 1

h
cos−1 (−γ −) . . . ξ < 0,

κ = 1

h
cosh−1 γ +,

(B19)

respectively, and k varies as

− π

2h
� k < 0 . . . ξ � 0,

−π

h
< k < − π

2h
. . . ξ < 0. (B20)

Q.E.D.

033301-12



FIRST-PRINCIPLES CALCULATION METHOD FOR . . . PHYSICAL REVIEW E 92, 033301 (2015)

It is straightforward to extend the above argument to the three-dimensional case. We deal with a free electron system in which
the discretized space is infinite in the z direction and periodic in the x and y directions. The Green’s function in this case is
described in a spectral representation by

G(Nf )(r‖,j ,zk,r‖,j ′ ,zl ; Z) =
Nx−1

2∑
nx=− Nx−1

2

Ny−1
2∑

ny=− Ny−1
2

∫ π
hz

− π
hz

φnx,ny ,p(r‖,j ,zk)φ∗
nx,ny ,p

(r‖,j ′ ,zl)

Z − E
(Nf )
nx,ny ,p

dp, (B21)

where E
(Nf )
nx,ny ,p and φnx,ny ,p(r‖,j ,z
) are the eigenvalue and eigenvector of the three-dimensional kinetic-energy matrix,

respectively; i.e.,

E
(Nf )
nx,ny ,p = E

(Nf )
nx,ny

+ E
(Nf )
p ,

E
(Nf )
nx,ny

= − 1

2h2
x

⎛
⎝C0 + 2

Nf∑
m=1

Cm cos mGnx
hx

⎞
⎠ − 1

2h2
y

⎛
⎝C0 + 2

Nf∑
m=1

Cm cos mGny
hy

⎞
⎠,

E
(Nf )
p = − 1

2h2
z

⎛
⎝C0 + 2

Nf∑
m=1

Cm cos mphz

⎞
⎠,

φnx,ny ,p(r‖,j ,z
) =
√

hz

2πNxNy

exp(iG‖,n · r‖,j + ipz
). (B22)

Here, r‖,j = (xjx
,yjy

) are the lateral coordinates with jx(y) = 1,2, . . . ,Nx(y) [for convenience, Nx(y) is chosen an odd integer],
and the definition of G‖,n is the same as shown in Eq. (24). Now, the Green’s function represented by Eq. (B12) reads as

G(Nf )(r‖,j ,zk,r‖,j ′ ,zl ; Z) = h2
z

i2Nf −1NxNyCNf

Nx−1
2∑

nx=− Nx−1
2

Ny−1
2∑

ny=− Ny−1
2

Nf∑
n=1

exp[iG‖,n · (r‖,j − r‖,j ′ ) + iKn|zk − zl|]

sinKnhz

Nf∏
m=1
m�=n

(cosKnhz − cosKmhz)

, (B23)

whereKn = 1
hz

cos−1 sn under the requirement of Im{Kn} > 0,
and sn is the solution of theNf th-order algebraic equation with
respect to s (=cos θ ),

h2
z

(
Z − E

(Nf )
nx,ny

) + 1

2
C0 +

Nf∑
m=1

Cm cos mθ = 0. (B24)

In the following, we present the analytic representation
of the retarded Green’s functions in Nf = 1–4 cases in

a one-dimensional free electron system; there exists no
analytic representation in the case of Nf � 5, since the
algebraic equation, (B9), with Nf � 5 cannot be solvable
analytically according to Galois theory. Given the solutions
of Eq. (B9), sn ≡ ξn + iηn(n = 1,2, . . . ,Nf ), Kn ≡ kn + iκn

are determined from Eqs. (B14)–(B20), and finally, we obtain
the analytic representation of the Green’s function, Eq. (B12).
Hereafter, we choose Z = E + iε (ε: an infinitesimal positive
number) in Eq. (B12) so as to deal with the retarded Green’s
function.

1. Case of a central finite difference (N f = 1)

Substituting C0 = −2 and C1 = 1 into Eq. (B9), we have the equation

s − 1 + h2(E + iε) = 0, (B25)

and its solution

s1 ≡ ξ1 + iη1 = 1 − h2E − ih2ε. (B26)

Since Eq. (B26) indicates that η1 → 0− (an infinitesimal negative number) in the limit of ε → 0+, K1 ≡ k1 + iκ is determined
from Eqs. (B15) and (B16) such that

k1 = 1

h
cos−1(1 − h2E), κ1 = 0 . . . 0 � E <

2

h2
;

k1 = 0, κ1 = 1

h
cosh−1(1 − h2E) . . . E < 0;

k1 = π

h
, κ1 = 1

h
cosh−1(−1 + h2E) . . .

2

h2
� E.

(B27)
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2. Case of a five-point finite difference (N f = 2)

Substituting C0 = −5/2, C1 = 4/3, and C2 = −1/12 into Eq. (B9) yields the quadratic equation with respect to s,

s2 − 8s + 7 − 6h2(E + iε) = 0. (B28)

This equation has two solutions, s1 and s2, given by

s1 ≡ ξ1 + iη1 = 4 −
√

9 + 6h2(E + iε), where

⎧⎪⎨
⎪⎩

ξ1 = 4 − √
9 + 6h2E, η1 → 0− . . . − 3

2h2
� E,

ξ1 = 4, η1 = −
√

|9 + 6h2E| < 0 . . . E < − 3

2h2
,

(B29)

and

s2 ≡ ξ2 + iη2 = 4 +
√

9 + 6h2(E + iε), where

⎧⎪⎨
⎪⎩

ξ2 = 4 + √
9 + 6h2E, η2 → 0+ . . . − 3

2h2
� E,

ξ2 = 4, η2 =
√

|9 + 6h2E| > 0 . . . E < − 3

2h2
.

(B30)

Subsequently, from Eqs. (B15), (B16), and (B19), Kn ≡ kn + iκn can be described in an analytic form.

3. Case of a seven-point finite difference (N f = 3)

The substitution of C0 = −49/18, C1 = 3/2, C2 = −3/20, and C3 = 1/90 into Eq. (B9) leads to the cubic equation with
respect to s,

s3 − 27

4
s2 + 33s − 109

4
+ 45

2
h2(E + iε) = 0, (B31)

whose solutions are determined according to Cardano’s formula as

s1 ≡ ξ1 + iη1, where ξ1 = 9

4
− τ+ + τ− and η1 → 0−, (B32)

s2 ≡ ξ2 + iη2, where ξ2 = τ+ − τ−

2
and η2 = τ+ + τ−

2
> 0, (B33)

s3 ≡ ξ3 + iη3, where ξ3 = τ+ − τ−

2
and η3 = −τ+ + τ−

2
< 0. (B34)

Here,

τ± = 1

4

3√
5
[√

(144h2E + 155)2 + 5 × 193 ± (144h2E + 155)
]
, (B35)

and Kn ≡ kn + iκn can be analytically represented using Eqs. (B15), (B16), and (B19).

4. Case of a nine-point finite difference (N f = 4)

Now, substituting C0 = −205/72, C1 = 8/5, C2 = −1/5, C3 = 8/315, and C4 = −1/560 into Eq. (B9), we obtain the quartic
equation with respect to s,

s4 − 64

9
s3 + 27s2 − 320

3
s + 772

9
− 70h2(E + iε) = 0. (B36)

Ferrari’s solutions to Eq. (B36) are utilized. After tedious but straightforward calculations, we have the following representations:

s1 ≡ ξ1 + iη1, where

⎧⎪⎪⎨
⎪⎪⎩

ξ1 = 16

9
+ σ −

√
−σ 2 − α + β

σ
, η1 → 0− . . . E0 � E,

ξ1 = 16

9
+ σ , η1 = −

√
σ 2 + α − β

σ
< 0 · · · E < E0;

(B37)

s2 ≡ ξ2 + iη2, where

⎧⎪⎪⎨
⎪⎪⎩

ξ2 = 16

9
+ σ +

√
−σ 2 − α + β

σ
, η2 → 0+ . . . E0 � E,

ξ2 = 16

9
+ σ , η2 =

√
σ 2 + α − β

σ
> 0 · · · E < E0;

(B38)
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s3 ≡ ξ3 + iη3, where

⎧⎪⎪⎨
⎪⎪⎩

ξ3 = 16

9
− σ , η3 = −

√
σ 2 + α + β

σ
< 0 . . . E′

0 � E,

ξ3 = 16

9
− σ , η3 =

√
σ 2 + α + β

σ
> 0 . . . E < E′

0;

(B39)

s4 ≡ ξ4 + iη4, where

⎧⎪⎪⎨
⎪⎪⎩

ξ4 = 16

9
− σ , η4 =

√
σ 2 + α + β

σ
> 0 . . . E′

0 � E,

ξ4 = 16

9
− σ , η4 = −

√
σ 2 + α + β

σ
< 0 . . . E < E′

0.

(B40)

Here,

α = 7 · 31

2 · 33
, β = 23 · 7 · 181

36
,

σ =

⎧⎪⎪⎨
⎪⎪⎩

√
α
(−1

3
+

3
√

ρ +
√

ν3 + ρ2 −
3
√

−ρ +
√

ν3 + ρ2
)
. . . 0 � ν,√

α
(−1

3
+

3
√

ρ +
√

ν3 + ρ2 +
3
√

ρ −
√

ν3 + ρ2
)

. . . ν < 0,

(B41)

ν = a0 + a1h
2E, ρ = 1

2
ν + a2,

E0 = ν0 − a0

a1h2
, E′

0 = ν ′
0 − a0

a1h2
,

a0 = 32 · 5 · 19

22 · 312
, a1 = 2 · 35 · 5

7 · 312
, a2 = 32 · 5 · 3623

2 · 7 · 313
,

and ν0 is the solution of ν3 + ρ2 = 0, which is evaluated as ν0 ≈ −0.3563, and ν ′
0 = −((a3 + 1/3)3 − 2a2)/3a3 ≈ −0.4132,

with a3 being
3
√

2β2/2α. The use of Eqs. (B12)–(B20) leads to the analytic representations of Kn ≡ kn + iκn and the retarded
Green’s function.

The above treatment for analytically describing the retarded Green’s function is readily extendable to the three-dimensional
case using Eqs. (B22)–(B24).
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