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Abbreviations 

BEC: blood endothelial cell 

BSA: bovine serum albumin 

CDH17: cadherin-17 

CGG: chicken gamma globulin 

FRC: fibroblastic reticular cell 

GC: germinal center 

KO: knock-out 

LEC: lymphatic endothelial cell 

LLPC: long-lived plasma cell 

MBC: memory B cell 

MZ: marginal zone 
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WT: wild-type  



1 

 

 

 

 

Abstract  
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Memory B cells (MBCs) and long-lived plasma cells (LLPCs) are responsible for 

immunological “memory”, which can last for many years. The long-term survival niche 

for LLPCs in the bone marrow is well characterized; however, the corresponding niche 

for MBCs is unclear. BILL-cadherin/cadherin-17 (CDH17) is the only member of the 

cadherin superfamily that is expressed on mouse B lymphocytes in a spatiotemporally 

regulated manner. Here, I show that half of all MBCs regain expression of CDH17 during 

the later stage of development. The maintenance of high affinity antigen-specific serum 

antibodies was impaired in CDH17
-/-

 mice and the number of antigen-specific MBCs was 

reduced as compared to wild-type (WT) mice. Also, specific responses to secondary 

antigens were ablated in CDH17
-/-

 mice, whereas primary antibody responses were the 

same as those in WT mice. Cell cycle analysis revealed a decline in the proliferation of 

CDH17
-
 MBCs as compared to CDH17

+
 MBCs. In addition, I identified a subpopulation 

of splenic stromal cells, MAdCAM-1
+
 blood endothelial cells (BEC), which was CDH17

+
. 

Taken together, these results suggest that CDH17 plays a role in the long-term survival of 

MBCs, presumably via an "MBC niche" comprising, at least in part, BEC in the spleen.  
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BILL-cadherin/cadherin-17 (CDH17) is a cell adhesion molecule that belongs to the 

cadherin superfamily, a large group (more than 100 members) of cell adhesion molecules 

with properties similar to those of integrins and selectins. Cadherins are Ca
2+

-dependent 

adhesion molecules characterized by their unique extracellular domains, which primarily 

comprise multiple cadherin-repeats (Figure 1). Cadherins primarily mediate homotypic 

(cell to cell) adhesion; therefore, they play important roles in intercellular recognition 

during embryogenesis and morphogenesis [Takeichi, 1995; Takeichi, 2007]. 

CDH17 contains seven cadherin domains and has no catenin-binding region within its 

cytoplasmic domain; the latter feature means that CDH17 is classified as a non-classical 

cadherin [Berndorff et al., 1994; Ohnishi et al., 2000]. CDH17 requires Ca
2+

 for 

homotypic adhesion [Ohnishi et al., 2000; Wendeler et al., 2007]; however, heterotypic 

adhesion to E-cadherin and 21 integrin has been reported [Bartolome et al., 2014; 

Baumgartner et al., 2008]. In mice, CDH17 is expressed in the spleen, bone marrow, and 

intestine [Angres et al., 2001; Ohnishi et al., 2000], whereas in rats it is also expressed in 

the liver [Berndorff et al., 1994]. 

Immune system is an important defense mechanism to protect us from foreign 

organisms such as bacteria and viruses. It is composed by various cells, and they play 

specialized roles respectively. B cell is a lymphocyte that produces antibody, also known 



5 

as immunoglobulin, to bind with foreign pathogens then eliminates or neutralizes them. 

Because each antibody recognizes only one particular epitope and each B cell clone 

produces only one kind of antibody, it needs large numbers of B cell clone to eliminate 

various pathogens. To solve this problem, B cell recombines their antibody gene when 

they encountered the new pathogen. This is an essential function for the immune system. 

The B cells that obtained specialized antibody gene subsequently differentiate into either 

PCs (plasma cells) to produce antibody, or MBCs (memory B cells) to survive for long 

term in the body. MBCs can respond faster on the secondary exposure of pathogen and 

eliminate them more efficiently [Parkin and Cohen, 2001]. In addition, this system is the 

pivot of vaccination. Therefore, the long-term maintenance of MBCs is required for the 

effective protection and vaccination. 

Here, I show that CDH17 plays an important role in the long-term survival of MBCs, 

thereby maintaining the capability for rapid antibody production during a secondary 

immune response. In addition, I found that a fraction of MAdCAM-1
+
 BEC may represent 

a candidate constituent of the MBC survival niche. Further elucidation of the molecular 

mechanisms underlying the role of CDH17 in MBC maintenance may make it possible to 

establish improved vaccination protocols.  
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Introduction 

It was previously shown that precursor B cells express CDH17 during early 

development in the bone marrow [Ohnishi et al., 2005]. T cells, however, do not express 

CDH17 [Ohnishi et al., 2005; Ohnishi et al., 2000]. CDH17 is expressed during the 

pro-B/pre-B-I stages before being downregulated during the pre-B-II stage; it is then 

upregulated again on immature B cells [Ohnishi et al., 2000]. To elucidate the biological 

role of CDH17, CDH17-deficient (CDH17
-/-

) mice were established previously [Ohnishi 

et al., 2005]. In CDH17
-/-

 mice, exons which encode the trans-membrane region were 

disrupted by targeted gene replacement. Because CDH17 is type-1 trans-membrane 

protein, the deletion of these exons causes the loss of anchorage and hence abolishes its 

function. It was reported that CDH17-deficient mice have an increased number of pro-B 

cells and a reduced number of immature B cells, indicating that CDH17 plays a role(s) in 

early B cell development (i.e., during transition from the pro/pre-B-I stage to the pre-B-II 

stage) [Ohnishi et al., 2005]. Also, the size and the number of germinal centers (GC) in 

non-immunized CDH17
-/-

 mice are reduced, and the antibody response to a T-independent 

antigen is decreased as compared to WT mice [Ohnishi et al., 2005]. These observations 

suggest that CDH17 might also play a role in late B cell development. 

Here, I show that the expression of CDH17 was "spatiotemporally" regulated during 
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late B cell development. I compared T cell-dependent antigen-specific antibody responses 

to nitrophenylated chicken gammaglobulin (NP-CGG) in wild-type (WT) mice with those 

in CDH17
-/-

 mice. The results showed that CDH17 contributes to the long-term survival 

of memory B cells.  
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Materials and Methods 

Mice and ethics statements 

CDH17
-/-

 mice (CDH17 knock-out mice, BT262) were generated as previously 

described [Ohnishi et al., 2005]. The CDH17
-/-

 mice were backcrossed onto a C57BL/6 

background for ten generations. CDH17
+/+

 and CDH17
-/-

 homozygous littermates were 

used for all experiments. All mice were bred and maintained in a specific-pathogen-free 

(SPF) facility. All animal experiments were performed according to institutional 

guidelines and with the approval of the National Institute of Infectious Diseases Animal 

Care and Use Committee (Permit Number: 213045-2). Mice were housed under a 12 h 

light/dark cycle, and provided with food and water ad libitum. All efforts were made to 

minimize suffering. Mice were immunized intraperitoneally with antigen in a volume of 

less than 200 L containing 50% Alum adjuvant. Blood samples were drawn from the tail 

vein and less than 100 L was collected each time. Mice were euthanized by carbon 

dioxide inhalation and the spleens were explanted. 

 

Antibodies and reagents 

A rat monoclonal antibody (BD1B) against mouse CDH17 was raised as previously 

described [Ohnishi et al., 2000]. The following antibodies and reagents were purchased 
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from BD Pharmingen: PE/Cy7-anti-mouse IgM (catalog number, 552867; working 

dilution, 1:100), biotin-anti-mouse CD11a/integrin L (557365; 1:100), biotin-anti-mouse 

CD18/integrin 2 (557439; 1:100), FITC-anti-mouse CD21 (553818; 1:100), 

FITC-anti-mouse Ig (553434; 1:100), PE-anti-mouse CD23 (01235B; 1:50), 

APC-anti-mouse CD138 (558626; 1:100), PE-anti-mouse CD45R/B220 (01125B; 1:100), 

and PE-streptavidin (554061; 1:500). The following antibodies were purchased from 

eBioscience: eFluor 450-anti-mouse IgD (48-5993-80; 1:100), Alexa Fluor 

488-anti-mouse/human GL7 (53-5902-80; 1:200), Pacific Blue-anti-mouse/human 

CD45R/B220 (57-0452-82; 1:100), and Alexa Fluor 700-anti-mouse CD38 (56-0381-82; 

1:100). The following antibodies were purchased from BioLegend: 

PerCP/Cy5.5-anti-mouse IgG1 (406611; 1:100), PE-anti-mouse CD144/VE-cadherin 

(138009; 1:100), Alexa Fluor 647-anti-mouse CD80 (104717; 1:100), PE/Cy5-anti-mouse 

Gr-1 (108410; 1:100), PE/Cy5-anti-mouse TER-119 (116210; 1:100), PE/Cy5-anti-mouse 

CD3 (100310; 1:100), APC/Cy7-anti-mouse/human CD45R/B220 (103224; 1:100), 

FITC-anti-mouse IgG1 (406606; 1:100), Alexa Fluor 700-anti-human CD19 (302225; 

1:100), and FITC-anti-human CD27 (302805; 1:100). Pacific Blue-anti-BrdU (B35129; 

1:100), Qdot 705-streptavidin (Q10163MP; 1:100), and O-phenylenediamine (002003) 

were purchased from Invitrogen. Alexa Fluor 488-anti-mouse CXCR3 (FAB1685G; 
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1:100) and Alexa Fluor 488-anti-mouse CCR6 (FAB590G; 1:100) were purchased from 

R&D Systems. The following antibody was obtained from Abcam: FITC-anti-mouse 

CD273 (ab59872; 1:100). Biotin-anti-mouse IgD (1120-08; 1:100), HRP-anti-mouse IgM 

(1020-05; 1:5000), and HRP-anti-mouse IgG1 (1144-05; 1:50000) were obtained from 

Southern Biotech. Alexa Fluor 430-streptavidin (S11237; 1:100) was obtained from 

Molecular Probes. The following reagents were purchased from Sigma-Aldrich: 7-AAD 

(A9400-1MG; 10 g/mL) and 5-bromo-2'-deoxyuridine (BrdU; B5002-250MG). The 

following reagents were obtained from Biosearch Technologies: 

(4-hydroxy-3-nitro-phenyl)-acetyl (NP)48-CGG, NP4-BSA, and NP16-BSA. Dispase 

(17105-041; 0.8 mg/mL) and collagenase IV (17104-019; 50 U/mL) were from Gibco. 

PE/Texas Red-streptavidin (IM3326, 1:100) was from Beckman Coulter. Tissue-Tek 

O.C.T. Compound (4583) was from Sakura. Finally, the following antibodies and reagents 

were generated in-house: biotin-BD1B, Alexa Fluor 647-BD1B, PE/Texas Red-BD1B, 

anti-mouse CD16-2 (2.4G2, 20 g/mL), and NP44-CGG. 

PE-(4-hydroxy-5-iodo-3-nitro-phenyl)-acetyl (NIP)25 was a kind gift from Dr. Takahashi 

(Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan). 

The closely-related epitopes, NP and NIP, react with the same spectrum of specific 

antibodies [Bruggemann et al., 1986]. NIP is widely used for flow cytometry because it 
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has high affinity for NP-specific B cells. Therefore, NP was used in the ELISA because 

the number of NP-haptens on the CGG-carrier had to be controlled. NIP was used for 

flow cytometry. 

 

Immunizations 

For the primary antibody response experiments, 3- to 4-month-old CDH17
+/+

 and 

CDH17
-/-

 littermates were immunized intraperitoneally with 50 g of NP48-CGG 

precipitated with 100 L of Imject Alum adjuvant (Thermo Scientific, 77161). 

For the secondary antibody response experiments, 10- to 11-week-old CDH17
+/+

 and 

CDH17
-/-

 littermates were immunized intraperitoneally with 5 g of NP44-CGG 

precipitated with 100 L of Imject Alum adjuvant. The mice were then boosted with an 

intraperitoneal injection of NP44-CGG (2.5 g) 50 weeks later. 

 

ELISA 

Flat-bottom 96-well plates (Immuno-MaxiSorp; Nunc 442404) were coated with 5 

g/mL of NP1.6-BSA (to detect high affinity anti-NP antibodies) or with 5 g/mL 

NP4-BSA or NP16-BSA (to detect total affinity anti-NP antibodies) and incubated at room 

temperature for 2 h or at 4°C overnight, followed by incubation with 1% BSA in 
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PBS/0.05% Tween 20 (Sigma, P-1379). Sera collected from immunized littermates were 

serially diluted, added to the plates, and incubated for 1 h at room temperature, followed 

by incubation with HRP-anti-mouse IgM or HRP-anti-mouse IgG1 antibodies. Hydrogen 

peroxide in citrate buffer and O-phenylenediamine were used as the chromogen. Optical 

density was measured at 490 nm. NP-specific IgM and IgG1 monoclonal antibodies 

(established in-house) were used as standards to calculate the relative antibody titers and 

affinities. 

 

Flow cytometry 

Mice were euthanized by CO2 inhalation. Spleens were excised and spleen cell 

suspensions were prepared by mechanical disruption in staining buffer (Hank's Balanced 

Salt Solution (HBSS) containing 1% bovine serum albumin and 0.05% sodium azide), 

followed by filtering through a stainless steel mesh. To detect T1, T2, marginal zone (MZ), 

and mature B cells, cell suspensions were prepared from spleens isolated from CDH17
+/+

 

and CDH17
-/-

 mice. Briefly, spleens were treated with 2.4G2 (20 g/mL) for 30 min on 

ice to block Fc receptors and then stained with PE/Cy5-anti-Gr-1, PE/Cy5-anti-Ter-119, 

PE/Cy5-anti-CD3, APC/Cy7-anti-B220, eFluor 450-anti-mouse IgD, PE/Cy7-anti-mouse 

IgM, and Alexa Fluor 647-BD1B for 60 min on ice (working dilutions are provided in the 
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antibodies and reagents section). T1, T2, and MZ B cells were also stained with 

PE-anti-CD23 and FITC-anti-CD21. After washing well, the cells (5 × 10
6
 cells/mL) were 

suspended in staining buffer containing 5 g/mL propidium iodide (PI). About 1 × 10
6
 

cells were analyzed in a BD FACSAria III (BD Biosciences) and dead cells (PI
+
) were 

excluded. This was the basic protocol for flow cytometry analysis and was used for all 

analyses described below. 

To detect NP-specific GC B cells, cell suspensions were prepared from spleens on Day 

12 post-immunization with NP-CGG, treated with 2.4G2 to block Fc receptors, and then 

stained with PE/Cy5-anti-Gr-1, PE/Cy5-anti-Ter-119, PE/Cy5-anti-CD3, 

APC/Cy7-anti-B220, eFluor 450-anti-mouse IgD, PE/Cy7-anti-mouse IgM, Alexa Fluor 

700-anti-CD38, PE-NIP25, Alexa Fluor 488-anti-GL7, and PE/Texas Red-BD1B. PI was 

added to exclude PI
+
 dead cells. 

To detect NP-specific plasma cells (PCs), littermates were immunized with NP-CGG, 

followed by a boost immunization on Day 196. Cell suspensions were isolated from 

spleens on Day 7 after the boost immunization, treated with 2.4G2 to block Fc receptors, 

and then stained with PE/Cy5-anti-Gr-1, PE/Cy5-anti-Ter-119, PE/Cy5-anti-CD3, 

Pacific Blue-anti-B220, APC-anti-CD138, PE-NIP25, FITC-anti-Ig biotin-BD1B, and 

Alexa Fluor 430-streptavidin. PI was added to exclude PI
+
 dead cells. 
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To detect NP-specific MBCs, cell suspensions were isolated from the spleens of 

littermates immunized with NP-CGG, treated with 2.4G2 to block Fc receptors, and then 

stained with PE/Cy5-anti-Gr-1, PE/Cy5-anti-Ter-119, PE/Cy5-anti-CD3, 

APC/Cy7-anti-B220, eFluor 450-anti-mouse IgD, PE/Cy7-anti-mouse IgM, Alexa Fluor 

700-anti-CD38, PE-NIP25, FITC-anti-mouse IgG1, and Alexa Fluor 647-BD1B. PI was 

added to exclude PI
+
 dead cells. 

To detect surface markers on MBCs, cell suspensions were isolated from the spleens of 

littermates, treated with 2.4G2 to block Fc receptors, and then stained with 

PE/Cy5-anti-Gr-1, PE/Cy5-anti-Ter-119, PE/Cy5-anti-CD3, APC/Cy7-anti-B220, eFluor 

450-anti-mouse IgD, PE/Cy7-anti-mouse IgM, Alexa Fluor 700-anti-CD38, 

PerCP/Cy5.5-anti-mouse IgG1, Qdot 705-streptavidin, Alexa Fluor 647-BD1B, Alexa 

Fluor 488-anti-mouse CXCR3, biotin-anti-mouse CD18, Alexa Fluor 488-anti-mouse 

CCR6, biotin-anti-mouse CD11a, biotin-BD1B, Alexa Fluor 647-anti-mouse CD80, 

FITC-anti-mouse CD273, and PE-anti-mouse CD144. PI was added to exclude PI
+
 dead 

cells. 

 

Cell cycle analysis 

To examine the cell cycle status of IgG1
+
 MBCs, CDH17

+/+
 and CDH17

-/-
 littermates 
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(17 ± 3-months-old) received an intraperitoneal injection of BrdU (1 mg) 1 h before 

sacrifice. Cell suspensions were isolated from the spleens, treated with 2.4G2 to block Fc 

receptors, and then stained with APC/Cy7-anti-B220, PE/Cy7-anti-mouse IgM, Alexa 

Fluor 700-anti-CD38, PE-NIP25, FITC-anti-mouse IgG1, Alexa Fluor 647-BD1B, 

biotin-anti-mouse IgD, and PE/Texas Red-streptavidin. The cells were fixed with 1% 

paraformaldehyde/PBS at 0°C for 1 h and permeabilized with 0.05% NP-40/1% 

paraformaldehyde/PBS at 4°C overnight. Cells were then washed twice with 1% 

glycine/PBS and treated with DNase I solution (1 mg/mL DNase I, 1 mM CaCl2, and 1 

mM MgCl2 in PBS) at 37°C for 10 min, followed by staining with Pacific Blue-anti-BrdU 

at room temperature for 45 min. Cells were suspended in 7AAD and the amount of DNA 

was measured by flow cytometry. 

 

Statistical analysis 

Microsoft Excel was used for statistical analysis. The error bars on the figures represent 

the standard deviation from the mean. Serum antibody titers, the net difference in serum 

antibody titers before and after the secondary immunization, the percentage of MBCs, and 

the MBC cell cycle indices were tested using the Mann-Whitney U-test. All other data 

were tested using Student's t-test. In all cases, differences were considered significant at 
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p<0.05 (*p<0.05, **p<0.01, and ***p<0.001).  
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Results 

Differentiation-dependent regulation of CDH17 expression during late stages of B 

cell development 

To investigate the possible roles of CDH17 in late B cell responses, I first analyzed the 

expression of CDH17 by various splenic B cell populations in WT and in CDH17
-/-

 mice 

immunized with NP-CGG. Whereas transitional-1 B cells (T1 B; 

Lin
-
B220

+
IgD

-
CD23

-
CD21

-
IgM

+
) were CDH17

-
, almost all transitional-2 B cells (T2 B; 

Lin
-
B220

+
IgD

+
CD23

+
CD21

+
IgM

+
) were CDH17

+
. Marginal zone B cells (MZ B; 

Lin
-
B220

+
IgD

-
CD23

-
CD21

+
IgM

+
) were also CDH17

+
 (Figure 2A). Both mature B cells 

(Lin
-
B220

+
IgD

+
IgM

-
) and antigen-specific PCs (Lin

-
B220

-
CD138

+
IgG

+
NIP

+
) were 

CDH17
-
 (Figure 2B, D). A small fraction of antigen-specific GC B cells (GC B; 

Lin
-
B220

+
GL7

+
CD38

lo/-
NIP

+
) were CDH17

+low
 (Figure 2C). Interestingly, about half of 

antigen-specific MBCs (Lin
-
B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
NIP

+
) was CDH17

+
 (Figure 2E). 

These data are consistent with DNA microarray data published in a previous report 

showing specific CDH17 expression by MBCs [Bhattacharya et al., 2007]. To further 

characterize the CDH17
+
 and CDH17

-
 MBCs, I next examined the expression of 

chemokine/cytokine receptors and other adhesion molecules (CXCR3, CCR6, integrin-2, 

integrin-L, VE-cadherin, CD80, and CD273) (Figure 3). Among these molecules, 
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CXCR3, integrin-L, integrin-2, CD80, and CD273 were expressed at slightly higher 

levels in CDH17
+
 MBCs than in CDH17

-
 MBCs. 

These results show that the expression of CDH17 is tightly regulated during the late 

stages of B cell development: it is downregulated in T1 B cells, upregulated in T2 B cells, 

downregulated in mature B cells, and regained in MBCs during the GC reaction (Figure 

2F, Figure 4). These observations raise the possibility that CDH17 might be involved in 

antibody affinity maturation and/or B cell memory. 

 

The maintenance of serum antibody affinity is impaired in CDH17
-/-

 mice 

To elucidate the role of CDH17 in affinity maturation and MBC formation, I compared 

the antibody responses in WT and CDH17
-/-

 mice. Mice were immunized with NP-CGG, 

and antigen-specific serum IgM (Figure 5A) and IgG1 (Figure 5B) antibody titers were 

measured. Antibody affinity for NP1.6, NP4, and NP16-BSA was examined in an ELISA. 

There were no significant differences in the total NP-specific serum IgM and IgG1 titers 

between WT and CDH17
-/-

 mice at 45 weeks after the primary immunization. However, 

when I examined WT and CDH17
-/-

 mice for the presence of high affinity NP-specific 

serum antibodies, I found that the affinity of NP-specific serum IgM was lower in 

CDH17
-/-

 mice than in WT mice at 4–6 weeks post-immunization (Figure 6A), and that 
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the affinity of IgG1 was lower in CDH17
-/-

 mice from week 31 post-immunization (Figure 

6B). Because there were no significant differences in the anti-NP16 total antibody titer 

between WT and CDH17
-/-

 mice, the lower affinity of IgM and IgG1 in CDH17
-/-

 mice 

must be due to a reduction in the high affinity anti-NP1.6 and anti-NP4 antibody titers. 

Since no significant differences were detected between WT and CDH17
-/-

 mice during the 

early stages of immunization, the results also suggest that CDH17 becomes important 

during the later stages of an immune response, e.g., by promoting long-term maintenance 

of high affinity antigen-specific antibody titers. 

 

The secondary antibody response is markedly impaired in CDH17
-/-

 mice 

High affinity antibody titers are thought to be maintained by MBCs and LLPCs. 

Because PCs are CDH17
-
 and about half of MBCs are CDH17

+
 (Figure 2), one possible 

explanation for the loss of high affinity antibodies could be impaired maintenance of high 

affinity-NP-specific MBCs in CDH17
-/-

 mice. To test this hypothesis, I examined 

secondary antibody responses to NP-CGG. WT and CDH17
-/-

 mice were boost 

immunized with NP-CGG in the absence of alum adjuvant at around 50 weeks 

post-priming. The increases in NP-specific serum antibody titers at Day 5 post-boost were 

then compared with those before the boost. I found that the NP-specific serum IgM and 
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IgG1 titers in WT mice increased markedly at Day 5 post-boosting. On the other hand, 

there was only a small increase in boosted CDH17
-/-

 mice. The difference was most 

evident when changes in antibody titers were compared between individual mice. 

Antibody titers increased significantly in WT mice, whereas only a small increase or even 

a decrease was observed in individual CDH17
-/-

 mice (Figure 7, Figure 8). 

Because the NP-specific IgG1 titers at the time of the boost immunization were 

different between WT and CDH17
-/-

 mice, I next compared the net difference in 

NP-specific serum IgG1 antibody titers before and after the secondary immunization 

(Figure 8). The differences in NP-specific serum IgM (excluding total NP16-specific 

antibodies) and IgG1 titers were significantly higher in WT mice 5 days after the 

secondary immunization, but not in CDH17
-/-

 mice. This bias was more evident for IgG1 

antibodies (Figure 9). Because there were no significant differences in the NP-specific 

serum antibody titer between WT and CDH17
-/-

 mice after the primary immunization, it 

appears that the defect in CDH17
-/-

 mice is specific for the secondary antibody response. 

In conclusion, these results showed that the secondary antibody response is functional, 

but impaired, in CDH17
-/-

 mice, indicating that CDH17 affects the production of 

antigen-specific antibodies during the secondary immune response. 

. 
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CDH17 contributes to the long-term maintenance of MBCs 

Because CDH17
-/-

 mice show an impaired secondary antibody response, I next 

examined whether antigen-specific MBCs were less common in CDH17
-/-

 mice than in 

WT mice. WT and CDH17
-/-

 mice were immunized with NP-CGG and changes in the 

percentage of NP-specific IgG1
+
 MBCs (Lin

-
B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
NIP

+
) were 

monitored by flow cytometry over a long time period (Figure 10A). There was no 

significant difference in the percentage of NP-specific MBCs between WT and CDH17
-/-

 

mice during the first 2–6 weeks post-immunization (Figure 10B), indicating that the initial 

rate of MBC development is not affected by CDH17 deficiency. Moreover, the number of 

progenitor cells, including mature B cells, T1 cells, T2 cells, antigen-specific GC B cells, 

and the total number of IgG1
+
 MBCs, was almost the same in WT and CDH17

-/-
 mice 

(Figure 11, Figure 12). However, the number of NP-specific MBCs in CDH17
-/-

 mice was 

significantly reduced (to about one-third of that in WT mice) after longer periods of time 

(50–67 weeks) post-immunization (Figure 10B). These results indicate that CDH17 plays 

an important role in the long-term maintenance of antigen-specific MBCs, which 

becomes clear after 50 weeks post-antigen exposure. 

 

The "in vivo" proliferation of CDH17
-
 IgG1

+
 MBCs is significantly retarded 
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To elucidate the role of CDH17 in the long-term maintenance of MBCs, I next 

examined the influence of CDH17-deficiency on the rate of cell cycle entry, i.e., cell 

proliferation. Because the number of antigen-specific IgG1
+
 MBCs was very small at 50 

weeks post-primary immunization, I performed cell cycle analyses to examine switched 

IgG1
+
 MBCs rather than antigen-specific IgG1

+
 MBCs. WT and CDH17

-/-
 mice (17 ± 

3-months-old) were injected intraperitoneally with BrdU and sacrificed 1 h later. The cell 

cycle status of switched IgG1
+
 MBCs (B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
) was then examined 

by flow cytometry (Figure 13, Figure 14). I analyzed the cell cycle status of switched 

IgG1
+
 MBCs in CDH17

+
 and CDH17

-
 populations separately, and found that CDH17

-
 

IgG1
+
 MBCs from WT mice showed the same cell cycle distribution as those from 

CDH17
-/-

 mice. On the other hand, the cell cycle progression of CDH17
+
 switched IgG1

+
 

MBCs was higher in WT mice (Figure 14B). These results suggest that CDH17 plays a 

role in the long-term maintenance of MBCs by increasing the rate at which MBCs enter 

the cell cycle.  
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Discussion 

It was shown that almost half of MBCs express CDH17. I examined the expression of 

chemokine/cytokine receptors and other adhesion molecules (which are reported to be 

expressed on MBCs) on CDH17
+
 and CDH17

-
 MBCs [Bhattacharya et al., 2007; 

Tomayko et al., 2010]: CXCR3, CCR6, integrin-2, integrin-L, VE-cadherin, CD80, and 

CD273 (Figure 3). Of these, CXCR3, integrin-L, integrin-2, CD80, and CD273 were 

expressed at slightly higher levels on CDH17
+
 MBCs than on CDH17

-
 MBCs. 

Integrin-L2 (LFA-1) is involved in B cell localization to the MZ [Lu and Cyster, 2002], 

suggesting that CDH17
+
 MBCs are more likely to localize in the MZ than CDH17

-
 MBCs. 

Also, MBCs are classified into five subsets according to their differential expression of 

CD273, CD73, and CD80; CD80
hi

 and/or CD273
hi

 cells are considered to be more 

“memory-like” [Tomayko et al., 2010]. The data presented herein suggest that 

CD80
hi

CD273
hi

CDH17
+
 MBCs are more memory-like than CDH17

-
 MBCs. Jones et al. 

reported that CXCR3 is expressed strongly in splenic MZ lymphoma [Jones et al., 2000], 

suggesting that it is involved in chemotaxis to the MZ. The fact that MBCs from CDH17
-/-

 

mice express levels of CXCR3 equivalent to those expressed by CDH17
+
 MBCs implies 

that the upregulation of CDH17 occurs after the MBCs localize to the MZ. 

CDH17-deficient mice showed a reduction in the titer of high affinity anti-NP 
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antibodies over time, without any obvious difference in the total antibody titer. Figure 5 

and Figure 6 show that overall anti-NP16 IgG1 antibody titers changed: titers were almost 

equal in WT and CDH17
-/-

 mice from Week 2 to Week 31, but were slightly lower in 

CDH17
-/-

 mice at week 45; however, the difference was not statistically significant. The 

titers of high affinity IgG1 (NP1.6 and NP4) antibodies also changed: they were almost 

equal in WT and CDH17
-/-

 mice at Weeks 2–6, but were slightly lower in CDH17
-/-

 mice 

at Weeks 17–45. One possible explanation for this is that CDH17 is involved in the 

maintenance of MBCs but not in the formation of MBCs or PCs. I found that during the 

early phase of the antibody response (Weeks 2–6), there was no difference in antibody 

titers between WT and CDH17
-/-

 mice because PCs developed equally well in both. 

During the later phase (Weeks 17–45), high affinity antibodies produced by PCs would be 

replenished; however, these antibodies would be different from those produced by 

maintained high affinity MBCs. The maintenance of high affinity MBCs was impaired in 

CDH17
-/-

 mice, and the differentiation of PCs from MBCs decreased; therefore, the 

replenishment of high affinity antibodies also decreased. LLPCs, which developed during 

the early phase, continued to produce low affinity antibodies for a long time; thus the 

amount of antibodies produced by LLPCs in WT and CDH17
-/-

 mice was the same 

because PCs do not express CDH17. Hence, after a long time post-antigen immunization, 
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the high affinity antibody ratios in CDH17
-/-

 mice decreased and the total affinity antibody 

titer also decreased (slightly), even though the differences were not statistically 

significant. 

I showed that the cell cycle turnover of CDH17
+
IgG1

+
 MBCs was faster than that of 

CDH17
-
 MBCs. Recent reports examining CDH17

+
 cancer cells reveal that cell cycle 

progression is slowed after CDH17 knockdown [Liu et al., 2009; Qiu et al., 2013]. The 

Wnt signaling pathway forms part of the cadherin signaling pathway [Conacci-Sorrell et 

al., 2002], which regulates the expression of cyclin D1. Immunoprecipitation experiments 

show that CDH17 associates with -catenin, although CDH17 has no catenin-binding 

domain in its intracellular region [Bartolome et al., 2014]. These findings suggest that 

CDH17 accelerates cell cycle progression in CDH17
+
 switched IgG1

+
 MBCs via the Wnt 

signaling pathway.  
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The Candidate Constituent of 

the BILL-cadherin/Cadherin-17-Mediated 

Memory B Cell Survival Niche  
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Introduction 

Cells that are retained for long periods of time, such as hematopoietic stem cells, 

require a specialized niche for survival [Kunisaki et al., 2013; Morrison and Scadden, 

2014]. In general, it is thought that the specific niche was constituted by stromal cells as 

one component and appropriate adhesion molecules are required for cells to reside within 

a specific niche. For example, memory CD4
+
 T cells are resided at bone marrow by IL-7

+
 

stromal cells via integrin 2 and MZ B cells are resided at MZ by ICAM-1
+
 stromal cells 

via integrin L2 respectively [Lu and Cyster, 2002; Tokoyoda et al., 2009]. Stromal cells 

are defined as non-hematopoietic cells that form a matrix. It was suggested that stromal 

cells have an important role for the regulation of immune response, such as the generation 

of lymphocytes, the tolerance induction, the response to antigen and the long-term 

maintenance of memory T cells [Tokoyoda et al., 2010]. MBCs might also require such a 

specialized survival niche to support their long-term maintenance; however, no such niche 

has been identified. 

Several reports described that MBCs are localized at splenic MZ [Anderson et al., 

2007; Dunn-Walters et al., 1995; Liu et al., 1988]. In addition, it was reported that CDH17 

requires Ca
2+

 for homotypic adhesion [Ohnishi et al., 2000; Wendeler et al., 2007]. These 

facts indicate that some CDH17
+
 stromal cell composes the survival niche for MBCs in 
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spleen and anchors MBCs via CDH17 homotypic adhesion. 

Here, I identified a population of MAdCAM-1
+
 blood endothelial cells (BEC) that is 

CDH17
+
. Taken together, these results suggest that CDH17

+
 BEC are a candidate for the 

elusive "MBC niche". The findings of the present study provide crucial clues that will 

improve our understanding of the mechanisms underlying long-term MBC survival.  
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Materials and Methods 

Mice and ethics statements 

See Chapter 1. 

 

Antibodies and reagents 

The following antibodies were purchased from BioLegend: APC/Cy7-anti-mouse 

CD45 (catalog number, 103116; working dilution, 1:100), Brilliant Violet 421 anti-mouse 

IgG1 (406615; 1:50), biotin-anti-mouse MAdCAM-1 (120705; 1:100), and Alexa Fluor 

488-anti-mouse MAdCAM-1 (120707; 1:50). Alexa Fluor 488-anti-mouse Podoplanin 

(gp38) (53-5381-80; 1:100) was purchased from eBioscience. PE-anti-mouse CD31 

(561073; 1:100) was purchased from BD Pharmingen. Qdot 655-streptavidin 

(Q10123MP; 1:100) was purchased from Invitrogen. Alexa Fluor 647-anti-mouse CD169 

(MCA947A647; 1:100) was purchased from AbD Serotec. Other antibodies and reagents 

were described in Chapter 1. 

 

Stromal cell analysis 

To detect CDH17
+
 stromal cells, spleen cells were fractionated according to the method 

of Fletcher et al. [Fletcher et al., 2011]. Briefly, spleens were pierced and treated with a 
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dispase (0.8 mg/mL)/collagenase IV (50 U/mL) enzyme mixture at 37°C for 20 min. The 

cell suspensions were generated by passage through a stainless sieve, then treated with 

2.4G2 to block Fc receptors and stained with APC/Cy7-anti-mouse CD45, 

PE/Cy5-anti-Ter-119, Alexa Fluor 488-anti-mouse Podoplanin (gp38), PE-anti-mouse 

CD31, Alexa Fluor 647-BD1B, biotin-anti-mouse MAdCAM-1, and Qdot 

705-streptavidin. PI was added to exclude PI
+
 dead cells. Stained cells were then analyzed 

by flow cytometry as described above. 

 

Confocal microscopy 

Frozen spleen sections (6 m thick) were treated with the Catalyzed Signal 

Amplification (CSA) System (Dako, K1500) to block endogenous peroxidase activity, 

followed by treatment with the Endogenous Biotin-Blocking Kit (Invitrogen, E21390) to 

block endogenous biotin and 2.4G2 to block Fc receptors. Sections were then stained 

with biotin-BD1B. After washing, the tissue sections were treated with a streptavidin 

biotin complex (CSA system) followed by the Individual Indirect Tyramide Reagent 

(PerkinElmer, SAT700001EA) to amplify the biotin-BD1B signal. Sections were then 

stained with Qdot 655-streptavidin, Alexa Fluor 647-anti-mouse CD169, Brilliant Violet 

421 anti-mouse IgG1, and Alexa Fluor 488-anti-mouse MAdCAM-1. Immunostained 
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tissue sections were visualized under a Zeiss LSM710 confocal microscope. Data were 

analyzed using ZEN software. 

 

Statistical analysis 

Microsoft Excel was used for statistical analysis. The error bars on the figures represent 

the standard deviation from the mean. All data were tested using Student's t-test. 

Differences were considered significant at p<0.05.  
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Results 

It is hypothesized that CDH17, expressed by splenic stromal cells, holds MBCs within 

a specific survival niche via homotypic adhesion. Several stromal cell subsets were 

defined in spleen. There are fibroblastic reticular cells (FRCs), follicular dendritic cells 

(FDCs), blood endothelial cells (BEC) and red pulp fibroblasts. Spleen can separate to 

two sections, such as white pulp and red pulp. The white pulp is a lymphoid compartment 

that consists of T cell zones and B cell follicles. FRC is localized at T cell zone and 

constructs FRC networks surrounding a central arteriole. FDC is localized at B cell 

follicle and constructs FDC networks too. BEC constructs several blood vessels, such as 

central arterioles, marginal sinus and red pulp sinus. MZ separates the white pulp and the 

red pulp [Mueller and Germain, 2009]. Some useful markers to identify stromal cell 

subsets were known. So I next examined the existence of CDH17
+
 stromal cells as a 

possible constituent of the MBC survival niche by flow cytometry. 

Mouse spleens were treated with dispase and collagenase IV, and the expression of 

CDH17 by various stromal cells was examined by flow cytometry (Figure 15A). By this 

procedure, stromal cells can be separated into four subpopulations, such as FRCs 

(gp38
+
CD31

-
), LECs (gp38

+
CD31

+
) and BECs (gp38

-
CD31

+
). I found that a fraction of 

MAdCAM-1
+
 BEC expressed significant levels of CDH17 (Figure 15B). However, it was 
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noticed that the endothelial cell surface was damaged by dispase/collagenase IV treatment. 

Although this may cause relatively high background signals, resulting in lower signal 

intensity for CDH17, I found that BEC expressed statistically significant levels of CDH17. 

In this context, I found that FRCs were also CDH17
+
; however, in this case, the level of 

specific staining was not statistically significant due to the large standard deviation 

(Figure 15B). Thus, FRCs may be vulnerable to the harsh conditions caused by 

dispase/collagenase IV. Taken together, these results suggest that a CDH17-expressing 

subpopulation of MAdCAM-1
+
 BEC is a candidate constituent of the MBC survival 

niche. 

In spleen, BECs can be attributed into several microarchitectures, such as central 

arterioles, marginal sinus and red pulp sinus. The results showed that MAdCAM-1
+
 BEC 

but not MAdCAM-1
-
 BEC expressed CDH17 (Figure 15B). MAdCAM-1 is expressed on 

cells lining the marginal sinuses, which partly overlap with the MOMA-1
+
 marginal zone 

[Kraal et al., 1995]. This observation indicates that a CDH17
+
 stromal cell is BEC that 

constructing marginal sinus at MZ. This speculation is consistent with the previous report 

by Liu et al. that MBC localized at MZ [Liu et al., 1988]. 

To confirm the existence of CDH17
+
MAdCAM-1

+
 BEC in detail, I next performed 

histological experiments. It was shown that CDH17-expressing cells were localized in the 
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region overlapping these MOMA-1
+
 cells and MAdCAM-1

+
 cells; also, 

MAdCAM-1
+
CDH17

+
 cells were present in this region (although they were infrequent) 

(Figure 16). Overall, about 6% of cells in the MZ sinus (MAdCAM-1
+
) were 

MAdCAM-1
+
CDH17

+
 BECs (Figure 17). Class-switched IgG1

+
 B cells 

(B220
+
IgM

-
IgD

-
IgG1

+
) comprise about 0.01% of the splenic B220

+
 B cell population, and 

about 70% of IgG1
+
 B cells show a CD38

+
 MBC phenotype 

(B220
+
IgG1

+
IgM

-
IgD

-
CD38

+
). It is not easy to identify MBCs in the spleen by histology; 

however, small numbers of IgG1
+
 B cells were consistently observed in association with 

white pulp, red pulp, or the MZ. Indeed, the number of IgG1
+
 B cells found in the MZ 

was associated with cells those expressing MAdCAM-1 and CDH17 (Figure 16). The 

memory-like IgG1
+
 B cells associated with MAdCAM-1

+
CDH17

+
 BEC were CDH17

+
 

(Figure 16, bottom panel), suggesting that CDH17 mediates adhesion. The number of 

IgG1
+
 cells associated with the MZ area was significantly lower in CDH17

-/-
 mice, 

whereas IgG1
+
 cells on the red pulp or white pulp were not affected by 

CDH17-deficiency (Figure 18). These observations further support the idea that a 

CDH17-expressing subpopulation of MAdCAM-1
+
 BEC located near marginal sinus 

constitutes a possible "MBC niche" in the spleen.  
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Discusion 

It is thought that MBCs and memory T cells require a specific survival niche for 

long-term maintenance [Aiba et al., 2010; Dogan et al., 2009; Mueller and Germain, 

2009; Tarlinton and Good-Jacobson, 2013]. The survival niches for memory CD4
+
 T cells 

and LLPCs are well documented [Fairfax et al., 2008; Jelley-Gibbs et al., 2005; Tokoyoda 

et al., 2004]. Memory CD4
+
 T cells and LLPCs are maintained by IL-7

+
 stromal cells and 

by CXCL12
+
 stromal cells, respectively, in the bone marrow. The number of maintained 

memory cells is limited by the available space within the survival niche. The methods 

used to create space for newly emerged memory cells within the survival niche have been 

reported [Xiang et al., 2007]. However, it is still unclear whether stromal cells are 

required for MBC survival and, if so, what kind of stromal cells were required 

[McHeyzer-Williams and Ahmed, 1999; Mueller and Germain, 2009; Tokoyoda et al., 

2010]. Here, I showed that a fraction of MAdCAM-1
+
 BEC express CDH17. According 

Kraal et al., MAdCAM-1
+
 vascular cells in the spleen are marginal sinus endothelial cells 

[Kraal et al., 1995]. MBCs reside within the MZ in rodents and humans [Anderson et al., 

2007; Dunn-Walters et al., 1995; Liu et al., 1988]. It was previously shown that the 

expression of CDH17 is especially high in the MZ [Ohnishi et al., 2000] (see also Figure 

16). Thus, it was considered that the CDH17
+
 BECs identified in the present study 
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comprise a fraction of the marginal sinus that offers an area suitable for CDH17-mediated 

homotypic-adhesion to MBC. Interestingly, recent studies show that endothelial cells 

within sinusoids comprise part of the stromal cell population that constitutes the 

hematopoietic stem cell niche [Kometani et al., 2013; Lu and Cyster, 2002; Mueller and 

Germain, 2009]. However, it cannot be excluded that other CDH17
+
 sessile-type cells, 

such as FRCs or other as-yet-unidentified cells, contribute to the MBC survival niche. The 

frequency of MAdCAM-1
+
CDH17

+
 BECs in the MZ sinus (MAdCAM-1

+
) was about 6% 

(Figure 17). It is not too low to support MBCs because a recent report shows that FRCs 

comprise about 30% of total stromal (CD45
-
) cells and govern B cell homeostasis in 

mouse lymph nodes [Cremasco et al., 2014]. The memory-like IgG1
+
 B cells shown in 

Figure 16 are CDH17
+
. Collectively, these data suggest that a fraction of MAdCAM-1

+
 

BEC, which expresses CDH17, comprises the MBC survival niche and that MBCs are 

anchored within this niche by homotypic adhesion mediated by CDH17 (Figure 19).  
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General Discussion  
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Here, I showed that CDH17, a cadherin molecule expressed differentially on B 

lymphocytes at different stages of development, plays a role in the long-term maintenance 

of antigen-specific MBCs. I found that the ability to sustain antigen-specific serum 

antibody titers and affinities over the long term was substantially impaired in 

CDH17-deficient mice. In addition, rapid antibody production during the early phase of 

the secondary response was markedly reduced in CDH17-deficient mice, indicating that 

CDH17 plays a role in the long-term preservation of MBC function, which assures rapid 

antibody production during a secondary immune response. The long-term existence of 

antigen-specific MBCs was also impaired in CDH17-deficient mice. I found that CDH17 

participates in the maintenance of MBCs by regulating homeostatic cell cycle turnover. 

Moreover, I identified CDH17
+
 splenic endothelial cells as a possible counterpart for 

CDH17-mediated homotypic adhesion of MBCs. 

In humans, CDH17 is expressed in the fetal liver and gastrointestinal tract [Lee et al., 

2010] but is downregulated in the adult liver and gastrointestinal tract; however, it is 

upregulated in gastric cancer, esophageal cancer, pancreatic cancer, and hepatocarcinoma 

[Liu et al., 2009; Su et al., 2008; Takamura et al., 2004]. CDH17 is also expressed on 

human B cell lines [Kim et al., 2006] and CD19
+
 peripheral blood lymphocytes 

[Hutcheson et al., 2008], suggesting a role for CDH17 in human B cells. However, the 
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exact role of CDH17 in human MBCs remains unclear. 

Recent reports on MBC localization in the mouse spleen identify the periphery of 

contractile GC as the region in which MBCs are maintained [Aiba et al., 2010; Anderson 

et al., 2007; Dogan et al., 2009]. As for the splenic microarchitecture around the GC and 

MZ, the inner layer of MOMA-1
+
 metallophilic macrophages occasionally associates with 

the outer layer of GC in which CDH17 is also expressed. The difference between their 

experiments and ours is the timing of MBC examination: 8–25 weeks after the primary 

immunization in their case and after around 60 weeks in ours. The respective difference in 

the age of the MBCs would be reflected in the quality of the MBC population. In this 

context, it is noteworthy that I examined two populations of MBCs: CDH17
+
 and CDH17

-
. 

The current hypothesis is that these two types of MBC are generated by asymmetric cell 

division ("self-renewal" and "differentiation-oriented") on CDH17
+
 BEC, as observed for 

hematopoietic stem cells [Knoblich, 2008]. It is speculated that the fate of CDH17
+
 and 

CDH17
-
 MBCs is as follows: whereas CDH17

+
 MBCs remain within the CDH17

+
 BEC 

niche and are maintained by homeostatic proliferation (which is presumably induced by 

catenin-mediated signaling via cell surface CDH17), CDH17
-
 MBCs may leave the niche 

and differentiate into PCs, which partly replenish long-term antigen-specific antibodies. 

The differentiation of CDH17
-
 MBCs into PCs requires antigen. It is speculated that, after 
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asymmetric cell division, CDH17
-
 MBCs leave the MBC niche and circulate throughout 

the body until they encounter an antigen. If CDH17
-
 MBCs do encounter an antigen, the 

cell is activated and differentiates into PCs to produce high affinity antibodies (if it does 

not encounter an antigen, the cell may die). It was reported that antigen-specific memory 

follicular T cells (Tfh) are in the draining regional lymph node [Fazilleau et al., 2007]. It 

is speculated that such cells may play a role in the activation of circulating CDH17
-
 MBC. 

It would also be possible that circulating CDH17
-
 MBCs are activated by polyclonal 

stimulation such as bystander T cell help and CpG DNA [Bernasconi et al., 2002]. In 

CDH17
-/-

 mice, CDH17
-
 MBCs localize out of the MBC niche in the spleen by adhering 

to molecules other than CDH17; hence, the cells lack a homeostatic proliferation signal. 

Integrins L2 and 41 are required for MZ B cells to localize within the MZ [Lu and 

Cyster, 2002]. Cadherins are homotypic adhesion molecules that bind to the same species 

of cadherin molecule on a target cell, although heterotypic adhesion can also occur, such 

as adhesion between E-cadherin and integrins during T cell homing [Cepek et al., 1994; 

Karecla et al., 1995], and between CDH17 and E-cadherin [Baumgartner et al., 2008] or 

21 integrin [Bartolome et al., 2014]. Microarray experiments show that CDH17 is 

specifically expressed on MBCs in addition to 4- and E-integrins [Bhattacharya et al., 

2007]. The data presented herein strongly suggest that CDH17 is involved in MBC 
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homeostasis, probably through homotypic adhesion; however, it cannot be excluded 

heterotypic adhesion with integrins or other cadherins. 

Based on these experimental results, I propose a possible model for long-term MBC 

maintenance (Figure 20). In this model, the initial rate of MBC development is the same 

in WT and CDH17
-/-

 mice, resulting that the initial number of MBC is the same between 

WT and CDH17
-/-

 mice. MBCs in WT mice are anchored at the MBC survival niche that 

composed by CDH17
+
MAdCAM-1

+
 BEC lining the marginal sinuses via 

CDH17-mediated homotypic-adhesion. In contrast, MBCs in CDH17
-/-

 mice cannot be 

localized at the niche, because it lacks the expression of CDH17. MBCs in WT mice can 

receive the survival signal from survival niche and show normal turnover rate. But MBCs 

in CDH17
-/-

 mice show lower turnover rate because it cannot receive the survival signal. 

Therefore, the capability of MBCs maintenance and the secondary immune response are 

impaired at CDH17
-/-

 mice. In conclusion, CDH17 is important for the long-term survival 

of MBC by enhancing the turnover rate and hence contributes to maintain the capability 

of the rapid antibody production in secondary response. 

In conclusion, I showed that CDH17 plays an important role in the long-term survival 

of antigen-specific MBCs, thereby maintaining the capability for rapid antibody 

production during a secondary immune response. I found that a fraction of MAdCAM-1
+
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BEC may represent a candidate constituent of the MBC survival niche. Further 

elucidation of the molecular mechanisms underlying the role of CDH17 in MBC 

maintenance may make it possible to establish improved vaccination protocols.  
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Figure 1. Domain structure of CDH17. 

The organization of cadherin domains in CDH17 resembles non-classic rather than classic 

cadherins, since it lacks the „precursor segment‟ and is composed of five cadherin 

domains and one pseudo-domain. The most striking difference from the classic cadherins 

is a lack of the "catenin-binding motif" in the cytoplasmic domain.  
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Figure 2. The differentiation-dependent regulation of CDH17 expression 

during B cell development in spleen. 

(A–E) Flow cytometry analysis of CDH17 expression on spleen cells and bone marrow 

cells isolated from wild-type (WT) and CDH17
-/-

 (KO) mice. (A) T1 B cells 

(Lin
-
B220

+
IgD

-
CD23

-
CD21

-
IgM

+
), T2 B cells (Lin

-
B220

+
IgD

+
CD23

+
CD21

+
IgM

+
), and 

MZ B cells (Lin
-
B220

+
IgD

-
CD23

-
CD21

+
IgM

+
). (B) Mature B cells (Lin

-
B220

+
IgD

+
IgM

-
). 

(C) Antigen-specific GC B cells (Lin
-
B220

+
GL7

+
CD38

low/-
NIP

+
). (D) Antigen-specific 

PCs (Lin
-
B220

-
CD138

+
Ig

+
NIP

+
). (E) Antigen-specific MBCs 

(Lin
-
B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
NIP

+
). Numbers adjacent to the gates indicate the 

percentage (%) of cells in the respective parental gates. (F) Histogram showing the 

percentage of CDH17
+
 cells within various B cell populations. The percentage of 

CDH17
+
 cells relative to the total number of cells in the parental gates (indicated on the 

top of the corresponding flow cytometric contour plot) was calculated. In (C), the 

percentage of antigen-specific cells within the parental gates was calculated (n=2 (PCs), 

n=8 (GC B), n=6 (others); *P≤0.05, **P≤0.01, ***P≤0.001 (Student‟s t-test)).  
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Figure 3. The expression of chemokine receptors, cell adhesion 

molecules, and co-stimulatory molecules by CDH17
+
 and CDH17

-
 

MBCs. 

(A) Expression profiles of two chemokine receptors, three adhesion molecules, and two 

co-stimulatory molecules on IgG1
+
 MBCs (Lin

-
B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
). Numbers 

represent the percentage (%) of CDH17
+
 cells in the IgG1

+
 MBC gate. (B) Histogram 

showing the mean fluorescence intensity (MFI) of each marker expressed on IgG1
+
 

MBCs (n=6; *P≤0.05 (Mann-Whitney U-test)).  
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Figure 4. The "spatiotemporal" regulation of CDH17 expression during 

the B cell development in spleen. 

The expression of CDH17 is downregulated in T1 B cells, upregulated in T2 B cells, 

downregulated in mature B cells, and regained in MBCs during the GC reaction. However, 

the expression of CDH17 in PCs remains negative. In addition, MZ B cells were 

CDH17-positive.  
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Figure 5. Ag-specific serum antibody titers in the primary 

immunization. 

CDH17
-/-

 (KO) mice and their WT littermates were immunized with NP-CGG in alum. 

The titers of serum IgM (A) and IgG1 (B) antibodies against NP-BSA were measured in 

an ELISA. Antibody titers are expressed in terms of units derived from a panel of 

reference monoclonal NP-specific antibodies. Each symbol represents an individual 

mouse. The mean values are represented by the bold lines. The titers of high affinity 

(NP1.6), medium affinity (NP4), and total affinity (NP16) antibodies are shown. †Lower 

than 1 unit.  
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Figure 6. Ag-specific serum antibody affinities in the primary 

immunization. 

Affinity ratios of serum IgM (A) or IgG1 (B) were calculated for high affinity 

(NP1.6/NP16) and medium affinity (NP4/NP16) antibodies using the data in Figure 5. 

Statistical significance was tested using Student‟s t-test (n=15 (Week 4); n=23 (other 

times); *P≤0.05, **P≤0.01).  
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Figure 7. Ag-specific serum antibody titers in the secondary 

immunization. 

CDH17
-/- 

(KO) mice and their WT littermates received a primary immunization with 

NP-CGG in alum. Mice were boost immunized (without alum) 50 weeks later. Serum 

titers of anti-NP IgM and IgG1 antibodies were measured in an ELISA. Line graph 

showing the change in NP-specific serum IgG1 titer in individual mice (titers are 

expressed as described in the legend to Figure 5). The horizontal axis shows the day of 

blood sampling (Day 0 = the day of boost; Day 5 = 5 days post-boost). Each line 

represents an individual mouse.  
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Figure 8. Comparison of serum antibody titers between pre- and 

post-boosting. 

Histograms showing the average titers of NP-specific serum IgM (left) and IgG1 (right) 

calculated from the data shown in Figure 7. Statistical significance was calculated using a 

paired Student‟s t-test (n=24 (WT, IgM); n=18 (KO, IgM); n=24 (WT, IgG1); n=20 (KO, 

IgG1)). NS, not significant (P>0.05). *P≤0.05, **P≤0.01, ***P ≤0.001.  
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Figure 9. Comparison of serum antibody titers between WT and 

CDH17
-/-

 mice. 

The net increment of NP-specific serum IgM titers (top) and IgG1 titers (bottom) after the 

primary immunization (left) and boost immunization (middle, 5 days after the boost; right, 

45 days after the boost) was calculated by subtracting the pre-immune (left) or pre-boost 

(middle and right) serum titers. Statistical significance was calculated using a 

Mann-Whitney U-test (n=21 (IgM); n=22 (IgG1)). *P≤0.05.  
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Figure 10. Long-term maintenance of antigen-specific MBCs is 

impaired in CDH17
-/-

 mice. 

(A) Flow cytometry analysis of antigen-specific IgG1
+
 MBCs 

(Lin
-
B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
NIP

+
) obtained from CDH17

-/-
 (KO) mice and their WT 

littermates at 52 weeks after primary immunization with NP-CGG in alum. Numbers 

represent the percentage (%) of the indicated cell populations in the respective parental 

gates (shown on top of the panels). (B) Histogram showing the percentage of 

antigen-specific IgG1
+
 MBCs in their respective B220

+
 parental gate. The number of 

weeks post-immunization is shown for each bin. Each symbol represents an individual 

mouse (n=6 (Week 0); n=18 (Weeks 2–6); n=19 (Weeks 50–67); **P≤0.01 

(Mann-Whitney U-test)).  
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Figure 11. The percentage of MBC precursor cells is similar in WT and 

CDH17
-/-

 mice. 

Histogram showing the percentage of different splenic B cell populations (analyzed as 

described in the legend to Figure 2F) (n=2 (PCs); n=8 (GC B); n=6 (other)). *P≤0.05, 

**P≤0.01, ***P≤0.001 (Student‟s t-test)).  
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Figure 12. The percentage of total IgG1
+
 MBCs is similar in WT and 

CDH17
-/-

 mice. 

(A) Flow cytometry analysis of IgG1
+
 MBCs (Lin

-
B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
) obtained 

from CDH17
-/-

 (KO) mice and their WT littermates at 52 weeks after primary 

immunization with NP-CGG in alum. Numbers represent the percentage (%) of the 

indicated cell populations in the respective parental gates (shown on top of the panels). 

The same experiments described in Figure 10. (B) The percentage of IgG1
+
 MBCs. The 

y-axis shows the percentage of IgG1
+
 MBCs (Lin

-
B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
) in the 

respective B220
+
 parental gate. The number of weeks post-immunization is shown for 

each bin.  
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Figure 13. Cell cycle analysis of IgG1
+
 GCB cells. 

(A) Flow cytometry cell cycle analysis of IgG1
+
 GCB cells (B220

+
IgG1

+
CD38

lo/-
) from 

CDH17
-/-

 (KO) mice and their WT littermates. Numbers indicate the percentage (%) of 

cells in their respective cell cycle gates (lower left, G0/G1 phase; top, S phase; lower right, 

G2/M phase). (B) Histogram showing the percentage of the GCB cell population in each 

indicated cell cycle stage (n=18; NS, not significant (P>0.05; Mann-Whitney U-test)).  
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Figure 14. CDH17
+
 switched IgG1

+
 MBCs show increased cell cycle 

progression. 

 (A) Flow cytometry analysis of switched IgG1
+
 MBCs (B220

+
IgD

-
IgM

-
CD38

+
IgG1

+
) 

from CDH17
-/-

 (KO) mice and WT littermates. The numbers indicate the percentage of 

cells in the respective cell cycle gates as in Figure 13. (B) Histogram showing the 

percentage of switched IgG1
+
 MBCs at the indicated cell cycle stage (n=15–17; *P≤0.05, 

**P≤0.01 (Mann-Whitney U-test).  
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Figure 15. A fraction of BEC is CDH17
+
. 

(A) Spleens were treated with dispase and collagenase IV to obtain single stromal cells, 

and cell surface markers were analyzed by flow cytometry. Stromal cells were separated 

into four subpopulations: fibroblastic reticular cells (FRCs, gp38
+
CD31

-
), lymphatic 

endothelial cells (LECs, gp38
+
CD31

+
), blood endothelial cells (BECs, gp38

-
CD31

+
) and 

double-negative (DN) cells (far right panel). Each fraction was then tested for CDH17 

expression. The numbers adjacent to the gates indicate the percentage (%) of the indicated 

cells within their respective parental gates (shown on top of each panel). (B) Histogram 

showing the percentage of CDH17
+
 stromal cells within the respective parental gates. The 

percentages were calculated by subtracting the values of CDH17
-/- 

(KO) mice from those 

of WT mice (n=7 (MAdCAM-1
+
 BEC); n=8 (others)). *P≤0.05 (Student's t-test).  
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Figure 16. Microarchitecture of CDH17
+
 stromal cells and IgG1

+
 B cells 

in spleen. 

Confocal microscopic image of WT mouse spleen stained with anti-CD169 (yellow), 

anti-MAdCAM-1 (green), anti-mouse IgG1 (blue), and anti-CDH17 (red, BD1B). The 

middle-right micrograph is an enlarged view of the boxed area shown in the middle-left 

micrograph. The bottom row of images shows each separate color channel and an 

expanded view of the merged image shown within the box in the middle-right panel. The 

white arrowhead shown in the bottom right image indicates an IgG1
+
 cell that is adjacent 

to a CDH17
+
 cell in the MZ sinus. Data are representative of three independent 

experiments. Scale bars, 50 µm (top and middle row of images) or 10 µm (bottom row).   
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Figure 17. Quantification of CDH17
+
 MZ sinus cells. 

Histogram shows the number of MZ sinus (MAdCAM-1
+
) cells, CDH17

+
 cells, and 

CDH17
+
 MZ sinus cells (CDH17

+
MAdCAM-1

+
) in the spleen of WT mice. Cell numbers 

were counted in six histological sections of WT spleen. The mean and standard deviation 

are plotted.  
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Figure 18. The localization of IgG1
+
 cells in spleen. 

Histogram showing the localization of IgG1
+
 cells in the MZ, red pulp, and white pulp in 

WT and CDH17
-/-

 (KO) mice. Values are expressed as the percentage of IgG1
+
 cells 

localized within each sub-region of the spleen. Data were obtained by confocal 

microscopy as in Figure 16 (n=6; *P≤0.05 (Student's t-test)).  
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Figure 19. A model of the MBC survival niche. 

In spleen, a fraction of MAdCAM-1
+
 BEC expressed CDH17 lining the marginal sinuses. 

MBCs adhere with the CDH17
+
MAdCAM-1

+
 BEC by the homotypic adhesion of CDH17. 

Then MBC was anchored on the MAdCAM-1
+
 BEC and receive survival signals. By this 

way, it enables the long-term maintenance of MBC.  
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Figure 20. A schematic model of long-term MBC maintenance. 

MBCs in WT mice can be anchored by CDH17-positive MAdCAM-1-positive BEC at 

marginal sinus via the homotypic adhesion of CDH17. Then the MBC can receive 

survival signal from stromal cells and shows normal turnover rate. In contrast, MBCs in 

CDH17
-/-

 (KO) mice cannot be localized at the niche, so that it cannot receive survival 

signal and shows lower turnover rate. Then, the long-term maintenance of MBC and the 

secondary antibody response are impaired in CDH17
-/-

 mice (see text for further 

description). 
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