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Abstract: In this paper, we consider a geometric classifier which is applicable to multiclass classification for high-
dimensional data. We show the consistency property and the asymptotic normality of the geometric classifier under
certain mild conditions. We discuss sample size determination so that the geometric classifier can ensure its misclassi-
fication rates are less than prespecified thresholds. We give a two-stage procedure to estimate the sample sizes required
in such the geometric classifier and propose amisclassification rate adjusted classifier (MRAC)based on the geomet-
ric classifier. We evaluate the performance of the MRAC theoretically and numerically. Finally, we demonstrate the
MRAC in actual data analyses by using a microarray data set.
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1. INTRODUCTION

High-dimensional data situations occur in many areas of modern science such as genetic microarrays, med-
ical imaging, text recognition, finance, chemometrics, and so on. A common feature of high-dimensional
data is that the data dimension is high, however, the sample size is relatively low. This is the so-called
“HDLSS” or “largep, smalln” situation wherep/n → ∞; herep is the data dimension andn is the sample
size. Aoshima and Yata (2011a,b) provided a variety of statistical inference for high-dimensional data such
as given-bandwidth confidence region, two-sample test, classification, variable selection, regression, path-
way analysis and so on. They considered sample size determination to ensure prespecified high accuracy
for high-dimensional, non-Gaussian inference and developed the theory of Stein (1945, 1949)’s two-stage
procedure which was originally given for inference on the univariate Gaussian mean. Aoshima and Yata
(2015) verified the asymptotic normality of statistics appearing in inference on high-dimensional mean vec-
tors under certain mild conditions. In this paper, we focus on high-dimensional classification and make an
attempt to give a multiclass classifier to hold misclassification rates less than prespecified thresholds.

Suppose we have independent andp-variate populations,πi, i = 1, ..., k, having un unknown mean vec-
tor µi and unknown covariance matrixΣi(> O) for eachi. We assume thatlim supp→∞ ||µi − µj ||2/p <
∞ for all i ̸= j, where|| · || denotes the Euclidean norm. Also, we assume that tr(Σi)/p ∈ (0,∞) asp → ∞
for i = 1, ..., k. Here, for a function,f(·), “f(p) ∈ (0,∞) asp → ∞” implies lim infp→∞ f(p) > 0
and lim supp→∞ f(p) < ∞. We do not assume thatΣ1 = · · · = Σk. The eigen-decomposition of
Σi is given byΣi = H iΛiH

T
i , whereΛi is a diagonal matrix of eigenvalues,λi1 ≥ · · · ≥ λip > 0,

andH i is an orthogonal matrix of the corresponding eigenvectors. We have independent and identically
distributed (i.i.d.) observations,xi1, ...,xini , from eachπi. Let xij = H iΛ

1/2
i zij + µi, wherezij is
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considered as a sphered data vector from a distribution with the zero mean vector and the identity covari-
ance matrix. We assumeni ≥ 2, i = 1, ..., k. We estimateµi andΣi by xini =

∑ni
j=1 xij/ni and

Sini =
∑ni

j=1(xij − xini)(xij − xini)
T /(ni − 1).

As for populationπi, i = 1, ..., k, we make the following assumption:

(A-i) Let yij , j = 1, ..., ni, be i.i.d. randomqi-vectors havingE(yij) = 0 and Var(yij) = Iqi for each
i (= 1, ..., k), whereqi ≥ p. Let yij = (yi1j , ..., yiqij)

T in which lim supp→∞ E(y4
irj) < ∞ for all r,

E(y2
irjy

2
isj) = E(y2

irj)E(y2
isj) = 1 and E(yirjyisjyitjyiuj) = 0

for all r ̸= s, t, u. Then, the observations,xijs, from eachπi (i = 1, ..., k) are given by

xij = Γiyij + µi, j = 1, ..., ni, (1.1)

whereΓi is ap × qi matrix such thatΓiΓT
i = Σi.

Here,Iqi denotes the identity matrix of dimensionqi. Note that (1.1) includes the case thatΓi = H iΛ
1/2
i

andyij = zij . Also, note that (A-i) is met whenπis haveNp(µi,Σi) for i = 1, ..., k. In addition, we
assume the following assumptions forΣis as necessary:

(A-ii)
tr(Σ4

i )
tr(Σ2

i )2
→ 0 and

tr(ΣiΣl)
tr(Σ2

j )
∈ (0,∞) asp → ∞ for i, j, l = 1, ..., k.

Note that “tr(Σ4
i )/tr(Σ2

i )
2 → 0 asp → ∞” is equivalent to the condition that “λi1/tr(Σ2

i )
1/2 → 0 as

p → ∞”. Also, the sphericity condition such as “tr(Σ2
i )/tr(Σi)2 → 0 asp → ∞ for i = 1, ..., k” holds

under (A-ii).

Remark 1.1. If all λijs are bounded such asλij ∈ (0,∞) asp → ∞, (A-ii) trivially holds. For a spiked
model such asλij = aijp

αij (j = 1, ..., ti) andλij = cij (j = ti + 1, ..., p) with positive constants,aijs,
cijs andαijs, and positive integerstis, (A-ii) holds under the condition thatαij < 1/2 for j = 1, ..., ti(<
∞); i = 1, ..., k.

Let x0 be an observation vector of an individual belonging to one of thek populations. Whenk = 2, a
typical classification rule is that one classifies the individual intoπ1 if

(x0 − x1n1)
T S−1

1n1
(x0 − x1n1) − log

{det(S2n2)
det(S1n1)

}
< (x0 − x2n2)

T S−1
2n2

(x0 − x2n2),

and intoπ2 otherwise. However, the inverse matrix ofSini does not exist in the HDLSS context (p > ni).
Dudoit et al. (2002) considered substituting the inverse matrix defined by only diagonal elements ofSini .
Chan and Hall (2009) and Aoshima and Yata (2014a) considered distance-based classifiers. Particularly,
Aoshima and Yata (2014a) gave a distance-based classifier for multiclass, non-Gaussian high dimensional
data and considered sample size determination to hold misclassification rates less than prespecified thresh-
olds. Whenk = 2, the distance-based classifier is simplified as follows: One classifies the individual into
π1 if (

x0 −
x1n1 + x2n2

2

)T
(x2n2 − x1n1) −

tr(S1n1)
2n1

+
tr(S2n2)

2n2
< 0 (1.2)

and intoπ2 otherwise. Here,−tr(S1n1)/(2n1) + tr(S2n2)/(2n2) is a bias-correction term. Aoshima and
Yata (2014a) showed that the classifier holds a consistency property in which misclassification rates go to
zero asp → ∞ even when (A-i) is not met. In that sense, the classifier is quite robust and applicable
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to actual high-dimensional data. On the other hand, Aoshima and Yata (2011a) considered substituting
{tr(Sini)/p}Ip for Sini in order to use a geometric representation of HDLSS data from eachπi and gave a
two-class quadratic classifier called thegeometric classifieras follows: One classifies the individual intoπ1

if

p||x0 − x1n1 ||2

tr(S1n1)
− p||x0 − x2n2 ||2

tr(S2n2)
− p log

{
tr(S2n2)
tr(S1n1)

}
− p

n1
+

p

n2
< 0 (1.3)

and intoπ2 otherwise. Here,−p/n1 + p/n2 is a bias-correction term. Aoshima and Yata (2014a,b) showed
that the classifier holds the consistency property even whenµ1 = µ2. Recently, Aoshima and Yata (2014b)
provided a general theory of quadratic classifiers for high-dimensional data in non-sparse settings.

In this paper, we develop the geometric classifier by (1.3) to multiclass classification whenk (≥ 2). In
Section 2, we show the consistency property and the asymptotic normality of the geometric classifier for
multiclass high-dimensional data. In Section 3, we discuss sample size determination so that the geometric
classifier can ensure its misclassification rates are less than prespecified thresholds. We give a two-stage pro-
cedure to estimate the sample sizes required in such the geometric classifier and propose amisclassification
rate adjusted classifier (MRAC)based on the geometric classifier. In Section 4, we evaluate the performance
of the MRAC numerically as well. Finally, in Section 5, we demonstrate the MRAC in actual data analyses
by using a microarray data set.

2. ASYMPTOTIC PROPERTIES OF THE GEOMETRIC CLASSIFIER

Let

Wi(x0|ni) =
p||x0 − xini ||2

tr(Sini)
− p

ni
+ p log{tr(Sini)} (2.1)

for i = 1, ..., k. We consider the geometric classifier whenk (≥ 2) as follows: One classifies the individual
into πi if

max
{

argmin
j=1,...,k

Wj(x0|nj)
}

= i. (2.2)

When argminj=1,...,kWj(x0|nj) = {i1, ..., il} with integersl ∈ [2, k] and i1 < · · · < il, we have
max{argminj=1,...,kWj(x0|nj)} = il. Note that the difference,W1(x0|n1) − W2(x0|n2), is equivalent
to (1.3).

2.1. Consistency Property

Let ∆ij(1) = ||µi − µj ||2 and∆ij(2) = tr(Σi) − tr(Σj) + tr(Σj) log{tr(Σj)/tr(Σi)} for all i ̸= j. Note
that∆ij(2) ≥ 0 (i ̸= j) with equality if and only if tr(Σi) = tr(Σj). Let

∆ij =
p

tr(Σj)
(∆ij(1) + ∆ij(2))

for all i ̸= j. We assume the followings asp → ∞ either whenni is fixed orni → ∞ for i = 1, ..., k:

(A-iii)
(µi − µj)TΣi(µi − µj)

∆2
ij

= o(1) and
tr(Σ2

i )tr(Σi − Σj)2

tr(Σi)2∆2
ij

= o(1) for all i ̸= j;

(A-iv)
max{tr(Σ2

i ), tr(Σ2
j )}

min{ni, nj}∆2
ij

= o(1) for all i ̸= j.
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We denote the error rate of misclassifying an individual fromπi (into another class) bye(i). Then, we have
the following result.

Theorem 2.1. Under (A-i), (A-iii) and (A-iv), it holds that asp → ∞

Wj(x0|ni) − Wi(x0|nj)
∆ij

= 1 + oP (1) whenx0 ∈ πi for all i ̸= j;

e(i) → 0 for i = 1, ..., k.

Remark 2.1. Whenk = 2, Aoshima and Yata (2014a) gave partial results of Theorem 2.1 under different
conditions.

Remark 2.2. If maxi′=1,...,k{tr(Σ2
i′)}/∆2

ij → 0 asp → ∞ for all i ̸= j, (A-iii) and (A-iv) naturally hold.
Then, one can claim Theorem 2.1 even whenni is fixed fori = 1, ..., k.

2.2. Asymptotic Normality

Let

W̃ (x0|ni, nj) =
p||x0 − xini ||2

tr(Σi)
−

p||x0 − xjnj ||2

tr(Σj)
− p log

{
tr(Σj)
tr(Σi)

}
− ptr(Sini)

tr(Σi)ni
+

ptr(Sjnj )
tr(Σj)ni

for all i ̸= j. Note thatWi(x0|ni) − Wj(x0|nj) is equivalent toW̃ (x0|ni, nj) with Σi = Sini and
Σj = Sjnj for all i ̸= j. We have thatE{W̃ (x0|ni, nj)} = −∆ij whenx0 ∈ πi for all i ̸= j. Under (A-i),
it holds that

tr(Σj)2

4p2
Var{W̃ (x0|ni, nj)} =

tr(Σj)2

tr(Σi)2
( tr(Σ2

i )
ni

+
tr(Σ2

i )
2ni(ni − 1)

)
+

tr(ΣiΣj)
nj

+
tr(Σ2

j )
2nj(nj − 1)

+ (µi − µj)
T
(
Σi + Σj/nj

)
(µi − µj) + O

( tr(Σ2
i )tr(Σi − Σj)2

tr(Σi)2
)

whenx0 ∈ πi for all i ̸= j. Let

δij =
2p

tr(Σj)

{ tr(Σj)2

tr(Σi)2
( tr(Σ2

i )
ni

+
tr(Σ2

i )
2ni(ni − 1)

)
+

tr(ΣiΣj)
nj

+
tr(Σ2

j )
2nj(nj − 1)

}1/2

for all i ̸= j. We assume extra assumptions asp → ∞ andni → ∞, i = 1, ..., k:

(A-v)
(µi − µj)TΣi(µi − µj)

δ2
ij

= o(1) and
tr(Σ2

i )tr(Σi − Σj)2

tr(Σi)2δ2
ij

= o(1) for all i ̸= j.

Note that under (A-ii) it holdsδij = O{tr(Σ2
i )

1/2} for all i ̸= j, so that tr(Σi)/tr(Σj) → 1 asp → ∞ for
all i ̸= j under (A-ii) and (A-v). Then, we have the following results.

Theorem 2.2. Assume that∆ij(1)/tr(Σj) → 0 asp → ∞ for all i ̸= j. Under (A-i), (A-ii) and (A-v), it
holds that asp → ∞ andni → ∞, i = 1, ..., k

Wi(x0|ni) − Wj(x0|nj) + ∆ij

δij
⇒ Yij whenx0 ∈ πi for all i ̸= j,

where “⇒” denotes the convergence in distribution andYij denotes a random variable distributed as the
standard normal distribution.
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Remark 2.3. Whenk = 2, Aoshima and Yata (2011a) gave the asymptotic normality under some stronger
conditions.

Corollary 2.1. Assume that∆ij(1)/tr(Σj) → 0 asp → ∞ for all i ̸= j. Under (A-i), (A-ii) and (A-v), the
classification rule by (2.2) has that asp → ∞ andni → ∞, i = 1, ..., k

e(i) ≤
k∑

j(̸=i)=1

Φ(−∆ij/δij) + o(1) for i = 1, ..., k,

whereΦ(·) denotes the cumulative distribution function of the standard normal distribution.

Remark 2.4. Whenk = 2, the above result is given as

e(1) = Φ(−∆12/δ12) + o(1) and e(2) = Φ(−∆21/δ21) + o(1).

3. SAMPLE SIZE DETERMINATION TO CONTROL MISCLASSIFICATION RATES

Let ∆ij∗ = {tr(Σj)/p}∆ij = ∆ij(1) + ∆ij(2) for all i ̸= j. Let ∆i∗ = minj(̸=i)=1,...,k min{∆ij∗, ∆ji∗} for
i = 1, ..., k. We are interested in determining the sample size for (2.2) to ensure the requirement:

e(i) ≤ αi whenever∆i∗ ≥ ∆i∗L for i = 1, ..., k,

whereαi ∈ (0, 1/2) and∆i∗L(> 0) i = 1, ..., k, are prespecified constants. We assume∆i∗L = o{tr(Σ2
i )

1/2},
i = 1, ..., k.

3.1. Sample Size Determination

Let zα be the upperα point of the standard normal distribution. We considernis satisfying

δij ≤
2∆(ij)

zαi/(k−1) + zαj/(k−1)
(3.1)

for all i ̸= j, where∆(ij) = p max{∆i∗L, ∆j∗L}/max{tr(Σi), tr(Σj)} (i ̸= j). Note that∆(ij) = ∆(ji)

and∆(ij) ≤ min{∆ij , ∆ji} for all i ̸= j. Under (3.1), we have that

∆ij + ∆(ij)

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)
≥ ∆(ij)

(
1 +

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)

)
=

2zαi/(k−1)∆(ij)

zαi/(k−1) + zαj/(k−1)

≥ zαi/(k−1)δij ;

∆ji − ∆(ij)

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)
≥

2zαj/(k−1)∆(ij)

zαi/(k−1) + zαj/(k−1)
≥ zαj/(k−1)δji,

so that from Theorem 2.2 it follows that fori = 1, ..., k

k∑
i(̸=j)=1

P
(
Wi(x0|ni) − Wj(x0|nj) ≥ ∆(ij)

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)

)
≤ αi + o(1) whenx0 ∈ πi

under (3.1) and the assumptions of Theorem 2.2. First, we consider the case whenlim infp→∞ |tr(Σi)/tr(Σj)
−1| > 0 for i ̸= j. In the case, it holdslim infp→∞ ∆ij/p > 0. Under (A-i) and (A-ii), from Theorem 2.1

5



we have that

P
(
Wi(x0|ni) − Wj(x0|nj) ≥ ∆(ij)

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)

)
= P

(
− 1 + oP (1) ≥

∆(ij)

∆ij

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)

)
= o(1) whenx0 ∈ πi

even ifnis are fixed fori ̸= j. Next, we consider the case when tr(Σ1) = · · · = tr(Σk). Let σi = tr(Σ2
i )

1/2

for i = 1, ..., k. From the fact that tr(ΣiΣj) ≤ {tr(Σ2
i )tr(Σ

2
j )}1/2 (i ̸= j), it holds that fori ̸= j

δij ≤
2p

tr(Σj)
tr
( tr(Σ2

i )
ni − 1

+
tr(Σ2

j )
1/2 maxl=i,j tr(Σ2

l )
1/2

nj − 1

)1/2
≤ 2p

tr(Σj)
max
l=i,j

σ
1/2
l

( σi

ni − 1
+

σj

nj − 1

)1/2
.

Let us writeσ(i) = maxj(̸=i)=1,...,k σj andα(i) = minj(̸=i)=1,...,k αj for i = 1, ..., k. From the above
arguments, we can findni, i = 1, ..., k, to satisfy (3.1) by

ni ≥
(zαi/(k−1) + zα(i)/(k−1))2 maxl=1,...,k σl

∆2
i∗L

σ
1/2
i (σ1/2

i + σ
1/2
(i) ) + 1 (hereafter calledCi). (3.2)

Note thatni → ∞, i = 1, ..., k, asp → ∞ from the fact that∆i∗L = o{tr(Σ2
i )

1/2}, i = 1, ..., k. For
example, whenk = 2, tr(Σ1) = tr(Σ2) and∆1∗L = ∆2∗L, the smallest integer(n1, n2) satisfying (3.2)
holds the following optimality:

min
2∑

i=1

ni subject to
2p

tr(Σj)
max
l=1,2

σ
1/2
l

( σ1

n1 − 1
+

σ2

n2 − 1

)1/2
≤

2∆(ij)

zαi + zαj

for i ̸= j.

According to (3.2), we take samples from eachπi and calculateWi(x0|ni), i = 1, ..., k, in (2.1). We
consider the following classification procedure based on themisclassification rate adjusted classifierby
Aoshima and Yata (2014a):

Misclassification rate adjusted classifier (MRAC)

Step 1: Seti = 0.

Step 2: Puti = i + 1. If i = k, go to Step 4; otherwise go to Step 3.

Step 3: If it holds that

Wi(x0|ni) − Wj(x0|nj) < p
max{∆i∗L, ∆j∗L}

max{tr(Sini), tr(Sjnj )}
zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)

for all j = i + 1, ..., k, go to Step 4; otherwise go to Step 2.

Step 4: Classifyx0 into πi.

We have the following result.

Theorem 3.1. Under (A-i) to (A-iii), for the MRAC with (3.2), it holds that asp → ∞

lim sup e(i) ≤ αi whenever∆i∗ ≥ ∆i∗L for i = 1, ..., k. (3.3)
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3.2. Designing a Lower Bound,∆i∗L

First, we consider a lower bound of∆ij(1). Let ∆̂ij(1) = ||xini − xjnj ||2 − tr(Sini)/ni − tr(Sjnj )/nj . By
using the two sample test by Aoshima and Yata (2015), under certain regularity conditions, it holds that as
p → ∞ andni → ∞, i = 1, ..., k

∆̂ij(1) − ∆ij(1)

κij
⇒ Yij for all i ̸= j,

whereYij denotes a random variable distributed as the standard normal distribution and

κij =
{

2
Wini

ni(ni − 1)
+ 2

Wjnj

nj(nj − 1)
+ 4

tr(SiniSjnj )
ninj

}1/2

havingWinis defined by (9) in Yata and Aoshima (2013). Here,Wini is an unbiased estimator of tr(Σ2
i ) and

Var{Wini/tr(Σ2
i )} → 0 asp → ∞ andni → ∞ under (A-i). See Aoshima and Yata (2014a) for the details.

It follows thatP (∆̂ij(1)−κijzα′ ≤ ∆ij(1)) → 1−α′ for givenα′ ∈ (0, 1/2). Thus, one may design a lower
bound of∆ij(1) by

∆ij(1)L = ∆̂ij(1) − κijzα′ (3.4)

for sufficiently smallα′. Next, we consider a lower bound of∆ij(2). For i ̸= j it holds that

∆ij(2) ≥
tr(Σi − Σj)2

2max{tr(Σi), tr(Σj)}

with equality if and only if tr(Σi) = tr(Σj). We note that asp → ∞ andni → ∞, i = 1, ..., k

tr(Sini)
tr(Σi)

= 1 + OP

{ tr(Σ2
i )

1/2

n
1/2
i tr(Σi)

}
= 1 + oP (1)

under (A-i). Thus, one may design a lower bound of∆ij(2) by

∆ij(2)L =
tr(Sini − Sjnj )

2

2max{tr(Sini), tr(Sjnj )}

for i ̸= j. Let ∆ij∗L = ∆ij(1)L + ∆ij(2)L for all i ̸= j. Note that∆ij∗L = ∆ji∗L for i ̸= j. Finally, we
choose a lower bound,∆i∗L, by ∆i∗L = minj(̸=i)=1,...,k ∆ij∗L for sufficiently smallα′.

3.3. Two-Stage Procedure

In order to estimateCis in (3.2), we proceed with the following two steps:
1. Choosemi(≥ 4) satisfying

mi

Ci
≤ 1,

Ci

m2
i

→ 0 and
Ci

mi

tr(Σ4
i )

tr(Σ2
i )2

→ 0 as p → ∞ under (A-ii) (3.5)

for i = 1, ..., k. Note that (3.5) holds whenmi/Ci ∈ (0, 1) asp → ∞. Take pilot samples,xij , j =
1, ...,mi, of sizemi from eachπi. Then, calculateWimi for eachπi according to (9) in Yata and Aoshima
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(2013). Letσ̂i = W
1/2
imi

andσ̂(i) = maxj(̸=i)=1,...,k σ̂j for i = 1, ..., k. Define the total sample size for each
πi by

Ni = max
{

mi,
⌈(zαi/(k−1) + zα(i)/(k−1))2 maxl=1,...,k σ̂l

∆2
i∗L

σ̂
1/2
i (σ̂1/2

i + σ̂
1/2
(i) ) + 1

⌉}
, (3.6)

where⌈x⌉ denotes the smallest integer≥ x.
2. For eachi, if Ni = mi, do not take any additional samples fromπi and otherwise, that is ifNi > mi,

take additional samples,xij , j = mi +1, ..., Ni, of sizeNi −mi from πi. By combining the initial samples
and the additional samples, calculatexiNi andSiNi , i = 1, ..., k. Then, follow MRAC by usingWi(x0|Ni)
and tr(SiNi) instead ofWi(x0|ni) and tr(Sini).

Theorem 3.2. Under (A-i) to (A-iii), (3.3) holds for the MRAC with (3.5) and (3.6).

Remark 3.1. Whenk = 2, Aoshima and Yata (2011a) gave a two-stage classification rule based on the
geometric classifier. See Theorem 4.3 in Aoshima and Yata (2011a) for the details. We emphasize that the
MRAC can claim (3.3) fork ≥ 2 even under milder conditions than the original one by Aoshima and Yata
(2011a).

Remark 3.2. Under (A-i), (A-ii) and (3.5), it holdsNi/Ci = 1 + oP (1) asp → ∞, which is in the HDLSS
situation in the sense thatNi/p = oP (1) under the condition thatmaxj=1,...,k{tr(Σ2

j )}/∆2
i∗L = o(p).

Remark 3.3. Even whenmi/Ci > 1 for somei, the assertion in Theorem 3.2 is still claimed. However, it
may cause oversampling in the sense thatNi/Ci > 1 w.p.1.

4. SIMULATION

In order to examine the performance of the MRAC with (3.5) and (3.6), we used computer simulations.
First, we considered2 classes having Gaussian distributions. Independent pseudo random observations
were generated fromπi : Np(µi,Σi), i = 1, 2. We consideredΣ1 = B{(−1)|i−j|0.3|i−j|1/3}B and

Σ2 = c{(−1)|i−j|0.4|i−j|1/3}, whereB = diag[{0.5 + 1/(p + 1)}1/2, ..., {0.5 + p/(p + 1)}1/2]. Note
that tr(Σ1) = p and tr(Σ2) = cp. We setµ1 = (1, ..., 1, 0, ..., 0)T whose the first30 elements are1 and
µ2 = (0, ..., 0)T , so that∆ij(1) = ||µ1 − µ2||2 = 30. We prespecified∆1∗L = ∆2∗L = ∆12(1) = 30. We
set(α1, α2) = (0.05, 0.15) andmi = ⌈0.5 × (Ci − 1)⌉ + 1, i = 1, 2, whereCi is defined by (3.2). We
considered four cases: (a)p = 500 whenc = 1, (b)p = 1000 whenc = 1, (c)p = 500 whenc = 1.2, and (d)
p = 1000 whenc = 1.2. By averaging the outcomes from 2000(= R, say) replications, the findings were
summarized in Table 1. Under a fixed scenario, suppose that therth replication ends withNi = nir (i =
1, 2) observations forr = 1, ..., R. Let ni = R−1

∑R
r=1 nir andV (ni) = (R − 1)−1

∑R
r=1(nir − ni)2.

In the end of therth replication, we checked whether the classifier does (or does not) classifyx0 from
πi correctly and definedPir = 0 (or 1) accordingly for eachi. We calculatede(i) = R−1

∑R
r=1 Pir for

eachi as un estimate ofe(i). Their estimated standard errors were given bys{e(i)} for eachi, where
s2{e(i)} = R−1e(i){1 − e(i)}. As observed in Table 1, the two-class MRAC with (3.5) and (3.6) gave
adequate performances for all the cases when considered those standard errors. Especially, when tr(Σ1) ̸=
tr(Σ2) such as in (c) and (d), the MRAC gave good performances because∆i∗ > ∆i∗L, i = 1, 2.

Next, we considered3 classes having non-Gaussian distributions generated byyijl = (8/10)1/2wijl,
wherewijl, j = 1, ..., p (l = 1, 2, ...) are independently distributed ast-distribution with 10 degrees of
freedom for eachπi (i = 1, 2, 3). Note thatE(yijl) = 0, E(y2

ijl) = 1, andyijl, j = 1, ..., p (i =

1, 2, 3; l = 1, 2, ...) are independent. Letxil = H iΛ
1/2
i (yi1l, ..., yipl)T + µi (i = 1, 2, 3; l = 1, 2, ...),

whereΛi = HT
i ΣiH i. Then, the distribution ofxil satisfies (A-i) for eachπi. We consideredΣ1 =

B{(−1)|i−j|0.3|i−j|1/3}B, Σ2 = B{(−1)|i−j|0.4|i−j|1/3}B andΣ3 = 1.2{(−1)|i−j|0.4|i−j|1/3}. We set
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Table 1. Accuracy of the two-class MRAC with (3.5) and (3.6)

Ci ni ni − Ci V (ni) e(i) s{e(i)}

When tr(Σ1) = tr(Σ2) (c = 1)

p = 500: (m1, m2) = (10, 11)
π1 18.55 19.15 0.6 16.16 0.047 0.00471
π2 20.37 21.19 0.81 27.85 0.151 0.00801

p = 1000: (m1,m2) = (19, 21)
π1 36.29 36.87 0.58 14.1 0.038 0.00428
π2 40.01 40.74 0.73 26.86 0.17 0.00839

When tr(Σ1) ̸= tr(Σ2) (c = 1.2)

p = 500: (m1, m2) = (13, 15)
π1 23.11 23.28 0.17 13.86 0.027 0.00362
π2 27.74 27.95 0.21 30.8 0.072 0.00576

p = 1000: (m1,m2) = (24, 28)
π1 45.47 45.91 0.44 16.38 0.013 0.00253
π2 54.85 55.46 0.61 36.86 0.048 0.00476

µ1 = (1, ..., 1, 0, ..., 0)T whose the first40 elements are1, µ2 = (0, ..., 0, 1, ..., 1, 0, ..., 0)T whose the21st
to the60th elements are1, andµ3 = (0, ..., 0)T . Then, we had∆i∗ ≥ 40 for i = 1, 2, 3. We prespecified
∆i∗L = 40, i = 1, 2, 3. We setmi = ⌈0.5×(Ci−1)⌉+1 for eachπi. We considered four cases: (a)p = 500
when(α1, α2, α3) = (0.1, 0.1, 0.1), (b) p = 1000 when(α1, α2, α3) = (0.1, 0.1, 0.1), (c) p = 500 when
(α1, α2, α3) = (0.05, 0.1, 0.15), and (d)p = 1000 when(α1, α2, α3) = (0.05, 0.1, 0.15). By averaging the
outcomes from 2000(= R, say) replications, the findings were summarized in Table 2. Throughout, the
three-class MRAC with (3.5) and (3.6) gave adequate performances for all the cases when considered those
standard errors.

5. EXAMPLE

We analyzed gene expression data by Armstrong et al. (2002) in which the data set consisted of12582 (= p)
genes. We had 3 classes of leukemia subtypes, that is,π1: acute lymphoblastic leukemia (24 samples),π2:
mixed-lineage leukemia (20 samples), andπ3: acute myeloid leukemia (28 samples). We used the MRAC
and compared the geometric classifier by (3.5) and (3.6) with the distance-based classifier by Aoshima and
Yata (2014a). The total sample size of the distance-based classifier is defined by

Ni∗ = max
{

mi,
⌈(zαi/(k−1) + zα(i)/(k−1))2 maxl=1,...,k σ̂l

∆2
i(1)L

σ̂
1/2
i (σ̂1/2

i + σ̂
1/2
(i) ) + 1

⌉}
for eachπi, where∆i(1) = minj(̸=i)=1,...,k ∆ij(1) for i = 1, ..., k, and∆i(1)L is a lower bound of∆i(1) such
as∆i(1) ≥ ∆i(1)L. Since∆i∗ ≥ ∆i(1), Ni∗s are larger thanNis in (3.6) w.p.1 when∆i∗L > ∆i(1)L.

We prespecified(α1, α2, α3) = (0.05, 0.15, 0.1), so thatα(1) = 0.1, α(2) = 0.05 andα(3) = 0.05. We
setm1 = m2 = m3 = 10. According to Section 3.2, by settingα′ = 0.05 andni = mi(= 10), i = 1, 2, 3,
we had∆12∗L = 6.11 × 109, ∆13∗L = 2.45 × 1010 and∆23∗L = 8.09 × 109. Thus, we prespecified
∆1L∗ = min(∆12L∗, ∆13L∗) = 6.11 × 109, ∆2L∗ = min(∆12L∗, ∆23L∗) = 6.11 × 109 and∆3L∗ =
min(∆13L∗, ∆23L∗) = 8.09 × 109. Also, we had∆12(1)L = 5.96 × 109, ∆13(1)L = 2.37 × 1010 and
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Table 2. Accuracy of the three-class MRAC with (3.5) and (3.6)

Ci ni ni − Ci V (ni) e(i) s{e(i)}

When(α1, α2, α3) = (0.1, 0.1, 0.1)
p = 500: (m1,m2,m3) = (11, 13, 13)

π1 19.72 20.63 0.91 14.96 0.05 0.00485
π2 23.28 24.15 0.88 28.75 0.075 0.00587
π3 24.93 26.03 1.09 38.36 0.106 0.00688

p = 1000: (m1,m2,m3) = (20, 24, 26)
π1 38.66 39.24 0.59 15.42 0.038 0.00428
π2 45.9 46.56 0.66 26.17 0.067 0.00559
π3 49.23 50.0 0.77 39.49 0.107 0.0069

When(α1, α2, α3) = (0.05, 0.1, 0.15)
p = 500: (m1,m2,m3) = (13, 15, 14)

π1 23.48 24.47 0.99 20.58 0.02 0.00313
π2 27.75 28.65 0.9 34.94 0.074 0.00585
π3 26.56 27.65 1.1 43.55 0.105 0.00685

p = 1000: (m1,m2,m3) = (24, 28, 27)
π1 46.21 46.86 0.65 19.26 0.016 0.00281
π2 54.92 55.54 0.62 31.61 0.057 0.00516
π3 52.5 53.29 0.79 39.49 0.126 0.00742

∆23(1)L = 7.81×109 according to (3.4). Thus, we prespecified∆1(1)L = 5.96×109, ∆2(1)L = 5.96×109

and∆3(1)L = 7.81 × 109.
By using pilot samples of sizem1 = m2 = m3 = 10, we calculatedW1m1 = 2.59 × 1019, W2m2 =

2.16 × 1019 andW3m3 = 2.51 × 1019. From (3.6), the total sample size forπ1 was calculated by

N1 = max
{

10,
⌈(zα1/2 + zα(1)/2)2 maxl=1,2,3 σ̂l

∆2
1∗L

σ̂
1/2
1

(
σ̂

1/2
1 + σ̂

1/2
(1)

)
+ 1

⌉}
= 19.

Similarly, we hadN2 = 16 andN3 = 12. We considered constructing the geometric classifier,Wi(x0|Ni),
i = 1, 2, 3, by (N1, N2, N3) = (19, 16, 12) samples and checking the accuracy of the MRAC by using
remaining(24 − N1, 20 − N2, 28 − N3) = (5, 4, 16) samples. We randomly split the data set from each
πi into training sets of sizes(N1, N2, N3) = (19, 16, 12) and test sets of sizes(5, 4, 16). We constructed
Wi(x0|Ni), i = 1, 2, 3, by the training sets and checked the accuracy of the MRAC by using the test sets.
We repeated this procedure 100 times. Then, we had the average of misclassification rates ase(1) = 0.044,
e(2) = 0.09 ande(3) = 0.064. Also, for the distance-based classifier by Aoshima and Yata (2014a), we
calculated the total sample sizes as(N1∗, N2∗, N3∗) = (20, 17, 12) and had the average of misclassification
rates ase(1) = 0.023, e(2) = 0.08 ande(3) = 0.066. Similarly, for various settings ofαis, we investigated
the performances of the geometric classifier and the distance-based classifier in the MRAC. Throughout, we
used the same settings asm1 = m2 = m3 = 10 and(∆1∗L, ∆2∗L,∆3∗L) = (6.11×109, 6.11×109, 8.09×
109) or (∆1(1)L, ∆2(1)L,∆3(1)L) = (5.96 × 109, 5.96 × 109, 7.81 × 109). We summarized the results in
Table 3. Both the classifiers seem to give adequate performances in such a HDLSS situation. The geometric
classifier would save more observations compared to the distance-based classifier specially in small sample
size settings. On the other hand, the distance-based classifier is very versatile and it holds (3.3) under milder
conditions than the geometric classifier. See Sections 3 and 4 in Aoshima and Yata (2014a) for the details.
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Table 3. Average misclassification rates of the MRAC by the geometric classifier with (3.5) and (3.6)
and by the distance-based classifier by Aoshima and Yata (2014a). We setm1 = m2 = m3 = 10 and
(∆1∗L, ∆2∗L, ∆3∗L) = (6.11 × 109, 6.11 × 109, 8.09 × 109) or (∆1(1)L, ∆2(1)L,∆3(1)L) = (5.96 ×
109, 5.96 × 109, 7.81 × 109). Whenαi ≤ 0.05 at least for twoπis, the result was not available within
the data sets

Geometric classifier Distance-based classifier
(α1, α2, α3) e(1) e(2) e(3) (N1, N2, N3) e(1) e(2) e(3) (N1∗, N2∗, N3∗)

(0.15, 0.15, 0.15) 0.097 0.135 0.071 (13, 12, 10) 0.058 0.113 0.069 (14, 13, 10)
(0.1, 0.15, 0.15) 0.081 0.1 0.071 (15, 14, 10) 0.047 0.095 0.071 (15, 14, 10)
(0.1, 0.1, 0.15) 0.08 0.08 0.088 (16, 16, 10) 0.054 0.055 0.084 (17, 16, 10)
(0.1, 0.1, 0.1) 0.074 0.085 0.084 (16, 16, 10) 0.04 0.088 0.071 (17, 16, 11)

(0.05, 0.15, 0.1) 0.044 0.09 0.064 (19, 16, 12) 0.023 0.08 0.066 (20, 17, 12)
(0.05, 0.1, 0.1) 0.064 0.065 0.071 (19, 18, 12) 0.035 0.08 0.067 (20, 19, 12)
(0.1, 0.05, 0.1) 0.104 0.06 0.086 (19, 18, 12) 0.07 0.05 0.086 (20, 19, 12)
(0.1, 0.1, 0.05) 0.066 0.075 0.06 (19, 18, 12) 0.038 0.07 0.062 (20, 19, 12)

A. APPENDIX

Proof of Theorem 2.1.Under (A-iv), it holds that Var{||xini − µi||2 − tr(Sini)/ni} = O{tr(Σ2
i )/n2

i } =
o(∆2

ij) and Var{(xjnj − µj)T (x0 − µi)|x0 ∈ πi} = O{tr(ΣiΣj)/nj} = O{tr(Σ2
i )

1/2tr(Σ2
j )

1/2/nj} =
o(∆2

ij) for all i, j. Note that(µi−µj)TΣj(µi−µj)/nj ≤ ||µi−µj ||2λj1/nj ≤ ||µi−µj ||2tr(Σ2
j )

1/2/nj

= o(∆2
ij) for all i ̸= j, under (A-iv). Then, it holds that Var[{(x0 − µi) − (xjnj − µj)}T (µi − µj)|x0 ∈

πi] = (µi − µj)T (Σi + Σj/nj)(µi − µj) = o(∆2
ij) for all i ̸= j, under (A-iii) and (A-iv). Thus by using

Chebyshev’s inequality, under (A-iii) and (A-iv) we obtain that

||x0 − µi − (xini − µ1)||2 − tr(Sini)/ni = ||x0 − µi||2 + oP (∆ij);

||x0 − µi − (xjnj − µj) + µi − µj ||2 − tr(Sjnj )/nj = ||x0 − µi||2 + ∆ij(1) + oP (∆ij)

whenx0 ∈ πi for all i ̸= j. Under (A-i) and (A-iv) we have that Var{tr(Sini)} = O{tr(Σ2
i )/ni} = o(∆2

ij)
and Var(||x0 − µi||2|x0 ∈ πi) = O{tr(Σ2

i )} for all i ̸= j, so that tr(Sini) = tr(Σi) + oP (∆ij) and
||x0−µi||2 = tr(Σi)+OP {tr(Σ2

i )
1/2} whenx0 ∈ πi for all i ̸= j. Note that tr(Σi)/p ∈ (0,∞) asp → ∞

for i = 1, ..., k. Then, under (A-i), (A-iii) and (A-iv), we have that

Wj(x0|nj) − Wi(x0|ni)
∆ij

=p
||x0 − µi − (xjnj − µj) + µi − µj ||2 − tr(Sjnj )/nj

tr(Sjnj )∆ij

− p
||x0 − µi − (xini − µi)||2 − tr(Sini)/ni

tr(Sini)∆ij
+ p log

{
tr(Sjnj )
tr(Sini)

}
/∆ij

=p
||x0 − µi||2 + ∆ij(1)

tr(Σj)∆ij
− p

||x0 − µi||2

tr(Σi)∆ij
+ p log

{
tr(Σj)
tr(Σi)

}
/∆ij + oP (1)

=p
{||x0 − µi||2 − tr(tr(Σi)}{tr(Σi) − tr(Σj)}

tr(Σi)tr(Σj)∆ij
+ 1 + oP (1)

=1 + oP (1) (A.1)

whenx0 ∈ πi for all i ̸= j. Hence, we conclude the results.

Proof of Theorem 2.2.We note thatmax{tr(Σ2
i )/n2

i , tr(Σ2
j )/n2

j} = o(δ2
ij) for all i ̸= j under (A-ii). Also,

note that(µi−µj)T (Σi+Σj/nj)(µi−µj) = o(δ2
ij) for all i ̸= j under (A-ii) and (A-v) sinceδji/(njδij) =
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o(1) for all i ̸= j under (A-ii). Letω(x0|ni, nj) = 2{p/tr(Σj)}(x0 − µi)T {(xjnj − µj) − tr(Σj)(xini −
µi)/tr(Σi)} for i ̸= j. Then, similar to (A.1), under (A-i), (A-ii), (A-v) and∆ij(1)/tr(Σj) = o(1) for all
i ̸= j, we have that

Wj(x0|nj) − Wi(x0|ni)

=p
||x0 − µi||2 + ∆ij(1) − 2(x0 − µi)T (xjnj − µj)

tr(Sjnj )
− p

||x0 − µi||2 − 2(x0 − µi)T (xini − µi)
tr(Sini)

+ p log
{

tr(Sjnj )
tr(Sini)

}
+ oP (δij)

=p
{||x0 − µi||2 − tr(Σi)}{tr(Sini − Sjnj )}

tr(Sini)tr(Sjnj )
+ p

{ tr(Σi)
tr(Sjnj )

− tr(Σi)
tr(Sini)

}
− p log

{
tr(Sini)
tr(Sjnj )

}
− ω(x0|ni, nj) + p

∆ij(1)

tr(Σj)
+ oP (δij) (A.2)

whenx0 ∈ πi for all i ̸= j since tr(Sini)/tr(Σi)−1 = OP (δij/p) = oP (1). Here, we note that tr(Σ2
i )/p =

o{tr(Σ2
i )

1/2}, i = 1, ..., k, under (A-ii) from the fact that tr(Σ2
i )

1/2/tr(Σi) = o(1) under (A-ii). It holds
that ||x0 − µi||2 = tr(Σi) + OP {tr(Σ2

i )
1/2} whenx0 ∈ πi and tr(Sini) = tr(Σi) + OP [{tr(Σ2

i )/ni}1/2],
i = 1, ..., k. Then, under (A-ii) and (A-v), we have that

p
{||x0 − µi||2 − tr(Σi)}{tr(Sini − Sjnj )}

tr(Sini)tr(Sjnj )
= OP

{ maxl=i,j tr(Σ2
l )

min{ni, nj}1/2p
+

tr(Σ2
i )

1/2|tr(Σi − Σj)|
p

}
= oP (δij) (A.3)

whenx0 ∈ πi for all i ̸= j. On the other hand, under (A-i) and (A-ii), it holds that

p log
{

tr(Sini)
tr(Sjnj )

}
− p log

{
tr(Σi)
tr(Σj)

}
= p log

{
tr(Σi)

tr(Sjnj )

}
− p log

{
tr(Σi)

tr(Sini)

}
− p log

{
tr(Σi)
tr(Σj)

}
= p

tr(Σi)
tr(Sjnj )

+ p − p
tr(Σi)

tr(Sini)
− p

tr(Σi)
tr(Σj)

+ oP (δij) (A.4)

for all i ̸= j. Then, by combining (A.2) with (A.3) and (A.4), under the assumptions of Theorem 2.2 we
have that

Wj(x0|nj) − Wi(x0|ni) = ω(x0|ni, nj) + ∆ij + oP (δij)

whenx0 ∈ πi. Note that Var{ω(x0|ni, nj)}/δ2
ij = 1 + o(1) for all i ̸= j under (A-ii). Then, in a way

similar to the proof of Theorem 3 in Aoshima and Yata (2014a), under (A-i) and (A-ii) we can claim that
ω(x0|ni, nj)/δij ⇒ Yij for all i ̸= j. Thus it concludes the result.

Proof of Corollary 2.1.By using Theorem 2.2 and Bonferroni’s inequality, we have that1 − e(i) ≥ 1 −∑k
j(̸=i)=1 Φ{−∆ij/δij} + o(1) whenx0 ∈ πi. This concludes the proof.

Proof of Theorem 3.1.From (3.2), it holds thatδij ≤ 2∆(ij){1 + o(1)}/(zαi/(k−1) + zαj/(k−1)) when
tr(Σi)/tr(Σj) = 1 + o(1) for all i ̸= j. We denote the error of misclassifying an individual fromπi into πj

by e(j|i) for i ̸= j. Then, under (3.2) and the assumptions of Theorem 2.2, we have that

e(j|i) = P
{Wi(x0|ni) − Wj(x0|nj)

δij
≥

p max{∆i∗L/tr(Sjnj ),∆j∗L/tr(Sini)}
δij

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)

}
≤ P

{
Yij ≥

∆(ij)

δij

2zαi/(k−1)

zαi/(k−1) + zαj/(k−1)

}
+ o(1) ≤ P (Yij ≥ zαi/(k−1)) + o(1) =

αi

k − 1
+ o(1)
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whenx0 ∈ πi for i ̸= j, whereYij denotes a random variable distributed as the standard normal distribution.
We note that (A-v) holds under (A-iii) whenlim inf δij/∆ij > 0 for all i ̸= j. On the other hand, when
δij/∆ij = o(1) for i ̸= j, from Theorem 2.1 it holds that forx0 ∈ πi

e(j|i) = P
{Wi(x0|ni) − Wj(x0|nj)

∆ij
≥

p max{∆i∗L/tr(Sjnj ),∆j∗L/tr(Sini)}
∆ij

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)

}
= P

{
− 1 + oP (1) ≥

∆(ij){1 + oP (1)}
∆ij

zαi/(k−1) − zαj/(k−1)

zαi/(k−1) + zαj/(k−1)

}
= o(1)

under (A-i) to (A-iii) without (A-v). We note thatδij/∆ij = o(1) for i ̸= j under (A-ii) when it holds
that lim infp→∞ ∆ij(1)/tr(Σj) > 0 or lim infp→∞ |tr(Σi)/tr(Σj) − 1| > 0. Thus one can claime(j|i) ≤
αi/(k− 1)+ o(1) for all i ̸= j under (3.2) and (A-i) to (A-iii). Then, from Bonferroni’s inequality, we have
that1 − e(i) ≥ 1 −

∑k
j( ̸=i)=1 e(j|i) ≥ 1 − αi + o(1) whenx0 ∈ πi. This concludes the proof.

Proof of Theorem 3.2.Let CiL = ⌊Ci − (ωCi)1/2⌋, i = 1, ..., k, whereω (> 0) is a variable such that
ω → 0 as p → ∞. Then, from the proof of Theorem 5 in Aoshima and Yata (2014a), it holds that
max{mi, CiL} ≤ Ni < Ci + (ωCi)1/2 asp → ∞ w.p.1. Then, in a way similar to the proofs of Theorems
2.4 and 2.5 in Aoshima and Yata (2011a), under (A-i) to (A-iii) we have that for alli ̸= j

tr(SiNi) = tr(Σi) + OP [{tr(Σ2
i )/CiL}1/2];

||xiNi − µi||2 − tr(SiNi)/Ni = oP (∆ij);

(xjNj − µj)
T (µi − µj) = oP (∆ij); and

ω(x0|Ni, Nj) = ω(x0|CiL, CjL) + oP (∆ij) whenx0 ∈ πi,

whereω(x0|Ni, Nj) is given in the proof of Theorem 2.2. Similar to the proof of Theorem 2.2, under (A-i)
to (A-iii) we have that

Wj(x0|Ni) − Wi(x0|Nj) = ω(x0|CiL, CjL) + ∆ij + oP (∆ij)

whenx0 ∈ πi for all i ̸= j. Then, in a way similar to the proof of Theorem 3.1, we can conclude the
results.
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