
Facile Synthesis of Fluorene

Bromination/Direct Arylation Polycondensation

Hitoshi Saito, Junpei Kuwabara, and Takaki Kanbara

Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and 

Applied Sciences, University of Tsukuba, 

Correspondence to: 

Catalytic direct arylation of aromatic 

compounds via cleavage of C

attracted increasing attention as a simple 

synthetic method 

preparation

Recently, several groups have attempted to 

utilize this reaction 

synthesis of π

considered

optoelectronic devices such as organic 

photovoltaic cells, field effect transistors, and 

light emitting diodes (Scheme 1 (a)).

However, this polycondensation reaction still 

requires prior preparation of dihalogenated 

aromatic monomers as coupling partners: 

Introduction of C

corresponding aromatic compounds and 

purification of the dibrominated aromatic 

monomers would involve extra synthetic steps.  

These observations prompted our interest in 

the facile synthesis of π

via sequential bromination and direct

polycondensation (Scheme 1 (b)); this protocol 

enables 

without pre

as well as organometallic functional groups. We 

thus explored an efficient bromination reaction 

and employed 

with quaternary ammonium tribromide; the 

reaction proceed

conditions, giving the

good yields.

appropriate targeting monomer because 2,7

dibromo

KEYWORDS:

catalysts

Facile Synthesis of Fluorene

Bromination/Direct Arylation Polycondensation

Hitoshi Saito, Junpei Kuwabara, and Takaki Kanbara

Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Graduate School of Pure and 

Applied Sciences, University of Tsukuba, 

Correspondence to: T.Kanbara

Catalytic direct arylation of aromatic 

compounds via cleavage of C

attracted increasing attention as a simple 

synthetic method that helps eliminate

reparations of organometallic reagents.

Recently, several groups have attempted to 

utilize this reaction in

synthesis of π-conjugated polymers that are 

considered promising materials for 

optoelectronic devices such as organic 

hotovoltaic cells, field effect transistors, and 

light emitting diodes (Scheme 1 (a)).

However, this polycondensation reaction still 

requires prior preparation of dihalogenated 

aromatic monomers as coupling partners: 

ntroduction of C

corresponding aromatic compounds and 

purification of the dibrominated aromatic 

monomers would involve extra synthetic steps.  

These observations prompted our interest in 

facile synthesis of π

via sequential bromination and direct

polycondensation (Scheme 1 (b)); this protocol 

enables the use of

without pre-introduction

as well as organometallic functional groups. We 

thus explored an efficient bromination reaction 

employed it for the

with quaternary ammonium tribromide; the 

reaction proceeded smoothly

conditions, giving the

good yields.
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Catalytic direct arylation of aromatic 
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attracted increasing attention as a simple 

prior 

of organometallic reagents.
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Recently, several groups have attempted to 

polycondensation for the 

conjugated polymers that are 

promising materials for 

optoelectronic devices such as organic 

hotovoltaic cells, field effect transistors, and 

light emitting diodes (Scheme 1 (a)).
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However, this polycondensation reaction still 

requires prior preparation of dihalogenated 
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The following two conditions must be satisfied 

for sequential bromination and Pd

direct arylation polycondensation

reaction should efficiently proceed, and 

residues and

bromination reaction step

negligible 

polycondensation step.

bromination of aromatic compounds has been 

generally carried out with bromine or 

bromosuccinimide

residual bromine and/or the produced 

byproducts such as succinimide 

to inhibit

contrast, bromination with 

benzyltrimethylammonium 

Br3)
16-18

 was expected to be preferable f

protocol

accurate stoichiometric reaction, and 

benzyltrimethylammonium bromide

a byproduct of the bromination, 

inhibit the successive polycondensation step 

because tetraalkylammonium halide

been often

polycondensation processes.

we began our 

of 9,9-dioctylfluorene 

amount of 

literature,

dioctylfluorene in excellent 

in the presence of ZnCl

Lewis acid,

amount of mono

Table 1

TPD in the presence of additive

Entry

1 

2 

3 

4 

a)
 Reactions were carried out at 100

mol%), PCy

reprecipitation from CHCl

The following two conditions must be satisfied 

sequential bromination and Pd

direct arylation polycondensation

reaction should efficiently proceed, and 

residues and/or byproducts originating from the 

bromination reaction step

negligible impact 

polycondensation step.

bromination of aromatic compounds has been 

generally carried out with bromine or 

bromosuccinimide 

residual bromine and/or the produced 

byproducts such as succinimide 

inhibit the following direct arylation.  In 

contrast, bromination with 

benzyltrimethylammonium 

 was expected to be preferable f

protocol; the solid brominating agent allows 

accurate stoichiometric reaction, and 

benzyltrimethylammonium bromide

byproduct of the bromination, 

inhibit the successive polycondensation step 

because tetraalkylammonium halide

often used as a phase transfer catalyst in 

polycondensation processes.

we began our investigation with dibromination

dioctylfluorene 

amount of BTMA Br

literature,
16

 the reaction gave 2,7

dioctylfluorene in excellent 

in the presence of ZnCl

Lewis acid,
17 

and acetic acid, and only a trace 

amount of mono-

Table 1. Results of direct aryl

TPD in the presence of additive

Entry Additive

 

 Succinimide

 

 BTMA Br

Reactions were carried out at 100

mol%), PCy3 (16 mol%), 

reprecipitation from CHCl

The following two conditions must be satisfied 

sequential bromination and Pd

direct arylation polycondensation

reaction should efficiently proceed, and 

/or byproducts originating from the 

bromination reaction step 

impact on the successive 

polycondensation step.  For instance, 

bromination of aromatic compounds has been 

generally carried out with bromine or 

 (NBS);
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residual bromine and/or the produced 

byproducts such as succinimide 

the following direct arylation.  In 

contrast, bromination with 

benzyltrimethylammonium tribromide

was expected to be preferable f

he solid brominating agent allows 

accurate stoichiometric reaction, and 

benzyltrimethylammonium bromide

byproduct of the bromination, 

inhibit the successive polycondensation step 

because tetraalkylammonium halide

used as a phase transfer catalyst in 

polycondensation processes.
7,12,36

nvestigation with dibromination

dioctylfluorene using a 

BTMA Br3.  According to the 

the reaction gave 2,7

dioctylfluorene in excellent isolated 

in the presence of ZnCl2, which served as a 

and acetic acid, and only a trace 

-brominated product was 

Results of direct aryl

TPD in the presence of additive

Additive (equiv.)

- 

Succinimide (2)

BTMA Br (2)

BTMA Br (2) / ZnCl

Reactions were carried out at 100

(16 mol%), PivOH

reprecipitation from CHCl3/CH

The following two conditions must be satisfied 

sequential bromination and Pd-catalyzed 

direct arylation polycondensation. Each 

reaction should efficiently proceed, and 

/or byproducts originating from the 

 should have

the successive 

For instance, 

bromination of aromatic compounds has been 

generally carried out with bromine or 

 however, the 

residual bromine and/or the produced 

byproducts such as succinimide are considered 

the following direct arylation.  In 

contrast, bromination with 

bromide (BTMA 

was expected to be preferable for our 

he solid brominating agent allows 

accurate stoichiometric reaction, and 

benzyltrimethylammonium bromide (BTMA Br)

byproduct of the bromination, dose not 

inhibit the successive polycondensation step 

because tetraalkylammonium halides have 

used as a phase transfer catalyst in 
36-38

  Therefore, 

nvestigation with dibromination

 stoichiometric 

.  According to the 

the reaction gave 2,7-dibromo-9,9

isolated yield (98%) 

which served as a 

and acetic acid, and only a trace 

brominated product was 

Results of direct arylation polycondensation of 2,7

TPD in the presence of additive
a)

 

(equiv.) 

(2) 

(2) 

/ ZnCl2 (2.5) 

Reactions were carried out at 100 °C in 

PivOH (30 mol%) and Cs

CH3OH; 
c)

 Estimated by GPC calibrated on polystyrene standards.

The following two conditions must be satisfied 

catalyzed 

Each 

reaction should efficiently proceed, and 

/or byproducts originating from the 

should have 

the successive 

For instance, 

bromination of aromatic compounds has been 

generally carried out with bromine or N-

however, the 

residual bromine and/or the produced 

re considered 

the following direct arylation.  In 

contrast, bromination with 

BTMA 

or our 

he solid brominating agent allows for 

accurate stoichiometric reaction, and 

(BTMA Br), 

not 

inhibit the successive polycondensation step 

s have 

used as a phase transfer catalyst in 

Therefore, 

nvestigation with dibromination 

stoichiometric 

.  According to the 

9,9-

yield (98%) 

which served as a 

and acetic acid, and only a trace 

brominated product was 

observed.  In addition, the reaction smoo

proceeded in the absence of acetic acid and the 

dibrominated product 

yield (9

Information); consequently, we adopted the 

reaction conditions

Subsequently

of the conserved residues of the bromination 

reaction considerably affected the following

polycondensation process or not,

direct arylation polycondensation of 

octylthieno[3,4

the isolated pure

dioctylfluorene was conducted in the presence 

of some additives (Scheme 2).  Table 1 

ation polycondensation of 2,7

Reaction time

 / h 

24 

24 (240) 

24 

48 

°C in toluene (2.5 mL) for 0.50 mmol scale using Pd(OAc)

(30 mol%) and Cs2CO3 (

Estimated by GPC calibrated on polystyrene standards.

observed.  In addition, the reaction smoo

proceeded in the absence of acetic acid and the 

dibrominated product 

yield (98%, Scheme S1, Supporting 

Information); consequently, we adopted the 

reaction conditions

Subsequently

of the conserved residues of the bromination 

reaction considerably affected the following

polycondensation process or not,

direct arylation polycondensation of 

octylthieno[3,4

the isolated pure

dioctylfluorene was conducted in the presence 

of some additives (Scheme 2).  Table 1 

ation polycondensation of 2,7-dibromo

Reaction time Yield 
b)

/ %
 

96 

 0 (0) 

95 

95 

oluene (2.5 mL) for 0.50 mmol scale using Pd(OAc)

(4 equiv.); 
b)

 The products were obtained by 

Estimated by GPC calibrated on polystyrene standards.

Scheme 

polycondensation in 

byproduct of bromination

observed.  In addition, the reaction smoo

proceeded in the absence of acetic acid and the 

dibrominated product was isolated 

%, Scheme S1, Supporting 

Information); consequently, we adopted the 

reaction conditions in the absence of acetic acid

Subsequently, to assess whether the presence 

of the conserved residues of the bromination 

reaction considerably affected the following

polycondensation process or not,

direct arylation polycondensation of 

octylthieno[3,4-c]pyrrole-

the isolated pure

dioctylfluorene was conducted in the presence 

of some additives (Scheme 2).  Table 1 

dibromo-9,9-dioctylfluorene with 

b)  

 

Mn 
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 - 

 89500
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oluene (2.5 mL) for 0.50 mmol scale using Pd(OAc)

The products were obtained by 

Estimated by GPC calibrated on polystyrene standards.

2. Direct arylation

polycondensation in 

byproduct of bromination

observed.  In addition, the reaction smoo

proceeded in the absence of acetic acid and the 

was isolated 

%, Scheme S1, Supporting 

Information); consequently, we adopted the 

in the absence of acetic acid

to assess whether the presence 

of the conserved residues of the bromination 

reaction considerably affected the following

polycondensation process or not, Pd

direct arylation polycondensation of 

-4,6-dione (

the isolated pure 2,7-dibromo

dioctylfluorene was conducted in the presence 

of some additives (Scheme 2).  Table 1 

dioctylfluorene with 

c)
 Mw/

129200 2.60

 

89500 2.32

50500 2.33

oluene (2.5 mL) for 0.50 mmol scale using Pd(OAc)

The products were obtained by 

Estimated by GPC calibrated on polystyrene standards.

Direct arylation

polycondensation in the presence of 

byproduct of bromination reaction. 

 

observed.  In addition, the reaction smoothly 
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%, Scheme S1, Supporting 
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summarizes the results of

According to 

experiment without the additive smoothly 

proceeded and gave the corresponding polymer 

(Polymer 

the addition of succinimide did not give the 

polymeric product even after a prolonged 

reaction (entry 2), indicating that the byproduct 

of bromination with NBS prohibited direct 

arylation

palladium

deactivate the catalytic system.

the polycondensation reaction proceeded 

smoothly in the presence of BTMA Br (entry 3

Wang et al

negative effects of the addition of phase 

transfer 

polycondensation.

chloride slightly reduced the catalytic activity, 

but increasing the reaction time to 48 h 

afforded the polymeric product (entry 4).  

Based on

examined the sequential Pd

arylation polycondensation; the bromination 

reaction mixture was used without purification 

for the successive polycondensation (Scheme 3

(a)).  The sequential protocol gave Polymer

with a molecular weight of 3

Polymer 

protocol was characterized by NMR

spectroscopy

Scheme 

(a) TPD and (b) 

arizes the results of

According to a previous report,

experiment without the additive smoothly 

proceeded and gave the corresponding polymer 

(Polymer 1) in good yield (entry 1). 

the addition of succinimide did not give the 

polymeric product even after a prolonged 

reaction (entry 2), indicating that the byproduct 

of bromination with NBS prohibited direct 

arylation, presumably due to the formation o

palladium-succinimide comple

deactivate the catalytic system.

the polycondensation reaction proceeded 

smoothly in the presence of BTMA Br (entry 3

et al. have elaborated on

negative effects of the addition of phase 

transfer agents on the direct arylation 

polycondensation.
36

  

chloride slightly reduced the catalytic activity, 

but increasing the reaction time to 48 h 

afforded the polymeric product (entry 4).  

Based on these observations, we finally 

examined the sequential Pd

arylation polycondensation; the bromination 

reaction mixture was used without purification 

for the successive polycondensation (Scheme 3

).  The sequential protocol gave Polymer

with a molecular weight of 3

Polymer 1 obtained from the sequential 

protocol was characterized by NMR

spectroscopy, Matrix Assisted Laser 

Scheme 3. Sequential bromination of 9,9

TPD and (b) 2,2´,3,3´,5,5´,6,6´

arizes the results of the polycondensation.  

previous report,

experiment without the additive smoothly 

proceeded and gave the corresponding polymer 

) in good yield (entry 1). 

the addition of succinimide did not give the 

polymeric product even after a prolonged 

reaction (entry 2), indicating that the byproduct 

of bromination with NBS prohibited direct 

, presumably due to the formation o

ide complex,

deactivate the catalytic system.

the polycondensation reaction proceeded 

smoothly in the presence of BTMA Br (entry 3

elaborated on

negative effects of the addition of phase 

agents on the direct arylation 

  The addition of zinc 

chloride slightly reduced the catalytic activity, 

but increasing the reaction time to 48 h 

afforded the polymeric product (entry 4).  

these observations, we finally 

examined the sequential Pd-catalyzed direct 

arylation polycondensation; the bromination 

reaction mixture was used without purification 

for the successive polycondensation (Scheme 3

).  The sequential protocol gave Polymer

with a molecular weight of 34,500,

obtained from the sequential 

protocol was characterized by NMR

Matrix Assisted Laser 

Sequential bromination of 9,9

2,2´,3,3´,5,5´,6,6´

polycondensation.  

previous report,
23

 a control 

experiment without the additive smoothly 

proceeded and gave the corresponding polymer 

) in good yield (entry 1).  In contrast, 

the addition of succinimide did not give the 

polymeric product even after a prolonged 

reaction (entry 2), indicating that the byproduct 

of bromination with NBS prohibited direct 

, presumably due to the formation o

,
39

 which may 

deactivate the catalytic system.  Alternatively, 

the polycondensation reaction proceeded 

smoothly in the presence of BTMA Br (entry 3

elaborated on positive and 

negative effects of the addition of phase 

agents on the direct arylation 

The addition of zinc 

chloride slightly reduced the catalytic activity, 

but increasing the reaction time to 48 h 

afforded the polymeric product (entry 4).   

these observations, we finally 

catalyzed direct 

arylation polycondensation; the bromination 

reaction mixture was used without purification 

for the successive polycondensation (Scheme 3

).  The sequential protocol gave Polymer

4,500, in 80% yield.

obtained from the sequential 

protocol was characterized by NMR

Matrix Assisted Laser 

Sequential bromination of 9,9-dioctylfluorene and direct

2,2´,3,3´,5,5´,6,6´-octafluorobiphenyl

polycondensation.  

control 

experiment without the additive smoothly 

proceeded and gave the corresponding polymer 

In contrast, 

the addition of succinimide did not give the 

polymeric product even after a prolonged 

reaction (entry 2), indicating that the byproduct 

of bromination with NBS prohibited direct 

, presumably due to the formation of 

which may 

Alternatively, 

the polycondensation reaction proceeded 

smoothly in the presence of BTMA Br (entry 3); 

positive and 

negative effects of the addition of phase 

agents on the direct arylation 

The addition of zinc 

chloride slightly reduced the catalytic activity, 

but increasing the reaction time to 48 h 

these observations, we finally 

catalyzed direct 

arylation polycondensation; the bromination 

reaction mixture was used without purification 

for the successive polycondensation (Scheme 3 

).  The sequential protocol gave Polymer 1 

% yield. 

obtained from the sequential 

protocol was characterized by NMR 

Matrix Assisted Laser 
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sequential protocol essentially agrees with that 

of the polymer obtained from the isolated pure 

2,7

signal can be assigned to the repeating

integral ratio

assignments and

alternating structure of the polymer.

dioctylfluorene and direct

octafluorobiphenyl. 

Figure 1.

MHz, in CDCl

protocol 

from the isolated 2,7

dioctylfluorene (Scheme 2, Table 1, Entry 1).

Desorption/Ionization

Spectrometry

analysis.  As shown in Figure 1, the 

spectrum of Polymer 

sequential protocol essentially agrees with that 

of the polymer obtained from the isolated pure 

2,7-dibromo-

signal can be assigned to the repeating

integral ratio

assignments and

alternating structure of the polymer.

dioctylfluorene and direct 

Figure 1. 
1
H NMR spectra of Polymer 

MHz, in CDCl

protocol (Scheme 3

from the isolated 2,7

dioctylfluorene (Scheme 2, Table 1, Entry 1).

Desorption/Ionization 

Spectrometry (MALDI-TOF

As shown in Figure 1, the 

spectrum of Polymer 

sequential protocol essentially agrees with that 

of the polymer obtained from the isolated pure 

-9,9-dioctylfluorene.  E

signal can be assigned to the repeating

integral ratios of the signals agree with the 

assignments and are 

alternating structure of the polymer.

 arylation polycondensation

H NMR spectra of Polymer 

MHz, in CDCl3). (a) Synthesized via sequential 

(Scheme 3 (a)) a

from the isolated 2,7

dioctylfluorene (Scheme 2, Table 1, Entry 1).

Time-of-Flight Mass 

TOF-MS), and elemental 

As shown in Figure 1, the 

spectrum of Polymer 1 prepared via the 

sequential protocol essentially agrees with that 

of the polymer obtained from the isolated pure 

dioctylfluorene.  Each 

signal can be assigned to the repeating

of the signals agree with the 

 consistent with the 

alternating structure of the polymer.  

n polycondensation

H NMR spectra of Polymer 

). (a) Synthesized via sequential 

) and (b) synthesized 

from the isolated 2,7-dibromo

dioctylfluorene (Scheme 2, Table 1, Entry 1).

 

3 

Flight Mass 

and elemental 

As shown in Figure 1, the 
1
H NMR 

prepared via the 

sequential protocol essentially agrees with that 

of the polymer obtained from the isolated pure 

ach 
1
H NMR 

signal can be assigned to the repeating unit; the 

of the signals agree with the 

consistent with the 

  All 
13

C{
1
H} 

n polycondensation with 

H NMR spectra of Polymer 1 (400 

). (a) Synthesized via sequential 

nd (b) synthesized 

dibromo-9,9-

dioctylfluorene (Scheme 2, Table 1, Entry 1). 
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NMR signals are also assignable to the carbons 

in the recurring unit (Figure 1S, supporting 

information).  The

at regular intervals in the 

weight range, corresponding to the 

the linked fluorene and TPD units (Figure S2, 

supporting information).  The absorption 

spectra of the obtained polymers are also 

essentially

Information

determined to be 

difference in the synthetic protocols 

affect the chemical structure and optical 

properties of the polymers.

The sequential protocol was further 

demonstrated by 

dioctylfluorene with 2,2´,3,3´,5,5´,6,6´

octafluorobiphenyl (Scheme 

arylation polycondensation of the isolated pure 

2,7-dibromo

2,2´,3,3´,5,5´,6,6´

corresponding polymer with a 

of 43,200 in 95% yield.

protocol afforded the corresponding polymer 

(Polymer 

in 81% yield

essentially agreed with those

reports 

Information

with the trend 
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